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Abstract. The problem of testing the null hypothesis of a common direction across
several populations defined on the hypersphere arises frequently when we deal with direc-
tional data. We may consider the Analysis of Variance (ANOVA) for testing such hypo-
theses. However, for the Watson distribution, a commonly used distribution for modeling
axial data, the ANOVA test is only valid for large concentrations. So we suggest to use
alternative tests, such as bootstrap and permutation tests in ANOVA. Then, we investigate

the performance of these tests for data from Watson populations defined on the hypersphere.
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1 Introduction

The statistical analysis of directional data, represented by points on the surface of the
unit sphere in RY, denoted by S;—1 = {x € R?: x'x = 1} was widely developed by Watson
(1983), Fisher et al. (1987), Fisher (1993), Mardia and Jupp (2000), among other authors.
The applications of directional data are essentially on the circle (¢ = 2) and on the sphere
(¢ = 3), but the applications on higher dimensions (¢ > 4) are also relevant. Directional
data arise in many scientific areas, such as biology, geology, machine learning, text mining,
bioinformatics, among others. An important problem in directional statistics and shape
analysis, as well in other areas of statistics, is to test the null hypothesis of a common
mean vector or polar axis across several populations. This problem was already treated for
circular data and spherical data by several authors, such as Stephens (1969), Underwood
and Chapman (1985), Anderson and Wu (1995), Harrison et al. (1986), Jammalamadaka
and SenGupta (2001), among others. However, there has been relatively little discussion of
nonparametric bootstrap approaches to this problem. Bootstrap methods and permutation

tests based on pivotal statistics were proposed by Amaral et al. (2007) in directional



statistics and shape analysis. The bootstrap methodology was proposed by Efron (1979)
and was used by Fisher and Hall (1989) and Fisher et al. (1996) for constructing bootstrap
confidence regions based on pivotal statistics with directional data. The permutation tests,
widely used in multi-sample problems were proposed by Wellner (1979) for directional data.

In this paper we focus on the ANOVA test for axial data i.e. unsigned unit vectors
and we consider the bootstrap version of this test and the respective permutation test. The
bootstrap test consists in resampling with replacement from each sample and a permutation
test consists in resampling without replacement from the whole sample. We evaluate the
performance of these tests when data come from Watson populations defined on the hyper-
sphere. We consider the Watson distribution defined on the hypersphere because it is one
of the most used distributions for modeling axial data. For this distribution, the ANOVA
statistic follows an F-distribution that is appropriate only for highly concentrated data (see
Stephens, 1992, Gomes and Figueiredo, 1999 and Mardia and Jupp, 2000, p. 240). Thus, it
seems us that the bootstrap test and permutation test based on the ANOVA statistic may
perform better when data are not sufficiently highly concentrated.

The article is organized as follows. In Section 2 we refer the Watson distribution defined
on the hypersphere and we present ANOVA test for this distribution. In Section 3 we
propose the bootstrap approach and the permutation test to ANOVA test. In Section 4 we
present numerical results about the performance of the tests in the two-sample case and in
three-sample case, such as the estimation of the levels of significance of the tests and the
empirical power of the tests. In Section 5 we present an application and finally, in Section

6 we conclude the paper with some remarks.

2 Analysis of Variance for axial data from Watson
distributions defined on the hypersphere
In this section we refer the Watson distribution defined on the hypersphere and the ANOVA

test for this distribution.

2.1 Watson distribution

The bipolar Watson distribution defined on the g-dimensional sphere, denoted by W, (u, &),
has probability density function given by

-1
f(xx) = {1F1 (;, g,ﬁ>} exp {Fc (u’x)Q} , £x€ 8,1, tue Y1, >0, (2.1)

where 1 F (1/2,q/2, k) is the confluent hypergeometric function defined by
1 q
F(=2k)=
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This distribution has two parameters: a directional parameter +u and a concentration
parameter x, which measures the concentration around 4u. It is rotationally symmetric

about the principal axis F-u.

The Watson distribution W, (u, k) has the following property given in Mardia and Jupp
(2000 p. 236):

For +x € S,_; from a bipolar Watson population, we have for large k (k — 00)
2k {1 — (u’x)z} ~ ngl. (2.3)

Let X = [£x1] £ x2|...| £ x,] be a random sample of size n from the bipolar Watson distri-
bution W, (u, k). The maximum likelihood estimators of the parameters, given for instance,
in Mardia and Jupp (2000, p. 202) and Watson (1983, p. 183-184) are defined by

e The maximum likelihood estimator u of u is the eigenvector of the orientation matrix

X X’ associated with the largest eigenvalue .

e The maximum likelihood estimator % of k is the solution of Y (k) = w,n, where
Y (k) is defined by

di Fy (%7%7/‘&)

Y = 2.4
(x) 2 (2.4
2.2 ANOVA test for Watson distribution

Let X; = [£x1| £ xi2|-..| £ Xin,],i = 1,...,k be k independent random samples of sizes

ni,...,n; from Watson distributions Wy (£u;, k;) with polar axis +u; and concentration
parameter k; around 4+u;, ¢ = 1,...,k and let n = ny + ... + ng be the total sample size.

Suppose that we wish to test
Hp:+u) =dup =... = tu; = fu, (2.5)

against the alternative that at least one of the equalities is not satisfied.

Next we consider x; known. We note that when the concentration parameters k; are
unknown, we may replace them by their maximum likelihood estimates. The maximum
likelihood estimate &; for i = 1, ..., k is the solution of the equation Y (k;) = w; /n;, where
Y (.) is defined in and @; is the largest eigenvalue associated with X;X/.

Consider the following identity

k L k ng
=1

k  n;
22& {1- @) =3 > i {1- (ﬁ;xij)2}+;§;ni {(8xi)” ~ (3x5)*}
(2.6)



where 1; is the eigenvector associated with the largest eigenvalue Xz of the matrix x; X; X/,

ie.,

~ k
and u is the eigenvector associated with the largest eigenvalue A of the matrix > x; X; X/,
i=1
i.e.,

k
(Z m)gX{) i = Ad. (2.8)

The identity (2.6]) is the decomposition of the total variability into the sum of the within-

-groups variability and the between-groups variability, and it may be written as

> kini— A= <Z King — /\i> + <Z Ai — A) . (2.9)
] 1 =1

i=1 =

The test statistic is defined by

F <§X~—X>/(,€_1)(q_1)

=~ , (2.10)
> (/iml- — )\i) S (n—k)(g—1)
i=1
and it may be written as:
<i ﬁ; (HzXzXZ,) ﬁz —u’ i HzXzXz/ﬁ> / (k - 1) (q - 1)
F=-= =1 . (2.11)
(£ om0 X:XD8) ) /(0= ) (g - )

In the particular case of all concentration parameters equal to £ (known or unknown), the
statistic given by (2.10]) reduces to the following statistic

(i@—@)/(h—l)(q—l)
F == : (2.12)

(n-L @)/ n-na-1

=1

k
where @ is the largest eigenvalue of Y X; X! and @; is the largest eigenvalue of X;X].

i=1
The test statistic F' has under the null hypothesis, approximately F(z_1)g—1),(n—k)(g—1) dis-

tribution, for known and large concentration parameters k; (k; — 00,7 =1, ..., k).



3 Bootstrap procedure and permutation test

We consider the null hypothesis of a common polar axis, Hy : tu; = +us = ... = +u; =
+u for k& populations with polar axis +u; and concentration parameter x; around +u,.
We propose the bootstrap and permutation versions of the ANOVA statistic defined by
. The algorithms for performing the bootstrap and permutation tests are based on
Monte Carlo sampling in both algorithms. Amaral et al. (2007) refer that a key point
in bootstrap hypothesis testing is make a preliminary transformation of the data before
performing resampling under the null hypothesis. This is because typically the data do not
satisfy the null hypothesis exactly. These authors refer a method to move u; to U, which
will be described next. Given two unit vectors a and b in R?, the rotation matrix to move

b to a along the geodesic path on the unit sphere in R? that connects b to a is given by
Q =1, + (sina) A+ {(cosa) — 1} (aa’+cc’) (3.1)

. 1 _ . _ b—a(a’b)
where o« = cos™* (a’b) € (0,7) and A = ac'+ca’, with ¢ = Tb—a(@®)’

the Euclidean norm on R?. Then, Qb = a, in our case b = U; and a = u. The theoretical

where ||.|| denotes

accuracy of the bootstrap procedure was analyzed in Amaral et al. (2007).

The algorithm for the bootstrap test can be implemented in the following steps:

1. For each sample of size n;, calculate the estimate of u; defined by (2.7), u; and the

corresponding eigenvalue \;, 1 = 1,.... k.

2. Determine the estimate of the common polar axis u, defined by (2.8)), and the corres-
ponding eigenvalue by Then, calculate the statistic value Fyps defined in 1)

3. Transform each sample i using the rotation matrix (3.1)) to move u; tou (i = 1, ..., k).

4. For each bootstrap cycle b, b =1, ..., B do as follows. Fori =1, ..., k draw a re-sample
of size n; randomly with replacement, from the sample ¢, and calculate the eigenvalue

ng) using 1} for known concentration parameters k; and calculate the eigenvalue
ng) and Egb) for unknown concentration parameters. Then, determine the bootstrap

statistic F(®) defined by

XE»"’—X)/(k—l)(q—l)

=1

M= —
I )=

Fb) . (3.2)
4 (ﬁini - ng)) /S (n—k)(g—1)
=1
and
(£30-3) /6=
FO® = =1 : (3.3)
N RISV PACEOICERY
=1

for known and unknown k;, respectively.



5. Determine the bootstrap p-value by

B
L+ > Irpw

=1 {F ZFobs}

B+1 ’

p= (3.4)

1if A
where the indicator function is defined by I4 = ! OCCI_HS
0 otherwise

The algorithm for implementing the permutation test can be described in the following

four steps. Let [£x;1| &+ Xi2|...| £ Xin,] be the i-sample of unit vectors.

1. For each sample ¢ = 1, ..., k, calculate the eigenvalue Xz defined by 1' and then the
eigenvalue \ defined by 1)

2. Determine the statistic value Fps given in (2.10)).

3. At each permutation cycle ¢, ¢ =1, ..., C do as follows. Sample randomly, without re-
placement, from the pooled set of observations [£x;1| £+ X;a2|...| £ Xin,], 1 =1, ..., k,j =
1,...,n; to form k subsamples of sizes n1,...,n; and for each, calculate the eigenvalue
XZ(C) using lb for known concentration parameters x; and for unknown concentra-

) =(¢)

tion parameters, calculate XEC and &; ’. Next, determine the permutation version of

the statistic F(©) defined by

ko c -
(Z E)—A)/(k—n(q—l)
Fl = =2 : (3.5)
: NG
> ("Wi—)\i )/(n—k’)(q—l)
i=1
and
O
(£39-3) /-1
FlO = =1 : (3.6)
A ONC TN
> (#9n =2) S (n = k) (@ 1)
i=1
for known and unknown k;, respectively.
4. Determine the permutation p-value by
C
1 + Cz—:l I{F(C)ZFobs}
p= = (3.7)

C+1 ’

where I(.) is the indicator function previously defined.

The permutation tests in k-samples problems are in general valid if under the null hypo-
thesis the k sets of observations are exchangeable, i.e., the k& populations are identical with
the same parameters (see Wellner, 1979, Romano, 1990, Good, 2004 and Amaral et al.,
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2007). In our experimental analysis in next section, we will consider not only the case of
identical populations with the same parameters under the null hypothesis, but also the case
of populations with the same polar axis and different concentration parameters under the

null hypothesis.

4 Performance of the tests for data from Watson
populations

In this section, we present the results of the performance of the tests obtained with a
simulation study. We note that in this study as we can not present all the cases studied,
we selected only some cases that seemed relevant to us. For the simulation of the Watson
distribution defined on the hypersphere, we used the acceptance-rejection method given in
Li and Wong (1993).

First, we suppose two Watson populations with known concentrations in subsection 4.1.
Second, we consider two Watson populations with estimated concentrations in subsection
4.2. Third, we suppose three Watson populations with a common and known concentration

parameter in subsection 4.3.

4.1 Two Watson populations with known concentrations

(equal or different)

We considered two Watson populations W, (uy, k1) and W, (ug, k2), where the concentration
parameters x; and ko are known.

An extensive simulation study was undertaken and we present the results for the dimensions
of the sphere ¢ = 2,3,4,5 to test Hy : +u; = tuy = tu. This study was carried out for
investigating the performance of the three tests for the ANOVA statistic given by (2.10)),
the tabular test, based directly on the null asymptotic distribution of the statistic, the
bootstrap test and the permutation test. We note that for equal concentration parameters,
the ANOVA statistic reduces to the statistic , which does not depend on the common
concentration parameter.

First we estimated the significance level of the three tests and second, we determined the

empirical power of the tests.

4.1.1 Estimated significance levels

We considered without loss of generality, that under Hy : +u; = f+uy = +e,, where
e, = (0,...,0,1)". We generated two samples of sizes n; and ny of the populations W, (e, #1)
and W, (eq, k2), supposing samples of equal size and also samples of different sizes. The

estimated levels of significance obtained for a nominal significance level of 5% are indicated



in Tables 1-2 for known and equal concentration parameters (k1 = ko2 = k) and known and
different concentration parameters (k1 # k2), respectively. In these tables we highlighted
in bold the levels of significance between 4.5% and 5.5%, that may be considered close
to the nominal level 5%. Each estimated significance level, i.e., the proportion of times
that Hy is incorrectly rejected, was obtained through a simulation study with 10000 Monte
Carlo simulations in the tabular test and 5000 Monte Carlo simulations in the bootstrap and
permutation tests. The number of bootstrap re-samples, B, in each Monte Carlo simulation
was B = 200 and the number of permutation samples was C' = 200. For obtaining the
significance levels, we used the 0.95-percentile of an F-distribution in the tabular test and
the 0.95-percentile of the distribution of values of the bootstrap and permutation statistics
in the bootstrap and permutation tests, respectively.

The estimated significance levels obtained for equal and different concentration parame-
ters enable us to draw similar conclusions. First, we note that in the tabular test, although
we used the critical point of an F-distribution for a significance level of 5%, the estimated
significance levels obtained are not exactly equal to the nominal significance level of 5%.
The estimated significance levels in the tabular test are in general more distant from the
nominal significance level for small concentration parameters. We note that in these tables
we did not consider very large values of the concentration parameters, for which the signifi-
cance levels obtained in the tabular test are the closest to the nominal level of significance.
This would be expected since the F-distribution of the test statistic is only an asymptotic
distribution, valid for large concentrations. Thus, it is necessary to consider other versions
of the ANOVA statistic such as the bootstrap and permutation versions.

Second, the significance levels obtained in the permutation test in the case of equal or diffe-
rent concentration parameters are very close to the nominal significance level (5%) in almost
all cases. Consequently, the permutation test is generally very reliable in what concerns the
type I error.

Third, from the estimated significance levels obtained in the bootstrap test, we conclude
that the bootstrap statistic is very reliable in most part of the considered cases. Additiona-
lly, in general the bootstrap test has similar accuracy to the permutation test, essentially
in the case of equal concentration parameters and has generally similar accuracy to the
tabular test in the case of large concentration parameters.

Finally, we note that the estimated levels of significance of the tests for a nominal level of

significance of 1% led us to similar conclusions.

4.1.2 Empirical power of the tests

Second, we determined the empirical power of the tabular, bootstrap and permutation tests
for a nominal significance level of 5%. We supposed the same null hypothesis as before
and in the alternative hypothesis Hj, two directional parameters +u; and +us which form
an angle 6 between them, with § = 18°,36°,54°,72°,90°. Thus, under this alternative



Table 1: Estimated significance levels (in %) of the tabular, bootstrap and permuta-

tion tests, for a common and known concentration parameter x and several sample

sizes 11, Na.
ny,ny K q=2 q=3 q=414 q=2>5
Tab. Boot. Perm. Tab. Boot. Perm. Tab. Boot. Perm. Tab. Boot. Perm.
3,5 1 5.2 4.6 5.7 31 5.3 53 3.7 58 5.6 4.3 6.2 6.2
2 44 44 56 3.1 5.3 53 3.7 b8 5.6 4.3 6.2 6.2
38 37 49 31 53 53 3.7 5.2 5.6 4.3 6.2 6.2
10 4.1 3.8 4.7 38 5.1 4.8 4.0 5.2 4.9 38 5.3 5.1
20 4.6 40 4.7 4.7 5.1 4.8 43 5.3 4.8 4.5 5.3 4.9
5, 10 1 86 5.5 6.1 7.7 70 6.1 12.1 7.0 6.1 5.1 7.1 5.7
2 6.2 54 6.0 6.7 6.5 6.1 9.7 6.6 6.2 5.6 6.8 5.7
34 5.5 5.3 3.2 6.0 54 3.9 5.8 5.8 5.8 5.8 5.6
10 3.7 5.5 51 37 64 5.2 58 6.3 5.2 3.7 6.3 5.0
20 4.6 4.0 4.7 4.7 5.1 4.8 43 5.3 4.8 4.6 6.5 5.2
5, b 1 6.7 5.2 5.7 3.2 5.5 53 36 6.1 5.7 4.6 6.4 6.1
2 5.0 5.1 56 32 5.5 53 36 6.1 5.7 4.6 6.4 6.1
2.8 4.9 59 32 5.5 53 36 6.1 5.7 4.6 6.4 6.1
10 39 4.9 50 3.8 5.2 50 3.7 5.3 50 31 54 5.1
20 43 4.9 5.0 4.5 5.2 49 39 54 49 41 53 5.0
10,10 1 11.0 5.6 6.3 2.8 5.5 5.3 3.1 5.7 5.6 4.2 5.8 5.9
2 6.5 5.7 6.1 2.8 5.5 5.3 3.1 5.7 5.6 4.2 5.8 5.9
5 29 5.6 52 28 5.5 5.3 3.1 5.7 5.6 4.2 5.8 5.9
10 4.3 5.6 51 40 5.3 5.2 32 5.3 53 29 5.3 5.3
20 4.8 54 52 5.3 5.3 5.2 44 5.3 52 39 54 5.2
20,20 1 13.5 5.8 6.5 22.3 7.4 7.0 30.6 8.0 7.0 38.7 8.0 2.6
2 59 5.9 5.8 9.1 6.8 6.0 13.5 7.2 6.6 28.9 7.4 7.0
5 29 5.6 5.2 21 6.7 5.3 25 69 5.4 2.8 6.7 5.5
10 3.7 5.5 5.2 35 7.1 5.2 3.6 7.3 53 29 7.2 5.3

hypothesis and without loss of generality, we generated one sample from W, (e4, k1) and

the other sample from W, (u, k2), where u is defined by u = (O, .., 0, (1 — cos? 9)1/2, cos 9).

We note that if the angle 6 is equal to 0°, we obtain the significance level of the tests.

As in the estimation of the significance levels, to determine the empirical power of the tests,

we used the 0.95-percentile of an F-distribution in the tabular test and the 0.95-percentile



Table 2: Estimated significance levels (in %) of the tabular, bootstrap and permu-
tation tests for different and known concentration parameters x; and ko and several

sample sizes nq, no.

ni,Ng  Ki, K9 q=3 q=4 q=>5
Tab. Boot. Perm. Tab. Boot. Perm. Tab. Boot. Perm.
3,5 1,2 1.5 6.9 5.8 1.0 7.1 5.8 0.6 7.0 5.7
3,5 34 59 5.5 2.7 6.2 5.8 21 64 5.9
5,10 50 5.1 5.0 56 5.5 5.2 50 57 54
10,20 4.5 5.1 4.8 4.8 5.2 4.9 4.6 5.4 4.9
510 1,2 56 5.8 6.2 51 5.7 6.3 4.4 5.6 6.2
3,5 56 5.8 5.6 51 5.7 5.9 4.4 5.6 6.2
5, 10 4.5 5.5 5.3 5.2 5.7 5.6 59 5.7 54
10,20 4.6 54 5.2 4.9 5.3 5.2 44 54 5.3
5,5 1,2 50 6.6 5.8 4.6 6.7 5.7 4.1 6.8 5.7
3,5 4.1 5.7 5.6 4.2 59 5.9 4.3 6.0 6.0
5,10 3.7 5.6 5.1 44 56 5.3 46 59 54
10,20 43 5.2 5.0 3.7 54 5.1 36 5.3 5.2
10, 10 1,2 9.5 6.6 6.5 11.3 6.9 6.4 12.8 6.9 6.2
3,5 41 6.3 5.6 4.6 6.2 5.9 5.7 6.2 6.2
5,10 32 6.5 5.3 35 64 54 3.8 64 54
10,20 42 5.3 5.2 41 54 5.2 39 5.3 5.3
20,20 1,2 12.3  14.3 6.6 17.3 8.8 6.9 24.1 13.2 6.8
3,5 34 70 5.3 36 72 5.5 4.4 7.3 5.7
5,10 33 7.0 5.3 33 70 5.3 31 69 54

of the bootstrap or permutation distribution in the bootstrap or permutation tests.

In the tabular test, the empirical power was obtained from 10000 replicates of the test
statistic under the alternative hypothesis. In the bootstrap or permutation test, the em-
pirical power was obtained from 5000 Monte Carlo simulations, where in each simulation,
two samples were generated under H; and 200 bootstrap or permutation re-samples were
considered.

We indicate the empirical power of the tests for equal and known concentration parame-
ters in Table 3 for ¢ = 2, in Table 4 for ¢ = 3 and in Table 5 for ¢ = 4,5. In these
tables we highlighted the values of the power, in which the bootstrap test is more powerful
than the tabular and permutation tests. Additionally, we show in Figure 1 the empirical
power of the three tests for equal and known concentration parameters when ¢ = 4,5 and

n1 = 5,n9 = 10.
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Table 3: Empirical power (in %) of tabular, bootstrap and permutation tests, for

q = 2, common and known concentration s, angle 6(°) and sample sizes ny, ns.

Tabular Bootstrap Permutation

niy,ny O\k 1 2 5 10 1 2 5) 10 1 2 5 10

18 58 6.1 95 254 19.0 179 16.7 26.0 57 57 53 49
36 84 11.8 305 729 22.2 24.2 35.2 62.0 57 5.7 53 4.9
3,5 54 155 246 61.9 975 30.0 36.9 595 91.6 55 58 5.7 3.8
72 31.6 448 839 99.7 44.7 54.6 795 983 4549 42 19
90 57.7 66.9 90.2 99.8 68.2 72.6 844 942 18 22 22 18

18 10.0 87 153 441 21.2 20.8 274 50.1 60 69 54 52
36 16.9 22.6 55.7 96.3 26.9 32.6 59.7 916 58 6.1 59 5.1
5,10 54 319 47.1 88.9 100.0 39.0 50.8 839 99.7 51 5.7 6.1 4.5
72 54.2 73.1 97.3 100.0 58.1 70.3 944 100.0 3.3 4.2 48 2.3
90 76.0 8.4 98.6 100.0 76.8 841 969 100.0 82 1.3 2.7 18

8 74 72109 324 204 19.9 23.2 38.1 57 58 52 51
36 11.5 15.7 39.5 864 24.4 27.2 46.8 79.8 58 6.1 6.2 58
5,9 54 20.1 32.8 76.1 99.8 32.2 40.5 734 978 59 71 83 9.1
72 39.9 56.4 92.9 100.0 47.5 58.1 882 99.8 56 7.9 126 17.2
90 59.3 73.2 96.3 100.0 64.4 73.3 92.8 99.8 3.6 6.1 14.0 19.8

18 13.8 11.9 22.2 62.7 20.8 20.8 33.6 616 64 6.3 55 5.2
36 233 312 73.1 99.7 274 34.9 715 976 6.6 7.2 6.7 59
10,10 54 43.6 63.8 97.8 100.0 40.8 56.1 93.3 100.0 6.6 86 98 85
72 68.0 85.8 99.9 100.0 60.5 76.8 98.3 100.0 5.5 9.4 152 15.9
90 80.5 92.1 99.9 100.0 754 86.2 99.0 100.0 1.6 4.5 17.2 22.8

We indicate the empirical power of the tests for different and known concentration
parameters in Table 6 for ¢ = 3 and in Table 7 for ¢ = 4. As before, in these tables we
highlighted the values of the power, in which the bootstrap test is more powerful than the
tabular and permutation tests. Figure 2 shows the empirical power of the tests for different
and known concentration parameters when ¢ = 5.

The results obtained with a common concentration parameter and with different con-
centration parameters are similar. For both cases of equal and different concentration
parameters and for each dimension of the sphere ¢, we conclude from the three tests, that
the permutation test is the one that is least powerful. For each ¢, despite the significance

level of the permutation test be very close to the nominal level of significance in many cases,
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Table 4: Empirical power (in %) of tabular, bootstrap and permutation tests, for

g = 3, common and known concentration s, angle §(°) and sample sizes nq, ns.

Tabular Bootstrap Permutation
niy,ny O\k 1 2 5 10 1 2 5 10 1 2 5 10
8 61 61 7.2 204 37.8 31.7 21.9 27.0 56 56 53 4.9
36 77 97 206 682 39.9 36.2 34.6 612 57 58 59 54
3,5 54 11.1 176 457 96.2 44.2 46.0 54.6 903 56 59 6.6 5.1
72 18.3 30.1 69.5 99.7 53.5 57.8 72.2 981 58 6.0 6.8 3.5
90 25.3 383 774 998 60.0 65.2 79.3 993 6.1 59 6.8 3.0
18 89 88 104 379 299 24.5 18.8 350 6.2 6.2 57 5.3
36 11.3 126 40.2 944 32.8 31.7 40.9 835 60 63 63 58
5,10 54 155 21.8 77.3 100.0 40.2 454 682 986 6.1 6.6 7.3 6.2
72 239 373 92.0 100.0 51.2 60.3 858 999 64 6.6 7.0 5.3
90 31.3 45.0 95.3 100.0 58.4 67.9 89.8 100.0 7.2 7.1 6.5 49
18 87 75 82 272 32.8 27.1 19.3 30.0 58 59 56 52
36 11.4 13.1 287 827 35.1 323 355 719 58 6.2 69 6.6
5,5 54 16.9 252 619 994 40.5 42.3 583 953 59 6.7 94 11.7
72 26.3 43.0 85.3 100.0 49.7 56.2 76.8 995 59 7.2 13.7 18.7
90 33.8 53.6 90.2 100.0 56.5 64.4 839 99.7 59 7.5 15.7 205
18 179 13.7 152 552 24.2 19.3 19.7 452 6.5 6.7 58 55
36 23.6 274 60.0 995 28.3 28.6 491 938 66 7.2 74 6.9
10, 10 54 36.7 54.8 93.9 100.0 36.7 453 80.8 999 6.8 8.8 10.9 10.8
72 53.3 77.1 99.2 100.0 50.3 64.7 94.5 100.0 6.8 10.1 17.7 18.3
90 61.4 83.3 99.5 100.0 581 72.1 96.5 100.0 6.7 10.1 23.2 35.0
18 249 184 31.1 88.0 173 154 29.1 704 71 64 57 54
36 378 49.2 925 100.0 23.0 30.8 772 998 73 76 73 638
20,20 54 62.8 85.1 100.0 100.0 37.1 59.3 97.6 100.0 7.8 10.1 11.1 10.7
72 79.3 95.6 100.0 100.0 55.2 80.6 99.7 100.0 8.1 12.8 18.4 20.2
90 83.7 97.3 100.0 100.0 62.7 86.4 99.8 100.0 8.0 12.6 23.6 404

the empirical power of this test remains close to the significance level for low values of the

concentration parameters (equal or not) or when the sample sizes are different. For large

values of the concentration parameters (equal or not) and for each ¢, the permutation test

has better performance for equal-sized samples than for samples of different sizes, since the

empirical power increases as the angle increases for equal-sized samples, while it remains

12



Table 5: Empirical power (in %) of tabular, bootstrap and permutation tests, for

q = 4,5, common and known concentration k, angle 0(°) and sample sizes ny, ns.

ni,Ng

q O\k

Tabular

Bootstrap

Permutation

1

2

5

10

1

2 5

10

1

2

5

10

3,9

18
36
4 54
72
90

76 72 70

12.7
18.9
22.6
25.2

14.5
23.4
32.8
35.7

20.3
41.0
59.2
65.1

16.6
20.6
83.4
97.5
99.1

46.0
51.7
58.1
61.8
63.9

40.5 26.0
48.8 39.4
58.1 55.5
64.0 68.3
66.5 72.6

23.1
48.0
73.1
89.6
95.1

2.5
5.7
5.7
5.6
2.6

5.6
2.7
3.5
5.6
9.5

5.8
6.3
7.0
7.3
7.7

5.1
2.9
7.1
8.5
9.4

18
36
5 b4
72
90

5.8
5.7
6.3
10.5
11.5

5.6
6.5
7.5
16.6
19.3

4.3
5.6
10.9
43.9
50.9

3.8
14.0
25.6
98.5
99.1

35.0
36.6
40.0
45.5
47.9

30.6 18.1
34.8 29.4
41.8 48.9
50.6 67.1
53.9 73.0

25.9
69.8
95.6
99.4
99.7

2.5
2.7
5.7
2.6
2.6

5.6
2.7
9.9
5.6
2.9

5.8
6.3
7.0
7.3
7.7

5.1
2.9
7.1
8.5
9.4

9, 9

18
36
4 H4
72
90

114
17.9
25.6
31.6
34.1

11.0
214
34.9
45.9
49.6

8.8
28.7
7.7
e
83.0

20.3
66.4
94.3
99.8
100.0

39.3
44.9
51.4
56.5
57.7

33.8 22.1
42.8 36.2
53.2 5H5.8
59.9 70.1
62.5 75.8

25.2
57.7
84.1
96.4
99.1

2.8
5.7
2.6
5.4
2.6

2.9
6.1
6.1
6.4
6.5

6.1
7.5
10.1
13.4
14.9

0.4
7.0
11.2
17.9
21.8

18
36
5 o4
72
90

9.0
10.5
13.4
15.9
18.9

8.8
11.7
17.5
26.4
31.5

7.0
17.0
39.0
64.2
72.7

17.3
70.3
97.5
99.9
100.0

39.9
40.9
43.1
47.0
49.4

34.7 21.4
36.9 29.5
42.9 43.4
49.7 59.8
53.6 66.3

23.2
57.8
87.8
97.8
99.1

2.9
2.8
2.9
2.9
6.1

6.1
6.3
6.4
6.5
6.7

6.4
7.3
9.2
12.4
14.3

5.3
7.1
12.4
19.0
23.1

10, 10

18
36
4 H4
72
90

27.1
41.5
54.0
62.4
64.5

22.3
46.9
68.3
79.5
82.3

15.0
61.3
92.1
98.0
98.7

41.6
95.6
100.0
100.0
100.0

30.8
40.3
49.3
56.4
57.3

25.1 19.2
39.0 48.0
25.2  T76.7
65.3 89.6
68.7 923

36.6
82.8
98.4
100.0
100.0

6.0
2.5
4.9
4.5
4.4

6.4
6.5
6.6
6.8
6.8

6.2
8.2
12.4
18.6
22.2

2.6
7.3
11.3
20.4
39.2

18
36
5 o4
72
90

22.3
25.1
31.6
41.6
44.8

18.5
26.7
43.5
60.6
67.1

9.7
38.4
78.6
95.1
97.0

39.2
97.7
100.0
100.0
100.0

28.4
30.4
34.1
40.3
43.6

23.4 15.3
27.9 30.5
37.0 573
49.2 794
04.0 84.8

34.0
86.5
99.5
100.0
100.0

6.4
6.4
6.6
6.7
6.7

6.9
7.2
8.0
8.6
8.8

6.4
8.0
11.8
18.9
23.8

2.6
7.4
12.2
21.6
40.5

13



q=4, n1=5,n2=10 q=4,n1=5,n2=10 q=4,n1=5,n2=10

(conc. parameter= 1) (conc. parameter= 2) (conc. parameter=5)
o o o
S Tab S Tab S ] Tab
—_ - ===~ Boot — <
L 84 perm S 8 S 8
9] 9] 9]
g 3 g 3 s 3
(=R o o
©T o g < 8 g
:i) < g < g <
= = =
& 8 & 8 i 8
o o o
T T T T T T T T T T T T T T T
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
Angle (°) Angle (°) Angle (°)
q=5, n1=5,n2=10 q=5,n1=5,n2=10 g=5,n1=5,n2=10
(conc. parameter= 1) (conc. parameter= 2) (conc. parameter= 5)
o o o
S Tab S Tab S 7] Tab
—_ Boot — Boot —_ -———— Boot
S 8 Perm S 84 Perm S 8
g o g o g o
3 © 0_-_9——_01__9___9 g © g ©
g8 g4 & = 8 2
= ) = =
§ 89l e o— | &8 § &1
[ O veen Qrrennn P> O e o
o o o
T T T T T T T T T T T T T T T
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
Angle (°) Angle (°) Angle (°)

Figure 1: Empirical power of the tests for a common and known concentration

approximately equal to the nominal level of significance for different-sized samples. For
each ¢, we also observed that for samples of equal size, the empirical power of the permu-
tation test increases as the concentration parameters (equal or not) increase. For each ¢
and large values of the concentration parameters (equal or not), the empirical power of the
permutation test increases in general, when the common sample sizes increases.

For each dimension of the sphere ¢, the empirical power of the tabular and bootstrap tests
increases rapidly and in some cases tends quickly to 1 when the angle between directional
parameters 6 increases for equal or different concentration parameters and samples of equal
or different sizes. For each ¢, the empirical power of the tabular and bootstrap tests in-
creases in general when the concentration parameters (equal or not) increase. For equal or
different concentration parameters and for each ¢, the empirical power of the tabular and
bootstrap tests increases in general as the sample sizes (equal or not) increase.

In both cases of equal and different concentration parameters, for each dimension of the
sphere ¢ and samples of sizes equal or not, the bootstrap test is generally more powerful
than the tabular test for small concentration parameters or small angle 6 between the di-
rectional parameters. The superiority of the bootstrap test compared to the tabular test
is more pronounced for small samples than for large samples. For instance, is greater for

n = 5 than for n = 10, and for n1 = 3,n9 = 5 than for n; = 5 and ny = 10. In fact, for

14



Table 6: Empirical power (in %) of tabular, bootstrap and permutation tests, for

q = 3, different and known concentrations k1, kg, angle 6(°) and sample sizes ny, ns.

Tabular Bootstrap Permutation

ni,ns  O\Ki, Ko 12 35 5,10 12 35 510 1,2 35 510

18 1.9 49 111 36.6 27.7 24.9 5.8 5.5 5.1
36 29 116 334 40.2 36.3 44.6 5.8 5.7 5.1
3,5 o4 5.4 241  63.0 46.7 50.9 66.9 6.0 6.0 49
72 9.6 409 79.3 55.0 65.3 80.9 6.0 6.0 4.7
90 13.5 47.8 84.0 61.4 70.5 85.0 6.3 56 438

18 3.9 6.9 168 30.8 21.9 22.8 6.3 56 5.3
36 6.3 21.3 58.2 35.2 36.8 523 6.2 6.0 5.3
5, 10 54 114 484 87.7 44.1 56.8 79.1 6.1 64 5.1
72 214 69.7 954 55.1 72.9 90.0 6.4 6.0 4.3
90 269 76.0 97.1 61.5 78.6 92.5 6.9 55 38

18 54 7.0 139 31.8 22.7 23.0 59 5.7 54
36 84 18.6 452 35.5 33.6 47.3 2.9 6.7 6.5
9,9 o4 13.0 38.8 78.6 42.1 50.3 72.7 5.9 80 93
72 214 61.1 91.3 50.5 65.4 &5.1 6.0 9.9 13.0
90 26.7 68.1 93.5 56.6 71.8 884 6.1 10.6 154

18 120 11.2  26.5 23.2 18.3 27.5 6.5 6.0 5.6
36 187 39.5 81.0 28.9 374 664 6.7 70 6.8
10, 10 o4 31.7 754 978 39.5 635 90.5 7.0 95 9.7
72 472 904  99.5 51.2 80.2 96.6 7.2 125 14.0
90 54.3 928 99.8 58.4 849 97.6 7.0 132 17.6

18 17.0 20.3 51.1 16.6 214 41.6 6.7 5.7 5.7
36 32.8 722 984 25.1 57.1 89.6 7172 7.0
20, 20 o4 58.2  96.0 100.0 40.3 859 99.0 7.8 9.7 9.7
72 75.1 99.1 100.0 56.9 94.8 99.8 8.0 11.9 129
90 79.8 99.5 100.0 63.7 96.4 99.9 79 11.1 134

small samples (of equal size or not), the bootstrap test is better than the tabular test for
small values of the concentration parameters (equal or not) and also for large concentration
parameters and small angle between the directional parameters. Thus, the results of the
power indicate that the bootstrap test may be a good alternative to the tabular test for

small concentration parameters (equal or not) and small samples (of equal size or not) or

15



Table 7: Empirical power (in %) of tabular, bootstrap and permutation tests, for

q = 4, different and known concentrations k1, kg, angle 6(°) and sample sizes ny, ns.

Tabular Bootstrap Permutation
niy,ng  O\Ky, Ko 1,2 3,5 5,10 1,2 35 510 1,2 3,5 5,10
18 1.7 39 94 45.8 31.9 26.5 58 59 53
36 3.7 10.1 21.3 51.5 41.8 37.2 57 6.0 5.6
3,5 54 6.4 19.2 39.0 58.3 54.0 50.1 6.0 64 6.5
72 8.7 31.6 56.5 62.7 63.7 61.7 6.1 6.6 7.0
90 104 34.6 60.8 65.4 67.0 66.8 6.1 65 74
18 4.0 6.5 11.8 36.6 24.1 20.3 59 6.1 54
36 8.0 19.8 37.2 45.7 38.4 36.2 54 6.3 5.7
5, 10 54 154 42.8 68.3 54.8 57.1 56.7 49 63 6.0
72 21.8 60.5 84.2 60.2 68.7 729 4.8 6.2 58
90 23.5 654 88.0 63.1 72.9 783 49 6.1 5.1
18 6.2 6.9 96 37.7 25.3 21.1 56 6.1 5.6
36 10.3 18.1 30.0 44.2 36.2 35.8 57 6.9 7.2
55 54 15.8 36.8 58.2 50.4 50.5 554 5.7 81 10.2
72 21.1 533 77.2 55.4 61.1 70.0 5.7 9.3 14.0
90 23.5 583 82.7 57.2 66.1 754 5.6 9.9 16.2
18 16.3 12.0 16.9 27.9 19.7 26.0 6.0 6.3 5.8
36 26.8 41.7 61.3 37.0 38.8 48.1 56 7.7 75
10, 10 54 39.8 73.6 91.1 46.6 61.1 75.7 53 9.9 10.7
72 49.8 87.7 97.5 53.4 755 89.2 5.1 12.0 15.5
90 52.6 90.2 98.5 56.6 79.2 927 4.9 128 185

when the alternative hypothesis is not far away from the null hypothesis.

4.2 Two Watson populations with estimated concentrations

Next, we study the effect in the performance of the tests of the estimation of the concen-
tration parameters based on ANOVA statistic defined by (2.10). First we determined the
estimated levels of significance of the tests and second, the empirical power of the tests.
We considered the same number of Monte Carlo simulations in the tests as before. The
number of bootstrap or permutation samples was also the same as before. The estimated
levels of significance are indicated in Table 8 for ¢ = 3,4 in the case of equal or different

concentration parameters. The empirical power of the tests obtained with concentration
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Figure 2: Empirical power of the tests for different and known concentrations

estimates for ¢ = 3,4, with a nominal significance level of 5% is indicated in Table 9 for
equal concentration parameters and in Table 10 for different concentration parameters. In
these tables we highlight the values of the power, in which the bootstrap test is the most
powerful. The empirical power obtained for ¢ = 3,4 and n; = 5,n2 = 10 when we esti-
mate the concentration parameters can be seen in Figures 3 and 4 for equal and different
concentration parameters, respectively.

As we may observe from these tables and figures, the results obtained for the estimated
level of significance and the empirical power are not substantially affected by the estima-
tion of the concentration parameters through the maximum likelihood method. When the
concentrations are estimated, the behavior of the tests is similar to the case when the con-
centrations are known. Consequently, we have the same conclusions for both cases of known

and estimated concentration parameters.

4.3 Three Watson populations with a common and known

concentration parameter

We considered three Watson populations Wy (uy, k1),W, (ug, k2) and W, (us, k3), and we
wish to test Hy : +u; = f+us + uz = +u, using the tabular, bootstrap and permutation
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Table 8: Estimated significance levels (in %) of the tabular, bootstrap and permu-
tation tests, for estimated concentration parameters, equal (k1 = Ky = k) or not

(K1 # ko) and several sample sizes nq, ns.

ni, N2 K q=3 qg=4
Tab. Boot. Perm. Tab. Boot. Perm.
3,5 1 4.4 8.1 5.6 5.6 8.8 6.0
2 4.0 7.1 5.6 5.2 8.0 6.2
2.8 4.6 5.3 3.7 5.3 5.7
10 4.6 4.3 4.8 4.0 5.3 4.8
20 4.0 5.5 4.8 4.3 6.2 4.8
5,5 1 6.2 8.3 5.9 10.1 8.4 6.1
2 4.7 7.7 5.9 8.5 7.6 6.2
5 2.4 5.4 5.3 4.2 6.1 5.7
10 3.5 5.1 5.0 4.2 6.0 5.1
20 4.0 4.8 4.9 3.9 6.3 4.9
10, 10 1 12.4 8.1 6.6 20.0 7.4 6.6
2 7.1 7.0 6.4 12.9 7.0 6.6
5 2.5 6.6 5.3 3.1 6.4 5.8
10 3.8 6.9 5.2 3.2 6.7 5.3
20 4.6 5.7 5.2 4.4 6.7 5.2
Ny, Mo K1, K q=3 q=14
Tab. Boot. Perm. Tab. Boot. Perm.
3,5 1,2 5.0 8.5 5.6 6.4 9.4 5.8
3,5 3.4 5.2 5.3 5.9 5.8 5.7
5,10 5.0 3.9 5.0 10.6 4.7 5.2
10,20 5.8 4.1 4.9 8.3 4.7 4.9
D, D 1,2 6.2 8.2 6.0 10.6 7.3 6.1
3,5 3.8 5.6 5.5 7.0 5.8 6.0
5,10 3.4 5.0 5.1 6.2 5.5 5.3
10,20 4.2 4.4 4.9 3.9 5.8 5.1
10, 10 1,2 11.3 7.9 6.6 19.3 7.3 6.7
3,5 3.7 6.0 5.5 6.5 6.1 5.9
5,10 3.0 6.5 5.3 4.4 6.3 5.4
10,20 4.4 6.0 5.2 4.3 6.8 5.2
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Table 9: Empirical power (in %) of the tests for p = 3,4, estimated concentrations

K1, ke (K1 = Ko = K), angle 6 (°) and sample sizes ny, ns.

ni,Ng

p 0/k

Tabular

Bootstrap

Permutation

1

2

5

10

2

5 10

1

2

5

10

3,9

18
36
3
72
90

7.6
12.7
18.9
22.6
25.2

7.5
14.3
24.6
31.8
35.8

7.0
20.3
41.5
60.1
64.7

16.6
50.6
83.4
97.5
99.1

45.6
50.2
51.8
58.8
55.8

37.6
46.8
52.7
56.3
58.4

18.2 19.2
30.6 43.9
45.9 634
8.4 73.1
64.5 77.2

5.6
5.7
5.6
5.8
6.1

2.6
2.8
2.9
6.0
2.9

2.3
2.9
6.6
6.8
6.8

4.9
5.4
5.1
3.5
3.0

18
36
4 54
72
90

7.6
12.7
18.9
22.6
25.2

7.5
14.3
24.6
31.8
35.8

7.0
20.3
41.5
60.1
64.7

16.6
50.6
83.4
97.5
99.1

45.6
50.2
51.8
58.8
55.8

37.6
46.8
52.7
56.3
58.4

18.2 19.2
30.6 43.9
45.9 634
8.4 73.1
64.5 77.2

5.6
5.7
5.6
0.8
6.1

2.6
2.8
5.9
6.0
2.9

2.3
2.9
6.6
6.8
6.8

4.9
5.4
5.1
3.5
3.0

9,9

18
36
3
72
90

6.5
8.4
12.7
20.5
27.2

2.5
10.0
20.2
35.5
45.0

6.4
24.2
56.0
78.5
85.8

25.7
81.8
99.1
100.0
100.0

38.4
40.4
44.3
53.9
58.6

30.7
35.4
43.8
57.9
62.9

16.8 26.9
29.5 65.0
20.9 84.3
67.7 83.4
69.7 T7.6

9.9
5.9
6.0
5.9
5.7

2.9
6.3
6.8
7.2
7.3

5.7
6.8
9.3
12.8
14.5

5.1
6.5
11.5
18.3
19.9

18
36
4 54
72
90

13.0
20.2
28.0
34.0
36.9

12.2
22.8
37.3
47.6
52.2

9.9
31.1
60.3
79.5
84.3

22.1
68.4
95.0
99.9
100.0

43.3
48.6
54.2
58.4
59.1

37.7
45.4
53.8
61.1
64.7

18.7 27.1
37.4 60.5
58.5 81.8
74.4 89.6
80.5 90.7

5.9
5.8
5.6
9.3
9.5

6.1
6.2
6.2
6.4
6.4

6.1
7.6
10.3
13.5
14.7

5.4
6.9
10.8
17.2
20.9

10, 10

18
36
3 4
72
90

13.9
19.1
30.2
45.2
ol1.1

9.9
22.9
A47.7
65.3
75.0

13.4
25.6
91.4
98.1
98.8

95.0
99.4
100.0
100.0
100.0

31.8
35.9
46.0
56.7
62.6

22.3
32.2
49.8
65.6

72.7

19.3 444
46.5 93.1
78.5 994
91.6 98.3
93.3 96.2

6.5
6.6
6.9
6.6
6.6

6.5
7.3
8.6
9.9
9.4

5.6
7.2
10.4
16.2
19.9

0.4
6.8
10.6
17.6
31.8

18
36
4 54
72
90

27.1
41.5
54.0
62.4
64.5

22.3
46.7
67.9
79.4
82.4

15.0
61.3
92.1
98.0
98.7

41.6
95.6
100.0
100.0
100.0

36.4
44.1
23.6
58.0
29.6

29.3
42.3
58.5
65.8
68.5

21.7 38.2
55.3 87.5
85.5 98.6
96.5 99.7
97.8 99.8

6.1
9.5
4.8
4.3
4.2

6.5
6.5
6.6
6.5
6.4

6.2
8.2
12.1
17.7
20.7

2.6
7.2
11.1
19.8
374
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Figure 3: Empirical power of the tests for estimated equal concentrations

versions for the ANOVA test. We carried out a simulation study to estimate the level of
significance and to determine the empirical power of the tests, considering the dimensions of
the sphere ¢ = 3,4 and a common and known concentration parameter for the populations
K1 = kg = kg = k = 1,2,5,10. We also considered equal samples size ny = no =n3 =n =
5,10. We supposed, without loss of generality, that under Hy : +u; = +up = fu3 = +e,,
where e, = (0, ...,0, 1)/. The estimated levels of significance were obtained for a nominal
level of significance of 5% under Hy. We determined the empirical power of the tests, for
this nominal level of significance, supposing three types of alternative hypothesis. Let 6
be the angle between u; and us, 0 be the angle between us and usg and 63 has the same
definition as 6. We supposed, without loss of generality, in the alternative hypothesis:
HY: vy = e, uy = (0,...,0, (1 —0.952)1/2,0.95>, uy = (o,...,o, (1 —0.592)1/2,0.59), iLe,

91 = 180, 92 = 5407 03 = 3607 H£2)I u; = eq, Uy = (0,...,0, (1 - 0.952)1/2

,0.95), u = ey,
i.e, 01 = 18°, 05 = 63 = 90° and HfS): u; =€y, Uy = €41, U3 = ey, i.e, O = 0 = 03 = 90°.
The number of replicates in the tests and the number of bootstrap or permutation samples
considered to determine the levels of significance and the empirical power were the same as in
the previous simulation study done for two populations. The estimated level of significance,
obtained when 0, = 6 = 03 = 0° and the empirical power for the three types of alternative

hypothesis are indicated in Table 11. In this table we highlight the values of the power, in
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Table 10: Empirical power (in %) of the tests, for ¢ = 3,4, estimated concentrations

K1, ke (K1 # Ra), angle 6(°) and several sample sizes ny, no.

Tabular Bootstrap Permutation

ny,me  q  O\Ki, ke 1,2 3,5 5,10 1,2 3,5 5,10 1,2 3,5 5,10
18 6.3 4.9 11.1 41.3 19.6 18.6 57 53 5.1

36 8.6 11.6 334 42.2 26.5 32.8 56 56 5.1

3 54 12.6 24.1 63.0 46.8 39.1 454 57 56 4.3

72 18.9 40.9 79.3 53.3 48.4 524 54 50 27

3,5 90 22.8 47.8 84.0 56.5 49.5 50.1 53 4.1 20
18 84 83 16.3 48.2 28.7 20.2 56 59 54

36 13.6 18.9 325 52.5 37.6 33.6 54 6.0 5.7

4 54 20.5 32,5 5H4.2 56.0 47.1 46.8 55 6.0 6.0

72 24.8 47.5 T72.2 61.7 58.0 57.9 54 59 56

90 27.5 51.0 77.1 60.8 58.8 63.1 52 5.6 5.0

18 71 6.6 123 38.5 20.5 20.4 59 56 54

36 10.2 172 422 41.4 30.4 419 6.1 6.7 64

3 54 154 355 71.0 46.2 43.3 59.7 6.2 79 88

72 23.7 56.7 84.2 55.7 56.2 67.9 6.1 95 114

5,5 90 28.8 619 874 58.8 60.4 66.2 6.0 9.8 129
18 13.7 10.5 12.7 42.6 25.4 21.5 6.0 6.3 58

36 20.7 24.8 36.2 46.8 34.4 41.1 59 71 70

4 54 29.0 46.8 66.7 54.4 48.9 61.9 58 85 9.9

72 35.9 63.7 84.8 57.6 59.7 T7.1 56 9.5 13.2

90 38.7 68.2 89.3 59.2 644 812 54 9.9 15.0

18 14.0 10.7 23.5 30.5 18.7 24.8 6.6 59 56

36 21.3 377 76.3 36.9 37.7 62.7 6.7 69 638

3 54 34.5 70.8 95.8 48.0 599 8&7.1 70 9.1 9.0

72 473 852 98.7 58.3 764 923 7.1 112 12.2

10, 10 90 52.3 87.7 98.7 63.1 80.0 90.9 6.9 11.0 14.1
18 26.1 15.5 19.7 33.9 20.1 24.9 6.3 6.2 59

36 40.9 48.0 66.1 41.3  40.1 60.1 5.7 77 T4

4 54 54.5 789 93.8 499 625 88.3 52 9.7 10.3

72 64.2 909 98.4 56.5  78.6 97.0 4.8 11.3 139

90 66.5 93.1 99.1 59.0 82.9 982 4.5 11.4 15.6
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g=3,n1=5,n2=10, g=3,n1=5,n2=10, q=3,n1=5,n2=10,

(conc. parameters=1,2) (conc. parameters= 3,5) (conc. parameters=5,10)
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Figure 4: Empirical power of the tests for estimated different concentrations

which the bootstrap test is the most powerful.

The conclusions are similar to those obtained for two Watson populations, despite of the
estimated levels of significance seem to be a bit worse. The estimated levels of significance
in the bootstrap test are similar to the values for the permutation test, although in this
latter test they are slightly better. In what concerns to the estimated level of significance
for the tabular test, as this test is valid only for large concentrations, it would be expected
that the estimated level of significance is not good for small concentrations.

Similarly, for each dimension of the sphere, the empirical power increases in general, as
the separation between populations increases or the common concentration parameter in-
creases.

We concluded that the bootstrap test is a good alternative to the tabular test for small con-
centration parameter or small samples or poor separation between the Watson populations.
Among the three tests, the permutation test is the one that is least powerful, although it is

the test that has in general the best estimated level of significance.
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Table 11: Estimated significance level and empirical power (in %) of the tabular,
bootstrap and permutation tests, for three Watson populations, with ¢ = 3 and
q = 4, common and known concentration parameter x, common samples size n and

angles between directional parameters 6y, 65 and 65 (in °) .

Test n 0; 6y 03\k 1 2 5 10 1 2 5 10

0 0 0 115 78 27 38 133 96 32 29

518 54 36 189 234 51.2 99.1 26.6 31.7 46.5 91.3

18 90 90 18.8 33.1 &1.5 100.0 20.2 304 70.5 100.0

Tabular 90 90 90 21.5 422 93.7 100.0 42.3  60.5 92.7 100.0

0 0 0 238 11.1 23 3.2 319 166 26 28
10 18 54 36 44.5 524 90.6 100.0 28.2 68.0 89.0 99.9
18 90 90 45.8 70.6 99.2 100.0 52.1 69.7 97.3 100.0
90 90 90 53.1 84.1 100.0 100.0 80.2 93.8 100.0 100.0

0 O 0 71 66 56 5.7 75 69 57 56

5 18 54 36 62.0 57.7 59.6 94.6 70.8 67.1 59.5 82.2

18 90 90 60.6 61.5 78.6 99.7 66.8 64.9 72.2 994

Bootstrap 90 90 90 62.8 67.4 88.2 100.0 66.4 67.9 &81.9 100.0

0 0 0 69 62 61 6.7 73 64 6.1 6.5
10 18 54 36 49.2 499 794 999 58.7 588 739 978
18 90 90 49.2 599 94.7 100.0 52.9 57.7 88.2 100.0
90 90 90 53.5 70.5 98.7 100.0 5l.4 63.3 95.6 100.0

0 0 0 62 64 56 5.2 6.2 65 61 5.3

5 18 54 36 65 76 92 83 5.2 64 101 8.2

18 90 90 72 103 195 11.5 6.4 88 193 153

Permutation 90 90 90 73 11.3 277 27.6 6.7 95 265 36.1
0 0 0 70 69 54 53 68 71 58 5.3

10 18 54 36 76 93 102 88 42 6.5 11.3 87

18 90 90 9.6 18.0 28.2 13.1 7.8 148 308 15.7

90 90 90 10.6 235 54.8 56.8 8.6 19.0 54.5 64.0

5 Application

We used the vectorcardiogram data of Downs et al. (1971) obtained with two systems

(Frank system and McFee lead system). From these data we took the unit spherical vector
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associated with each vectorcardiogram, which represents the spatial direction of the vector
of the QRS loop having the greatest magnitude. Then, we considered the axes associated
to these directions. We selected data for eight children from each of the eight combinations

of the categories (sex-age and type of system). Data, in radians, are in the Table 12.

Table 12: Spherical vectorcardiogram data (in radians)

Frank system McFee lead system
0.587 0.706 0.614 0.744 -0.052  0.584 0.597 0.873
0.645 0.568 0.614 0.547 0.130 0.809 0.609 0.475
0.489 0.422 0.495 0.383 0.990 0.067 0.522 -0.110

Boy aged 2-10
0.552 0.863 0.145 0.160 0.959 0.553 0.678 0.927
0.702 0.410 0.814 0.261 0.246 0.651 0.713 0.273
0.449 0.296 0.562 0.952 0.143 0.520 0.178 0.259
0.536 0.561 -0.167 0.265 0.718 0.770  0.755  0.712
0.572 0.662 0.481 0.805 0.694 0.511 0.358 0.702
0.621 0.497 0.861 0.531 -0.049 0.382  0.550 0.031

Boy aged 11-19
0.470 0.101 0.256 0.658 0.623 0.809 0.903 0.509
0.690 0.404 0.735 0.596 0.543 0.586 0.267 0.581
0.550 0.909 0.628 0.460 0.563 0.035 -0.337 -0.636
0.404 0.526 0.721 0.581 0.857 0.255 0.882 0.781
0.616 0.570 0.573 0.752 0.375 0.964 0.070 0.624
0.676 0.631 0.389 0.311 0.354 0.073 0.466 0.027

Girl aged 2-10
0.390 0.595 0.560 0.536 0.136 0941 0.694 0.769
0.711 0.618 0.797 0.515 0.034 0339 0.694 0.481
0.585 0.515 0.226 0.670 -0.990 -0.025 0.188 0.421
0.472 0.453 0.701 0.286 0.778 0.674 0.722  0.583
0.489 0.717 0.574 0.622 0.589 0.628 0.578 0.793
0.734 0.530 0.423 0.729 0.217 -0.388 0.380 0.176

Girl aged 11-19
0.108 0.299 0.535 0.395 0.787 0.680 0.693 0.525
0.851 0.713 0.720 0.642 0.537 0.580 0.707 0.766
0.513 0.634 0.442 0.657 0.303 0.448 0.140 0.372
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We are interested in investigating whether for each sex-age category, the type of system
(Frank system or McFee lead system) affects the result of the vectorcardiogram. In this
application we supposed the ANOVA statistic for different concentration parameters (ge-
neral statistic) and also the ANOVA statistic for equal concentration parameters for each

sex-age category. Then for each category sex-age, we determined the values of the ANOVA

Table 13: Largest eigenvalues and estimates of the concentration parameters of the groups,

and statistic values and p-values of the tests for each sex-age category

Sex-Age  Group System Concen- Statistic p-value (%)
Frank McFee lead tration value Tab. Boot. Perm.
j 1 2 parameters
Boy aged w;  7.087 6.302 Different 1.266 29.8 51.7  19.8
2-10 K;  9.454 5.500 Equal 1.297 289 513 20.7
Boy aged w; 7173 6.561 Different 9.316 0.1 0.1 0.1
11-19 k; 10.343 6.360 Equal 9.538 0.1 0.1 0.1
Girl aged ﬂJ\j 7.648 6.013 Different 2.441 10.5 34.6 3.4
2-10 k; 23.251 4.760 Equal 2673 86 395 2.8
Girl aged w;  7.589 7.419 Different 11.244 0 0.1 0.1
11-19 Kj 20.030 14.360 Equal 11.299 0 0.1 0.1

statistics given by (2.10) and (2.12)), which are indicated in Table 13, as well as the p-values

obtained for the tabular method, the bootstrap and permutation versions of the ANOVA
statistic. The p-values of the bootstrap and permutation tests were obtained with B = 1000
bootstrap re-samples and C' = 1000 permutation samples.

First, the difference between the p-values of the tests for both statistics is very small.
Second, on one hand, the three tests led to the same conclusion for children aged 11-19
and boys aged 2-10. More precisely, we can conclude that there is no significant difference
between the systems for boys aged 2-10 while there is difference for children aged 11-19.
On the other hand, for girls aged 2-10 there is no evidence to conclude that the systems
differ using the tabular and bootstrap tests. Based on the permutation test, we can not
conclude that the systems differ at a level of significance 1%, but we conclude that there
is difference between the systems at a level of 5%. The code for applying these tests is
available in the web pagehttps://sigarra.up.pt/fep/pt/conteudos_geral.ver?pct_
pag_1id=1010326&pct_parametros=p_codigo=205276&pct_grupo=23660#23660
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6 Concluding remarks

We have concluded that the bootstrap and permutation versions of the ANOVA statistic
for testing a common mean polar axis across several Watson populations defined on the
hypersphere gave reliable estimates of the significance level, in most part of the simulated
cases, and in particular, for small concentrations and small samples. Additionally, from
the three tests, the bootstrap test is in general the most powerful test in the case of small
samples for small concentrations or bad separation between the Watson populations. So, in
these cases, the bootstrap and permutation tests based on ANOVA statistic may constitute
useful alternatives to the ANOVA statistic, that has an asymptotic distribution, valid only

for large concentrations.
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