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Electrical Transmission Systems consist of a huge number of locations (nodes)
with different types of measurements available. Our aim is to derive a subset of
nodes which contains almost sufficient information to describe the whole energy
network. We derive a parameter set which characterises every single measuring
location or node, respectively. Via analysing the behaviour of each node with re-
spect to its neighbours, we construct a feasible random field metamodel over the
whole transmission system. The metamodel works in a discrete spatial domain to
smooth the measurements across the network. In the next step we work with a sub-
set of locations to predict the unobserved ones. We derive different graph kernels
to define the missing covariance matrix from the neighbourhood structures of the
network. This results in a metamodel that is able to predict unobserved locations
in a spatial domain with non-isotropic distance functions.

1 Introduction

The increasing consumption and trading of electrical power puts a strain on the electrical
transmission system. Getting close to operational limits of the transmission lines and other
components of the electrical system, different issues are observed in the energy network like
overloads on transmission lines and other components. By reducing the security margins of all
components to manage the higher loads in the electrical system, it is more vulnerable against
additional issues. The higher vulnerability can cause a higher risk of blackouts and the more
frequent usage of cold reserve to stabilise the energy network. Applications for monitoring
and protecting wide-area networks, like the European network, are developed in Müller et
al. (2012).
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2 Database

One issue is the part of energy that permanently oscillates through the electrical transmis-
sion system with a low frequency of less than 2Hz. The so called Low Frequency Oscillation
(Rogers 2000) is an inter-area oscillation between different areas in the European energy net-
work. The main mode of the Low Frequency Oscillation (short LFO) is stable although its
damping is small. For this reason the inter-area oscillation can increase uncontrollably in case
of larger disturbances. The stability of an electrical transmission system and the information
received by cluster algorithms is analysed in Brato et al. (2014). Furthermore, the energy os-
cillating with low frequency restricts the available transfer capacity for power transmissions
in Europe. Currently, the inter-area oscillation is damped by controllers at power plants like
power system stabilizers (Kundur 1994, ch. 12.5; Rogers 2000). These controllers have to be
adjusted carefully over a long time considering all other controllers available in the energy
network. Unfortunately, it is still not possible to damp the LFO completely.

To improve the quality of the electrical transmission system it is necessary to monitor the
LFO. The LFO was described in a first step by a simple harmonic oscillator in Surmann; Ligges
and Weihs (2014) which results in a smaller parameter set. In addition, it is possible to inter-
pret the parameters of the differential equations. Our task is to select locations for phasor
measurement units to get the important information about the LFOs. Because phasor mea-
surement units are not that expensive, one can argue to install a unit at every busbar. However,
this will result in a huge amount of data for Europe, which is not processable at all. We aim
at a solution for this challenge by using a genetic algorithm which selects the optimal subset
of nodes with respect to a minimal prediction error. The error is calculated between a meta-
model for the parameter set (Surmann; Ligges and Weihs 2014) and the data from the institute
of Energy Systems, Energy Efficiency and Energy Economics at TU Dortmund.

In section 2 the database for the analysis of the New England Test System is described. The
paper describes a random field model for the parameter sets in section 3 to calculate the pre-
diction error. A simulation study over the kernel parameters is described in section 4. The
results are summarised in section 5. Further work is specified in section 6 where we consider
a genetic algorithm to optimise the subset of nodes with respect to the prediction error.

2 Database

Currently very few phasor measurement units are available in the European electrical trans-
mission grid, hence data are rather incomplete. Furthermore the different operators of the
European electrical transmission system mark their existing data as confidential. Finally, it is
not possible to simulate the corresponding data of this huge grid. For these reasons the fol-
lowing analysis deals with simulated data from a smaller electrical system, the New England

Test System (short NETS). The simulation software that is used to generate the data, is the well
established and complex simulation system DIgSILENT PowerFactory. A precise description
of the algorithm used in PowerFactory is given in Kundur (1994).
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2.1 The New England Test System

2.1 The New England Test System

The New England Test System (short NETS) consists of 30 busbars, which are connected over
46 transmission lines. 19 loads consume the power from ten generators. Analogous to the
European high voltage transmission grid, the NETS operates at 50Hz with a voltage of 345 kV .
Exceptions are the two busbars 12 and 20 which operate with a voltage of 220 kV . The total
capacity is about 5.6GW.

Figure 1 sketches the layout of the electrical transmission network. At each node, which is
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Figure 1: The transmission network New England Test System

equivalent to a busbar, we are able to measure data. The numbering corresponds to the present
simulation in PowerFactory. White nodes indicate busbars which do not induct or consume
power, because merely transmission lines are connected. Electrical energy is inducted into the
network in black nodes with a power plant. Loads, which appear at light grey nodes, consume
this power. In dark grey nodes we find both, a power plant and a load.

The graph structure of both networks is available in an symmetric adjacency matrix (West
2001). All main diagonal elements are zero, because an transmission network contains no
self loops. An off diagonal element is set to the impedance of a transmission line between its
corresponding nodes. It is set 0 if two nodes are not directly connected.

2.2 Measured Data

Starting from a static situation in PowerFactory, an event excites the network and generates
dynamic data. It is necessary to choose events which do not modify the network topology.
The increase of the consumed power and reduction shortly thereafter does this job well. We
observe the complex valued voltage (voltage magnitude and angle) at every busbar with a
time step size of 10ms. This step size is fine enough to analyse the LFO, because its frequency
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2.3 Representative Parameter Set

is lower than 2Hz.
The considered event raises the loads at the busbars 4, 8, 12, 15, 18, 20, 21, 24, 25, 27, 28

and 39 by 10% after 1 s. After an additional second the loads are restored to their original
value. PowerFactory can only simulate LFOs by stimulating the network with a load event
and observe the LFOs after a transient time interval. Figure 2 shows the voltage magnitude at
busbars 14 and 25 as dotted lines after the transient time interval of 25 s up to 180 s. The result
of the load event is an oscillation around the same level as in the static situation.

2.3 Representative Parameter Set

Surmann; Ligges and Weihs (2014) use a harmonic oscillator to generate a representative pa-
rameter set for the oscillating measurements at each node. It is described by the homogeneous
differential equation:

0 = mẍ(t) + dẋ(t) + k
(
x(t) − r

)
. (1)

The position of the mass is described by the solution function x(t). From a deflection x(t), the
spring generates the restoring force Fk(t) = k

(
x(t)−r

)
. Using a spring of length r generates an

offset in the observed oscillation. The velocity of the mass is described by the first derivative
with respect to time ẋ(t) = d

dt

(
x(t) − r

)
. A damper slows the motion by the damping force

Fd(t) = dẋ(t) whereas the mass accelerates with ẍ(t) = d2

dt2

(
x(t) − r

)
. Kakimoto et al. (2006)

propose a similar model to simulate the LFO between Fukuoka and Shizuoka in Japan.
Estimating the parameters of the differential equation for each node of the NETS generates a

parameter set of five parameters: the damping constant di, the spring constant ki, the length
from the ground ri, the starting position x0,i and the starting velocity v0,i. Table 1 summarise
an extract of the estimated model coefficients. The corresponding graphs show the model as
a grey solid line fitted to the data (dotted line) of two busbars in figure 2. All estimates of the

Table 1: Coefficients of differential equation model

busbar d k r x0 v0 SSE
14 0.0582 2.104 351.8 351.6 −1.503 3.419

25 0.0568 2.103 365.5 365.2 −1.565 59.591

spring constants are similar; leading to a correct frequency of about 0.163Hz. The length from
the fixed-point r, the starting position x0 and the velocity v0 are determined by the different
data observed. Busbar 14 shows a good fit with a sum of squared errors (short: SSE) of 3.4,
whereas the fit to the data of busbar 25 is the worst fit with an SSE of 59.6. As we can see in
figure 2, the high deviance results from the fact, that a slower overtone appears at busbar 25.
Due to the fact that one harmonic oscillator is not capable to model a superposed oscillation,
the deviance rises.
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3 Spatial Modelling and Prediction
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Figure 2: Fitted differential equation model (grey solid line) to the voltage magnitude data
(dotted line) of two busbars

3 Spatial Modelling and Prediction

In this section we define a model to fit the data from section 2. The model should be applicable
to predict unobserved locations, to calculate a prediction error.

Information about the voltage in an electrical transmission grid are available at discrete lo-
cations s ∈ {1, . . . , l}. These are described by the nodes in figure 1. Additionally, the graph
shows the neighbourhood structure of the energy network. An edge in the graph indicates
the neighbourhood of two nodes r and s and we use the notation r ∼ s. Self loops are not
allowed thus s cannot be neighbour of s itself. N (s) describes the set of all neighbours of
location s.

3.1 Spatial Smoothing across Neighbourhoods

According to Fahrmeier; Kneib and Lang (2007, ch. 7.2.4) we assign a coefficient floc(s) = γs

to each location s ∈ {1, . . . , l}. By defining the design matrix Z in equation (2), we are able
to write the vector of evaluated locations floc = (floc (s1) , . . . , floc (sn))

> as a linear model Zγ
with

Z[i, s] =

{
1 if yi is observed in location s = si

0 otherwise
. (2)

Obviously, this results in the linear model y = Zγ + ε for the vector of observations y =

(y1, . . . , yn)
> with the common error vector ε ∼ N

(
0, σ2I

)
.

Due to the fact that we left out the neighbourhood structure we got an overfitted model
because of the high number of coefficients. Hence we need to construct a criterion to obtain
smooth spatial effects in which the coefficients of neighbouring regions are similar. Fahrmeier;
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3.2 Predict Unobserved Locations

Kneib and Lang (2007) propose the penalised least squares criterion

PeLS(λ) =
n∑

i=1

(yi − floc (si))
2 + λ

l∑
s=2

 ∑
r∈N(s),r<s

(γr − γs)
2

 (3)

with λ > 0. PeLS(λ) consists of the classical sum of squares and a penalisation term. This
second term uses squared differences between coefficients of neighbouring locations and takes
every combination of neighbours into account. The penalisation of higher differences between
neighbouring locations support a smooth spatial effect. We can write the penalisation term as
a quadratic form λγ>Kγ with

K[s, r] =


−1 s ∼ r

|N(s)| s = r

0 otherwise
. (4)

This compact form of equation (3) is the well known Tikhonov regularization (Tikhonov et al.
1995) with an L2-penalty. As a result, we receive the penalised least square estimator γ̂ =(
Z>Z+ λK

)−1
Z>y which minimises PeLS(λ).

3.2 Predict Unobserved Locations

Assume we observe the data yi at locations si ∈ {1, . . . , l}, i ∈ {1, . . . , n}. We fit the model
y = Zγ+ ε from section 3.1 with a covariance matrix Cov (y) = ΣD to the data. Leverage the
model for a prediction y0 at k unobserved locations we have to assume the spatial correlation
between the data and the unobservables which is the k× n covariance matrix Σ0D. Σ0 is the
k × k covariance matrix among the unobservables. With these assumptions Schabenberger
and Gotway (2005, ch. 5.3.3) define the best linear unbiased predictor in equation (5) which is
the conditional expectation of y0 given y:

ŷ0 = E (y0|y) = γ0 + Σ0DΣ−1
D (y− Zγ̂) . (5)

γ0 = ¯̂γ is the estimated constant mean. Equation (6) gives the conditional covariance, respec-
tively:

Cov (y0|y) = Σ0 − Σ0DΣ−1
D ΣD0. (6)

3.3 Graph Kernel

The model at hand is based on a known covariance matrix of the measurements. Though, the
data from section 2 only provides the neighbourhood structure.

A definition of a covariance matrix is built on theoretical concepts for a graph G which
consists of a set of l locations S = {1, . . . , l} and a set of edges E ⊂ S× S. A location s ∈ S is a
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3.3 Graph Kernel

neighbour of another location r ∈ S, if they are connected by an edge which means (s, r) ∈ E

and we denote s ∼ r. We consider undirected graphs, that is (s, r) ∈ E ⇔ (r, s) ∈ E, and
without self-loops ((s, s) /∈ E ⇔ s � s for all s ∈ S).

We define the adjacency matrix A ∈ Rl×l to store the neighbourhood structure of G by
A[s, r] = 1 ⇔ s ∼ r and A[s, r] = 0 ⇔ s � r with the locations s, r ∈ {1, . . . , l}. The adjacency
matrix is symmetric by definition of G. It is possible to generalise the matrix A by introducing
weighted graphs which associate a weight wsr > 0 to signify the edge between location s and
r. If s � r, then wsr = 0.

In the next theoretical step, we utilise kernel methods due to the fact that they can be applied
successfully in high dimensional feature space. Let X be a non-empty set. Every edge-labelled
graph G is associated with a label matrix X ∈ Xl×l. Thereby the label of edge (s, r) ∈ E is
X[s, r] and a special label ζ if s � r respectively. A function κ : X × X → R is a kernel if there
exists a real Hilbert space H and a corresponding feature map φ : X → H that maps ζ to the
zero element of H. φ is defined such that ∀x, x? ∈ X, κ (x, x?) := 〈φ(x), φ(x?)〉H. Extended by
a kernel and the reproducing property ∀x ∈ X and ∀f(·) ∈ H it holds 〈f(·), κ(·, x)〉H = f(x) the
Hilbert space K is denoted as reproducing kernel Hilbert space (short: RKHS).

Vishwanathan et al. (2010, sec. 3.2) construct a kernel on a graph G with respect to all
random walks of length t between each pair of locations. A walk of length t on a graph is a
sequence of locations s1, s2, . . . , st+1 such that sk ∼ sk+1 for all 1 6 k 6 t. This idea reflects
the power transmission in an energy network from the statistical point of view in an adequate
way. Energy flows in a transmission grid between two locations with respect to Kirchhoff’s
circuit laws, hence it is possible to use arbitrary walks between two locations. Admittedly,
the longer a walk the less energy is transmitted by this sequence which should be taken into
account in the kernel definition. Based on all random walks on the graph G we define the
kernel function κ with respect to the sum of the adjacency matrices At:

κ =

∞∑
t=0

λ(t)At. (7)

Therefore, the (s, r) entry of At represents the number of length t random walks between lo-
cation s and r. To overcome the problem that equation (7) does not converge, Vishwanathan
et al. (2010) introduce a sequence of appropriately chosen non-negative coefficients λ(t). Ad-
ditionally, the authors show in theorem 3, if the coefficients λ(t) are such that κ in equation (7)
converges, it defines a valid positive semi-definite kernel. By the use of the RKHS properties
one can show that a positive definite kernel κ(x, x?) is the inner product in the Hilbert space
H between φ(x) and φ(x?).

With the flexible definition in equation (7) two special cases of interest are discussed by
Gärtner; Flach and Wrobel (2003). Firstly, the exponential kernel with λ(t) := βt

t! is used
so that the sum in equation (7) becomes the series expansion of the matrix exponential eβA.
As the adjacency matrix A is symmetric and β > 0, the matrix exponential eβA is positive
definite and can be interpreted as a covariance matrix. Secondly, the geometric kernel with
λ(t) := βt and |β| < 1 employs the geometric series

∑∞
t=0 β

t in equation (7). Gärtner; Flach
and Wrobel (2003) show that the geometric series of a matrix only converge if β < 1

a with
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4 Simulation Study

a := min {|N(s)|, s ∈ {1, . . . , l}}. Hence, the geometric series of a matrix can be interpreted also
as a covariance matrix.

With these two kernels we are now able to define the covariance structure in section 3.2
which was assumed to be known. Therefore it is possible to predict measurements at unob-
served locations in a given energy transmission graph.

4 Simulation Study

We describe properties of the different graph kernels in section 3.3 on the basis of a simu-
lation study. The study deals with the type of voltage V ∈ {angle, magnitude}, the type of
graph kernel GK ∈ {exponential, geometric}, and the type of adjacency matrix A ∈ {adjacency,
neighbourhood}. Both graph kernels are parametrised by ξ ∈ (0.25, 1), which is equal to β for
the exponential kernel and a proportion of 1

a for the geometric kernel. The adjacency ma-
trix contains the impedance between two nodes, whereas the neighbourhood matrix contains
the length of their shortest paths (West 2001). This will give us the information about the
required accuracy of the neighbourhood structure from the network. Lastly we use a param-
eter θ ∈ (0.05, 0.95) to define the ratio of omitted nodes and thereby the number of nodes to
predict.

Each parameter combination is repeated 20 times in the simulation. We measure the max-
imal absolute residual max (|ei|) of the complete network after predicting the omitted nodes
to evaluate the simulation. The maximal residual describes the situation at hand in a more
realistic way than an average statistic, because one node with a poor prediction can result in a
network failure.

The results are analysed by a linear regression with interaction and quadratic terms of the
continuous parameters. Five measurements with standardized residuals higher than 5 are
excluded from the analysis. A Box-Cox plot identifies a square root power transformation
to improve the model. After fitting the model, a stepwise model selection by BIC reduces
the number of terms to estimate from 18 to 8. This results in a residual standard error of
6.779× 10−3 on 3827 degrees of freedom. The coefficient of determination and its adjusted
counterpart both have the value R2

(adj) = 0.88. Table 2 describes the estimated model coeffi-
cients and its standard errors. The interactions between two parameters are characterised by
a colon. The interpretation of an estimated coefficient is done exemplary for two parameters.
Each estimation for discrete parameters describe the difference between the values of this pa-
rameter with one coefficient for a value set to 0. An estimation of −2.89× 10−2 for Vmagnitude
describes a lesser result for the regression model compared to Vamplitude which is 0. An es-
timation for a continuous parameter, e. g. θ, multiplies the value of the parameter with its
corresponding coefficient.

Firstly, the simulation study shows a better maximal residual for the voltage magnitude
than for its angle. Secondly, the network immanent adjacency matrix results in lower max-
imal residual values than the neighbourhood matrix. This result follows from the negative
interaction between the voltage magnitude and the neighbourhood matrix. In a more detailed
analysis of the simulation study we figure out that an additional parameter which manages
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5 Conclusion

Table 2: Regression model for
√

max (|ei|) of NETS reduced by BIC

Term Estimate Std. Error
Intercept 5.03× 10−2 4.24× 10−4

Vmagnitude −2.89× 10−2 4.63× 10−4

Aneighbourhood 1.69× 10−2 4.63× 10−4

θ 4.12× 10−2 1.51× 10−3

θ2 −1.21× 10−2 1.39× 10−3

Vmagnitude : Aneighbourhood −3.56× 10−3 4.38× 10−4

Vmagnitude : θ −7.34× 10−3 6.89× 10−4

Aneighbourhood : θ −1.94× 10−2 6.89× 10−4

the maximal length of the shortest path available, does not improve this result. Thirdly, we ob-
serve the expected positive effect of θ on the maximal residual. Lastly, we see no significantly
different performance between the exponential kernel and the geometric one. Furthermore,
the parameter ξ of the graph kernel has no significant influence on the response at all.

The analysis is verified on another electrical transmission system called ‘New England Test
System - New York Power System’, NETS – NYPS for short. This bigger network contains of
53 nodes and 87 transmission lines. The equivalent simulation study results in an R2

(adj) of
0.76 and a residual standard error of 2.538× 10−3 on 3829 degrees of freedom. Table 3 shows
the same significant terms in the reduced model as for the NETS system. We only observe

Table 3: Regression model for
√
max (|ei|) of NETS – NYPS reduced by BIC

Term Estimate Std. Error
Intercept 1.52× 10−2 1.59× 10−4

Vmagnitude 6.24× 10−3 1.73× 10−4

Aneighbourhood 5.44× 10−3 1.73× 10−4

θ 1.45× 10−2 5.65× 10−4

θ2 −5.95× 10−3 5.19× 10−4

Vmagnitude : Aneighbourhood 7.33× 10−4 1.64× 10−4

Vmagnitude : θ 1.73× 10−3 2.58× 10−4

Aneighbourhood : θ −7.76× 10−3 2.58× 10−4

differences comparing the leading signs between table 2 and table 3. The difference is due to
the varying impact of the voltage magnitude and amplitude of both networks. All interesting
kernel parameters are not affected.

5 Conclusion

The general target of this paper is the derivation of a model in a discrete spatial domain to
interpolate and predict unobserved nodes. Interrogation with a subset needs less resources
compared to process information from the whole electrical network. Due to the fact of miss-
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6 Further Work

ing real data we introduce a virtual test systems which is used to simulate data for every node
with a frequency of 100Hz. Each measurement at a locations is drilled down to a representa-
tive parameter set by a homogeneous differential equation. These new parameters represent
the simulated measurements by interpretable coefficients. The most interesting one is the
damping of the simulated oscillation.

We discuss a random field model for discrete locations which depends on the network struc-
ture in from of an adjacency matrix. It is used to obtain a smoothed spatial model across
neighbourhoods. In the next step we assume to observe a subset of locations in the network
and predict the unobserved ones. The theory of graph kernels is leveraged to define covariance
matrices within the spatial domain and its non-isotropic distance function. This empowers us
to predict locations that are not observed from a given subset of locations.

Finally, we utilise a simulation study to model the impact of kernel parameters on the resid-
ual error within the predicted locations. The study shows no significant difference between the
two graph kernels and the corresponding parameters. It points out lower maximal residual
values when using the network immanent adjacency matrix compared to the neighbourhood
matrix. In summary, random field model with a graph kernel provide a powerful tool to pre-
dict locations in a graph with non-isotropic distance functions.

6 Further Work

Using the theory from section 3 we are able to define a subset of locations as a training set s
and predict the data y0 at all remaining locations. Currently, the subset is chosen subjectively
or randomly from the energy transmission network. To determine the optimal subset with
respect to a minimal maximal error, a genetic algorithm will be used. One challenge will be
the definition of a suitable mutation strategy. It should keep the number of locations in the
subset constant. Without such a constraint the optimum will be to choose all nodes.
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