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Abstract Bayesian networks (BNs) are widely used graphical models usable
to draw statistical inference about Directed acyclic graphs (DAGs). We pre-
sented here Graph sampler a fast free C language software for structural in-
ference on BNs. Graph sampler uses a fully Bayesian approach in which the
marginal likelihood of the data and prior information about the network struc-
ture are considered. This new software can handle both the continuous as well
discrete data and based on the data type two different models are formulated.
The software also provides a wide variety of structure priors which can be infor-
mative or uninformative. We proposed a new and much faster jumping kernel
strategy in the Metropolis-Hastings algorithm. The source C code distributed
is very compact, fast, uses low memory and disk storage. We performed out
several analyses based on different simulated data sets and synthetic as well
as real networks to discuss the performance of Graph sampler.
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1 Introduction

Representing knowledge with uncertainty and automatic reasoning is often
carried out using graphical models (Pearl, 1988; Lauritzen, 1996; Neapolitan,
1990). Judea Pearl and Richard E. Neapolitan were the first to summarize the
properties of directed acyclic graphs (DAGs) and established them as a new
field of study. In the recent years, formal statistical inference on systems of
multiple interacting components is often done using DAGs (Heckerman et al,
1995) or Markov networks (Edwards, 2000). A Bayesian network (BN) or a
belief network is a probabilistic model denoted by a graph G = (V, E) in
which each node or vertex v ∈ V represents one of the random variables in
set X = (X1, X2, ..., XN ), where N is the number of nodes and each edge e
∈ E express the dependence among the variables in X. A BN is always directed
and acyclic and is therefore a DAG. Besides static BNs, there are also dynamic
BNs (Husmeier, 2003; Friedman et al, 1998), which are actually generalizations
of hidden Markov models. In that paradigm, all the random variables of the
network are considered to be potentially related to each other over adjacent
time points.

DAGs have been used for more than two decades in biomedicine and health-
care for handling uncertainty in disease diagnosis, selecting the optimal treat-
ment and predicting treatment outcome (Andreassen et al, 1999). Other appli-
cations are found in social network analyses, high dimensional data analyses
etc. In computational biology and bioinformatics, BNs have been proposed
to model DAGs, for example, for modeling gene regulatory networks, pro-
tein structure and gene expression. Many of the available software (Korb and
Nicholson, 2010) programs which do BN parameter estimation or structural
inference run on commercial platforms. The others which are readily available
and free are generally not well maintained and not updated regularly. However
there are some widely used packages scripted in R that are free and properly
maintained.

In this article we present an efficient C language software Graph sampler
for Bayesian inference on the structure of BNs; this latter is based on the well-
known Metropolis-Hastings(MH) algorithm that allows to sample DAGs from
the posterior distribution. Unlike the existing BN learning software Graph sampler
propose a new jumping kernel in the MH algorithm making it more time ef-
ficient. The software is easy to use and works well with both discrete and
continuous data. For each of these data types we formulated two different
models. One of the key feature of this software is that it handles large net-
work structure efficiently. A number of different priors are included in this
software to reflect the prior knowledge on the graph structure. This software
is quite flexible for using different combination of prior knowledge. We made
several performance test on our software with intensive simulation studies re-
garding all possible choices of models and priors to venture the robustness
of Graph sampler. Alongside we considered structmcmc, a versatile and easy
to use R package (Mukherjee and Speed, 2008) for detailed discussion on the
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performance of Graph sampler. Like Graph sampler, this software also aims to
learn structure on DAGs via a fully Bayesian approach.

The remainder of the paper is organized as follows: Section 2 briefly dis-
cusses the statistical inference for BNs with Graph sampler ; Section 3 is about
the new jumping kernel, the installation and running of Graph sampler ; Sec-
tion 4 discusses about some of the widely used software and their approach.
This section also describes the methodology to check the efficiency of Graph sampler
for discrete as well as continuous data set along with the difficulties in the flip-
ping technique. In Section 5 we present our results along with their significance.
In Section 6 we summarize all our results in the form of a discussion.

2 Statistical inference for BNs

Recent work on BNs by Mukherjee and Speed (Mukherjee and Speed, 2008),
used Markov chain Monte Carlo (MCMC) simulations to infer on network
structure from node values. They also considered priors encoding information
relative to existence of edges, degree distribution and sparsity structure of
the graph. Bois and Gayraud (2015) recently extended informative priors to
account for motifs frequencies in order to generate realistic gene regulating
graphs (Bois and Gayraud, 2015). For baseline information they proposed to
use Bernoulli distributions to model prior knowledge on individual edges.

Variational Bayes (VB) methods have also been proposed as an alterna-
tive to full Bayesian inference. VB is an efficient way to deal with intractable
integrals arising in a full Bayesian context and can be considered as an enten-
sion of the expectation-maximization (EM) algorithm (Beal and Ghahramani,
2003). VB can also help in model selection by providing a lower bound for the
data marginal likelihood. However it provides only an approximate analytical
solution for the posterior probability of the parameters and latent variables
involved in a graphical model. Hence we focus here on a full Bayesian approach.

The following sections describe the prior densities and data likelihood avail-
able in Graph sampler.

2.1 Priors on graph structure

It is quite a challenging problem to make inference on graphical model struc-
ture even with moderate number of nodes, partly because of the huge number
of possible graphs. For N nodes, the number of possible DAGs can be com-
puted recursively as (Robinson, 1973):

aN =

N∑
k=1

(−1)k−1
(
N

k

)
2k(N−k)aN−k

where a0 = 1 by convention. So for 2, 3, 4 and 5 nodes network there are 3,
25, 543 and 29281 possible DAGs respectively.
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All of those possible graphs are usually not equally plausible a priori and
thus certain features may be incorporated as more likely than the others, a
priori. To make inference on graph structure, Bois and Gayraud (Bois and
Gayraud, 2015) considered three different priors. In the most general case, a
set of independent Bernoulli priors (PB) is used to model the prior knowledge
on individual edges. If pi,j is the probability of existence of a directed edge ei,j
from node i to node j, and ei,j ∼ B(pi,j) for all (i, j) ∈ {1, ..., N} × {1, ..., N},
then the global Bernoulli prior PB on the graph G is

PB(G) =

N∏
i 6=j=1

(pi,j)
ei,j (1− pi,j)1−ei,j

The choice of the value for each hyperparameter pi,j depends on the prior evi-
dence we have on the existence of the given edge from the scientific literature.

The degree deg(v) of a vertex v is defined as the number of edges involving
v. We can also define the degree distribution (PD) for G as a function Pd =
card{v ∈ V : deg(v) = d} for all the vertices having degree d. The prior on
degree can be expressed as a power law given by

Pd ∝ d−γ , with γ > 0

Thus we can define the prior degree distribution for the graph G as

PD(G) ∝
N∏
i=1

 N∑
j=1

ei,j

−γ , with

N∑
j=1

ei,j > 0

In addition to PB and PD, if we consider a Beta-Binomial prior (PM ) as it is
done in Bois and Gayraud (2015) on the occurence of three-nodes motifs then
the total prior on the graph G can be expressed in a product form as:

PT (G) ∝ PB(G)× PD(G)× PM (G)

Alternative to the Bernoulli prior for the presence of edges is the so called
concordance prior (PC) (see Mukherjee and Speed (2008)). The latter required
the specification of a prior matrix E with elements Ei,j = 1 representing
a desired edge and -1 representing a non-desired edge. At each iteration the
prior is calculated by counting the number of disagreements with the adjacency
matrix A with elements Ai,j = 1 or 0 representing the presence or absence of
a directed edge starting from node i and ending in node j of the graph G. The
form of the concordance prior is then

PC(G) ∝ exp(−ρ(

N∑
i,j=1

|Ai,j − Ei,j |))

where ρ is a positive valued hyperparameter. If PC is used, then the total prior
is:

PT (G) ∝ PC(G)× PD(G)× PM (G)
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or, equivalently, if PB is a flat prior (with pi,j = 0.5 for i 6= j) to avoid any
conflict or double accounting with PC , the total prior is:

PT (G) ∝ PB(G)× PC(G)× PD(G)× PM (G) (1)

2.2 Data likelihood and prior predictive distribution

Our main interest is to uncover the underlying structure of BNs. In any
Bayesian network, a parent node has always an influence on its child nodes.
Let us denote by x = (x1, ..., xN ) the data we have on N nodes, where xi is
a n-dimensional vector; where n is the number of data points per node. Even
though the model considered involves many parameters, the posterior distri-
bution of each of these parameters are not of our primary interest. Integrating
out the parameters in a Bayesian context leads to the prior predictive distribu-

tion (or the joint marginal likelihood of the data): f(x|G) =
N∏
i=1

f(xi|Pa(xi)),

where Pa(xi) is the set of parent values of xi in graph G (Heckerman et al,
1995) and f(·) is the prior predictive distribution of xi given its parenthood.
For a global parent Pa(xi) = ∅ and thus f(xi|Pa(xi)) reduces to f(xi).

2.2.1 Continuous data

Gaussian regression model with a Normal-Gamma prior

The general expression for the linear Gausian regression for a given node xi
is:

xi = M(xi)β + u (2)

where xi = (x1,i, x2,i, · · · , xn,i) is a vector of n observations of the dependent
variable x = ((xi,j)1≤i≤n;1≤j≤k), k is the cardinality of Pa(xi), M(xi) is a
so-called design matrix of order (n × (k+1)) with the first column as 1’s and
other columns as Pa(xi), β is a real valued vector of regression parameters of
length k, and u follows a Gaussian distribution N (0, λ−1In) distribution with
λ being a positive real valued precision and In is the identity matrix of size n.
The likelihood for this regression model is therefore:

L(λ, β|xi, Pa(xi)) = (
λ

2π
)n/2 exp(−λ

2
(xi −M(xi)β)t(xi −M(xi)β))

where Ct denotes the transpose of the matrix C.
It is classical to choose conjugate form for the priors on the parameters

(i.e. β and λ) involved in the regression model :

P (β, λ) = Nk(β | β0, (n0λ)−1)Ga(λ | α, ω)

=
(ω)α(n0)k/2

(2π)k/2Γ (α)
(λ)

k
2+α−1 exp

(
−λ

2
(β − β0)tn0(β − β0)− ωλ

)
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where β0 (real valued vector) and n0 (matrix of dimension k×k) are hyper-
parameters related to β and α, ω, both being real valued positive numbers,
are hyper-parameters of λ. In the above equation Γ (.) represents the Gamma
function.

In that case, the prior predictive distribution is tν(µ,Σ), the n-dimensional
multivariate t-distribution with parameters µ,Σ and ν, whose density function
is:

f(xi|Pa(xi)) =
Γ (ν + n)/2

Γ (ν/2)(νπ)n/2
| Σ |−1/2

[
1 +

1

ν
(xi − µ)tΣ−1(xi − µ)

]− ν+n2
(3)

where, µ = [µ1, . . . , µn]t is the location parameter, Σ is the scalar matrix of
dimension (k × k) and ν is the degrees of freedom such that

µ = M(xi)β0

Σ−1 = h(M(xi))αω
−1

h(M(xi)) = In −M(xi)[M(xi)
tM(xi) + n0]−1M(xi)

t

ν = 2α

Gaussian regression model with a Zellner g-prior

With Graph sampler we can also use the Zellner g-prior (Mukherjee and Speed,
2008; Nott and Green, 2004) for the parameters β and (λ)−1:

P (β|λ−1) = Nk(0, gλ−1[M(xi)
tM(xi)]

−1),

P (λ−1) ∝ λ

where g is a user defined positive scale factor. The prior predictive distribution
of the data is given by:

f(xi|Pa(xi)) ∝ (1 + g)−(k+1)/2s−n/2 (4)

where k is the cardinality of Pa(xi) and

s = x′ixi −
g

1 + g
xtiM(xi)[M(xi)

tM(xi)]
−1M(xi)

txi

provided the termM(xi)
tM(xi) is invertible. A sufficient condition forM(xi)

tM(xi)
to be invertible is that k 6 n, that is, the number of parents should be less
than the number of data points for per node. Thus Zellner g-prior fails to work
when number of parents is greater than the number of data points per node.
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2.2.2 Discrete data

For discrete data, Graph sampler offers the possibility to use a Multinomial
model with a Dirichlet prior on its parameters (see (Heckerman et al, 1995)).
For such a prior on the parameters we have a closed form of the prior predictive:

f(x|G) =

n∏
i=1

si∏
j=1

Γ (D′ij)

Γ (D′ij +Dij)
·
mi∏
k=1

Γ (D′ijk +Dij)

Γ (Dijk)
(5)

where Dijk is the number of components of xi that takes the value k given
that Pa(xi) has configuration j, D′ijk are the Dirichlet hyperparameters, si
represents the possible number of configurations of the parents of xi, mi stands
for the number of possible values of components of xi and D′ij and Dij are
given by:

D′ij =

mi∑
k=1

D′ijk and Dij =

mi∑
k=1

Dijk.

3 Graph sampler : sampling and installation

3.1 Efficient sampling: fast jumping kernel

Graph sampler can efficiently generate random samples for general directed
graphs (Bois and Gayraud, 2015), but we focus here on the sampling of BNs
from a posterior distribution conditionned by data (observed node values).
We use an adjacency matrix representation for the graph and store only the
eventual difference between adjacency matrix as it is a fast and efficient storage
method. A Metropolis-Hasting sampler (Robert and Casella, 2004) is used
to sample random graphs according to the prescribed posterior probability
distribution. The algorithm of the simplified jumping kernel is as follows for
the t− th iteration:

We denote the current graph by G and its adjacency matrix by AG
t

. The

proposal graph is denoted by G′ and its adjacency matrix by AG
′

in our
algorithm.

Algorithm

Step 1: Select AG
t

i,j while scanning AG
t

Step 2:

(a): Sample zi,j ∼ Bernoulli(pi,j) where pi,j is the Bernoulli prior for edge ei,j
(b): (i): Adding an edge

if zi,j = 1, then AG
′

i,j =

AG
t

i,j if AG
t

i,j = 1
1 o.w. and provided G′ is still a DAG,

o.w. go back to Step 1
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(i): Deleting an edge

if zi,j = 0, then AG
′

i,j =

{
AG

t

i,j if AG
t

i,j = 0

0 if AG
t

i,j = 1

Step 3: Calculate the acceptance ratio. We accept G′ with probability

δ = min(1,
f(x,G′)PT (G′)P (AG

t

i,j |AG
′

i,j )

f(x,Gt)PT (Gt)P (AG
′

i,j |AG
t

i,j )
)

Note that due to Step 2, the acceptance ratio can be rewritten as follows:

δ = min(1,
f(x|G′)PT (G′)PB(Gt)

f(x|Gt)PT (Gt)PB(G′)
)

where f(x|G) =
N∏
i=1

f(xi|Pa(xi)) is the prior predictive given by Eq (3, 4 and

5) and PT is the total prior on the graph structure. Clearly this simplifies since
PB is a part of PT (see Eq(1)).

Step 4: Choose Gt+1 as follows: Gt+1 =

{
G

′
with probability δ

Gt with probability 1-δ
The procedure is repeated until convergence in probability is attained. Gel-

man and Rubin’s (GR) R̂ criterion (Gelman and Rubin, 1992) is used on each
element of the graph’s adjacency matrix to check the convergence of several
simulation chains. The advantage of using the GR criterion for the conver-
gence is that, we do not have to save the whole chains from the start. We
can check the convergence using the final posterior edge probability matrix
obtained after the specified number of iterations neglecting the burning runs.
For this criterion, we consider the three edge probability matrices and cal-
culate the within-chain and the between-chain variance. Then the estimated
variance of the parameter is calculated as a weighted sum of the within-chain
and between-chain variance. Based on the potential scale reduction factor we
infer on the convergence of the three chains. For BNs we need to ensure that
the proposed graphs are DAGs. This is done with a fast topological sorting
algorithm (similar to that of (Pearce and Kelly, 2006)) operating on a list
index of the nodes.

3.2 Graph sampler installation

Graph sampler is an easily available free software that can be redistributed or
modified under the terms of the GNU General Public License as published by
the Free Software Foundation. It is an inference as well as simulation tool for
DAGs and can simulate random graphs for general directed graphs as well as
for DAGs. In the case of BNs, we infer about their probable structure through
the joint use of priors and data about node values.



Graph sampler : a simple tool for fully Bayesian analyses of DAG-models 9

Graph sampler is written in ANSI-standard C language and can be com-
piled in any system having a ANSI C compliant compiler. The GNU gcc com-
piler (freeware) is highly recommended and the automated compilation script
(called Makefile) can be successfully used if the standard ’make’ command is
available. In order to modify the input file parser, the ’lex’ and ’ yacc’ are
highly recommended. The full software along with the manual can be down-
loaded from:

https://sites.google.com/site/utcchairmmbsptp/software
Once downloaded, the software should be decompressed using ’gunzip’

and ’tar’ commands. Other archiving tools can also be used. Graph sampler
can be compiled using the ’make’ command. On successful compilation of
Graph sampler, it is ready for running. In order to run Graph sampler, an in-
put file specifying the simulation parameters should be provided. In Unix the
command-line syntax to run that executable is:

”graph sampler [input-file [output-prefix]]”
where the brackets indicate optional arguments. If no input file and/or

output prefix are not specified, the program uses the defaults. The default
input file is script.txt and the output files created depends on the parame-
ters specified in the input file. Default output file names are best graph.out,
graph samples.out, degree count.out, motifs count.out, edge p.out and
results mcmc.bin.

A Graph sampler input file is a text (ASCII) file that obeys relatively sim-
ple syntax (see the manual). Values of all the predefined variables in the input
file should be properly defined. Description and range of each variable is illus-
trated in the manual. In case of improper assignment of values, Graph sampler
post error messages during runtime.

4 Efficiency analyses of Graph sampler

In order to evaluate the efficiency and accuracy of Graph sampler, we per-
formed several experimental runs based on different network structure, size
and data type. We even varied the underlying model based on the data type to
have a clear idea about the efficiency of the software. There are other very well
known packages in R like the deal and bnlearn. The package deal (Boettcher
and Dethlefsen, 2003) is scripted in R language and uses BNs to analyse the
data which can be discrete and/or continuous types; for the network parame-
ters, suitable priors can be constructed and parameter estimation is possible
using successive updating. This package is useful for structure learning of the
network and uses the heuristic greedy search algorithm. The scoring function
is based on maximising the Bayes factor. At each step of the greedy search al-
gorithm, we either add, delete or reverse an edge and calculate the Bayes factor
for all the possible graphs. The proposal graph with the maximum Bayes factor
is selected to update the current graph. The package bnlearn (Scutari, 2010) is
also scripted in R to do structural inference on BNs. This package is efficient
to work with both discrete as well as continuous data. For the BN structure
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learning, various constraint-based algorithms like the Grow-shrink, Incremen-
tal association and Max-min parents and children algorithms are implemented.
Hill-Climbing greedy search algorithm is the only score-based algorithm im-
plemented in this package. The sampling algorithm consists of first recovering
the skeleton of the desired graph and then evaluating the directionality of the
edges. Both of these packages sample the best graph that maximizes the Bayes
factor or the posterior odds from amongst all possible proposal graphs. This is
quite different from the sampling scheme that we proposed. Our interest is to
sample graphs based on the specified posterior distribution. Another efficient
Matlab package for BN analysis is bnt (Murphy, 2007). This tool does infer-
ence on parameters as well as on network structure. This software is suitable
for both decision networks and dynamic Bayesian networks. However this tool
lacks the GUI. Inference is carried out using various algorithms like the Junc-
tion tree, variable elimination and Pearl’s polytree. bnt has various options for
parameter learning as well as for structure learning. It is very clearly docu-
mented, free and is very object-oriented. Besides these well known packages,
we also have structmcmc (Mukherjee and Speed, 2008) which is an efficient
software coded in R for BN structure learning. We selected structmcmc be-
cause of its similarities with Graph sampler regarding the model formulation
and the Metropolis-Hasting algorithm. Unlike Graph sampler, the sampling
technique in structmcmc also allows flipping of edges between two selected
nodes. This package also propose to sample graphs based on the posterior
distribution. Thus we selected structmcmc as a baseline software to discuss in
details the advantages and limitations of Graph sampler. structmcmc proposes
a Zellner g-prior for continuous datasets and a Multivariate Dirichlet prior for
discrete datasets. The Normal Gamma model is not available to structmcmc
users.

In all the cases we used a null matrix as the initial adjacency matrix.
Results showed that they are robust with respect to the initial adjacency
matrix. For the prior on edges, we used the concordance prior (Mukherjee and
Speed, 2008) (PC) with ρ = 1 since structmcmc does not provide a Bernoulli
prior. The prior on the loop motifs PM was not used and therefore set to
1. We also used the degree prior (PD) to check the increase in efficiency of
Graph sampler. As an alternative to (PC), we also used both informative as
well as uninformative (PB) prior as a structure prior to check the efficiency of
the software. We followed the simulation procedure described in (Mukherjee
and Speed, 2008) to generate discrete datasets. For the continuous case, we
generate data as described in Equation (2).

To start with we considered a real life biological network specifically the
EGFR system. For this actual network we simulated a discrete dataset. This
real life network consisted of only 14 nodes. In order to check efficiency of
Graph sampler for larger networks, we simulated networks of 5 to 120 nodes,
with 100 data points for each node. Figure 1 represents the network with 120
nodes. It is clearly a descending tree network. We used three different seeds
to run three chains for each software program. We saved the three chains
separately and calculated Gelman’s R̂ convergence diagnostic at each iteration.



Graph sampler : a simple tool for fully Bayesian analyses of DAG-models 11

The first iteration for which R̂ attained at most 1.05 for all edges of the graph
was considered as the minimum number of iterations required for convergence.
Graph sampler was compiled with gcc version 4.2.1 (Apple Inc. build 5666)
while structmcmc was run with R 3.0.2 (R Core Team, 2013). We performed
a time and convergence comparison between both the software. In order to
check the performance and efficiency of both the software, we use R language
script to plot the heat map and the accuracy curve. The heat map is used
to summarize for all edges the edge posterior distribution through its means.
We used the R language package lattice to plot the heat maps. The accuracy
curve is given by accuracy = (true positive edges + true negative edges)/
total number of edges and is a function of the probability threshold above
which an edge is declared present. We used SDMTools, to plot the accuracy
curves.
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Fig. 1: Hierarchical representation of the 120 nodes network used to generate
our simulated data. All the other smaller networks were subsets from this
network
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5 Results

5.1 Dealing with Discrete data

5.1.1 An actual biological network

To study the practical efficiency of Graph sampler for a true biological net-
work, we considered the same network as studied by S. Mukherjee (Mukherjee
and Speed, 2008). In their work they considered a biological network known
as the epidermal growth factor receptor (EGFR) system. Figure 2 gives a pic-
torial representation of the EGFR system. This biological network involves 14
proteins each of which is a ligand, a receptor or a cytosolic protein. Data for
this study was synthesized based on the network and following the model as
used by S. Mukherjee (Mukherjee and Speed, 2008). Each of the 14 proteins
are considered to be a random variable with binary values {0, 1}. Depend-
ing on the parents, the conditional distributions are defined as Bernoulli with
success parameter p. The global parents are sampled with p = 0.5. For the
child nodes, we take p = 0.8 if one of its parents take the value 1 and p = 0.2
otherwise. For each node we simulate 200 data points.

AMPH

ERBB3ERBB4

NRG2 EGF

EGFR

NRG1

GAP

RAS

RAF

SHC

ERK

ERBB2

MEK

Fig. 2: Graph of the EGFR system

To make our experimental runs coherent with structmcmc, we defined the
prior matrix on the graph structure based on the concordance prior proposed
in (Mukherjee and Speed, 2008). As the model proposed was Multinomial
model, we defined a Dirichlet prior for the parameters involved. In case of
Graph sampler we strengthen the prior on the structure of the network by
considering a degree prior with γ = 3.

Figure 3 represent our comparative study in the form of heat maps and ac-
curacy curve. We observe that for a small network like the EGFR system there
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is no significant difference in accuracy between Graph sampler and structmcmc
for low threshold values but for higher threshold values, structmcmc has an
advantage. Observing the heat maps we find that even though Graph sampler
produces lower edge probability matrix but does not give rise to false negative
edges. On the other hand structmcmc generates high edge probability matrix
but leads to a higher number of false negative edges that were not present in
the prior network. Thus we can take this as a trade off where we have to be
careful while working with both of these software and decide accordingly. If we
focus on time efficiency of the two software, we observe that Graph sampler
is almost 200 times faster than structmcmc. Thus taking both the criteria to-
gether, we observe that Graph sampler has its own advantages and limitations
like structmcmc.

  

A B

C

D

Fig. 3: Heat map of the real network with 14 nodes (A), edge posterior heat
maps of Graph sampler (B) structmcmc (C) with discrete data. The x-axis
represents the parent nodes and the y-axis the corresponding children. Accu-
racy curve of the two software (D).

An alternative other than the Dirichlet prior on the parameter could be the
Zellner g-prior with g-prior equals 1. Even though the Zellner g-prior should
be used for continuous data, we did use it for the discrete data to check its
efficiency. For a binary data set as described above, we can easily fit a linear
regression model and thus fall back to the continuous scenario making the use
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of Zellner prior valid. We still used the priors PC and PD. Figure 4 represents
the heat map and the accuracy curve for the two software. Comparing the heat
map of figure 3(B) and figure 4(A), we observe that there is an improvement
in the posterior edge probability matrix obtained from Graph sampler. There
is also a reduction in the number of false negative edges and this is true even
for structmcmc. As far as accuracy is concerned, both the software are quite
efficient and there was no significant difference in accuracy between the two.
However considering the time scale, Graph sampler is again 100 times after
than structmcmc and thus have a slight advantage.

  

A B

C

Fig. 4: edge posterior heat maps of Graph sampler (A), structmcmc (B) with
Zellner g-prior, here the x-axis represents the parents and y-axis the corre-
sponding children. Accuracy curve for the two software (C)

5.1.2 Simulated networks

We studied the performance of Graph sampler for discrete datasets, using the
Multinomial model. Figure 5 gives a graphical summary of our timing re-
sults. Because of memory problems we could not achieve convergence with
structmcmc for networks of more than 60 nodes. Similarly for 120 nodes,
Graph sampler did not converge with a billion iterations. One of the reason
behind this could be that with larger network size we have to increase the
dataset. Graph sampler was about 100 times faster than the structmcmc for
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the same number of iterations. Graph sampler running time was also less in-
fluenced by the network size (i.e. it increased by a factor 4.06 when going from
5 to 60 nodes with Graph sampler and that factor being 16.5 for structmcmc).
With 30 nodes, Graph sampler took about 2 × 107 iterations (275 seconds)
to converge while for structmcmc it was 106 iterations (3848 seconds). Thus
structmcmc required 10 to 100 times less iterations to reach convergence but
was about 14 times slower than Graph sampler . We compared the edge proba-
bility matrices from both the software by the accuracy curve to check whether
they converge to the true graph.
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ds
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N = 5
N = 10
N = 20
N = 30
N = 40
N = 60
N = 80
N = 100

Fig. 5: Time and convergence comparison of Graph sampler (A) and structm-
cmc (B) performance for various network size (N) with discrete data. The
x-axis represents the number of iterations performed and the y-axis the time
taken on an Apple mac book 2.53 GHz Intel Core 2 Duo processor. The black
lines with circles give the minimum number of iteration required to reach con-
vergence.

Figure 6 panels (A - C) represent the posterior edge probabilities in the
form of heat maps. Figure 6 panel (D) shows the accuracy of the software
in retrieving actual edges as a function of the probability threshold above
which an edge is declared present. It was observed that with small threshold
values structmcmc had higher accuracy than Graph sampler. We observe that
with the single use of concordance prior the accuracy of Graph sampler in
retrieving edges correctly is low for small threshold values. However with a
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threshold value above 0.5, both the software had almost the same accuracy.
Altogether, Graph sampler reaches convergence faster in time and has equal
accuracy as structmcmc for threshold values above 0.5.

� �

� �

� �

Fig. 6: Heat map of the true network with 30 nodes (A), edge posterior heat
maps of Graph sampler (B) structmcmc (C) with discrete data. The x-axis
represents the parent nodes and the y-axis the corresponding children. Accu-
racy curve of the two software (D).

The accuracy of Graph sampler can be improved with the introduction of
the degree prior (PD) with γ = 2. As our network is a descending tree network,
the inclusion of the degree prior is very beneficial. Figure 7(A) represents the
posterior probabilities of the edges and resembles more like the true graph.
It was observed that with the prior PD, the accuracy of Graph sampler im-
proved significantly (Figure 7(B)) and even with very low threshold values,
the accuracy was almost equal to 0.9.
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Fig. 7: Heat map of the posterior edge probabilities obtained from
Graph sampler with discrete data with concordance and degree priors (A)
and the improvement in the accuracy curve due to the use of degree prior in
Graph sampler (B).

5.2 Dealing with Continuous data

For continuous data, structmcmc uses a Zellner g-prior on regression param-
eters. With Graph sampler either a normal-gamma prior or a Zellner g-prior
can be used. The two models are compared here.

5.2.1 Normal-gamma model

For the continuous data set, convergence with Graph sampler was achieved
with almost 10 times less iteration number compared to structmcmc. It was
observed that with networks having 60 nodes, structmcmc faced problems
in convergence. Figure 8 represents our study in a graphical way. Regard-
ing the time taken for iterations, Graph sampler was almost 10 times faster
than structmcmc. For networks with more than 20 nodes, time efficiency of
structmcmc decreases sharply. The very narrow band width (A) reveals that
for Graph sampler the increase in network size does not have much influence
on time. Figure 8 represents our study in a graphical way.

We also studied the posterior edge probabilities obtained from each of
the software to draw inference on their efficiency to retrieve the true graph
structure. We plotted the posterior edge probabilities in the form of heat
maps to understand sampling scheme prescribed in Graph sampler. Figure
9 represents the three heat maps for a network with 30 nodes. We observe
that Graph sampler perform well in retrieving edges present higher up in a
tree network. However as we go down the tree structure, the efficiency of
Graph sampler decreases. As our model used simulated data, so there is an un-
derlying correlation in the dataset. For this reason as we go down the network
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Fig. 8: Time and convergence comparison of Graph sampler(A) with the
structmcmc(B) for varying network size with continuous data set. The
Graph sampler uses a normal gamma prior while structmcmc uses a Zellner
g-prior

structure Graph sampler samples many new edges. Interestingly the direction-
ality of the network structure is maintained. On the other hand structmcmc is
efficient as we move down the network structure. However structmcmc fumble
with the directionality of the edges. We plotted the accuracy curve for the two
software. Figure 9(D) represents that the accuracy of structmcmc is slightly
higher than that of Graph sampler for smaller threshold values. However this
difference is not much and for higher threshold values, both the software have
almost equal accuracy.

5.2.2 Strengthening the prior model by considering the hierarchy of the
structure and defining a degree prior

The degree prior (PD) with γ = 2 was introduced to check the improvement
in the accuracy of Graph sampler. Figure 10(A) represents the posterior prob-
abilities of the edges and resembles more like the graph in Figure 9(B). It was
observed that with the prior PD, there was no significant improvement in the
accuracy of Graph sampler (Figure 10(B)).
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Fig. 9: Heat map of the true network with 30 nodes (A), edge posterior heat
maps of Graph sampler (B) structmcmc (C) with continuous data, the x-axis
represents the parents and y-axis the corresponding children. Accuracy curve
for the two software (D).

5.2.3 An alternative: Zellner g-prior model

For continuous datasets, we can also use the Zellner g-prior as used in structm-
cmc. Unlike structmcmc, we run Graph sampler for various g-prior values. We
started with a g-prior of 1 for all the networks considered in our study. We
checked the time required and the convergence point. Later we performed sim-
ilar runs for different g-prior with values 5, 10, 50 and 100. In each case we
observed the convergence rate and the posterior edge probabilities.

With a g-prior value of 1 or 5, convergence was achieved for all the net-
works. As we increased the value of g-prior to 10, runs with networks having 5
and 10 nodes converged with the maximum value of R̂ being 1.12. This was not
the case for networks with 20, 30, 40 and 60 nodes as they converged (R̂ = 1.05
approx). However increasing the g-prior value to 50 and 100, convergence was
not achieved for any of the networks. Thus in such a situation, Graph sampler
and structmcmc differs. For smaller network sizes, Graph sampler performed
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Fig. 10: Heat map of the posterior edge probabilities obtained from
Graph sampler with Normal-gamma model with concordance and degree pri-
ors (A). Accuracy curve with the use of degree prior in Graph sampler (B).

well with g-prior value equal to 1 or 5. With bigger networks sizes having
100 data points for each nodes, the g-prior value can range from 1 to 40.
Graph sampler failed to converge when the g-prior value was equal to the
number of data points. On the other hand, structmcmc performed well with
higher g-prior values and was most efficient when the g-prior value was equal
to the number of data points.

In order to understand the reason behind such a difference in conver-
gence rate between the two software, we discuss the flipping technique used in
Graph sampler along with its advantages and disadvantages.

5.2.4 Problem with flips

The primary advantage of the reduced jump kernel (only adding or deleting
one edge at a time) used in Graph sapmpler is that it is faster than the jump
kernel allowing flips. Since the choice of pairs of nodes is systematic, there is
no need to check the neighbourhood cardinality (Husmeier, 2003) as done in
structmcmc.

This jump kernel has some drawbacks also. Consider a network with 5
nodes where node 4 is a parent of node 5. In the MCMC simulations, at a
particular step, we propose to add an edge from node 5 to node 4. As the log
posterior for the proposed network is quite high (if 4 conditions 5, the two
are correlated and 5 conditioning 4 has high probability), we accept such a
proposal. According to our flipping technique, in order to retrieve the true
edge (from 4 to 5), we need to first delete the edge from 5 to 4, leaving
them independent. However a network with 4 and 5 independent has low log
posterior probability and we rarely accept such a move.

Figure 11 is a dot plot where the blue dots and the red circles appearing
in pairs represents the difference in log probability for a network when passing
from an edge (4 to 5) to an edge (5 to 4) respectively using the jump kernel
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specified in Graph sampler. For a pair A, a move from the red dot (log proba-
bility -675) to a blue dot (log probability -676), the log probability has to pass
through -720 (4 and 5 independent) making such a move impossible. So in the
most likely regions of G the flip is very unlikely. For the pair B, a move from
the red dot (log probability of -698) to a state of independence (log probability
of -685) is easy, but the next move to a blue dot (log probability of -700) is
not easy. This is also an unlikely region where some flips are possible. The flip
for the pair C is unlikely to occur as the log probability has to pass by -687
while going from -678 to -681. Flips would occur easily when they are close to
the diagonal.

The difficulty with the jump kernel can be due to the large data set for
which the posterior mass favours fewer graphs. Under such a situation, the
standard MCMC scheme faces difficulty in moving between graphs, or finding
the high-scoring graphs. In such a case parallel tempering is a proficient option
to speed up the MCMC-based convergence of network inference. This temper-
ing approach is generally referred to as Model Composition by Metropolis-
Coupled Markov Chain Monte Carlo (MC4) (Barker et al, 2010). The parallel
tempering involved in this MC4 (beyond the scope of this paper) approach al-
lows proper mixing of the Markov chain and helps to escape the local maxima.

5.2.5 Sensitivity to the prior on graph structure

To check the sensitivity of the normal-gamma model with respect to informa-
tive and non informative priors, we considered a network with 40 nodes having
100 data points for each node and defined only the PB priors on the edges. We
first considered an informative prior on edges with each desired edge having a
prior probability of 0.9 and 0.1 for others except for autoloops for which prob-
ability was 0. We define a less informative prior with 0.8 and 0.2 and carry
out our experimental run. We repeated the process and finally defined a flat
non informative prior of 0.5 for all the edges.

For each run with different prior probabilities, convergence was obtained
in Graph sampler and then retrieved the posterior edge probabilities as it con-
veyed the information regarding the sensitivity of Graph sampler in selecting
the desired graph out of all the equivalent graphs.

With a strong informative prior of 0.9 and 0.1, Graph sampler converged
and was able to retrieve all the desired edges with a high probability. The
posterior probabilities of some undesired edges were also high. This is mainly
observed as we move down the network due to the presence of partial correla-
tion between the nodes higher up in the network and those at the bottom. As
we use less informative priors, this behaviour becomes more prominent and
the efficiency of Graph sampler decreases (Figure 12). With a flat prior of 0.5
for all the edges, the efficiency of Graph sampler is the least. Figure 1 and
the heat map of Figure 12(A) show that the true network is a descending tree
(the upper triangular matrix of the heat map has zero edge probability). For
the informative prior, we observe that the normal-gamma model works well
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Fig. 11: The flips for a network with 5 nodes along with the log posterior
probability after each flip. The blue dots represent the presence of the edge
from 4 to 5 and the red dots for the edge from 5 to 4 in a 5 node network.
The vertical and the horizontal lines in the graph are kept for easy reference
of the marked pairs with both the axis.

for the upper part of the tree network. However as we descend down the tree,
the sensitivity of the model decreases as more children are involved. One way
to increase the performance of the model can be by increasing the number of
data points for each node present in the lower part of the network. We plotted
the accuracy curve to depict the efficiency of Graph sampler for the various
informative priors.

Figure 12(D) represents the accuracy curve of Graph sampler. We ob-
served that Graph sampler was very versatile with the type of prior infor-
mation provided. With very strong prior the accuracy was almost equal to 0.9
for threshold values above 0.2. This stated that Graph sampler was efficient
enough to retrieve the true edges with higher posterior probabilies and allot
low probability (less than the threshold) to false edges. For noninformative
priors Graph sampler had an accuracy of 0.65 for threshold below 0.3. The
accuracy increased to 0.8 and above with the increase in threshold from 0.5 to
1.0.

We checked the sensitivity of Graph sampler for degree prior (PD) with
a noninformative Bernoulli prior on edges. We observed that there was not
much improvement in the accuracy of Graph sampler in this case (Figure 13).
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Fig. 12: Heat map of the true (desired) network with 40 nodes (A), heat map of
posterior edge probabilities obtained from Graph sampler with an informative
prior of 0.9 for desired edges (B) and with a noninformative prior of 0.5 (C)
with a Normal gamma likelihood; the x-axis represents the parents and y-axis
the corresponding children. Accuracy curve for the various informative priors
(D)
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Fig. 13: Heat map of the posterior edge probabilities obtained from
Graph sampler with Normal-gamma model with a noninformative Bernoulli
prior and degree priors (A). Accuracy curve due to the use of degree prior in
Graph sampler (B).

6 Discussion

We observed that like other widely used software (bnlearn, deal), Graph sampler
works well with both discrete as well as continuous data. For continuous data,
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we considered a regression model and we fitted a multinomial model for the
discrete data. These two model representations are commonly used when deal-
ing with BNs. For continuous data, Graph sampler allow the user to use either
the Normal-gamma prior or the Zellner g-prior for the parameters involved in
the regression model. Our results showed that Graph sampler performs better
with the Normal-gamma prior than the Zellner g-prior. Another drawback of
using a Zellner g-prior is that while using this prior the number of parents
should be less than the number of data points per node which can be un-
realistic while dealing with real observations. For the multinomial model we
defined a Dirichlet prior for the parameters. This software provides a num-
ber of different structure priors which are mutually independent and can be
used in varied combination to improve the results. In particular we considered
the concordance prior (PC), the Bernoulli prior (PB), the degree prior (PD)
and the motif prior (PM ). Even though we did not utilize the motif prior in
this work, but one can use this prior according to the needs. Taking into con-
sideration the data type and the structure prior we are able to perform full
Bayesian analyses to sample graphs from the specified posterior distribution.
We observed that while dealing with large networks the choice of priors and
their combination is quite essential for retrieving the true edges because of the
huge number of possible DAGs. It means that larger networks generally require
strong informative priors on the structure of the network. Hence for specific
network structures (like, tree structure), we have to think of incorporating a
more appropriate structure prior. For a large tree structure we observed that
the efficiency of Graph sampler in retrieving the true edges decreases as we
move down the tree. An alternative way to solve this problem could be to use
larger data sets for nodes present way down in the tree structure.

We find that Graph sampler is very efficient with respect to time. Both
for continuous as well as discrete data, we observed that Graph sampler was
atleast 10 times faster than structmcmc. One of the primary reason behind
Graph sampler being time efficient is due to its fast jumping kernel. The sys-
tematic scanning of the edges and proposing to add or delete an edge at each
iteration makes this kernel very efficient with respect to time. Moreover this
jumping kernel requires less memory for storage. However as explained in Sec-
tion 5, this jumping kernel has some limitations. The kernel faces difficulty
with large data sets for which the posterior mass favours fewer graphs. The
standard MCMC scheme faces problem with the local maxima and thus fails
to search for the high-scoring graphs. A proficient option would be to use par-
allel tempering (beyond the scope of this paper) to speed up the MCMC based
convergence. Secondly, Graph sampler is scripted in C language. C language
being a compiled language is much more faster than R which is an interpreted
language. Our results showed that for large networks i.e. networks with more
than 100 nodes, Graph sampler was efficient in convergence. To resume, we ob-
served that Graph sampler is a flexible software which is efficient with respect
to time and convergence even for large networks.

We observed that Graph sampler could be a good software apart from the
widely used R packages to perform Bayesian analyses of DAGs models. Besides
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structmcmc, bnlearn and deal which are scripted in R, there are several other
very efficient BN software that are capable of performing Bayesian inference on
parameter estimation and/or on network structure. Some of these software are
free while others run on commercial platforms. Each software run on different
platforms and follow specific sampling scheme. For interested readers, Korb
and Nicholson (2010) reviewed some of the software available at the time that
do inference on network structure.
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