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1 Introduction

The study of nonlinear time series models has received a great deal of attention during

the last three decades. One of the most popular nonlinear time series models is the threshold

autoregressive (TAR) model proposed by Tong (1978,1983). For this model see also Tong and

Lim (1980), Tong (1990) and Tasy (2005), among others. The TAR models can be used to

describe many nonlinear phenomena such as limit cycles, chaos, harmonic distortion, jump

phenomena and time irreversibility. Hansen (2011) summarized the impact of the TAR model

in the fields of econometrics and economics.

Some authors have applied Bayesian approach to estimating unknown parameters in the

TAR model to avoid complicated analytical works and numerical multiple integrations in its

statistical inference. The intractability of posterior distributions has led to some interesting

approaches to model selection and parameter estimation based on Markov chain Monte Carlo

(MCMC) methods. For example, Geweke and Terui (1993) considered Bayesian TAR model

for nonlinear time series. Mcculloch and Tsay (1993a, 1993b) proposed a Bayesian procedure

for detecting threshold values in the TAR model via posterior probability plots. Chen and Lee

(1995) applied Gibbs sampler and Metropolis-Hastings (M-H) algorithm to inference of TAR

models. Chen (1998) gave a Bayesian analysis of generalized TAR models. Chen et al. (2008)

considered Bayesian estimation for parsimonious TAR models. Moreover, Sáfadi and Morettin

(2000) considered Bayesian analysis of threshold autoregressive moving average models. Ismail

and Charif (2003) considered Bayesian inference of threshold moving average models. So et

al. (2005) proposed a Bayesian threshold nonlinearity test for financial time series. Some

authors have considered multiple-regime TAR models. For example, Chen, Gerlach and Lin

(2010) investigated three-regime TAR models with GARCH errors and Bayesian methods for

estimation and model selection as well. Brooks and Garrett (2002) considered a three-regime

TAR model (SETAR) by the frequentist approach to explain the (mean) dynamics of spot and

future markets. In this work, we consider to analyze possible multiple-regime TAR models,
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where the number of threshold values is unknown, which is an alternative to the exiting works.

We want to propose a data-driven Bayesian approach to analyze of possible multiple threshold

values in the TAR model. The main idea of the proposed method is to introduce a sequence

of random variables which take the value 1 at those positions associated with threshold values,

and 0 otherwise. In our Bayesian framework, the unknown threshold-dependent parameters are

estimated using their posterior distributions via maximum a posteriori (MAP) estimation, which

possesses good statistical properties (see, e.g., Lavielle and Moulines, 2000). A hybrid MCMC

method, which combines the basic Metropolis-Hastings (M-H) algorithm and Gibbs sampler,

is used to estimate the threshold-dependent variables and other model parameters. Since the

number of the regimes in the TAR model is not assumed to be fixed, so the method introduced

here is more flexible than those proposed in the existing literatures on Bayesian analysis of TAR

model.

The rest of this paper is arranged as follows. Section 2 presents the TAR model and the

methodology of our Bayesian approach. Section 3 gives the details of the procedure of computing

MAP estimation via MCMC method. Simulation results and a real data example are provided in

Section 4. Section 5 is our conclusion. The proof of our theoretical result is given in Appendix.

2 Threshold Autoregressive Model and Bayesian Inference

2.1 TAR Model

A time series {yt, t = 1, 2, ...} is said to follow a TAR model with k regimes if it satisfies the

following equation

yt = θ
(j)
0 +

qj
∑

i=1

θ
(j)
i yt−i + ε

(j)
t , for rj−1 < yt−d ≤ rj , (2.1)

where j = 1, 2, ..., k. For each j, {ε
(j)
t } is a sequence of independent and identically distributed

(i.i.d.) random variables with normal distribution N(0, σ2
j ). The threshold values rj ’s satisfy

−∞ = r0 < r1 < · · · < rk = ∞ and form a partition of the space of yt−d. The positive integer d
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is referred to as the delay (or threshold lag) parameter of the model. We denote the TAR model

(2.1) by TAR(k; q1, ..., qk). The TAR model is a piecewise linear model in the space of yt−d, but

not a piecewise linear model in time. Tong (1990) provided an excellent review of this type of

models.

Suppose there exits a positive integer q such that 0 ≤ k, d, qi ≤ q, i = 1, ..., k, and the first

q observations {y1, ..., yq} are given. Let πi be the time index of the ith smallest observation

of {yq+1−d, yq+2−d, ..., yn−d}. Then yπ1 < yπ2 < ... < yπn−q
and yπi

∈ {yq+1−d, ..., yn−d}. Let

Y = (yπ1+d, yπ2+d, ..., yπn−q+d), and Θi = (θ
(i)
0 , θ

(i)
1 , ..., θ

(i)
qi )′, i = 1, 2, ..., k. Given the first q

observations, the (conditional) probability density function (p.d.f.) of Y is expressed as

f(Y |Θi, σ
2
i , ri, 1 ≤ i ≤ k; d)

∝

k
∏

i=1

(2πσ2
i )−ni/2 exp







−
1

2σ2
i

si
∑

j=si−1+1

(

yπj+d − θ
(i)
0 −

qi
∑

l=1

θ
(i)
l yπj+d−l

)2






∝

k
∏

i=1

(σ2
i )

−ni/2 exp

{

−
1

2σ2
i

(Y ∗
i − X∗

i Θi)
′(Y ∗

i − X∗
i Θi)

}

, (2.2)

where the symbol ∝ means direct proportion, si, i = 1, 2, ..., k − 1, satisfy yπsi
≤ ri < yπsi+1 ,

s0 = 0, sk = n − q, and

Y ∗
i = (yπsi−1+1+d, yπsi−1+2+d, ..., yπsi

+d)
′

is the observations generated by regime i in order of occurrence,

X∗
i = (xi,si−1+1, xi,si−1+2, ..., xi,si

)′

is an ni × (qi + 1) matrix with xi,l = (1, yπl+d−1, ..., yπl+d−qi
)′, while ni = si − si−1 is the width

of regime i. The parameters to be estimated for the TAR model are k, Θi, σ
2
i , ri, i = 1, ..., k,

and d.

In order to estimate the threshold values {ri}, we introduce a random process {γi} defined

by

γt−q =







1, if there exists i suth that t = πsi
+ d,

0, otherwise,
(2.3)
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t = q + 1, 2, ..., n − 1. Then the estimation of the threshold values ri, i = 1, · · · , k, reduces to

the estimation of the vector γ = (γ1, ..., γn−q−1) and the delay parameter d. In fact, if γi = 1,

then πsi
= i+ q−d is determined, so that an interval that a threshold value r belongs to can be

determined by the inequality yπsi
≤ r < yπsi+1 , where yπsi

= yi+q−d, while yπsi+1 is just greater

than yi+q−d in the set {yq+1−d, ..., yn−d}. Note that the number k of the threshold values can

be estimated by Kγ =
n−q−1
∑

k=1

γk + 1. Denote Θ = (Θ1, ...,ΘKγ ) and σ2 = (σ2
1 , ..., σ

2
Kγ

), then the

likelihood function of the parameters Θ, γ, σ2 and d can be written as

L(Θ, γ, σ2, d|Y ) ∝

Kγ
∏

k=1

(σ2
k)

−nk/2 exp

{

−
1

2σ2
k

(Y ∗
k − X∗

kΘk)
′(Y ∗

k − X∗
kΘk)

}

. (2.4)

2.2 Bayesian Inference

We shall adopt a Bayesian approach to inference of the TAR model based on the posterior

distribution of unknown parameters. To this end, we need to define the prior distribution of

parameters.

Firstly, we consider {γi} to be a sequence of i.i.d. Bernoulli random variables. Then for any

γ = (γ1, ..., γn−q−1) in Ω = {0, 1}n−q−1, the prior probability mass function of γ given d is given

by

π(γ|d) = λKγ−1(1 − λ)n−q−Kγ , (2.5)

where λ ∈ [0, 1] is the Bernoulli parameter, which represents the prior probability that there are

thresholds at some given positions.

Given γ and d, we take the prior of Θi, i = 1, ...,Kγ , to be independent multivariate nor-

mal distribution N(Θ0i, V
−1
i ) and σ2

i , i = 1, ...,Kγ , independent inverse gamma distribution

IG(υi/2, υiλi/2). The prior of d is assumed to follow a discrete uniform distribution on a set

D = {1, ..., d0}, denoted by π(d), where d0 is a prescribed positive integer.

Let φ = (λ, d0,Θ0i, Vi, υi, λi, i ≥ 1) denote the set of hyper-parameters, which are assumed

to be known. To implement Bayesian inference, we need the joint posterior distribution of

(Θ, γ, σ2, d), which combines the prior distributions and the likelihood function.
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The joint prior distribution of (Θ, γ, σ2, d) can be expressed by

π(Θ, γ, σ2, d) = π(Θ|γ, d)π(σ2|γ, d)π(γ|d)π(d). (2.6)

The joint posterior distribution of (Θ, γ, σ2, d) is

f(Θ, γ, σ2, d|Y ) ∝ L(Θ, γ, σ2, d|Y )π(Θ, γ, σ2, d)

∝ exp







−

Kγ
∑

k=1

1

2σ2
k

[(Y ∗
k − X∗

kΘk)
′(Y ∗

k − X∗
kΘk) + υkλk]







×

Kγ
∏

k=1

(2π)−(qk+1)/2|Vk|
1
2 exp

{

−
1

2
(Θk − Θ0k)

′Vk(Θk − Θ0k)

}

×

Kγ
∏

k=1

(σ2
k)

−(nk+υk+2)/2

(

λ

1 − λ

)Kγ

. (2.7)

Using standard Bayesian techniques, we derive the conditional posterior distributions of

Θi, σ
2
i , i = 1, 2, ...,Kγ and d as follows.

The conditional posterior distribution of Θi is independent of Θj for i 6= j and

Θi|Y, γ, σ2, d ∼ N(Θ∗
i , V

∗−1
i ), i = 1, ...,Kγ , (2.8)

where

V ∗
i =

(

X∗′
i X∗

i

σ2
i

+ Vi

)

and

Θ∗
i = (V ∗

i )−1

(

X∗′
i X∗

i

σ2
i

Θ̂i + ViΘ0i

)

with Θ̂i = (X∗′
i X∗

i )−1X∗′
i Y ∗

i , i = 1, ...,Kγ .

The conditional posterior distribution of σ2
i is independent of σ2

j for i 6= j and

σ2
i |Y,Θ, γ, d ∼ IG

(

υi + ni

2
,
υiλi + niS

2
i

2

)

, (2.9)

i.e.

υiλi + niS
2
i

σ2
i

|Y,Θ, γ, d ∼ χ2(υi + ni), i = 1, ...,Kγ ,

where ni = si − si−1, S
2
i = n−1

i (Y ∗
i − X∗

i Θi)
′(Y ∗

i − X∗
i Θi).
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The conditional posterior distribution of d is a multinomial distribution with probability

mass function

f(d|Y,Θ, γ, σ2) =
L(Θ, γ, σ2, d|Y )

d0
∑

d=1

L(Θ, γ, σ2, d|Y )

, d = 1, 2, ..., d0 , (2.10)

where L(Θ, γ, σ2, d|Y ) is the likelihood function defined by (2.4).

Thus, conditionally on the observations and other parameters, Θi, i = 1, · · · ,Kγ , remain

independent and follow normal distributions, σ2
i , i = 1, · · · ,Kγ , remain independent and follow

inverse gamma distributions. All the conditional posterior distributions of the unknown param-

eters, except for γ, can be identified. The estimates of the parameters should be computed by

a hybrid MCMC method which combining M-H algorithm and Gibbs sampler.

The posterior distribution of γ is proportional to

L(Θ, γ, σ2, d|Y )

Kγ
∏

i=1

π(Θi|γ, d)π(σ2
i |γ, d)π(γ|d)π(d). (2.11)

By integrating the parameters Θi, i = 1, · · · ,Kγ , in (2.11), we obtain the conditional posterior

distribution f(γ, d|Y, σ2) given by the following Theorem.

Theorem 1. For any configuration of γ = (γ1, ..., γn−q−1), let Kγ be the number of regimes and

S∗2
k =

1

σ2
k

Y ∗′

k Y ∗
k − Θ∗′

k V ∗
k Θ∗

k, (2.12)

where Θ∗
k and V ∗

k are defined as in (2.8). Then the conditional posterior distribution of (γ, d)

given (Y, σ2) is given by

f(γ, d|Y, σ2) ∝ exp
{

−U(γ, d|Y, σ2)
}

, (2.13)

where γ ∈ Ω = {0, 1}n−q−1, d ∈ D = {1, ..., d0} and

U(γ, d|Y, σ2) =
1

2

Kγ
∑

k=1

(S∗2
k + ωk) + βKγ (2.14)

in which

ωk = (nk + υk + 2) ln σ2
k + (qk + 1) ln(2π) − ln |Vk| + Θ′

k0VkΘk0 +
υkλk

σ2
k

,

β = ln
1 − λ

λ
.

7



The proof of Theorem 1 is presented in Appendix 1.

If σ2
1 = ... = σ2

k = σ2 and the prior distribution of σ2 is IG(υ/2, υλ/2), then the likelihood

function (2.4) reduces to

L(Θ, γ, σ2, d|Y ) ∝ (σ2)−(n−q)/2 exp







−
1

2σ2

Kγ
∑

k=1

(Y ∗
k − X∗

kΘk)
′(Y ∗

k − X∗
kΘk)







. (2.15)

In this situation, the conditional posterior distribution of σ2 is

σ2|Y,Θ, γ, d ∼ IG

(

υ + n − q

2
,
υλ + S2

γ

2

)

, (2.16)

where S2
γ =

Kγ
∑

k=1

(Y ∗
k − X∗

kΘk)
′(Y ∗

k − X∗
kΘk), and the quantity ωk in (2.14) reduces to

ωk = (qk + 1) ln(2π) − ln |Vk| + Θ′
k0VkΘk0. (2.17)

The proof of (2.17) is given in Appendix 2.

It follows from Theorem 1 that the conditional marginal posterior distribution of γ is given

by

f(γ|Y, σ2) ∝

d0
∑

d=1

L(γ, d|Y, σ2), (2.18)

where L(γ, d|Y, σ2) = exp
{

−U(γ, d|Y, σ2)
}

and U(γ, d|Y, σ2) is defined by (2.14). Consequently,

a simplified conditional posterior distribution of d is obtained with probability mass function

f(d|Y, γ, σ2) =
L(γ, d|Y, σ2)

d0
∑

d=1

L(γ, d|Y, σ2)

, d = 1, 2, ..., d0. (2.19)

It is noticed that for any 1 ≤ i ≤ n − q − 1, the conditional posterior distribution P (γi =

1|Y, σ2) gives the probability to have a threshold value r ∈ [yπsi
, yπsi+1) where πsi

= i+q−d. For

a given estimate σ̂2 of σ2, the MAP estimate of γ is one of the standard Bayesian estimations

defined by

γ̂ = arg max
γ

f(γ|Y ), (2.20)

where f(γ|Y ) = f(γ|Y, σ̂2). Unfortunately, closed-form expressions of MAP estimate of γ can

not be obtained. We will use an M-H procedure in the MCMC sampling to carry out numerical

computation for γ.
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3 MCMC method

The MAP estimate of γ is obtained by constructing a homogeneous Markov chain using the

M-H algorithm with the invariant distribution f(γ|Y ). In this procedure we will use a simulated

annealing (SA) algorithm. The SA algorithm defines a non-homogeneous Markov chain which

converges, under appropriate conditions, to the maximizer of the posterior probability density

function f(γ|Y ). A decreasing temperature schedule is introduced in the SA algorithm, which

modifies the acceptance probability.

Denote the current state of Markov chain by γ (i) = (γ
(i)
1 , ..., γ

(i)
n−q−1). The M-H algorithm is

an iterative procedure. At iteration i + 1, we carry out the following two steps:

Step 1: a candidate γ̃ is drawn from a proposal kernel Q(γ (i), γ̃).

Step 2: γ̃ is accepted as the (i + 1)th new state, i.e. γ (i+1) = γ̃, with the probability

α(γ̃, γ̃) = min

{

1,
f(γ̃|Y )Q(γ̃, γ(i))

f(γ(i)|Y )Q(γ(i), γ̃)

}

; (3.1)

otherwise, γ(i+1) = γ(i).

In order to enhance the speed of convergence, it is important to allow more communications

between the states with high probabilities. This can be done by using the following three kernels

Q1, Q2 and Q3 successively at each iteration:

(1) Q1 is a proposal kernel from which the candidate γ̃ is drawn independently of the current

state γ defined by Q1(γ, γ̃) = π(γ̃), where π(γ) is the prior density (2.5). The independent sam-

pler allows for rapid motion to distant parts of the state space. However, the global acceptance

probability for this sampler is very low for large data sets.

(2) Q2 is a proposal kernel by which a new threshold is created or an existing threshold

is removed. In this move, local changes are made from the so-called one-variable-at-a-time M-

H algorithm suggested, for instance, by Chib and Greenberg (1995), to increase the speed of

convergence. More precisely, a random permutation of {1, ..., n − q − 1} is uniformly drawn.

According to this permutation, each component is flipped from 0 to 1 or from 1 to 0. The move
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is accepted with the usual acceptance probability. This move visits each site randomly and all

sites are visited in each scan.

(3) Q3 is a proposal kernel by which an existing threshold is moved. In this move, two

time points s1 and s2 are randomly chosen such that γs1 = 1 and γs2 = 0. Then, γ̃t = γt for

all t 6= s1, s2 while γ̃s1 = 0 and γ̃s2 = 1. The threshold value is finally moved and accepted

according to the acceptance probability. Such move is very important since it avoids trapping

in a threshold neighborhood.

Each kernel is used in turn and the resulting hybrid strategy is called a cycle. The resulting

cycle kernel is irreducible and aperiodic (see, e.g., Chen and Lee, 1995).

In the MAP algorithm, a Markov chain is constructed to simulate the target distribution

f(γ|Y ). At each step of the cycle, the acceptance probability is defined by (3.1). A schedule

for lowering the temperature is defined by Tk = 0.9Tk−1, where T0 is greater than a numerical

constant. This temperature decrease is made at each step of the independent sampler. If R is

the outcome of a uniform drawing on [0, 1], then

γ(i+1) =







γ̃, if RTk < f(γ̃|Y )Q(γ̃,γ(i))

f(γ(i)|Y )Q(γ(i),γ̃)
,

γ(i), otherwise,
(3.2)

where Tk is the current temperature. After a sufficiently long burn-in, the MAP estimate of γ

is determined by computing the time average of output samples of the Markov chain.

To find the MCMC estimates for all parameters (γ, σ2,Θ, d), start with initial values for

the parameter σ2, and then cycle through the following steps. The estimate of γ is obtained

from the above M-H procedure. Then for given values of σ2 and γ, the value of d is obtained

from the conditional posterior distribution f(d|Y, γ, σ2) given by (2.19). Next for given values

of (σ2, γ, d) the values of Θi’s are obtained from the distributions given by (2.8), and for given

values (Θ, γ, d) the values of σ2
i ’s are obtained from (2.9). After a sufficiently long burn-in,

compute the mean of output samples of the Markov chain for each of the parameters, which

are the MCMC estimates of the parameters. Thus the estimates of these parameters can be

obtained by a hybrid MCMC method combining Gibbs simpler and M-H algorithm.
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The above procedure can be implemented once again. In the first stage the threshold values

should be determined under some given integers q1, ..., qk, where qj is the order of the autoregres-

sive model in regime j. The hyper-parameters φ = (λ, d0,Θ0i, Vi, υi, λi, i ≥ 1) should be selected

in somewhat arbitrarily. Once the threshold values are determined, other parameters should

be estimated by Gibbs sampling methods, and the order of the autoregressive model in each

segment can be determined by AIC criterion. In the following stages, the orders and the hyper-

parameters of the model should be determined from the early stages. With these quantities the

number and positions of the threshold values should be estimated again and consequently the

other parameters can be estimated again. The procedure should be implemented further until

the best result is obtained.

4 Simulation and Application Examples

4.1 Simulation Experiments

In this subsection, we use three simulation examples to demonstrate the efficiency of our

method. We will generate data from the models with known parameters and then using the data

to estimate model TAR(k; q1, ..., qk). The efficiency of our method can be seen by comparing

the estimated results with the source models.

Example 1: AR(1)

yt = 0.5yt−1 + εt, (4.1)

where εt ∼ N(0, 4).

Example 2: TAR(2;1,1)

yt = 0.5yt−1I(yt−1 ≤ −0.4) − 0.5yt−1I(yt−1 > −0.4) + εt, (4.2)

where εt ∼ N(0, 4) if yt−1 > −0.4 and εt ∼ N(0, 1) otherwise, I(A) stands for the indicator

function of A, i.e. I(A) = 1 if A is true and 0 otherwise.
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Example 3: TAR(3;1,1,1)

yt = 0.01yt−1I(yt−1 ≤ −1.4) + 0.5yt−1I(−1.4 < yt−1 ≤ 0.8)

−0.5yt−1I(yt−1 > 0.8) + εt, (4.3)

where εt ∼ N(0, 1) if yt−1 > 0.8, εt ∼ N(0, 4) if yt−1 > −1.4 and yt−1 ≤ 0.8, and εt ∼ N(0, 2.25)

if yt−1 ≤ −1.4.

We generate 100 samples of size n = 200 from the models in Examples 1 and 2 respectively,

and 100 samples of size n = 400 from the model in Example 3. The hyper-parameter λ for the

three examples are chosen as 1/(n − q − 2). The other hyper-parameters used in the MCMC

algorithm are given by {d0 = 3, θ1i = 0, Vi = 0.1, i ≥ 1}. We take q = 3 for all three examples.

For each sample we conduct MCMC estimation based on the model TAR(k; 1, ..., 1). Simulation

results change very little when we increased the length of Markov chain to 5000 cycles. This

indicates that the Markov chains have attained convergence. The estimates of all parameters

are obtained by using 5000 iterations after 5000 burn-in cycles. Fig.1, which is depicted by

summarizing 100 independent samples from each model, presents the box plots of the average

absolute error (AAE) between the true values and estimates of y ′
is for all three examples. It is

shown that our method is fine because the AAEs are quite small.

To illustrate our algorithm more thoroughly, we study a sample for each example. The

estimates of the marginal posterior probabilities {P (γt = 1|Y ), t = 1, ..., n − q − 1} by the

MAP algorithm are plotted in Fig.2. For Example 1, no threshold was detected. For Ex-

ample 2, the probability of γ̂ = (0, ..., 0, γ̂159 = 1, 0, ..., 0) is 0.82. This result indicates that

Kγ = 2 and r1 ∈ [−0.5287,−0.4718). Similarly, for Example 3, the probability of γ̂ =

(γ̂1 = 0, ..., γ̂92 = 1, 0, ..., 0, γ̂222 = 1, 0, ..., 0) is near to 0.7. The estimated threshold values

are r1 ∈ [−1.3570,−1.4974) and r2 ∈ [0.7705, 0.8077). Tables 1 to 3 provide the averages of

posterior means, medians, standard deviations, and 95% Bayesian credible intervals over the

100 replications after the burn-in period for all parameters. For integer parameters, d and k, we

report the average of MAPs, with corresponding probability estimates in the brackets. This in-
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dicates that our method is effective. To assess the convergence of the Markov chains intuitively,

we use the trace plots of the sampling process for model parameters. Fig.3 to Fig.5 present the

trace plots for the three simulated models, respectively. It can be seen that the Markov chains

are stationary, which indicate that the chains have attained convergence.

Table 1 Simulation results for AR(1)

Parameters True value Means Medians Standard deviations Credible intervals MAP

θ
(1)
1 0.5 0.4716 0.4721 0.0613 (0.371, 0.573) -

σ2 4 4.1831 4.1561 0.4226 (3.539, 4.912) -

k 1 - - - - 1(96%)

Table 2 Simulation results for TAR(2;1,1)

Parameter True value Means Medians Standard deviations Credible intervals MAP

θ
(1)
1 0.5 0.4228 0.4239 0.0646 (0.316, 0.527) -

θ
(2)
1 -0.5 -0.5554 -0.5559 0.0818 (-0.834, -0.308) -

σ2
1 1 1.5921 1.5814 0.0971 (1.322, 1.899) -

σ2
2 4 3.6678 3.5641 0.4181 (2.748, 5.028) -

r -0.4 - - - (-0.529, -0.471) -

d 1 - - - - 1(100%)

k 2 - - - - 2(82%)

Table 3 Simulation results for TAR(3;1,1,1)

Parameter True value Means Medians Standard deviations Credible intervals MAP

θ
(1)
1 0.01 0.0385 0.0386 0.0349 (-0.010, 0.085) -

θ
(2)
1 0.5 0.8789 0.8781 0.1077 (0.554, 1.106) -

θ
(3)
1 -0.5 -0.5282 -0.5281 0.0887 (-0.676, -0.384) -

σ2
1 1 0.9903 0.9749 0.0955 (0.785, 1.255) -

σ2
2 4 3.9565 3.9218 0.1899 (3.222, 4.834) -

σ2
3 2.25 2.4988 2.4778 0.0841 (2.101, 2.957) -

r1 -1.4 - - - (-1.497, -1.357) -

r2 0.8 - - - (0.771, 0.808) -

d 1 - - - - 1(100%)

k 3 - - - - 3(68%)
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Figure 1: Boxplots of AAE between the true values and estimates of y ′
is for three models
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Figure 2: The marginal posterior distributions of γ for three models
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Figure 3: The trace plots of parameters of AR(1) model
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Figure 4: The trace plots of parameters of TAR(2,1,1) model
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Figure 5: The trace plots of parameters of TAR(3,1,1,1) model

4.2 A Real Data Example

In this subsection, we illustrate our method by analyzing a real data example, i.e. sunspot

number, which is yearly data of sunspot numbers from 1700 to 1979, given by Tong (1983).

The series consists 280 observations and is known to exhibit asymmetric cyclic behavior. Fig.6

present the plots of the data with the regime cut-offs for the sunspot numbers.

Various linear and nonlinear models have been proposed for this series. In general, for this

series it seems that different data spans would suggest different models. Among others, Tsay

(1989) employed a three regimes TAR model to analyze the data of sunspot numbers. The AR

orders of the three regimes refined by AIC criterion are 11, 10, and 10. In this work, without

restricting the number of regimes, we employ the more general model TAR(k; q1, ..., qk) to fit

the data of sunspot numbers. We use all the 280 observations in model building. The hyper-

parameters are chosen as {q = 11, λ = 1/269, d0 = 3, θi0 = 0, Vi = I12, i ≥ 1}.

It is seen from the trace plots of the Markov chain that simulation results change very little

when we increased the length of the chain to 5000 cycles. This suggested that the Markov
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chains have attained convergence. The estimates of all parameters are obtained by using 5000

iterations after 7000 burn-in cycles. Fig.7 presents the posterior probability plot of {P (γt =

1|Y ), t = 1, ..., n − q − 1} and the marginal posterior distributions of Kγ and d. It shows that

three threshold values are detected, i.e. Kγ = 4, and d = 2. For the MAP algorithm, the

probability estimate of γ = (0, ..., 0, γ45 = 1, 0, ..., 0, γ137 = 1, 0, ..., 0, γ210 = 1, 0, ..., 0) is 0.76.

Thus, the threshold values r1, r2 and r3 are detected in the intervals (10.2, 10.7), (40.0, 40.1) and

(73.0, 74.0), respectively. The orders of each regime selected by AIC criterion are 7,4 11 and 10,

respectively. In fact, the AIC value of our model is 1343.83 which is slightly less than 1379.4, the

AIC value of Tsay (1989). Table 4 summarizes the results of estimated autoregressive coefficients

in each regime and the estimated threshold parameters.

Table 4 Results of estimated parameters for sunspot numbers

Regime i θ
(i)
0 θ

(i)
1 θ

(i)
2 θ

(i)
3 θ

(i)
4 θ

(i)
5 θ

(i)
6

1 −4.8808 2.0866 −2.5091 0.6104 −0.8401 0.8228 −0.2238

(1.8247) (1.0400) (0.9585) (0.2396) (0.3978) (0.4043) (0.1233)

2 18.8633 1.5922 −0.8239 −0.5061 0.2357 - -

(6.0323) (0.3480) (0.3914) (0.2224) (0.1241) - -

3 1.6252 0.8585 0.2014 −0.5022 0.2531 −0.1679 −0.1038

(0.8482) (0.4143) (0.2922) (0.2861) (0.1813) (0.1223) (0.1417)

4 1.4945 0.6309 0.1346 −0.1265 0.0178 −0.1783 0.1272

(0.1512) (0.1085) (0.1186) (1855) (0.1721) (0.1145) (0.1152)

Regime i θ
(i)
7 θ

(i)
8 θ

(i)
9 θ

(i)
10 θ

(i)
11 σ2

i
ri

1 0.3124 - - - - 130.3167 (10.2, 10.7)

(0.1518) - - - - (23.82) −

2 - - - - - 166.1455 (40.0, 40.1)

- - - - - (28.04) −

3 0.3033 −0.1833 −0.0211 0.0554 0.2077 82.3864 (73.0, 74.0)

(0.3825) (0.2534) (0.4167) (0.3825) (0.1127) (16.27) −

4 0.3550 −0.4292 0.1555 0.1951 - 88.883

(0.2051) (0.2051) (0.1325) (0.1017) - (13.39)
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5 Conclusion

In this paper, we consider Bayesian analysis of TAR model with possible multiple threshold

values. Without assuming fixed number of the regimes, a method of Bayesian stochastic search

selection is introduced for detecting threshold values of the model. For Bayesian inference, we

derived the posterior distributions of the unknown parameters, particularly that of the threshold-

dependent parameters. A hybrid MCMC method combining M-H algorithm and Gibbs sampler

is established to compute the model parameters. The details of the procedure is presented for

computing the MAP estimation via MCMC method. The major advantage of the methodology

introduced here is that it avoids given the fixed number of thresholds, thus is flexible.

Numerical experiments examples show that the approach proposed here is effective in de-

tecting the threshold values for various TAR models. It can handle multiple thresholds in a

direct manner. The real data example analysis shows that our method is feasible in practice.

For the sunspot data, three threshold values are detected by our method, two of them are close

to those detected by Tsay (1989).

ACKNOWLEDGMENTS

The authors thank the editors and the referee for their constructive comments and valuable

suggestions. This paper is partially supported by the EPSRC Bridging-the-Gaps project and the

starter grant from the Faculty of Science, University of Strathclyde. The authors J. S. Liu and

Q. Xia are supported by National Science Foundation of China (No.11171117), National Science

Foundations of Guangdong Province of China (No.2016A030313414, No.S2011010002371) and

National statistical plan for scientific research project of China (No.2015LZ48).

Appendix 1. The proof of Theorem 1

The conditional posterior distribution of (γ, d) given (Y, σ2) is

f(γ, d|Y, σ2) ∝

∫

f(Θ, γ, σ2, d|Y )dΘ

∝ π(σ2|γ, d)π(γ|d)

∫

L(Θ, γ, σ2, d|Y )π(Θ|γ, d)dΘ, (A.1)
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where L(Θ, γ, σ2, d|Y ) is defined by (2.4) and

L(Θ, γ, d|Y )π(Θ|γ, d)

∝

Kγ
∏

k=1

(σ2
k)

−nk/2 exp

{

−
1

2σ2
k

(Y ∗
k − X∗

kΘk)
′(Y ∗

k − X∗
kΘk)

}

×

Kγ
∏

k=1

(2π)−(qk+1)/2|Vk|
1
2 exp

{

−
1

2
(Θk − Θk0)

′Vk(Θk − Θk0)

}

. (A.2)

Let Θ∗
k, V

∗
k and Θ̂k be defined as before, then we have

1

σ2
k

(Y ∗
k − X∗

kΘk)
′(Y ∗

k − X∗
kΘk) + (Θk − Θk0)

′Vk(Θk − Θk0)

= [Y ∗
k − X∗

kΘ̂k + X∗
k(Θ̂k − Θk)]

′[Y ∗
k − X∗

kΘ̂k + X∗
k(Θ̂k − Θk)]

+(Θk − Θk0)
′Vk(Θk − Θk0)

=
1

σ2
k

[(Y ∗
k − X∗

kΘ̂k)
′(Y ∗

k − X∗
kΘ̂k) + (Θ̂k − Θk)

′(X∗′

k X∗
k)(Θ̂k − Θk)]

+(Θk − Θk0)
′Vk(Θk − Θk0)

=
1

σ2
k

[(Y ∗
k − X∗

kΘ̂k)
′(Y ∗

k − X∗
kΘ̂k) + Θ̂′

kX
∗′

k X∗
kΘ̂k] + Θ′

k0VkΘk0

+(Θk − Θ∗
k)

′V ∗
k (Θk − Θ∗

k) − Θ∗′

k V ∗
k Θ∗

k

=
1

σ2
k

Y ∗′

k Y ∗
k − Θ∗′

k V ∗
k Θ∗

k + Θ′
k0VkΘk0 + (Θk − Θ∗

k)
′V ∗

k (Θk − Θ∗
k)

= S∗2
k + Θ′

k0VkΘk0 + (Θk − Θ∗
k)

′V ∗
k (Θk − Θ∗

k), (A.3)

where S∗2
k is defined by (2.12). Thus the conditional posterior distribution (A.1) reduces to

f(γ, d|Y, σ2) ∝

Kγ
∏

k=1

(σ2
k)

−nk/2(2π)−(qk+1)/2|Vk|
1
2 exp

{

−
1

2
(S∗2

k + Θ′
k0VkΘk0)

}

×π(σ2|γ, d)π(γ|d)

∝

Kγ
∏

k=1

(σ2
k)

−(nk+υk+2)/2(2π)−(qk+1)/2|Vk|
1
2

× exp







−
1

2

Kγ
∑

k=1

(

S∗2
k + Θ′

k0VkΘk0 +
υkλk

σ2
k

)







(

λ

1 − λ

)Kγ

∝ exp
{

−U(γ, d|Y, σ2)
}

, (A.4)

where

U(γ, d|Y ) =
1

2

Kγ
∑

k=1

(S∗2
k + ωk) + βKγ ,

in which ωk and β are defined as in (2.14). The proof of Theorem 1 is completed.
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Appendix 2. The proof of equation (2.17)

If σ2
1 = ... = σ2

k = σ2 and the prior distribution of σ2 is IG(υ/2, υλ/2), then conditional

posterior distribution of (γ, d) given (Y, σ2) is

f(γ, d|Y, σ2) ∝

∫

f(Θ, γ, σ2, d|Y )dΘ

∝ π(γ|d)

∫

L(Θ, γ, σ2, d|Y )π(Θ|γ, d)dΘ, (A.5)

where L(Θ, γ, σ2, d|Y ) is defined by (2.15), π(Θ|γ, d) is as before. Then it follows from (A.3)

the conditional posterior distribution (A.5) reduces to

f(γ, d|Y, σ2) ∝

Kγ
∏

k=1

(2π)−(qk+1)/2|Vk|
1
2 exp

{

−
1

2
(S∗2

k + Θ′
k0VkΘk0)

}

π(γ|d)

∝

Kγ
∏

k=1

(2π)−(qk+1)/2|Vk|
1
2 exp

{

−
1

2
(S∗2

k + Θ′
k0VkΘk0)

}(

λ

1 − λ

)Kγ

∝ exp
{

−U(γ, d|Y, σ2)
}

, (A.6)

where

U(γ, d|Y ) =
1

2

Kγ
∑

k=1

(S∗2
k + ωk) + βKγ ,

in which S∗2
k = 1

σ2 Y ∗′

k Y ∗
k − Θ∗′

k V ∗
k Θ∗

k, ωk is defined by (2.17) and β is defined as in (2.14). The

proof is completed.
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