Estimation of Level Set Trees Using
Adaptive Partitions

Lasse Holmstrom*
Department of Mathematical Sciences, University of Oulu
Kyosti Karttunen
CEMIS Oulu, University of Oulu
and
Jussi Klemela

October 12, 2016

Abstract

We present methods for the estimation of level sets, a level set tree, and a volume
function of a multivariate density function. The methods are such that the computa-
tion is feasible and estimation is statistically efficient in moderate dimensional cases
(d =~ 8) and for moderate sample sizes (n ~ 50 000). We apply kernel estimation
together with an adaptive partition of the sample space. We illustrate how level set
trees can be applied in cluster analysis and in flow cytometry.
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1 Introduction

We consider estimation and computation of a level set tree and a volume function of
a multivariate density function f : RY — R using identically distributed observations
X1, ..., X, € R with density f.

A level set tree of a function f : RY — R is a tree whose nodes correspond to the

connected components of the level sets of f. A level set of f is defined as
A(f ) ={z e R": f(z) > A},

where A € R. The child-parent relations of a level set tree are defined by the set inclusion
and the root of the tree is the support of the density. We obtain a tree with a finite number
of nodes when we choose a finite number of levels .

A level set tree can be described using a recursive definition: (1) The root of the tree
is the support of the density. We assume that the support is a connected set. (2) The
level set which is one step above the support is decomposed into connected components.
These connected components are the child nodes of the root node. (3) Given a node of the
level set tree, we find the child nodes of the node by looking at the level set which is one
step above the level of the node. We restrict ourselves on the part of the level set which
is a subset of the node. This subset is decomposed into connected components and these
connected components are the child nodes of the node. (4) The leaf nodes of a level set
tree correspond to the local maxima (modes) of the function. The definition of a level set
tree goes back at least to Reeb (1946), and level set trees were defined in Klemeld (2004b)
for the purpose of visualization of density functions.

Applications of level set trees include the following. (1) Level set trees can be applied
to visualize high dimensional functions, in particular, high dimensional density functions.
(2) Level set trees can be applied to implement density based clustering. Indeed, a level set
tree gives a useful description of the mode structure of a density function, which leads both
to visualization and clustering. Level set trees help to detect such features of functions
as the number, size, and location of modes. Level set trees do not only visualize modes
but the complete tree structure of the level sets. To visualize functions we can use such

enhancements of level set trees as volume functions and barycenter plots, as defined in



Klemeld (2004b). In density based clustering the observations are partitioned into clusters
which consist of those observations that are inside a connected component of a level set
(inside a node of a level set tree). In order to implement density based clustering it is useful
to have an overview of the complete tree structure of level sets, instead of just looking at
one level set and its connected components.

In this article we concentrate on one visualization tool for multivariate density functions:
a volume function. We enhance a level set tree by adding information about the volumes
of the connected components of the level sets. This leads to a volume function, which is
a 1D function obtained from the original d-dimensional function. A volume function is a
1D function that has the same level set tree as the original d-dimensional function, and
furthermore, the connected components of the level sets of the volume function have the
lengths equal to the volumes of the corresponding connected components of the original
d-dimensional function. The volume function shows the size of the modes of a density
function in the sense of the excess mass, in addition to showing the mode structure.

To estimate and compute a level set tree and a volume function we apply a discretization
of a kernel density estimator. First, we construct an adaptive partition of the sample
space by using a greedy splitting algorithm. We create an adaptive partition whose size
is typically equal to the sample size n, but it can be chosen to have a smaller size, too.
Each member of the partition is a d-dimensional rectangle. Second, we evaluate a kernel
density estimator at the centers of the members of the partition. This leads to a piecewise
constant approximation of the kernel estimator.

Recursive partition algorithms have been used to construct classification and regression
trees, as in Breiman et al. (1984), and they can be applied to construct histograms; see
Klemeld (2009), Chapter 17, and the references there. In this article we apply a recursive
partition algorithm to construct a partition of the sample space which discretizes a kernel
density estimator. Note that an adaptive partition induces an adaptive grid.

In regressogram and histogram estimation recursive partition algorithms have been used
to find adaptive partitions. The bins of a regressogram or a histogram are chosen using
data so that the bins have different sizes and shapes. In regressogram estimation the aim is

to obtain a partition in which the sets are large in those areas, where the regression function



does not change much, and the sets are small in those areas where the regression function
changes rapidly. In histogram estimation the aim is to obtain a partition in which the sets
are large in the areas with few observations, and the sets are small in the areas with many
observations. The areas with few observations correspond to the areas of low density, and
the areas with many observations correspond to the areas of high density. The areas of
high density tend to be close to the areas where the density function changes rapidly.

An optimal partition is found by minimizing some criterion. In the case of regressograms
a natural criterion is the sum of squared residuals. In the case of histograms a natural
criterion is the negative log-likelihood. It is difficult to find the minimizer of these objective
functions (the sum of squared residuals or the negative log-likelihood) among the collection
of all partitions. Recursive partition algorithms apply stepwise minimization to find an
approximate minimizer in a computationally efficient way. One starts with an initial set,
which is splitted into two parts. Then each of the two parts is splitted into two additional
parts. One continues in this way until a stopping criterion is satisfied.

Our purpose is not to estimate regression functions with regressograms or density func-
tions with histograms. Instead, our purpose is to find a partition to discretize a continuous
function, to make this continuous function piecewise constant. In our case the continuous
function is a kernel density estimate. Some other density estimators could also be used,
like Gaussian mixture density estimators, or k-nearest neighbor density estimators. We
have applied the minimization of the negative log-likelihood to find the partition of the
discretization, similarly as in histogram estimation. This choice is made because a good
discretization is such that there are many grid points in the area where the function changes
rapidly, and few grid points in the area where the function changes slowly.

We can compare our approach of using an adaptive grid for the computation of a level
set tree with approaches that use a regular equispaced grid, a Voronoi partition, or a
Delaunay partition.

Indeed, a level set tree of a function f : R? — R can be computed by evaluating the
function at suitable points z1,...,,, € R% Evaluation of the function at the points of a
regular equispaced grid (dense mesh) is a straightforward approach to start the computation

of a level set tree, but this leads to an exponentially growing number of grid points when



the dimension d increases. Also, we are interested in the local maxima of the density, and
not in the tail regions, and it is possible to get a more accurate estimate in the regions
near local maxima if the grid there is denser. In the case of density estimation the data
Xi,..., X, themselves are such that there are more points around the local maxima, and
fewer points in the tail areas, and therefore we use the data themselves to generate the
grid.

Our method can be considered as an attempt to find a partition into rectangles that
best approximates the Voronoi partition. The Voronoi partition is the collection of the
Voronoi cells. For a sample of points X7, ..., X, the Voronoi cell of X; is the set of those
x € R? which are closer to X; than to the other observations X, j # i.! However, the sets
in the Voronoi partition are polyhedrons with a large and varying number of edges, which
makes the use of the Voronoi partition difficult in the computation of a level set tree.

As an alternative, the Delaunay triangulation could be proposed to represent the con-
nected components of the level sets, since the Delaunay triangulation is in a sense dual to
the Voronoi partition. The Delaunay triangulation is the collection of simpleces with d + 1
vertices, where the vertices are the data points.? However, the number of simpleces in the
Delaunay partition is grows exponentially with the dimension, which makes the Delaunay
partition computationally even more expensive than the use of a regular partition. In fact,
the number of simpleces is O (nl@+1/2); see McMullen (1970).

We propose an adaptive grid obtained with a recursive partition of the sample space
which combines the good features of the Voronoi and the Delaunay partitions while avoiding
the undesirable features of those partitions: as in the case of the Voronoi partition, the
partition we obtain is small and, as in the case of the Delaunay partition, the members of

the partition are simple sets.

!The Voronoi cell of a point p € S = {X1,..., X, } is V, = {x € R?: D(x,p) < D(x,q) for all ¢ € S},
where D(x,y) = ||z — y|| is the Euclidean distance in R%. A Voronoi cell is a convex polyhedron: it is the

intersection of the half-spaces of points at least as close to p as to ¢, taken over all g € S.
2The Delaunay triangulation of S = {Xj, ..., X,,} is Delaunay(S) = {c C S : Npeo Vo # 0}; this is the

collection of those tuples o of d + 1 points whose Voronoi cells touch each other. Sets o € Delaunay(S)
are considered as the vertices of a simplex. Thus, a Delaunay triangulation is a collection of d-simpleces.
A d-simplex is the convex hull of its d 4+ 1 vertices. In the two dimensional case (d = 2) the simpleces are

triangles and in the three dimensional case (d = 3) the simpleces are tetrahedrons.



The article gives the following contributions: (1) We provide an algorithm for efficient
computation and estimation of level set trees and volume functions. We argue that the
algorithm of this article is at least as fast as the previous algorithms while providing
statistically accurate estimates. (2) We define a useful density estimator, which leads to
an efficient plug-in-estimator of level sets of a density. (3) The methods lead to feasible
density based clustering. (4) We analyze flow cytometry data in an inventive way.

Algorithms of this article are implemented in R-packages “denpro” and “delt”. These
packages can be downloaded from the web page http://cran.r-project.org/ or from the page
http://jussiklemela.com/denpro/ and the page http://jussiklemela.com/delt/. A tutorial
for the application of the R-packages and some supplementary materials can be found at
the home page of the article http://jussiklemela.com/art/volume/.

Section 2 contains a discussion of the previous related work. Section 3 describes the
density estimators which are used to estimate level set trees and volume functions. Section 4
studies the properties of the discretized kernel estimator using simulations. Section 5

presents an application to a flow cytometry data. Section 6 offers a discussion.

2 Previous Work

Section 2.1 reviews level set estimation. Section 2.2 reviews level set tree based clustering
because a large part of the literature related to level set trees has been written for the

purpose of clustering. Section 2.3 reviews algorithms for the computation of level set trees.

2.1 Level Set Estimation

We apply the level sets of a discretized kernel estimator to construct level set trees. Other
level set estimators that could be applied for our purposes should be such that they are
able to estimate level sets with many connected components, which excludes the use of the
convex hull estimator, and the piecewise polynomial estimator of the boundary function
of a star shaped level set; see Korostelev and Tsybakov (1993) for a description of these
classical level set estimators. An additional constraint for the level set estimators comes

from the fact that for the purpose of visualization the level set estimator should be such that



the computation of the volumes, barycenters, and other characteristics of the connected
components of the level sets is feasible.

For our purposes potentially useful level set estimators can be divided at least into four
categories: (1) plug-in-estimators, where a level set estimator is a level set of a density
estimator; (2) union of balls and related estimators; (3) union of polyhedrons and related
estimators; (4) estimators defined as optimizers of the empirical excess mass.

Our level set estimator is a plug-in estimator, because the estimator is a level set of a
discretized density estimator. Convergence rates of the plug-in-estimators when the density
estimator is the kernel estimator has been studied for example in Baillo et al. (2000), Baillo
et al. (2001), Cuevas et al. (2000), Cuevas et al. (2001), Cadre (2006), Cuevas et al. (2006),
Biau et al. (2007), Burman and Polonik (2009), Rigollet and Vert (2009), Singh et al.
(2009), and Rinaldo and Wasserman (2010).

It is natural to estimate a level set with a union of balls, centered at the observations
whose estimated density is at least equal to the level A of the level set. The support of a
density can be considered as the zero-level level set, and the plug-in-estimator of the support
is a union of balls when the density estimator is a kernel estimator whose kernel function
has a compact ball-shaped support.> Properties of plug-in-estimators of the support were
studied in Devroye and Wise (1980) and Cuevas and Fraiman (1997). A modified union-
of-balls estimator of a level set has been studied in Walther (1997), where certain balls at
the boundary are deleted. Although level set trees can be calculated when the level sets
are estimated with a union of balls, the computation of the volume function requires an
additional estimation step, because the computation of the volume of a union of balls has
to be done numerically.

Delaunay partitions have been used in topological data analysis with point cloud data.
The purpose has been to estimate topological properties of the support of a probability
distribution when a sample of i.i.d. observations is available; see Zomorodian (2012). The

direct application of Delaunay partitions in level set estimation is not feasible, because the

3When the kernel function is the standard normal density, then the support of the kernel estimator is
the whole space R%. When the kernel function is the Bartlett density C(1 — ||z|?)4, then the support is a
union of balls, and when the kernel function is the Epanechnikov product density C H'ii:l(l —z7)4, then

the support is a union of rectangles.



number of simpleces in the partition grows exponentially with the dimension of the data.
Thus, Delaunay partitions do not seem to be better than regular grids. See Azzallini and
Torelli (2007) for an application of Delaunay partitions in level set tree estimation. To
make the Delaunay partition feasible it is necessary to restrict the number of sets in the
partition. These kind of union of polyhedrons estimators were studied in Aaron (2013),
where the size of the Delaunay partition was restricted by taking only those simpleces
which fit inside a small ball, or only those simpleces which are such that the lengths of all
edges are small.

The fourth class of potentially useful level set estimators consists of minimizers of an
empirical risk. The excess mass criterion was proposed by Hartigan (1987) and Miiller and
Sawitzki (1991). See also Nolan (1991) and Polonik (1995), who derive rates of convergence
for support estimation based on excess mass estimates. Mammen and Tsybakov (1995)
study density support problem under a general setting of entropy conditions and Tsybakov
(1997) extends the results to level set estimation. Klemeld (2004a) considers a method of
support estimation using empirical risk minimization with an excess mass criterion, and

uses a recursive splitting algorithm which is related to the splitting algorithm of this article.

2.2 Density Based Clustering

Density based clustering was proposed in (Hartigan, 1975, p. 205), where clusters were
defined as regions of high density, separated from other such regions by regions of low
density. Density based clustering is discussed in Fraley and Raftery (2002).

Stuetzle (2003) defines a cluster tree that can be defined as a level set tree with the levels
such that the topology of the level set is changing at those levels. Density based clustering
can be made feasible with the help of level set trees, as discussed in (Klemeld, 2009, Chapter
8.3). A level set tree can be used to define a cluster tree of observations whose nodes are
associated with subsets of the observations. The cluster tree of observations has the same
tree structure as the level set tree, but the node which is associated with set A ¢ R? in
the level set tree is now associated with observations X; € A. The term likelihood tree
was used for this cluster tree of observations in Klemeld (2009), because the observations

are assigned to the nodes according to the estimated likelihood values f (X;). Level set



trees generate high-density sample regions, whereas cluster trees of observations generate
high-density clusters of data points.

In some cases it is the same thing to calculate the level set tree and the cluster tree
of observations. This happens when the level sets are estimated as unions of balls, for
example. However, there exist algorithms to derive a cluster tree of observations that do
not lead to the corresponding level set tree.

On the other hand, we could construct a level set tree from a cluster tree of observa-
tions by associating each cluster of observations with the union of the Voronoi cells of the
observations in the cluster. Other ad hoc constructions could also be used. In fact, the
cluster of observations could be considered as a point cloud approximating the connected
component of the level set. Level set trees obtained in this way may be not suitable for
the computation of a volume function, for example due to the complexity of the Voronoi
cells. Stuetzle and Nugent (2010) propose the estimation of the volume of a connected
component A of a level set using

volume(A) = / dx = F <[;‘CA ) %Z J?
A

where X is a random variable with density f, Xi,..., X, is a sample from the distribution
of f,and I4(x) = 1 when = € A, and I4(z) = 0 otherwise. This estimator could be applied

to calculate a volume function from a cluster tree of observations.

2.3 Algorithms for the Computation of a Level Set Tree

We do not develop new algorithms for the computation of level set trees in this article, but
we show that the previously developed algorithms can be applied to calculate level set trees
when the discretized kernel estimator is used. In particular, we argue that the Leafsfirst
algorithm of Klemeld (2006) is a useful algorithm.

A level set tree is a concept closely related to a Reeb graph, whose definition is given
in Reeb (1946). A Reeb graph is a graph whose nodes correspond to the local maxima,
local minima, and to the points of the changing of the topology of the contours of the
function, when a contour of a function is defined as {x € R¢: f(z) = A}, where A € R.

First algorithms for the computation of a level set tree were given in the connection of the



computation of a Reeb graph. In fact, the computation of a Reeb graph can be reduced to
the computation of a level set tree. Carr et al. (2003) suggest using the disjoint-set data
structure (union-find data structure) of Tarjan (1976) to calculate a level set tree.*

We start with the descriptions of the algorithms for the computation of a cluster tree
of observations, because these algorithms can sometimes be applied for the computation of
a level set tree, too.

Stuetzle and Nugent (2010) present a three step algorithm. First, a density estimate is
constructed and evaluated at the sample points. Second, a graph G is constructed whose
vertices are the data points, and edges connect the data points. The edges are associated
with weights. The weights of the edges are equal to the minimum value of the estimated
density function on the line segment joining the observations. Third, for each density level A
a subgraph of G is constructed whose vertices are those data points whose estimated density
value is larger or equal to A\, and there exists a connection between the two observations
if the weight of the edge is larger or equal to A\. The connected components are searched
in each subgraph. Chaudhuri and Dasgupta (2010) weight the edges according to the
proximity of the sample points: observations are chosen to be inside a level set if their
k-nearest neighbor estimate is high, and the graph contains an edge if the two observations
are close in Euclidean distance. Menardi and Azzalini (2014) apply the method of Stuetzle
and Nugent (2010) using a kernel density estimator with a locally adaptive smoothing
parameter.

Kent et al. (2013) contains a review of the available algorithms for the computation of
a cluster tree of observations. Kent et al. (2013) call methods where the edges are weighted
edge iteration methods and those where the edges are unweighted point iteration methods.

In the simplest form, there is an edge between the vertices for observations X; and X; if

4A Reeb graph of a function (or a contour tree of a function) is graph whose leaf vertices represent the
local minima or maxima and each interior vertex represent the joining or splitting of the contours of the
function. Carr et al. (2003) give the following procedure for the computation of a Reeb graph. First a
level set tree and a lower level set tree are calculated. A lower level set tree is analogous to a level set tree,
but its nodes correspond to the lower level sets {z € R? : f(z) < A}. Second, the level set tree and the
lower level set tree are pruned so that only the leaf nodes and the nodes with more than one child are left.
Third, the pruned level set tree (split tree) and the pruned lower level set tree (join tree) are combined to

obtain the Reeb graph.
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the distance between X; and X is smaller than some threshold value, or if X; and X are
among each other’s k-nearest neighbors. These algorithms were suggested in Maier et al.
(2009) and Kpotufe and von Luxburg (2011), and implemented in Kent et al. (2013). Kent
et al. (2013) use k-nearest neighbor density estimates and construct the k-nearest neighbor
similarity graph on the set of observations.

The previously described algorithms for the computation of a cluster tree of observations
can be applied for the computation of level set trees when the observations are replaced
by regions of the sample space (for example, we can consider small balls centered at the
observations). In fact, this idea was used in Ooi (2002), where the terminal rectangles
of a recursive partitioning procedure are merged to make a binary tree, which is called a
clustering tree. Ooi (2002) prunes the binary tree obtained from a recursive partitioning
(which is called a density tree). An adjacency graph is constructed, where each vertex
represents a terminal region, and the vertices for adjacent regions are connected by edges.
A weight for each edge is defined. For example, a weight could be the arithmetic mean
of the density values. The density values are taken to be empirical probabilities of the
rectangles. The vertices are merged to get a spanning tree, which is called a clustering
tree. A clustering tree is a binary tree obtained by merging the nodes of the density tree
using the weighting function. The obtained clustering tree is conceptually close to a level
set tree, but the levels of the nodes are not the values of the density but values of the
weight function. The procedure leads to a clustering procedure but not to a level set tree,
and the use of the histogram estimator as a density estimator seems not be statistically as
efficient as the use of the kernel estimator.

The previously described algorithms require O(dn?) steps when the proximities for all
pairs of n observations are calculated, because calculating a proximity takes at least d
steps (for example, computation of the Euclidean distance takes d steps). Using a k-d-
algorithm can reduce the number of steps to O(dnlogn), but then the memory usage
is n9@; see Indyk (2004).° The algorithm of Stuetzle and Nugent (2010) can require

O(C,, 4n?) steps, where C,, 4 is much larger than d, because the algorithm requires the

5Given a finite set X' of points in R? and a query point z, the k-d-algorithm finds the point in X’ closest
to . The k-d-algorithm uses a k-d-tree, which is a similar binary tree as we use to represent an adaptive

partition.
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estimation of the minimum value of a density estimate on the line segments joining the
observations. For example, evaluation of a kernel density estimate at one point takes O(nd)
steps, and evaluation of of mixture of Gaussians takes O(d) steps, but we need to evaluate
the estimates at a large number of points. After the first proximity graph is calculated, the
traveling of the graphs and the decomposition of the graphs into the connected components
takes O(n) steps, but this has to be done for each level set separately. Thus, the previous
algorithms seem to work only for relatively small sample sizes, although they can work for
high dimensional data.

We have applied the Leafsfirst algorithm of Klemeld (2006) to calculate level set trees.
The algorithm was introduced in the connection of calculating level set trees for boundary
functions of star shaped level sets, but it can be applied for the computation of level
set trees of any functions. Unlike the previous algorithms, this algorithm does not start
with a creation of a proximity graph. Instead, the algorithm starts at the rectangle with
the highest density value, which is the first leaf node, merges the rectangles with the
next highest density values if those rectangles are connected to the previous rectangles,
and otherwise creates new leaf nodes. The worst case complexity is O(dL?), where L
is the total number of rectangles. We choose typically L = n. However, the algorithm
uses bounding boxes, which makes it possible to avoid making all pairwise comparisons
between the rectangles (to find which rectangles touch each other), since we can first check
whether the next rectangle touches the bounding boxes of the previously found connected
components. Thus, the complexity of the algorithm can be much lower than O(dL?).

Leafsfirst algorithm can be used always when there is a collection of sets Ay,..., A; C

R? so that the level sets of f: R? — R for levels \; < --- < Az, can be written as
L
Af M) = A (1)
j=l

where [ = 1,..., L. Property (1) says that there exists a collection A;,..., Ay of “elemen-
tary sets” so that all the level sets are unions of these elementary sets. The lowest level
set is a union of all the elementary sets and higher level sets are unions of subsets of the
elementary sets. Property (1) holds when level sets are estimated as unions of balls, unions
of simpleces, and when using a regular or an adaptive partition of the sample space to

rectangles.
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A further algorithm was presented in Klemeld (2005). This algorithm assumes that the
partition of the sample space is represented with a binary tree. This is the case for the
adaptive partition of this article, because the construction of the adaptive partition is done
using binary splits. Also, a regular partition can be represented with a binary tree. A level
set can be divided into connected components with a dynamic programming algorithm that

joins the connected sets by traveling the binary tree from the leaves to the root.

3 Density Estimators

We apply discretized kernel estimators to estimate the density function. The kernel density

estimator fo :R?Y = R, based on data X;,..., X, € R% is defined as
1 Z” 4
= — Kh<,§lj‘—XZ), .TER,
n <

where Kp(z1,...,2q) = K(x1/h1,...,24/ha)/ H?Zl h;, K : R — R is the kernel function,
and h = (hy, ..., hg) is the vector of positive smoothing parameters; see Silverman (1986).

Let R C R? be a set containing the observations X7, ..., X,. We define a partition
{Ay,..., AL} of R. This means that U A, = R and A;N A,, = 0 for [ # m. In our case
the sets A; are rectangles. Let x; be the center point of A;, I =1,..., L. The kernel density
estimator fo : R? — R is evaluated at points z; and we define the discretized kernel density

estimator as

{L‘l IAl (2)

IIMh

where I, is the indicator defined by I4(x ) =1 when z € A, and [4(x) = 0 otherwise.
Besides kernel density estimators, similar discretized estimators could be defined for
other density estimators, too. For example, we could take fo to be the k-nearest neighbor
density estimator, or a Gaussian mixture density estimator.
The smoothing parameter of the kernel density estimator will be chosen in this article
using the the normal reference rule:

4 1/(d+4)
hy = | —— —1/(d+4) 5.
<d+ 2) " i

13



for i = 1,...,d, where g; is the sample standard deviation for the ithe variable; see (Sil-
verman, 1986, page 45). The kernel function will always be the standard normal density.
There exists a large collection of methods for the choice of the smoothing parame-
ter. These methods include the plug-in method, which chooses the smoothing parameter
minimizing an estimate of the asymptotic mean integrated squared error, and the cross-
validation method, which chooses the smoothing parameter minimizing a cross-validation
estimate of the mean integrated squared error. These methods may improve the normal
reference rule, but they increase computational complexity. A second possibility to improve
kernel density estimation is to use a matrix of smoothing parameters, instead of using a
scalar or a vector of smoothing parameters. However, the method of using a matrix of
smoothing parameters seems to be implemented only for two or three dimensional data,
whereas we are interested in higher dimensional data. A third possibility to improve kernel
density estimation is to choose the smoothing parameter differently at each point z € R?
of estimation, but we have not implemented this method. See Scott (1992) for more about

kernel density estimation and smoothing parameter selection.

3.1 Regular and Delaunay Partitions

We call a partition regular if it is obtained as follows. First one finds the smallest rectangle
with sides parallel to the coordinate axes that contains the observations. Then each side
is divided into [L'/?] intervals to obtain a partition of cardinality approximately equal to
L. The partition consists of the small rectangles obtained as a product of the intervals.
We compare the adaptive partition kernel estimator only with the regular partition
kernel estimator, but it should be noted that definition (2) contains as special cases many
other partitions. For example, computation of level set trees and volume functions of the
Delaunay partition kernel estimator is implemented in the package “denpro”, but we do
not study this estimator in this article, because it seems to perform worse than the regular
partition kernel estimator (the size of the Delaunay partition is L = O (nL(d“)/ 2J); see

McMullen (1970)).
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3.2 Adaptive Histogram Partitions

A greedy partition is a partition of the sample space which is found by a stepwise algorithm,
that recursively splits the space into finer sets. This algorithm is called greedy, or stepwise,
because it does not try to find a global minimum for the optimization problem but finds the
optimizer one step at a time. Morgan and Sonquist (1963) presented this type of algorithm
for regression function estimation, although they did not restrict themselves to binary
splits but allowed a large number of splits to be made simultaneously. CART procedure
for regression and classification is described in Breiman et al. (1984). The corresponding
procedures for density estimation are described in (Klemeld, 2009, Chapter 17.2). Ooi
(2002) defines a recursive partitioning similar to the one we apply here, but the partition is
applied to calculate a histogram estimator and not a discretized kernel estimator, and the
histogram estimator is used to calculate a clustering tree, where level sets are not estimated,
although the clustering tree comes rather close to a level set tree.

We do not use a histogram estimator but a discretized kernel estimator; only the par-
tition of the discretization is constructed with the help of a histogram. We define the
histogram corresponding to the partition P = {A;,..., A} as

L

FlaP) =30 s (o), 3)

volume(
I=1

where n; is the number of observations in A;.
First we define the split points over which we search the best splits. The splits are made
parallel to the coordinate axes and thus we have to define a grid of possible split points for

each direction. Let us denote the sets of possible split points by

glu'--7gd7 (4)

where G C R is a finite grid of split points in direction k. It is natural to choose Gy
to be set of the midpoints of the coordinates of the observations: G, = {ZF,..., Z% |},

k=1,...,d, where ZF is the midpoint of ng.) and ng.ﬂ):

1
A 5 (XG) + X)) »

where XF

1y X(kn) is the order statistic of the kth coordinate of the observations Xj, ..., X,,.
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When a rectangle R C R? is split through the point s € R in direction k = 1,...,d,

we obtain sets

RY) = {(z1,...,20) € R: 1, < 5} (5)
and
RY) ={(z1,...,24) € R: ;> s}. (6)
The split point s satisfies
s € Srik “G.n proj,(R), (7)

where proj,(R) = Ry, when R = Ry X --+ x R;. We say that partition P is grown if it is
replaced by partition
P = P\{RYU{ R B, (8)

where rectangle R € P is split in direction k € {1,...,d} through the point s € Sg.
We choose partition P* using the following procedure. Let the minimal observation

number be m > 1.

1. Start with the partition P = {R}, where R is the smallest rectangle containing the

observations and whose sides are parallel to the coordinate axes.

2. Suppose we have constructed a partition P. If all R € P satisfy #{X; € R} < m,
then splitting is finished. Otherwise, we choose R € P with #{X; € R} > m and

construct the new partition Py, ; ., where

(l;?, 5) = argmax(y serq Z log f(Xi, Pry.s).
i=1

where Ip = {(k,s) : k=1,...,d, s € Sgx}, Sry is the set of split points defined in
(7), Pru.s is the partition defined in (8), and f(-,P) is the histogram defined in (3).

In the worst case the number of the steps of the algorithm is
O (dn?). 9)

In fact, to find the first split requires dn steps. The worst case happens when one of the

children contains one observation and the other child contains n — 1 observations. Then,
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to find the second split requires d(n — 1) steps. To find the third split requires in the worst
case d(n — 2) steps, and so on. The complexity in (9) holds because Y . ;i =n(n+1)/2.
In the best case the number of the steps of the algorithm is

O (dnlogn). (10)

Again, to find the first split requires dn steps. The best case occurs when the two child
rectangles contain the same number of observations. Then, to find the next two splits takes
d(n/2) steps. In the best case, to find the next four splits takes d(n/4) steps, and so on.
The complexity in (10) holds because in the best case we need log, n resolution levels to
obtain rectangles which contain only one observation.

We can define a faster algorithm where only dyadic splits are made, so that splits
are such that the number of observations in the child rectangles is about the half of the
number of observations in the parent rectangle. This algorithm would take O (dnlogn)
steps. Holmstrom et al. (2014) shows that this estimator can have a significantly larger
mean integrated squared error than the estimator that allows a larger number of possible
split points.

When the parameter m of the algorithm is chosen large, then the computation is faster.
We can handle large sample sizes by using large values of m. Holmstrom et al. (2014) studies
how the mean integrated squared error of the estimator increases when m increases.

Figure 1 illustrates the construction of the partition. In panel (a) we show the collection
of the elementary sets when there are 10 observations. The four of the 10 observations
define the boundary, and the rest 6 observations define the possible splitting points along
the coordinate axes.® Panel (b) shows the partition which is obtained when m = 1, so that
there is exactly one observation inside each rectangle.

Figure 2 shows examples of partitions. In panel (a) we have generated 50 observations
from the standard normal distribution. In panel (b) we have simulated 500 observations
from an equal mixture of standard normal distributions. In both cases m = 1, so that each

bin contains exactly one observation.

6Note that when observations are in R¢ it is possible that only d of the observations are on the boundary,

which happens when d observations are on the corners of the smallest rectangle containing the observations.
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Figure 1: A partition in 2D. (a) The collection of split points when there are 10 observations.

(b) An adaptive grid obtained from the split points in frame (a).
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Figure 2: Partitions in 2D. (a) An adaptive grid obtained from 50 observations generated
from the standard normal distribution. (b) An adaptive grid obtained from 500 observations

which were simulated from a mixture of three Gaussians.
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4 Simulations

Section 4.1 compares the mean integrated squared errors of the regular grid kernel estimator
and the adaptive grid kernel estimator. Section 4.2 shows an example of a volume function
of a 7-dimensional density estimate, and Section 4.3 shows an example of a volume function
of a 4-dimensional density estimate. These examples also illustrate how level set trees can

be used in density based clustering.

4.1 MISE Comparison

The mean integrated squared error (MISE) is defined as
. N 2
ML) = B | (5-1)
Rd
where f : RY — R is the true density function and f : RY — R is its estimator. For

a piecewise constant estimator f(z) = Zle a;l4,(x) the integrated squared error can be

casily calculated. Indeed, we have that ISE(f, f) = Jra 2+ Jra 22 Jra ff, and

L L
2= a? - volume(A;), / ff= a [ f.
The probability of a rectangle A = [ay,b1] X - -+ X [ag, by] 18
2 2
/ f - Z T Z(_I)ZIJFMJFMF(ULh? s 7ud7id)7
A =1 ig=1
where u;; = a; and u; 0 = b; fori =1,...,d, and F : R¢ — R is the distribution function.

The MISE can be estimated by generating M > 1 Monte Carlo samples of size n from
the distribution with density f, calculating ISE for each sample, and taking the arithmetic
mean of the M values of ISE. We will use M = 100 Monte Carlo samples.

Figure 3 shows the MISE of discretized kernel estimators as a function of the sample size
when the true density is the standard normal density. In panel (a) d = 2 and in panel (b)
d = 3. The black curves with labels “0” show the MISE of the discretized kernel estimator
with an adaptive grid. The partition of the adaptive grid is such that there is exactly one
observation in each cell. The red curves with labels “1” show the case of the regular grid

with 107 cells. The blue curves with labels “2” show the case of 20¢ cells. The green curve
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Figure 3: MISE as a function of the sample size for the standard normal density. (a) d = 2;
(b) d = 3. The black curves show the MISE of the adaptive grid kernel estimator. The red
curves show the regular grid kernel estimator with 10 cells, the blue curves show the case

of 207 cells, and the green curve shows the case of 30? cells.

with labels “3” in panel (a) shows the case of 30¢ cells. When d = 2, the adaptive grid
is better than regular grid with 10¢ cells when the sample size is about 500, the adaptive
grid is better than regular grid with 20¢ cells when the sample size is about 1200, and the
adaptive grid is better than regular grid with 307 cells when the sample size is about 3000.
When d = 3, then the adaptive grid is better than regular grid with 107 cells when the
sample size is about 500, the adaptive grid is better than regular grid with 20¢ cells when
the sample size is about 10 000.

Figure 4 shows the MISE of discretized kernel estimators as a function of the sample
size when the true density is the equally weighted mixture of the standard normal density
¢(x) and the density ¢(z/0)/0?, where o = 0.1. This density is spatially inhomogeneous
because it has a sharp peak at the origin. In panel (a) d = 2 and in panel (b) d = 3.
The black curves with labels “0” show the MISE of the discretized kernel estimator with
the adaptive grid. The partition of the adaptive grid is again such that there is exactly
one observation in each cell. The red curves with labels “1” show the case of the regular

grid with 10¢ cells. The blue curves with labels “2” show the case of 20¢ cells. The green
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Figure 4: MISE as a function of the sample size for an inhomogeneous density. (a) d = 2;
(b) d = 3. The black curves show the MISE of the adaptive grid kernel estimator. The red
curves show the regular grid kernel estimator with 10 cells, the blue curves show the case

of 207 cells, and the green curve shows the case of 30? cells.

curve with labels “3” in panel (a) shows the case of 30¢ cells. The adaptive grid leads to
uniformly better MISE values than the regular grid.

Note that the computational complexity of the estimator with an adaptive grid of size
n is roughly equal to the computational complexity of the estimator with a regular grid
when the size of the grid is N¢, where N ~ n'/¢. Thus, the MISE computations can tell

which of the two estimators with equal computational complexity has a better accuracy.

4.2 7D Example

Figure 5 considers a sample of 10 000 observations in dimension d = 7. The data are gener-
ated from the mixture of eight normal distributions with the marginal standard deviations
0.25 and uncorrelated components. The modes are located at the eight vertices of the unit

simplex.” Panel (a) shows the volume function of a discretized kernel estimator with an

"The unit simplex is defined as the convex hull of the origin and the vertices e1, ..., eq, where ¢; € R?
has 1 in the ith position and 0 in the other positions. Klemeld (2004b) used a simulation example where

the simplex was such that all edges have the same length. The current simulation example was used in
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Figure 5: A volume function and a scatter plot for 7D data. (a) A volume function drawn
from a density estimate of a 8-modal density. Only the part of the volume function above

level 0.35 is shown. (b) A scatter plot of the 1st and the 2nd coordinates of the observations.

adaptive partition. Panel (b) shows a scatter plot of the 1st and the 2nd coordinates of
the data. The complete scatter plot matrix is shown in Holmstrém et al. (2014). We show
only the part of the graph of the volume function which is above level 0.35. The cells with
5 or less observations were not split anymore. The volume function and the scatter plot
are colored so that the observations have the same color as the part of the region in the
graph of the volume function that corresponds to the smallest connected component of the
level set where the observation is included. To make the coloring easier to interpret, we
have pruned the modes with small excess mass from the estimate, so that only the 8 largest
modes were left.

Colored volume functions can be combined with the colored scatter plot matrices to
provide a visual and a computational tool to make density based clustering easier to ap-
ply. Kent et al. (2013) use similar coloring techniques. They calculate cluster trees of
observations instead of level set trees, and do not draw volume functions. They enhance
basic colored cluster trees of observations with the frequencies of the clusters, instead of

the volumes of the connected parts of level sets.

Stuetzle and Nugent (2010) and Menardi and Azzalini (2014) with the sample size about 500.
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Figure 6: A volume function and a scatter plot for 4D data. (a) A volume function drawn
from a density estimate of a 5-modal density. Only the part of the volume function above

level 0.2 is shown. (b) A scatter plot of the 1st and the 2nd coordinates of the observations.

4.3 4D Example

Figure 6 considers a sample of 10 000 observations in dimension d = 4. The data are
generated from the equally weighted mixture of five peaked distributions. Each peaked
distribution is, in turn, defined as the equally weighted mixture of the standard normal
density ¢(x) and the density ¢(z/0)/0?, where o = 0.1. These peaked distributions were
used in the MISE computation of Figure 4. (Thus, the underlying density is a mixture
of ten normal distributions.) The modes are located at the five vertices of a simplex.®
Panel (a) shows the volume function of a discretized kernel estimator with an adaptive
partition. Panel (b) shows a scatter plot of the 1st and the 2nd coordinates of the data.
The complete scatter plot matrix is shown in Holmstrom et al. (2014). We show only the
part of the graph of the volume function which is above level 0.2. The cells with 5 or less

observations were not further split.

8The modes are located at (1/2,0,0,0), (—1/2,0,0,0), (0,4/3/2,0,0), (0,1/(2v/3),/2/3,0), and
(0,1/(2v/3),1/(2v6), \/15/24).
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5 Application to Flow Cytometry Data

Section 5.1 describes the basics of flow cytometry (FCM), the nature of FCM data and how
they are traditionally analyzed. Section 5.2 presents our level set tree based approach to
FCM data analysis and reports results obtained from the analysis of FCM data previously
discussed in Aghaeepour et al. (2011).

5.1 Flow Cytometry

A flow cytometer is a laser-based instrument that measures several biophysical and chem-
ical characteristics of thousands of cellular particles per second. Optical excitation of the
biological cells takes place in a small flow chamber that hydrodynamically aligns the cells
so that they pass single file through the laser beam. Each interaction between the laser
beam and a cell creates scattered light and fluorescence. These signals are then turned into
multichannel data used to classify the cells.

The history of flow cytometry goes back to the 1960s and the continuous refinement
of the technique during the last 50 years has produced an extremely sensitive, fast, and
versatile methodology for clinical cell analyses. Biochemical methods offer a variety of
possibilities to stain cells in a FCM sample tube. FCM protocols can be used for example
to diagnose many cancers and diseases. For a comprehensive review of all aspects of flow
cytometry, see for example Melamed et al. (1990) and Shapiro (2003).

Based on light scattering and laser-induced fluorescence, and employing simultaneously
several laser light sources in state-of-the-art instruments, as many as 20 different spectro-
scopic channels can be used in the measurements, resulting in as many features used to
characterize the properties of a cell. The number of analyzed cells may well exceed 10° per
sample. In addition to relevant cellular data, the sample may also include dead cells and
other debris.

The FCM measurements and the associated statistical data analyses aim to produce a
useful clustering of the cells based on their measured features. The clustering thus produced
can also be incomplete leaving some cells unclassified. Clusters of cells can indicate for
example the balance of various cell types in the sample, an incipient disease or the stage

of a disease already in progress. Cancer represents one of the most important uses of FCM
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in clinical use.

Clustering has traditionally been carried out manually by examining one or two-dimen-
sional marginal plots of the feature vectors. This process, usually referred to as ’gating’,
often proceeds as follows. First a pair of variables is selected and clusters are defined in the
2D scatter plot. Then a next pair of variables is considered, the clusters are refined and the
process continues until a satisfactory classification of the sample has been reached. When
used by experts such a method can produce good results although there are obvious caveats
related to the use of a sequence of 2D projections in the analysis of high dimensional data.
In addition, the rapid increase in the use of flow cytometry analyses has begun to generate
large numbers of data sets that are difficult or impossible to analyze by such traditional

methods, cf. Bashashati and Brinkman (2009) and O’Neill et al. (2013).

5.2 Level Set Tree Clustering of FCM Data

Many automated procedures have been developed for clustering of FCM data. The per-
formance of various algorithms was reviewed in Aghaeepour et al. (2013). The k-means
algorithm has found the most applications. Model-based clustering using finite Gaussian
mixture models, or other mixture models, has also been popular. Lo et al. (2008) study
both Gaussian mixture models and t-mixture models. Ge and Sealfon (2012) introduce
the flowPeaks algorithm that combines k-means clustering and Gaussian mixture density
estimation. The Gaussian mixture is based on the cluster centers defined by the k-means
algorithm and the mixture is then used in a cluster merging procedure to produce the final
classification of the data.

Both k-means and mixture models lead typically to convex clusters, whereas clustering
with nonparametric density estimation can find clusters of any shape. Walther et al. (2009)
constructs a regular grid with associated weights that are derived by binning the data. The
density of a grid point is estimated using a kernel density estimator. Bins are clustered by
assigning them to the local maximum of the density estimate that is at the end of a chain
of bins of progressively higher estimated density. The use of a regular grid limits the use
of the method to lower dimensional cases. Walther et al. (2009) suggest to use the method

sequentially for two-dimensional projections, and to use two-dimensional scatter plots for
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visualization. The curvHDR method of Naumann et al. (2010) mimics manual gating by
applying kernel density estimation in a two-stage procedure that first finds regions of high
negative curvature using the Hessian of the density estimate; see also Duong et al. (2008).
A kernel density estimate of the data in a neighborhood of each negative curvature region
is then computed and clusters are defined by their highest density regions.

We propose to apply level set trees to gate FCM data. Karttunen et al. (2014) used such
an approach in FCM data analysis. The example data considered here are six dimensional
and they were generated in FCM analysis of graft-versus-host disease (GvHD), a common
complication in tissue transplants. Two of the variables measure forward and side scattering
(FSC.H and SSC.H) and four are associated with fluorescence channels (FL1.H, FL2.H,
FL3.H and FL4.H). The sample size is 17 640. The data set has been analyzed earlier
in Aghaeepour et al. (2011) and it is available as a part of the flowMeans R-package
Aghaeepour (2010). GvHD data are analyzed also in Lo et al. (2008).

The data were first scaled and edge values removed leaving sample size of 12 160. Then
the discretized kernel estimator with an adaptive histogram partition was applied. The
estimator is described in Section 3. The normal reference rule was used to choose the
smoothing parameters of the kernel estimator. The volume function of the discretized
kernel estimate is shown in Figure 7. It shows that the density function has several modes
of different shapes and sizes. The volume function suggests the presence of dense, sparse,
narrow, and broad clusters of data with varying degree of overlap in the six dimensional
data space.

The clusters identified by the volume function are presented in Figure 8 using traditional
scatter plots of pairs of FCM variables; only four of the variables are considered and the
on-line supplement to this article includes a scatter plot matrix of all six variables used in
our example. The coloring schemes are the same in Figure 7 and in the lower left part of
Figure 8. The dense prominent clusters are clearly visible in both figures but the relative
size and locations of smaller clusters, such as those displayed in lighter green and blue,
can be inferred much more effectively from the volume function. A small and potentially
interesting cluster, such as the one shown in red in Figure 7, can be totally obscured in a

scatter plot. The scatter plots of the clusters produced by the application of the lowMeans
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Figure 7: Volume function of FCM data. The six modes (partial clusters) are colored
individually. Some of the modes rise from common supporting level sets that are also

colored individually.

algorithm to these data are shown on page 10 of the supplement to Aghaeepour et al.
(2011).

Yet another level set tree based visualization technique is a barycenter plot where each
variable is considered separately and the centers of mass of the connected components of
its level sets are displayed as a function of the level A in a tree-like structure; see Klemela
(2004b). A barycenter plot allows one to track the locations of the emerging modes when
A is increased. The on-line supplement includes barycenter plots of all six FCM variables

considered here.

6 Discussion

We have developed an algorithm for the computation of a level set tree whose worst case
complexity is O(dn?), where n is the sample size and d is the dimension of the observations,
but the typical complexity can be much lower.

We calculate a “genuine level set tree”, whose nodes are associated with connected
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Figure 8: Scatter plots of FCM data. The coloring scheme applied in the lower left part
of the plot is the same as in Figure 7. To emphasize the clusters, the densest regions are
plotted last, possibly covering sparser cluster regions. In the upper right panels the sample
size is 2000 to diminish the problem of overplotting, but the lower left panels show all

observations.
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components of the level sets of a density function, whereas most previous algorithms cal-
culate a “cluster tree of observations”, whose nodes are annotated with subsets of the
observations. The genuine level set tree is needed to make statistical inference about the
existence of modes and clusters, and in the visualization of the density function using vol-
ume functions, barycenter plots, and other characteristics of the connected components of
the level sets. Our algorithm works for moderate dimensional cases and for large sample
sizes whereas the algorithms for the computation of a cluster tree of observations seem to
work in higher dimensional cases but for small sample sizes.

We have studied the computation of a level set tree of a density function. However, a
level set tree can be useful for other functions than just densities. For example, it is of
interest to compute level set trees of regression function estimates, to study which z-values
lead to large y-values. A regression function is estimated using data (X1,Y7),..., (X, Ya),
where X; € R? are observations of an explanatory variable, and Y; € R are observations
of a response variable. The observations X,..., X, can be used to generate an adaptive
partition just as in the case of density estimation. However, the grid does not have the
property that there are more observations in the neighborhoods of the local maxima of the
regression function, and this can make the estimation of the level set tree less accurate.
Thus, it may be reasonable to generate another set of points X1, ..., X, which is such
that there are more points around those X; for which f (X;) is large. When we want to
calculate a level set tree for an arbitrary function f: R? — R, which can be evaluated at
the points 1, ..., x, of our choice, then we conjecture that the points x1, ..., z, could be
generated by an algorithm that searches local maxima, which leads to a grid where there
are more points around the local maxima.

Our analysis of flow cytometry data has shown that using level set tree based techniques,
such as volume functions and barycenter plots, we can detect and visualize the sizes (in
the sense of excess mass) and relative locations of the clusters in a way that would not be
possible using only scatter plots or for example tree plots of the level set tree. We conjecture
that the additional information provided by a volume function can be important in helping
the practitioner to detect abnormal clustering of cells, for example. In addition, barycenter

plots can usefully complement data analyses by helping to track modes and their locations
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through simple and easy-to-interpret graphics. We therefore believe that visualization
techniques derived from level set tree analysis can provide insights into complex data, such
as those generated by FCM, that traditional approaches based on pairwise scatter plots
cannot offer.

To our knowledge, the R-packages “denpro” and “delt” are the only available software-
packages to calculate level set trees and volume functions. For the computation of cluster
trees of observations there exists R-package “gslclust”, described in Stuetzle and Nugent
(2010), Python-package “DeBaCl”, described in Kent et al. (2013), and R-package “pdf-
Cluster”, described in Menardi and Azzalini (2014).
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