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Abstract. The problem of testing the null hypothesis of a common direction across

several populations defined on the hypersphere arises frequently when we deal with direc-

tional data. We may consider the Analysis of Variance (ANOVA) for testing such hypo-

theses. However, for the Watson distribution, a commonly used distribution for modeling

axial data, the ANOVA test is only valid for large concentrations. So we suggest to use

alternative tests, such as bootstrap and permutation tests in ANOVA. Then, we investigate

the performance of these tests for data from Watson populations defined on the hypersphere.

Keywords: Hypersphere, Monte Carlo methods, simulation, Watson distribution.

1 Introduction

The statistical analysis of directional data, represented by points on the surface of the

unit sphere in Rq, denoted by Sq−1 = {x ∈ Rq : x′x = 1} was widely developed by Watson

(1983), Fisher et al. (1987), Fisher (1993), Mardia and Jupp (2000), among other authors.

The applications of directional data are essentially on the circle (q = 2) and on the sphere

(q = 3), but the applications on higher dimensions (q ≥ 4) are also relevant. Directional

data arise in many scientific areas, such as biology, geology, machine learning, text mining,

bioinformatics, among others. An important problem in directional statistics and shape

analysis, as well in other areas of statistics, is to test the null hypothesis of a common

mean vector or polar axis across several populations. This problem was already treated for

circular data and spherical data by several authors, such as Stephens (1969), Underwood

and Chapman (1985), Anderson and Wu (1995), Harrison et al. (1986), Jammalamadaka

and SenGupta (2001), among others. However, there has been relatively little discussion of

nonparametric bootstrap approaches to this problem. Bootstrap methods and permutation

tests based on pivotal statistics were proposed by Amaral et al. (2007) in directional
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statistics and shape analysis. The bootstrap methodology was proposed by Efron (1979)

and was used by Fisher and Hall (1989) and Fisher et al. (1996) for constructing bootstrap

confidence regions based on pivotal statistics with directional data. The permutation tests,

widely used in multi-sample problems were proposed by Wellner (1979) for directional data.

In this paper we focus on the ANOVA test for axial data i.e. unsigned unit vectors

and we consider the bootstrap version of this test and the respective permutation test. The

bootstrap test consists in resampling with replacement from each sample and a permutation

test consists in resampling without replacement from the whole sample. We evaluate the

performance of these tests when data come from Watson populations defined on the hyper-

sphere. We consider the Watson distribution defined on the hypersphere because it is one

of the most used distributions for modeling axial data. For this distribution, the ANOVA

statistic follows an F -distribution that is appropriate only for highly concentrated data (see

Stephens, 1992, Gomes and Figueiredo, 1999 and Mardia and Jupp, 2000, p. 240). Thus, it

seems us that the bootstrap test and permutation test based on the ANOVA statistic may

perform better when data are not sufficiently highly concentrated.

The article is organized as follows. In Section 2 we refer the Watson distribution defined

on the hypersphere and we present ANOVA test for this distribution. In Section 3 we

propose the bootstrap approach and the permutation test to ANOVA test. In Section 4 we

present numerical results about the performance of the tests in the two-sample case and in

three-sample case, such as the estimation of the levels of significance of the tests and the

empirical power of the tests. In Section 5 we present an application and finally, in Section

6 we conclude the paper with some remarks.

2 Analysis of Variance for axial data from Watson

distributions defined on the hypersphere

In this section we refer the Watson distribution defined on the hypersphere and the ANOVA

test for this distribution.

2.1 Watson distribution

The bipolar Watson distribution defined on the q-dimensional sphere, denoted by Wq (u, κ),

has probability density function given by

f (±x) =

{
1F1

(
1

2
,
q

2
, κ

)}−1
exp

{
κ
(
u′x
)2}

, ± x ∈ Sq−1, ±u ∈ Sq−1, κ > 0, (2.1)

where 1F1 (1/2, q/2, κ) is the confluent hypergeometric function defined by

1F1

(
1

2
,
q

2
, κ

)
=

Γ
( q
2

)
Γ
(
1
2

)
Γ
(
q−1
2

) 1∫
0

exp (κt) t−0.5 (1− t)(q−3)�2 dt. (2.2)
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This distribution has two parameters: a directional parameter ±u and a concentration

parameter κ, which measures the concentration around ±u. It is rotationally symmetric

about the principal axis ±u.

The Watson distribution Wq (u, κ) has the following property given in Mardia and Jupp

(2000 p. 236):

For ±x ∈ Sq−1 from a bipolar Watson population, we have for large κ (κ→∞)

2κ
{

1−
(
u′x
)2} .∼ χ2

q−1. (2.3)

Let X = [±x1| ± x2|...| ± xn] be a random sample of size n from the bipolar Watson distri-

bution Wq (u, κ). The maximum likelihood estimators of the parameters, given for instance,

in Mardia and Jupp (2000, p. 202) and Watson (1983, p. 183-184) are defined by

• The maximum likelihood estimator û of u is the eigenvector of the orientation matrix

XX ′ associated with the largest eigenvalue ŵ.

• The maximum likelihood estimator κ̂ of κ is the solution of Y (κ̂) = ŵ�n, where

Y (κ) is defined by

Y (κ) =
d1F1

(
1
2 ,

q
2 , κ
)

dκ
. (2.4)

2.2 ANOVA test for Watson distribution

Let Xi = [±xi1| ± xi2|...| ± xini ] , i = 1, ..., k be k independent random samples of sizes

n1,...,nk from Watson distributions Wq (±ui, κi) with polar axis ±ui and concentration

parameter κi around ±ui, i = 1, ..., k and let n = n1 + ...+ nk be the total sample size.

Suppose that we wish to test

H0 : ±u1 = ±u2 = . . . = ±uk = ±u, (2.5)

against the alternative that at least one of the equalities is not satisfied.

Next we consider κi known. We note that when the concentration parameters κi are

unknown, we may replace them by their maximum likelihood estimates. The maximum

likelihood estimate κ̂i for i = 1, ..., k is the solution of the equation Y (κ̂i) = ŵi�ni, where

Y (.) is defined in (2.4) and ŵi is the largest eigenvalue associated with XiX
′
i.

Consider the following identity

k∑
i=1

ni∑
j=1

κi

{
1−

(
û′xij

)2}
=

k∑
i=1

ni∑
j=1

κi

{
1−

(
û′ixij

)2}
+

k∑
i=1

ni∑
j=1

κi

{(
û′ixij

)2 − (û′xij

)2}
,

(2.6)
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where ûi is the eigenvector associated with the largest eigenvalue λ̂i of the matrix κiXiX
′
i,

i.e., (
κiXiX

′
i

)
ûi = λ̂iûi, (2.7)

and û is the eigenvector associated with the largest eigenvalue λ̂ of the matrix
k∑

i=1
κiXiX

′
i,

i.e., (
k∑

i=1

κiXiX
′
i

)
û = λ̂û. (2.8)

The identity (2.6) is the decomposition of the total variability into the sum of the within-

-groups variability and the between-groups variability, and it may be written as

k∑
i=1

κini − λ̂ =

(
k∑

i=1

κini −
k∑

i=1

λ̂i

)
+

(
k∑

i=1

λ̂i − λ̂

)
. (2.9)

The test statistic is defined by

F =

(
k∑

i=1
λ̂i − λ̂

)
� (k − 1) (q − 1)

k∑
i=1

(
κini − λ̂i

)
� (n− k) (q − 1)

, (2.10)

and it may be written as:

F =

(
k∑

i=1
û′i (κiXiX

′
i) ûi − û′

k∑
i=1

κiXiX
′
iû

)
� (k − 1) (q − 1)(

k∑
i=1

(κini − û′i (κiXiX ′i) ûi)

)
� (n− k) (q − 1)

. (2.11)

In the particular case of all concentration parameters equal to κ (known or unknown), the

statistic given by (2.10) reduces to the following statistic

F =

(
k∑

i=1
ŵi − ŵ

)
� (k − 1) (q − 1)(

n−
k∑

i=1
ŵi

)
� (n− k) (q − 1)

, (2.12)

where ŵ is the largest eigenvalue of
k∑

i=1
XiX

′
i and ŵi is the largest eigenvalue of XiX

′
i.

The test statistic F has under the null hypothesis, approximately F(k−1)(q−1),(n−k)(q−1) dis-

tribution, for known and large concentration parameters κi (κi →∞, i = 1, ..., k).
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3 Bootstrap procedure and permutation test

We consider the null hypothesis of a common polar axis, H0 : ±u1 = ±u2 = . . . = ±uk =

±u for k populations with polar axis ±ui and concentration parameter κi around ±ui.

We propose the bootstrap and permutation versions of the ANOVA statistic defined by

(2.11). The algorithms for performing the bootstrap and permutation tests are based on

Monte Carlo sampling in both algorithms. Amaral et al. (2007) refer that a key point

in bootstrap hypothesis testing is make a preliminary transformation of the data before

performing resampling under the null hypothesis. This is because typically the data do not

satisfy the null hypothesis exactly. These authors refer a method to move ûi to û, which

will be described next. Given two unit vectors a and b in Rq, the rotation matrix to move

b to a along the geodesic path on the unit sphere in Rq that connects b to a is given by

Q = Ip + (sinα)A+ {(cosα)− 1}
(
aa′+cc′

)
, (3.1)

where α = cos−1 (a′b) ∈ (0, π) and A = ac′+ca′, with c = b−a(a′b)
‖b−a(a′b)‖ , where ‖.‖ denotes

the Euclidean norm on Rq. Then, Qb = a, in our case b = ûi and a = û. The theoretical

accuracy of the bootstrap procedure was analyzed in Amaral et al. (2007).

The algorithm for the bootstrap test can be implemented in the following steps:

1. For each sample of size ni, calculate the estimate of ui defined by (2.7), ûi and the

corresponding eigenvalue λ̂i, i = 1, ..., k.

2. Determine the estimate of the common polar axis û, defined by (2.8), and the corres-

ponding eigenvalue λ̂. Then, calculate the statistic value Fobs defined in (2.10).

3. Transform each sample i using the rotation matrix (3.1) to move ûi to û (i = 1, ..., k).

4. For each bootstrap cycle b, b = 1, ..., B do as follows. For i = 1, ..., k draw a re-sample

of size ni randomly with replacement, from the sample i, and calculate the eigenvalue

λ̂
(b)
i using (2.7) for known concentration parameters κi and calculate the eigenvalue

λ̂
(b)
i and κ̂

(b)
i for unknown concentration parameters. Then, determine the bootstrap

statistic F (b) defined by

F (b) =

(
k∑

i=1
λ̂
(b)
i − λ̂

)
� (k − 1) (q − 1)

k∑
i=1

(
κini − λ̂(b)i

)
� (n− k) (q − 1)

. (3.2)

and

F (b) =

(
k∑

i=1
λ̂
(b)
i − λ̂

)
� (k − 1) (q − 1)

k∑
i=1

(
κ̂
(b)
i ni − λ̂(b)i

)
� (n− k) (q − 1)

, (3.3)

for known and unknown κi, respectively.
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5. Determine the bootstrap p-value by

p̂ =

1 +
B∑
b=1

I{F (b)≥Fobs}
B + 1

, (3.4)

where the indicator function is defined by IA =

{
1 if A occurs

0 otherwise

The algorithm for implementing the permutation test can be described in the following

four steps. Let [±xi1| ± xi2|...| ± xini ] be the i-sample of unit vectors.

1. For each sample i = 1, ..., k, calculate the eigenvalue λ̂i defined by (2.7), and then the

eigenvalue λ̂ defined by (2.8).

2. Determine the statistic value Fobs given in (2.10).

3. At each permutation cycle c, c = 1, ..., C do as follows. Sample randomly, without re-

placement, from the pooled set of observations [±xi1| ± xi2|...| ± xini ], i = 1, ..., k, j =

1, ..., ni to form k subsamples of sizes n1, ..., nk and for each, calculate the eigenvalue

λ̂
(c)
i using (2.7) for known concentration parameters κi and for unknown concentra-

tion parameters, calculate λ̂
(c)
i and κ̂

(c)
i . Next, determine the permutation version of

the statistic F (c) defined by

F (c) =

(
k∑

i=1
λ̂
(c)
i − λ̂

)
� (k − 1) (q − 1)

k∑
i=1

(
κini − λ̂(c)i

)
� (n− k) (q − 1)

, (3.5)

and

F (c) =

(
k∑

i=1
λ̂
(c)
i − λ̂

)
� (k − 1) (q − 1)

k∑
i=1

(
κ̂
(c)
i ni − λ̂(c)i

)
� (n− k) (q − 1)

, (3.6)

for known and unknown κi, respectively.

4. Determine the permutation p-value by

p̂ =

1 +
C∑
c=1

I{F (c)≥Fobs}
C + 1

, (3.7)

where I(.) is the indicator function previously defined.

The permutation tests in k-samples problems are in general valid if under the null hypo-

thesis the k sets of observations are exchangeable, i.e., the k populations are identical with

the same parameters (see Wellner, 1979, Romano, 1990, Good, 2004 and Amaral et al.,
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2007). In our experimental analysis in next section, we will consider not only the case of

identical populations with the same parameters under the null hypothesis, but also the case

of populations with the same polar axis and different concentration parameters under the

null hypothesis.

4 Performance of the tests for data from Watson

populations

In this section, we present the results of the performance of the tests obtained with a

simulation study. We note that in this study as we can not present all the cases studied,

we selected only some cases that seemed relevant to us. For the simulation of the Watson

distribution defined on the hypersphere, we used the acceptance-rejection method given in

Li and Wong (1993).

First, we suppose two Watson populations with known concentrations in subsection 4.1.

Second, we consider two Watson populations with estimated concentrations in subsection

4.2. Third, we suppose three Watson populations with a common and known concentration

parameter in subsection 4.3.

4.1 Two Watson populations with known concentrations

(equal or different)

We considered two Watson populationsWq (u1, κ1) andWq (u2, κ2), where the concentration

parameters κ1 and κ2 are known.

An extensive simulation study was undertaken and we present the results for the dimensions

of the sphere q = 2, 3, 4, 5 to test H0 : ±u1 = ±u2 = ±u. This study was carried out for

investigating the performance of the three tests for the ANOVA statistic given by (2.10),

the tabular test, based directly on the null asymptotic distribution of the statistic, the

bootstrap test and the permutation test. We note that for equal concentration parameters,

the ANOVA statistic reduces to the statistic (2.12), which does not depend on the common

concentration parameter.

First we estimated the significance level of the three tests and second, we determined the

empirical power of the tests.

4.1.1 Estimated significance levels

We considered without loss of generality, that under H0 : ±u1 = ±u2 = ±eq, where

eq = (0, ..., 0, 1)
′
. We generated two samples of sizes n1 and n2 of the populations Wq (eq, κ1)

and Wq (eq, κ2), supposing samples of equal size and also samples of different sizes. The

estimated levels of significance obtained for a nominal significance level of 5% are indicated
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in Tables 1-2 for known and equal concentration parameters (κ1 = κ2 = κ) and known and

different concentration parameters (κ1 6= κ2), respectively. In these tables we highlighted

in bold the levels of significance between 4.5% and 5.5%, that may be considered close

to the nominal level 5%. Each estimated significance level, i.e., the proportion of times

that H0 is incorrectly rejected, was obtained through a simulation study with 10000 Monte

Carlo simulations in the tabular test and 5000 Monte Carlo simulations in the bootstrap and

permutation tests. The number of bootstrap re-samples, B, in each Monte Carlo simulation

was B = 200 and the number of permutation samples was C = 200. For obtaining the

significance levels, we used the 0.95-percentile of an F -distribution in the tabular test and

the 0.95-percentile of the distribution of values of the bootstrap and permutation statistics

in the bootstrap and permutation tests, respectively.

The estimated significance levels obtained for equal and different concentration parame-

ters enable us to draw similar conclusions. First, we note that in the tabular test, although

we used the critical point of an F -distribution for a significance level of 5%, the estimated

significance levels obtained are not exactly equal to the nominal significance level of 5%.

The estimated significance levels in the tabular test are in general more distant from the

nominal significance level for small concentration parameters. We note that in these tables

we did not consider very large values of the concentration parameters, for which the signifi-

cance levels obtained in the tabular test are the closest to the nominal level of significance.

This would be expected since the F -distribution of the test statistic is only an asymptotic

distribution, valid for large concentrations. Thus, it is necessary to consider other versions

of the ANOVA statistic such as the bootstrap and permutation versions.

Second, the significance levels obtained in the permutation test in the case of equal or diffe-

rent concentration parameters are very close to the nominal significance level (5%) in almost

all cases. Consequently, the permutation test is generally very reliable in what concerns the

type I error.

Third, from the estimated significance levels obtained in the bootstrap test, we conclude

that the bootstrap statistic is very reliable in most part of the considered cases. Additiona-

lly, in general the bootstrap test has similar accuracy to the permutation test, essentially

in the case of equal concentration parameters and has generally similar accuracy to the

tabular test in the case of large concentration parameters.

Finally, we note that the estimated levels of significance of the tests for a nominal level of

significance of 1% led us to similar conclusions.

4.1.2 Empirical power of the tests

Second, we determined the empirical power of the tabular, bootstrap and permutation tests

for a nominal significance level of 5%. We supposed the same null hypothesis as before

and in the alternative hypothesis H1, two directional parameters ±u1 and ±u2 which form

an angle θ between them, with θ = 18◦, 36◦, 54◦, 72◦, 90◦. Thus, under this alternative
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Table 1: Estimated significance levels (in %) of the tabular, bootstrap and permuta-

tion tests, for a common and known concentration parameter κ and several sample

sizes n1, n2.

n1, n2 κ q = 2 q = 3 q = 4 q = 5

Tab. Boot. Perm. Tab. Boot. Perm. Tab. Boot. Perm. Tab. Boot. Perm.

3, 5 1 5.2 4.6 5.7 3.1 5.3 5.3 3.7 5.8 5.6 4.3 6.2 6.2

2 4.4 4.4 5.6 3.1 5.3 5.3 3.7 5.8 5.6 4.3 6.2 6.2

5 3.8 3.7 4.9 3.1 5.3 5.3 3.7 5.2 5.6 4.3 6.2 6.2

10 4.1 3.8 4.7 3.8 5.1 4.8 4.0 5.2 4.9 3.8 5.3 5.1

20 4.6 4.0 4.7 4.7 5.1 4.8 4.3 5.3 4.8 4.5 5.3 4.9

5, 10 1 8.6 5.5 6.1 7.7 7.0 6.1 12.1 7.0 6.1 5.1 7.1 5.7

2 6.2 5.4 6.0 6.7 6.5 6.1 9.7 6.6 6.2 5.6 6.8 5.7

5 3.4 5.5 5.3 3.2 6.0 5.4 3.9 5.8 5.8 5.8 5.8 5.6

10 3.7 5.5 5.1 3.7 6.4 5.2 5.8 6.3 5.2 3.7 6.3 5.0

20 4.6 4.0 4.7 4.7 5.1 4.8 4.3 5.3 4.8 4.6 6.5 5.2

5, 5 1 6.7 5.2 5.7 3.2 5.5 5.3 3.6 6.1 5.7 4.6 6.4 6.1

2 5.0 5.1 5.6 3.2 5.5 5.3 3.6 6.1 5.7 4.6 6.4 6.1

5 2.8 4.9 5.9 3.2 5.5 5.3 3.6 6.1 5.7 4.6 6.4 6.1

10 3.9 4.9 5.0 3.8 5.2 5.0 3.7 5.3 5.0 3.1 5.4 5.1

20 4.3 4.9 5.0 4.5 5.2 4.9 3.9 5.4 4.9 4.1 5.3 5.0

10, 10 1 11.0 5.6 6.3 2.8 5.5 5.3 3.1 5.7 5.6 4.2 5.8 5.9

2 6.5 5.7 6.1 2.8 5.5 5.3 3.1 5.7 5.6 4.2 5.8 5.9

5 2.9 5.6 5.2 2.8 5.5 5.3 3.1 5.7 5.6 4.2 5.8 5.9

10 4.3 5.6 5.1 4.0 5.3 5.2 3.2 5.3 5.3 2.9 5.3 5.3

20 4.8 5.4 5.2 5.3 5.3 5.2 4.4 5.3 5.2 3.9 5.4 5.2

20, 20 1 13.5 5.8 6.5 22.3 7.4 7.0 30.6 8.0 7.0 38.7 8.0 2.6

2 5.9 5.9 5.8 9.1 6.8 6.0 13.5 7.2 6.6 28.9 7.4 7.0

5 2.9 5.6 5.2 2.1 6.7 5.3 2.5 6.9 5.4 2.8 6.7 5.5

10 3.7 5.5 5.2 3.5 7.1 5.2 3.6 7.3 5.3 2.9 7.2 5.3

hypothesis and without loss of generality, we generated one sample from Wq (eq, κ1) and

the other sample from Wq (u, κ2), where u is defined by u =
(

0, ..., 0, (1− cos2 θ)
1/2
, cos θ

)
.

We note that if the angle θ is equal to 0◦, we obtain the significance level of the tests.

As in the estimation of the significance levels, to determine the empirical power of the tests,

we used the 0.95-percentile of an F -distribution in the tabular test and the 0.95-percentile
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Table 2: Estimated significance levels (in %) of the tabular, bootstrap and permu-

tation tests for different and known concentration parameters κ1 and κ2 and several

sample sizes n1, n2.

n1, n2 κ1, κ2 q = 3 q = 4 q = 5

Tab. Boot. Perm. Tab. Boot. Perm. Tab. Boot. Perm.

3, 5 1,2 1.5 6.9 5.8 1.0 7.1 5.8 0.6 7.0 5.7

3,5 3.4 5.9 5.5 2.7 6.2 5.8 2.1 6.4 5.9

5,10 5.0 5.1 5.0 5.6 5.5 5.2 5.0 5.7 5.4

10,20 4.5 5.1 4.8 4.8 5.2 4.9 4.6 5.4 4.9

5, 10 1, 2 5.6 5.8 6.2 5.1 5.7 6.3 4.4 5.6 6.2

3, 5 5.6 5.8 5.6 5.1 5.7 5.9 4.4 5.6 6.2

5, 10 4.5 5.5 5.3 5.2 5.7 5.6 5.9 5.7 5.4

10, 20 4.6 5.4 5.2 4.9 5.3 5.2 4.4 5.4 5.3

5, 5 1,2 5.0 6.6 5.8 4.6 6.7 5.7 4.1 6.8 5.7

3, 5 4.1 5.7 5.6 4.2 5.9 5.9 4.3 6.0 6.0

5,10 3.7 5.6 5.1 4.4 5.6 5.3 4.6 5.9 5.4

10,20 4.3 5.2 5.0 3.7 5.4 5.1 3.6 5.3 5.2

10, 10 1,2 9.5 6.6 6.5 11.3 6.9 6.4 12.8 6.9 6.2

3,5 4.1 6.3 5.6 4.6 6.2 5.9 5.7 6.2 6.2

5,10 3.2 6.5 5.3 3.5 6.4 5.4 3.8 6.4 5.4

10,20 4.2 5.3 5.2 4.1 5.4 5.2 3.9 5.3 5.3

20, 20 1,2 12.3 14.3 6.6 17.3 8.8 6.9 24.1 13.2 6.8

3,5 3.4 7.0 5.3 3.6 7.2 5.5 4.4 7.3 5.7

5,10 3.3 7.0 5.3 3.3 7.0 5.3 3.1 6.9 5.4

of the bootstrap or permutation distribution in the bootstrap or permutation tests.

In the tabular test, the empirical power was obtained from 10000 replicates of the test

statistic under the alternative hypothesis. In the bootstrap or permutation test, the em-

pirical power was obtained from 5000 Monte Carlo simulations, where in each simulation,

two samples were generated under H1 and 200 bootstrap or permutation re-samples were

considered.

We indicate the empirical power of the tests for equal and known concentration parame-

ters in Table 3 for q = 2, in Table 4 for q = 3 and in Table 5 for q = 4, 5. In these

tables we highlighted the values of the power, in which the bootstrap test is more powerful

than the tabular and permutation tests. Additionally, we show in Figure 1 the empirical

power of the three tests for equal and known concentration parameters when q = 4, 5 and

n1 = 5, n2 = 10.
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Table 3: Empirical power (in %) of tabular, bootstrap and permutation tests, for

q = 2, common and known concentration κ, angle θ(◦) and sample sizes n1, n2.

Tabular Bootstrap Permutation

n1, n2 θ\κ 1 2 5 10 1 2 5 10 1 2 5 10

18 5.8 6.1 9.5 25.4 19.0 17.9 16.7 26.0 5.7 5.7 5.3 4.9

36 8.4 11.8 30.5 72.9 22.2 24.2 35.2 62.0 5.7 5.7 5.3 4.9

3, 5 54 15.5 24.6 61.9 97.5 30.0 36.9 59.5 91.6 5.5 5.8 5.7 3.8

72 31.6 44.8 83.9 99.7 44.7 54.6 79.5 98.3 4.5 4.9 4.2 1.9

90 57.7 66.9 90.2 99.8 68.2 72.6 84.4 94.2 1.8 2.2 2.2 1.8

18 10.0 8.7 15.3 44.1 21.2 20.8 27.4 50.1 6.0 6.9 5.4 5.2

36 16.9 22.6 55.7 96.3 26.9 32.6 59.7 91.6 5.8 6.1 5.9 5.1

5, 10 54 31.9 47.1 88.9 100.0 39.0 50.8 83.9 99.7 5.1 5.7 6.1 4.5

72 54.2 73.1 97.3 100.0 58.1 70.3 94.4 100.0 3.3 4.2 4.8 2.3

90 76.0 85.4 98.6 100.0 76.8 84.1 96.9 100.0 8.2 1.3 2.7 1.8

18 7.4 7.2 10.9 32.4 20.4 19.9 23.2 38.1 5.7 5.8 5.2 5.1

36 11.5 15.7 39.5 86.4 24.4 27.2 46.8 79.8 5.8 6.1 6.2 5.8

5, 5 54 20.1 32.8 76.1 99.8 32.2 40.5 73.4 97.8 5.9 7.1 8.3 9.1

72 39.9 56.4 92.9 100.0 47.5 58.1 88.2 99.8 5.6 7.9 12.6 17.2

90 59.3 73.2 96.3 100.0 64.4 73.3 92.8 99.8 3.6 6.1 14.0 19.8

18 13.8 11.9 22.2 62.7 20.8 20.8 33.6 61.6 6.4 6.3 5.5 5.2

36 23.3 31.2 73.1 99.7 27.4 34.9 71.5 97.6 6.6 7.2 6.7 5.9

10, 10 54 43.6 63.8 97.8 100.0 40.8 56.1 93.3 100.0 6.6 8.6 9.8 8.5

72 68.0 85.8 99.9 100.0 60.5 76.8 98.3 100.0 5.5 9.4 15.2 15.9

90 80.5 92.1 99.9 100.0 75.4 86.2 99.0 100.0 1.6 4.5 17.2 22.8

We indicate the empirical power of the tests for different and known concentration

parameters in Table 6 for q = 3 and in Table 7 for q = 4. As before, in these tables we

highlighted the values of the power, in which the bootstrap test is more powerful than the

tabular and permutation tests. Figure 2 shows the empirical power of the tests for different

and known concentration parameters when q = 5.

The results obtained with a common concentration parameter and with different con-

centration parameters are similar. For both cases of equal and different concentration

parameters and for each dimension of the sphere q, we conclude from the three tests, that

the permutation test is the one that is least powerful. For each q, despite the significance

level of the permutation test be very close to the nominal level of significance in many cases,
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Table 4: Empirical power (in %) of tabular, bootstrap and permutation tests, for

q = 3, common and known concentration κ, angle θ(◦) and sample sizes n1, n2.

Tabular Bootstrap Permutation

n1, n2 θ\κ 1 2 5 10 1 2 5 10 1 2 5 10

18 6.1 6.1 7.2 20.4 37.8 31.7 21.9 27.0 5.6 5.6 5.3 4.9

36 7.7 9.7 20.6 68.2 39.9 36.2 34.6 61.2 5.7 5.8 5.9 5.4

3, 5 54 11.1 17.6 45.7 96.2 44.2 46.0 54.6 90.3 5.6 5.9 6.6 5.1

72 18.3 30.1 69.5 99.7 53.5 57.8 72.2 98.1 5.8 6.0 6.8 3.5

90 25.3 38.3 77.4 99.8 60.0 65.2 79.3 99.3 6.1 5.9 6.8 3.0

18 8.9 8.8 10.4 37.9 29.9 24.5 18.8 35.0 6.2 6.2 5.7 5.3

36 11.3 12.6 40.2 94.4 32.8 31.7 40.9 83.5 6.0 6.3 6.3 5.8

5, 10 54 15.5 21.8 77.3 100.0 40.2 45.4 68.2 98.6 6.1 6.6 7.3 6.2

72 23.9 37.3 92.0 100.0 51.2 60.3 85.8 99.9 6.4 6.6 7.0 5.3

90 31.3 45.0 95.3 100.0 58.4 67.9 89.8 100.0 7.2 7.1 6.5 4.9

18 8.7 7.5 8.2 27.2 32.8 27.1 19.3 30.0 5.8 5.9 5.6 5.2

36 11.4 13.1 28.7 82.7 35.1 32.3 35.5 71.9 5.8 6.2 6.9 6.6

5, 5 54 16.9 25.2 61.9 99.4 40.5 42.3 58.3 95.3 5.9 6.7 9.4 11.7

72 26.3 43.0 85.3 100.0 49.7 56.2 76.8 99.5 5.9 7.2 13.7 18.7

90 33.8 53.6 90.2 100.0 56.5 64.4 83.9 99.7 5.9 7.5 15.7 20.5

18 17.9 13.7 15.2 55.2 24.2 19.3 19.7 45.2 6.5 6.7 5.8 5.5

36 23.6 27.4 60.0 99.5 28.3 28.6 49.1 93.8 6.6 7.2 7.4 6.9

10, 10 54 36.7 54.8 93.9 100.0 36.7 45.3 80.8 99.9 6.8 8.8 10.9 10.8

72 53.3 77.1 99.2 100.0 50.3 64.7 94.5 100.0 6.8 10.1 17.7 18.3

90 61.4 83.3 99.5 100.0 58.1 72.1 96.5 100.0 6.7 10.1 23.2 35.0

18 24.9 18.4 31.1 88.0 17.3 15.4 29.1 70.4 7.1 6.4 5.7 5.4

36 37.8 49.2 92.5 100.0 23.0 30.8 77.2 99.8 7.3 7.6 7.3 6.8

20, 20 54 62.8 85.1 100.0 100.0 37.1 59.3 97.6 100.0 7.8 10.1 11.1 10.7

72 79.3 95.6 100.0 100.0 55.2 80.6 99.7 100.0 8.1 12.8 18.4 20.2

90 83.7 97.3 100.0 100.0 62.7 86.4 99.8 100.0 8.0 12.6 23.6 40.4

the empirical power of this test remains close to the significance level for low values of the

concentration parameters (equal or not) or when the sample sizes are different. For large

values of the concentration parameters (equal or not) and for each q, the permutation test

has better performance for equal-sized samples than for samples of different sizes, since the

empirical power increases as the angle increases for equal-sized samples, while it remains

12



Table 5: Empirical power (in %) of tabular, bootstrap and permutation tests, for

q = 4, 5, common and known concentration κ, angle θ(◦) and sample sizes n1, n2.

Tabular Bootstrap Permutation

n1, n2 q θ\κ 1 2 5 10 1 2 5 10 1 2 5 10

18 7.6 7.2 7.0 16.6 46.0 40.5 26.0 23.l 5.5 5.6 5.8 5.1

36 12.7 14.5 20.3 50.6 51.7 48.8 39.4 48.0 5.7 5.7 6.3 5.9

4 54 18.9 23.4 41.0 83.4 58.1 58.1 55.5 73.1 5.7 5.5 7.0 7.1

72 22.6 32.8 59.2 97.5 61.8 64.0 68.3 89.6 5.6 5.6 7.3 8.5

3, 5 90 25.2 35.7 65.1 99.1 63.9 66.5 72.6 95.1 5.6 5.5 7.7 9.4

18 5.8 5.6 4.3 3.8 35.0 30.6 18.1 25.9 5.5 5.6 5.8 5.1

36 5.7 6.5 5.6 14.0 36.6 34.8 29.4 69.8 5.7 5.7 6.3 5.9

5 54 6.3 7.5 10.9 25.6 40.0 41.8 48.9 95.6 5.7 5.5 7.0 7.1

72 10.5 16.6 43.9 98.5 45.5 50.6 67.1 99.4 5.6 5.6 7.3 8.5

90 11.5 19.3 50.9 99.1 47.9 53.9 73.0 99.7 5.6 5.5 7.7 9.4

18 11.4 11.0 8.8 20.3 39.3 33.8 22.1 25.2 5.8 5.9 6.1 5.4

36 17.9 21.4 28.7 66.4 44.9 42.8 36.2 57.7 5.7 6.1 7.5 7.0

4 54 25.6 34.9 57.7 94.3 51.4 53.2 55.8 84.1 5.6 6.1 10.1 11.2

72 31.6 45.9 77.7 99.8 56.5 59.9 70.1 96.4 5.4 6.4 13.4 17.9

5, 5 90 34.1 49.6 83.0 100.0 57.7 62.5 75.8 99.1 5.6 6.5 14.9 21.8

18 9.0 8.8 7.0 17.3 39.9 34.7 21.4 23.2 5.9 6.1 6.4 5.3

36 10.5 11.7 17.0 70.3 40.9 36.9 29.5 57.8 5.8 6.3 7.3 7.1

5 54 13.4 17.5 39.0 97.5 43.1 42.9 43.4 87.8 5.9 6.4 9.2 12.4

72 15.9 26.4 64.2 99.9 47.0 49.7 59.8 97.8 5.9 6.5 12.4 19.0

90 18.9 31.5 72.7 100.0 49.4 53.6 66.3 99.1 6.1 6.7 14.3 23.1

18 27.1 22.3 15.0 41.6 30.8 25.1 19.2 36.6 6.0 6.4 6.2 5.6

36 41.5 46.9 61.3 95.6 40.3 39.0 48.0 82.8 5.5 6.5 8.2 7.3

4 54 54.0 68.3 92.1 100.0 49.3 55.2 76.7 98.4 4.9 6.6 12.4 11.3

72 62.4 79.5 98.0 100.0 56.4 65.3 89.6 100.0 4.5 6.8 18.6 20.4

10, 10 90 64.5 82.3 98.7 100.0 57.3 68.7 92.3 100.0 4.4 6.8 22.2 39.2

18 22.3 18.5 9.7 39.2 28.4 23.4 15.3 34.0 6.4 6.9 6.4 5.6

36 25.1 26.7 38.4 97.7 30.4 27.9 30.5 86.5 6.4 7.2 8.0 7.4

5 54 31.6 43.5 78.6 100.0 34.1 37.0 57.3 99.5 6.6 8.0 11.8 12.2

72 41.6 60.6 95.1 100.0 40.3 49.2 79.4 100.0 6.7 8.6 18.9 21.6

90 44.8 67.1 97.0 100.0 43.6 54.0 84.8 100.0 6.7 8.8 23.8 40.5
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Figure 1: Empirical power of the tests for a common and known concentration

approximately equal to the nominal level of significance for different-sized samples. For

each q, we also observed that for samples of equal size, the empirical power of the permu-

tation test increases as the concentration parameters (equal or not) increase. For each q

and large values of the concentration parameters (equal or not), the empirical power of the

permutation test increases in general, when the common sample sizes increases.

For each dimension of the sphere q, the empirical power of the tabular and bootstrap tests

increases rapidly and in some cases tends quickly to 1 when the angle between directional

parameters θ increases for equal or different concentration parameters and samples of equal

or different sizes. For each q, the empirical power of the tabular and bootstrap tests in-

creases in general when the concentration parameters (equal or not) increase. For equal or

different concentration parameters and for each q, the empirical power of the tabular and

bootstrap tests increases in general as the sample sizes (equal or not) increase.

In both cases of equal and different concentration parameters, for each dimension of the

sphere q and samples of sizes equal or not, the bootstrap test is generally more powerful

than the tabular test for small concentration parameters or small angle θ between the di-

rectional parameters. The superiority of the bootstrap test compared to the tabular test

is more pronounced for small samples than for large samples. For instance, is greater for

n = 5 than for n = 10, and for n1 = 3, n2 = 5 than for n1 = 5 and n2 = 10. In fact, for
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Table 6: Empirical power (in %) of tabular, bootstrap and permutation tests, for

q = 3, different and known concentrations κ1, κ2, angle θ(◦) and sample sizes n1, n2.

Tabular Bootstrap Permutation

n1, n2 θ\κ1, κ2 1,2 3,5 5,10 1,2 3,5 5,10 1,2 3,5 5,10

18 1.9 4.9 11.1 36.6 27.7 24.9 5.8 5.5 5.1

36 2.9 11.6 33.4 40.2 36.3 44.6 5.8 5.7 5.1

3, 5 54 5.4 24.1 63.0 46.7 50.9 66.9 6.0 6.0 4.9

72 9.6 40.9 79.3 55.0 65.3 80.9 6.0 6.0 4.7

90 13.5 47.8 84.0 61.4 70.5 85.0 6.3 5.6 4.8

18 3.9 6.9 16.8 30.8 21.9 22.8 6.3 5.6 5.3

36 6.3 21.3 58.2 35.2 36.8 52.3 6.2 6.0 5.3

5, 10 54 11.4 48.4 87.7 44.1 56.8 79.1 6.1 6.4 5.1

72 21.4 69.7 95.4 55.1 72.9 90.0 6.4 6.0 4.3

90 26.9 76.0 97.1 61.5 78.6 92.5 6.9 5.5 3.8

18 5.4 7.0 13.9 31.8 22.7 23.0 5.9 5.7 5.4

36 8.4 18.6 45.2 35.5 33.6 47.3 5.9 6.7 6.5

5, 5 54 13.0 38.8 78.6 42.1 50.3 72.7 5.9 8.0 9.3

72 21.4 61.1 91.3 50.5 65.4 85.1 6.0 9.9 13.0

90 26.7 68.1 93.5 56.6 71.8 88.4 6.1 10.6 15.4

18 12.0 11.2 26.5 23.2 18.3 27.5 6.5 6.0 5.6

36 18.7 39.5 81.0 28.9 37.4 66.4 6.7 7.0 6.8

10, 10 54 31.7 75.4 97.8 39.5 63.5 90.5 7.0 9.5 9.7

72 47.2 90.4 99.5 51.2 80.2 96.6 7.2 12.5 14.0

90 54.3 92.8 99.8 58.4 84.9 97.6 7.0 13.2 17.6

18 17.0 20.3 51.1 16.6 21.4 41.6 6.7 5.7 5.7

36 32.8 72.2 98.4 25.1 57.1 89.6 7.1 7.2 7.0

20, 20 54 58.2 96.0 100.0 40.3 85.9 99.0 7.8 9.7 9.7

72 75.1 99.1 100.0 56.9 94.8 99.8 8.0 11.9 12.9

90 79.8 99.5 100.0 63.7 96.4 99.9 7.9 11.1 13.4

small samples (of equal size or not), the bootstrap test is better than the tabular test for

small values of the concentration parameters (equal or not) and also for large concentration

parameters and small angle between the directional parameters. Thus, the results of the

power indicate that the bootstrap test may be a good alternative to the tabular test for

small concentration parameters (equal or not) and small samples (of equal size or not) or
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Table 7: Empirical power (in %) of tabular, bootstrap and permutation tests, for

q = 4, different and known concentrations κ1, κ2, angle θ(◦) and sample sizes n1, n2.

Tabular Bootstrap Permutation

n1, n2 θ\κ1, κ2 1,2 3,5 5,10 1,2 3,5 5,10 1,2 3,5 5,10

18 1.7 3.9 9.4 45.8 31.9 26.5 5.8 5.9 5.3

36 3.7 10.1 21.3 51.5 41.8 37.2 5.7 6.0 5.6

3, 5 54 6.4 19.2 39.0 58.3 54.0 50.1 6.0 6.4 6.5

72 8.7 31.6 56.5 62.7 63.7 61.7 6.1 6.6 7.0

90 10.4 34.6 60.8 65.4 67.0 66.8 6.1 6.5 7.4

18 4.0 6.5 11.8 36.6 24.1 20.3 5.9 6.1 5.4

36 8.0 19.8 37.2 45.7 38.4 36.2 5.4 6.3 5.7

5, 10 54 15.4 42.8 68.3 54.8 57.1 56.7 4.9 6.3 6.0

72 21.8 60.5 84.2 60.2 68.7 72.9 4.8 6.2 5.8

90 23.5 65.4 88.0 63.1 72.9 78.3 4.9 6.1 5.1

18 6.2 6.9 9.6 37.7 25.3 21.1 5.6 6.1 5.6

36 10.3 18.1 30.0 44.2 36.2 35.8 5.7 6.9 7.2

5, 5 54 15.8 36.8 58.2 50.4 50.5 55.4 5.7 8.1 10.2

72 21.1 53.3 77.2 55.4 61.1 70.0 5.7 9.3 14.0

90 23.5 58.3 82.7 57.2 66.1 75.4 5.6 9.9 16.2

18 16.3 12.0 16.9 27.9 19.7 26.0 6.0 6.3 5.8

36 26.8 41.7 61.3 37.0 38.8 48.1 5.6 7.7 7.5

10, 10 54 39.8 73.6 91.1 46.6 61.1 75.7 5.3 9.9 10.7

72 49.8 87.7 97.5 53.4 75.5 89.2 5.1 12.0 15.5

90 52.6 90.2 98.5 56.6 79.2 92.7 4.9 12.8 18.5

when the alternative hypothesis is not far away from the null hypothesis.

4.2 Two Watson populations with estimated concentrations

Next, we study the effect in the performance of the tests of the estimation of the concen-

tration parameters based on ANOVA statistic defined by (2.10). First we determined the

estimated levels of significance of the tests and second, the empirical power of the tests.

We considered the same number of Monte Carlo simulations in the tests as before. The

number of bootstrap or permutation samples was also the same as before. The estimated

levels of significance are indicated in Table 8 for q = 3, 4 in the case of equal or different

concentration parameters. The empirical power of the tests obtained with concentration
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Figure 2: Empirical power of the tests for different and known concentrations

estimates for q = 3, 4, with a nominal significance level of 5% is indicated in Table 9 for

equal concentration parameters and in Table 10 for different concentration parameters. In

these tables we highlight the values of the power, in which the bootstrap test is the most

powerful. The empirical power obtained for q = 3, 4 and n1 = 5, n2 = 10 when we esti-

mate the concentration parameters can be seen in Figures 3 and 4 for equal and different

concentration parameters, respectively.

As we may observe from these tables and figures, the results obtained for the estimated

level of significance and the empirical power are not substantially affected by the estima-

tion of the concentration parameters through the maximum likelihood method. When the

concentrations are estimated, the behavior of the tests is similar to the case when the con-

centrations are known. Consequently, we have the same conclusions for both cases of known

and estimated concentration parameters.

4.3 Three Watson populations with a common and known

concentration parameter

We considered three Watson populations Wq (u1, κ1),Wq (u2, κ2) and Wq (u3, κ3), and we

wish to test H0 : ±u1 = ±u2 ± u3 = ±u, using the tabular, bootstrap and permutation

17



Table 8: Estimated significance levels (in %) of the tabular, bootstrap and permu-

tation tests, for estimated concentration parameters, equal (κ1 = κ2 = κ) or not

(κ1 6= κ2) and several sample sizes n1, n2.

n1, n2 κ q = 3 q = 4

Tab. Boot. Perm. Tab. Boot. Perm.

3, 5 1 4.4 8.1 5.6 5.6 8.8 6.0

2 4.0 7.1 5.6 5.2 8.0 6.2

5 2.8 4.6 5.3 3.7 5.3 5.7

10 4.6 4.3 4.8 4.0 5.3 4.8

20 4.0 5.5 4.8 4.3 6.2 4.8

5, 5 1 6.2 8.3 5.9 10.1 8.4 6.1

2 4.7 7.7 5.9 8.5 7.6 6.2

5 2.4 5.4 5.3 4.2 6.1 5.7

10 3.5 5.1 5.0 4.2 6.0 5.1

20 4.0 4.8 4.9 3.9 6.3 4.9

10, 10 1 12.4 8.1 6.6 20.0 7.4 6.6

2 7.1 7.0 6.4 12.9 7.0 6.6

5 2.5 6.6 5.3 3.1 6.4 5.8

10 3.8 6.9 5.2 3.2 6.7 5.3

20 4.6 5.7 5.2 4.4 6.7 5.2

n1, n2 κ1, κ2 q = 3 q = 4

Tab. Boot. Perm. Tab. Boot. Perm.

3, 5 1,2 5.0 8.5 5.6 6.4 9.4 5.8

3,5 3.4 5.2 5.3 5.9 5.8 5.7

5,10 5.0 3.9 5.0 10.6 4.7 5.2

10,20 5.8 4.1 4.9 8.3 4.7 4.9

5, 5 1,2 6.2 8.2 6.0 10.6 7.3 6.1

3,5 3.8 5.6 5.5 7.0 5.8 6.0

5,10 3.4 5.0 5.1 6.2 5.5 5.3

10,20 4.2 4.4 4.9 3.9 5.8 5.1

10, 10 1,2 11.3 7.9 6.6 19.3 7.3 6.7

3,5 3.7 6.0 5.5 6.5 6.1 5.9

5,10 3.0 6.5 5.3 4.4 6.3 5.4

10,20 4.4 6.0 5.2 4.3 6.8 5.2
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Table 9: Empirical power (in %) of the tests for p = 3, 4, estimated concentrations

κ1, κ2 (κ1 = κ2 = κ), angle θ (o) and sample sizes n1, n2.

Tabular Bootstrap Permutation

n1, n2 p θ/κ 1 2 5 10 1 2 5 10 1 2 5 10

18 7.6 7.5 7.0 16.6 45.6 37.6 18.2 19.2 5.6 5.6 5.3 4.9

36 12.7 14.3 20.3 50.6 50.2 46.8 30.6 43.9 5.7 5.8 5.9 5.4

3 54 18.9 24.6 41.5 83.4 51.8 52.7 45.9 63.4 5.6 5.9 6.6 5.1

72 22.6 31.8 60.1 97.5 58.8 56.3 58.4 73.1 5.8 6.0 6.8 3.5

3, 5 90 25.2 35.8 64.7 99.1 55.8 58.4 64.5 77.2 6.1 5.9 6.8 3.0

18 7.6 7.5 7.0 16.6 45.6 37.6 18.2 19.2 5.6 5.6 5.3 4.9

36 12.7 14.3 20.3 50.6 50.2 46.8 30.6 43.9 5.7 5.8 5.9 5.4

4 54 18.9 24.6 41.5 83.4 51.8 52.7 45.9 63.4 5.6 5.9 6.6 5.1

72 22.6 31.8 60.1 97.5 58.8 56.3 58.4 73.1 5.8 6.0 6.8 3.5

90 25.2 35.8 64.7 99.1 55.8 58.4 64.5 77.2 6.1 5.9 6.8 3.0

18 6.5 5.5 6.4 25.7 38.4 30.7 16.8 26.9 5.9 5.9 5.7 5.1

36 8.4 10.0 24.2 81.8 40.4 35.4 29.5 65.0 5.9 6.3 6.8 6.5

3 54 12.7 20.2 56.0 99.1 44.3 43.8 50.9 84.3 6.0 6.8 9.3 11.5

72 20.5 35.5 78.5 100.0 53.9 57.9 67.7 83.4 5.9 7.2 12.8 18.3

5, 5 90 27.2 45.0 85.8 100.0 58.6 62.9 69.7 77.6 5.7 7.3 14.5 19.9

18 13.0 12.2 9.9 22.1 43.3 37.7 18.7 27.1 5.9 6.1 6.1 5.4

36 20.2 22.8 31.1 68.4 48.6 45.4 37.4 60.5 5.8 6.2 7.6 6.9

4 54 28.0 37.3 60.3 95.0 54.2 53.8 58.5 81.8 5.6 6.2 10.3 10.8

72 34.0 47.6 79.5 99.9 58.4 61.1 74.4 89.6 5.3 6.4 13.5 17.2

90 36.9 52.2 84.3 100.0 59.1 64.7 80.5 90.7 5.5 6.4 14.7 20.9

18 13.9 9.9 13.4 55.0 31.8 22.3 19.3 44.4 6.5 6.5 5.6 5.4

36 19.1 22.9 55.6 99.4 35.9 32.2 46.5 93.1 6.6 7.3 7.2 6.8

3 54 30.2 47.7 91.4 100.0 46.0 49.8 78.5 99.4 6.9 8.6 10.4 10.6

72 45.2 65.3 98.1 100.0 56.7 65.6 91.6 98.3 6.6 9.9 16.2 17.6

10, 10 90 51.1 75.0 98.8 100.0 62.6 72.7 93.3 96.2 6.6 9.4 19.9 31.8

18 27.1 22.3 15.0 41.6 36.4 29.3 21.7 38.2 6.1 6.5 6.2 5.6

36 41.5 46.7 61.3 95.6 44.1 42.3 55.3 87.5 5.5 6.5 8.2 7.2

4 54 54.0 67.9 92.1 100.0 53.6 58.5 85.5 98.6 4.8 6.6 12.1 11.1

72 62.4 79.4 98.0 100.0 58.0 65.8 96.5 99.7 4.3 6.5 17.7 19.8

90 64.5 82.4 98.7 100.0 59.6 68.5 97.8 99.8 4.2 6.4 20.7 37.4
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Figure 3: Empirical power of the tests for estimated equal concentrations

versions for the ANOVA test. We carried out a simulation study to estimate the level of

significance and to determine the empirical power of the tests, considering the dimensions of

the sphere q = 3, 4 and a common and known concentration parameter for the populations

κ1 = κ2 = κ3 = κ = 1, 2, 5, 10. We also considered equal samples size n1 = n2 = n3 = n =

5, 10. We supposed, without loss of generality, that under H0 : ±u1 = ±u2 = ±u3 = ±eq,
where eq = (0, ..., 0, 1)

′
. The estimated levels of significance were obtained for a nominal

level of significance of 5% under H0. We determined the empirical power of the tests, for

this nominal level of significance, supposing three types of alternative hypothesis. Let θ1

be the angle between u1 and u2, θ2 be the angle between u2 and u3 and θ3 has the same

definition as θ2. We supposed, without loss of generality, in the alternative hypothesis:

H
(1)
1 : u1 = ep, u2 =

(
0, ..., 0, (1− 0.952)

1/2
, 0.95

)
, u3 =

(
0, ..., 0, (1− 0.592)

1/2
, 0.59

)
, i.e,

θ1 = 18◦, θ2 = 54◦, θ3 = 36◦, H
(2)
1 : u1 = eq, u2 =

(
0, ..., 0, (1− 0.952)

1/2
, 0.95

)
, u3 = e1,

i.e, θ1 = 18◦, θ2 = θ3 = 90◦ and H
(3)
1 : u1 = eq, u2 = eq−1, u3 = e1, i.e, θ1 = θ2 = θ3 = 90◦.

The number of replicates in the tests and the number of bootstrap or permutation samples

considered to determine the levels of significance and the empirical power were the same as in

the previous simulation study done for two populations. The estimated level of significance,

obtained when θ1 = θ2 = θ3 = 0◦ and the empirical power for the three types of alternative

hypothesis are indicated in Table 11. In this table we highlight the values of the power, in
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Table 10: Empirical power (in %) of the tests, for q = 3, 4, estimated concentrations

κ1, κ2 (κ1 6= κ2), angle θ(◦) and several sample sizes n1, n2.

Tabular Bootstrap Permutation

n1, n2 q θ\κ1, κ2 1,2 3,5 5,10 1,2 3,5 5,10 1,2 3,5 5,10

18 6.3 4.9 11.1 41.3 19.6 18.6 5.7 5.3 5.1

36 8.6 11.6 33.4 42.2 26.5 32.8 5.6 5.6 5.1

3 54 12.6 24.1 63.0 46.8 39.1 45.4 5.7 5.6 4.3

72 18.9 40.9 79.3 53.3 48.4 52.4 5.4 5.0 2.7

3, 5 90 22.8 47.8 84.0 56.5 49.5 50.1 5.3 4.1 2.0

18 8.4 8.3 16.3 48.2 28.7 20.2 5.6 5.9 5.4

36 13.6 18.9 32.5 52.5 37.6 33.6 5.4 6.0 5.7

4 54 20.5 32.5 54.2 56.0 47.1 46.8 5.5 6.0 6.0

72 24.8 47.5 72.2 61.7 58.0 57.9 5.4 5.9 5.6

90 27.5 51.0 77.1 60.8 58.8 63.1 5.2 5.6 5.0

18 7.1 6.6 12.3 38.5 20.5 20.4 5.9 5.6 5.4

36 10.2 17.2 42.2 41.4 30.4 41.9 6.1 6.7 6.4

3 54 15.4 35.5 71.0 46.2 43.3 59.7 6.2 7.9 8.8

72 23.7 56.7 84.2 55.7 56.2 67.9 6.1 9.5 11.4

5, 5 90 28.8 61.9 87.4 58.8 60.4 66.2 6.0 9.8 12.9

18 13.7 10.5 12.7 42.6 25.4 21.5 6.0 6.3 5.8

36 20.7 24.8 36.2 46.8 34.4 41.1 5.9 7.1 7.0

4 54 29.0 46.8 66.7 54.4 48.9 61.9 5.8 8.5 9.9

72 35.9 63.7 84.8 57.6 59.7 77.1 5.6 9.5 13.2

90 38.7 68.2 89.3 59.2 64.4 81.2 5.4 9.9 15.0

18 14.0 10.7 23.5 30.5 18.7 24.8 6.6 5.9 5.6

36 21.3 37.7 76.3 36.9 37.7 62.7 6.7 6.9 6.8

3 54 34.5 70.8 95.8 48.0 59.9 87.1 7.0 9.1 9.0

72 47.3 85.2 98.7 58.3 76.4 92.3 7.1 11.2 12.2

10, 10 90 52.3 87.7 98.7 63.1 80.0 90.9 6.9 11.0 14.1

18 26.1 15.5 19.7 33.9 20.1 24.9 6.3 6.2 5.9

36 40.9 48.0 66.1 41.3 40.1 60.1 5.7 7.7 7.4

4 54 54.5 78.9 93.8 49.9 62.5 88.3 5.2 9.7 10.3

72 64.2 90.9 98.4 56.5 78.6 97.0 4.8 11.3 13.9

90 66.5 93.1 99.1 59.0 82.9 98.2 4.5 11.4 15.6
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Figure 4: Empirical power of the tests for estimated different concentrations

which the bootstrap test is the most powerful.

The conclusions are similar to those obtained for two Watson populations, despite of the

estimated levels of significance seem to be a bit worse. The estimated levels of significance

in the bootstrap test are similar to the values for the permutation test, although in this

latter test they are slightly better. In what concerns to the estimated level of significance

for the tabular test, as this test is valid only for large concentrations, it would be expected

that the estimated level of significance is not good for small concentrations.

Similarly, for each dimension of the sphere, the empirical power increases in general, as

the separation between populations increases or the common concentration parameter in-

creases.

We concluded that the bootstrap test is a good alternative to the tabular test for small con-

centration parameter or small samples or poor separation between the Watson populations.

Among the three tests, the permutation test is the one that is least powerful, although it is

the test that has in general the best estimated level of significance.
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Table 11: Estimated significance level and empirical power (in %) of the tabular,

bootstrap and permutation tests, for three Watson populations, with q = 3 and

q = 4, common and known concentration parameter κ, common samples size n and

angles between directional parameters θ1, θ2 and θ3 (in ◦) .

q = 3 q = 4

Test n θ1 θ2 θ3\κ 1 2 5 10 1 2 5 10

0 0 0 11.5 7.8 2.7 3.8 13.3 9.6 3.2 2.9

5 18 54 36 18.9 23.4 51.2 99.1 26.6 31.7 46.5 91.3

18 90 90 18.8 33.1 81.5 100.0 20.2 30.4 70.5 100.0

Tabular 90 90 90 21.5 42.2 93.7 100.0 42.3 60.5 92.7 100.0

0 0 0 23.8 11.1 2.3 3.2 31.9 16.6 2.6 2.8

10 18 54 36 44.5 52.4 90.6 100.0 58.2 68.0 89.0 99.9

18 90 90 45.8 70.6 99.2 100.0 52.1 69.7 97.3 100.0

90 90 90 53.1 84.1 100.0 100.0 80.2 93.8 100.0 100.0

0 0 0 7.1 6.6 5.6 5.7 7.5 6.9 5.7 5.6

5 18 54 36 62.0 57.7 59.6 94.6 70.8 67.1 59.5 82.2

18 90 90 60.6 61.5 78.6 99.7 66.8 64.9 72.2 99.4

Bootstrap 90 90 90 62.8 67.4 88.2 100.0 66.4 67.9 81.9 100.0

0 0 0 6.9 6.2 6.1 6.7 7.3 6.4 6.1 6.5

10 18 54 36 49.2 49.9 79.4 99.9 58.7 58.8 73.9 97.8

18 90 90 49.2 59.9 94.7 100.0 52.9 57.7 88.2 100.0

90 90 90 53.5 70.5 98.7 100.0 51.4 63.3 95.6 100.0

0 0 0 6.2 6.4 5.6 5.2 6.2 6.5 6.1 5.3

5 18 54 36 6.5 7.6 9.2 8.3 5.2 6.4 10.1 8.2

18 90 90 7.2 10.3 19.5 11.5 6.4 8.8 19.3 15.3

Permutation 90 90 90 7.3 11.3 27.7 27.6 6.7 9.5 26.5 36.1

0 0 0 7.0 6.9 5.4 5.3 6.8 7.1 5.8 5.3

10 18 54 36 7.6 9.3 10.2 8.8 4.2 6.5 11.3 8.7

18 90 90 9.6 18.0 28.2 13.1 7.8 14.8 30.8 15.7

90 90 90 10.6 23.5 54.8 56.8 8.6 19.0 54.5 64.0

5 Application

We used the vectorcardiogram data of Downs et al. (1971) obtained with two systems

(Frank system and McFee lead system). From these data we took the unit spherical vector
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associated with each vectorcardiogram, which represents the spatial direction of the vector

of the QRS loop having the greatest magnitude. Then, we considered the axes associated

to these directions. We selected data for eight children from each of the eight combinations

of the categories (sex-age and type of system). Data, in radians, are in the Table 12.

Table 12: Spherical vectorcardiogram data (in radians)

Frank system McFee lead system

0.587 0.706 0.614 0.744 -0.052 0.584 0.597 0.873

0.645 0.568 0.614 0.547 0.130 0.809 0.609 0.475

0.489 0.422 0.495 0.383 0.990 0.067 0.522 -0.110

Boy aged 2-10

0.552 0.863 0.145 0.160 0.959 0.553 0.678 0.927

0.702 0.410 0.814 0.261 0.246 0.651 0.713 0.273

0.449 0.296 0.562 0.952 0.143 0.520 0.178 0.259

0.536 0.561 -0.167 0.265 0.718 0.770 0.755 0.712

0.572 0.662 0.481 0.805 0.694 0.511 0.358 0.702

0.621 0.497 0.861 0.531 -0.049 0.382 0.550 0.031

Boy aged 11-19

0.470 0.101 0.256 0.658 0.623 0.809 0.903 0.509

0.690 0.404 0.735 0.596 0.543 0.586 0.267 0.581

0.550 0.909 0.628 0.460 0.563 0.035 -0.337 -0.636

0.404 0.526 0.721 0.581 0.857 0.255 0.882 0.781

0.616 0.570 0.573 0.752 0.375 0.964 0.070 0.624

0.676 0.631 0.389 0.311 0.354 0.073 0.466 0.027

Girl aged 2-10

0.390 0.595 0.560 0.536 0.136 0.941 0.694 0.769

0.711 0.618 0.797 0.515 0.034 0.339 0.694 0.481

0.585 0.515 0.226 0.670 -0.990 -0.025 0.188 0.421

0.472 0.453 0.701 0.286 0.778 0.674 0.722 0.583

0.489 0.717 0.574 0.622 0.589 0.628 0.578 0.793

0.734 0.530 0.423 0.729 0.217 -0.388 0.380 0.176

Girl aged 11-19

0.108 0.299 0.535 0.395 0.787 0.680 0.693 0.525

0.851 0.713 0.720 0.642 0.537 0.580 0.707 0.766

0.513 0.634 0.442 0.657 0.303 0.448 0.140 0.372
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We are interested in investigating whether for each sex-age category, the type of system

(Frank system or McFee lead system) affects the result of the vectorcardiogram. In this

application we supposed the ANOVA statistic for different concentration parameters (ge-

neral statistic) and also the ANOVA statistic for equal concentration parameters for each

sex-age category. Then for each category sex-age, we determined the values of the ANOVA

Table 13: Largest eigenvalues and estimates of the concentration parameters of the groups,

and statistic values and p-values of the tests for each sex-age category

Sex-Age Group System Concen- Statistic p-value (%)

Frank McFee lead tration value Tab. Boot. Perm.

j 1 2 parameters

Boy aged ŵj 7.087 6.302 Different 1.266 29.8 51.7 19.8

2-10 κ̂j 9.454 5.500 Equal 1.297 28.9 51.3 20.7

Boy aged ŵj 7.173 6.561 Different 9.316 0.1 0.1 0.1

11-19 κ̂j 10.343 6.360 Equal 9.538 0.1 0.1 0.1

Girl aged ŵj 7.648 6.013 Different 2.441 10.5 34.6 3.4

2-10 κ̂j 23.251 4.760 Equal 2.673 8.6 39.5 2.8

Girl aged ŵj 7.589 7.419 Different 11.244 0 0.1 0.1

11-19 κ̂j 20.030 14.360 Equal 11.299 0 0.1 0.1

statistics given by (2.10) and (2.12), which are indicated in Table 13, as well as the p-values

obtained for the tabular method, the bootstrap and permutation versions of the ANOVA

statistic. The p-values of the bootstrap and permutation tests were obtained with B = 1000

bootstrap re-samples and C = 1000 permutation samples.

First, the difference between the p-values of the tests for both statistics is very small.

Second, on one hand, the three tests led to the same conclusion for children aged 11-19

and boys aged 2-10. More precisely, we can conclude that there is no significant difference

between the systems for boys aged 2-10 while there is difference for children aged 11-19.

On the other hand, for girls aged 2-10 there is no evidence to conclude that the systems

differ using the tabular and bootstrap tests. Based on the permutation test, we can not

conclude that the systems differ at a level of significance 1%, but we conclude that there

is difference between the systems at a level of 5%. The code for applying these tests is

available in the web page:https://sigarra.up.pt/fep/pt/conteudos_geral.ver?pct_

pag_id=1010326&pct_parametros=p_codigo=205276&pct_grupo=23660#23660
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6 Concluding remarks

We have concluded that the bootstrap and permutation versions of the ANOVA statistic

for testing a common mean polar axis across several Watson populations defined on the

hypersphere gave reliable estimates of the significance level, in most part of the simulated

cases, and in particular, for small concentrations and small samples. Additionally, from

the three tests, the bootstrap test is in general the most powerful test in the case of small

samples for small concentrations or bad separation between the Watson populations. So, in

these cases, the bootstrap and permutation tests based on ANOVA statistic may constitute

useful alternatives to the ANOVA statistic, that has an asymptotic distribution, valid only

for large concentrations.
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