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Abstract

We consider time series data modeled by ordinary differential equations (ODEs), widespread
models in physics, chemistry, biology and science in general. The sensitivity analysis of such dynam-
ical systems usually requires calculation of various derivatives with respect to the model parameters.

We employ the adjoint state method (ASM) for efficient computation of the first and the second
derivatives of likelihood functionals constrained by ODEs. Essentially, the gradient can be computed
with a cost (measured by model evaluations) that is independent of the number of the parameters
and the Hessian with a linear cost in the number of the parameters instead of the quadratic one. The
sensitivity analysis becomes feasible even if the parametric space is high-dimensional.

The main contributions are derivation and rigorous analysis of the ASM in the statistical context,
when the discrete data are coupled with the continuous ODE model. Further, we present a highly
optimized implementation of the results and its benchmarks on a number of problems.
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ing, Mathematical Statistics, Algorithm
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1 Introduction

We consider time series vector data yyyi ∈Rn for i = 1, . . . ,N, where n is the dimension of the observation
space and N is the number of corresponding measurements times ti in interval I := [0,T ] with some
positive final time T > 0. Very often in science the underlying structural model for such data is the
following initial-value problem

dtuuu = fff (t,uuu,φφφ), t ∈ [0,T ],

uuu(0) = uuu0(φφφ),
(1)

where uuu0 is the initial condition, dependent only on the parameter vector φφφ ∈ Rp. In general non-linear
r.h.s. fff of the governing equation represents the time derivative of the model variable uuu(t). It depends
on the current time t, the model parameters φφφ and the current values of uuu ∈ Rm.

The predictor ŷyy of the data yyy is a result of integration of the dynamical system (1) and a possible
subsequent post-processing, for example aggregation. This can be expressed in mathematical terms as
ŷyy = P(uuu(t,φφφ)) =: ggg(t,φφφ), where P : Rm→ Rn is the post-processing operator relating the solution uuu
to data.

The main aim of this paper is to efficiently compute the first and the second derivatives of functionals
of the following form

l(φφφ) =±∑
i

d(yyyi,ggg(ti,φφφ)), (2)

with respect to φφφ . Here d : Rn×Rn→ [0,∞) is a sufficiently smooth distance function (metric) on Rn.

Equation (2) measures the fidelity between the model and the data.

1.1 Motivation

The most prominent example of distance functional (2) is obtained for error model

yyyi = ggg(ti,φφφ)+ εεε i, εεε i ∼i.i.d. N (0,Σ), (3)

i.e. the residual errors εεε i are independent and identically distributed normal random variables with zero
mean and residual covariance matrix Σ ∈ Rn×n. Then

d(yyyi,ggg(ti,φφφ)) :=
1
2
(yyyi−ggg(ti,φφφ))∗Σ−1(yyyi−ggg(ti,φφφ)) (4)

and we are interested in the derivatives of

l(φφφ) := log p(yyy|φφφ) ∝−∑
i

d(yyyi,ggg(ti,φφφ)). (5)
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The gradient or the Hessian of such a log-likelihood are required quite often in statistics in various
contexts. Let us supply few examples. First, Laplace’s method (approximation) is very popular technique
to approximate stochastic integrals of the form∫

eMl(φφφ) dφφφ (6)

around a mode φ̂φφ of sufficiently smooth negative function l leading to

∫
eMl(φφφ) dφφφ →

(
2π

M

)p/2

|−H(φ̂φφ)|−1/2eMl(φ̂φφ) (7)

as M(∈ R+)→ ∞ (Wong, 2001). The evaluation of Hessian H(φ̂φφ) of l is needed. Second, when look-
ing for a maximum-likelihood estimator φ̂φφ

MLE
:= argmax

φφφ

l(φφφ) one usually applies some optimization

algorithm which requires many evaluations of gradient ∇l(φφφ), such as CG or BFGS (Bertsekas, 1999;
Bazaraa et al., 2006).

Third, modern Monte Carlo Markov Chain (MCMC) samplers such as Metropolis-Adjusted Langevin
algorithm (MALA) or Hamiltonian Monte Carlo (HMC) again require computing gradients or even Hes-
sians of a log-likelihood with respect to the model parameters for every sample (Brooks et al., 2011).

For any of the above problems, the computation of the derivatives is a key operation and its speedup
directly translates to the speedup of the whole algorithm. For example in the case of the HMC sampler,
the total speedup is roughly proportional to the speedup of the gradient computation of the log-likelihood,
one can achieve.

1.2 Adjoint-state method

To efficiently compute the first and the second derivative (gradient and Hessian) of (2) with respect to
the model parameters φφφ we will employ adjoint-state method (ASM).

The ASM is used in many different fields, such as control theory (Lions, 1971), data assimilation in
meteorology (Lewis et al., 2006) or parameter identification (Melicher and Vrábel’, 2013; Cimrák and
Melicher, 2007). It is difficult to precisely trace its origin, since it is based on a general principle - the
duality. Special dual problems or special test functions in general are used extensively in functional
analysis for quite different tasks, e.g. in homogenization theory (Bensoussan et al., 1978). The idea of
the ASM is to derive a special dual problem to the sensitivity equation of (1), which allows one to write
the derivative(s) of (2) in a simple form which is inexpensive to evaluate. Usually, one obtains an inner
product(s) in a suitable Hilbert space containing the dual state.

Even if the ASM is a classical method in many different fields, its applications in general statistical
literature are rather scarce or could be even considered virtually non-existent. In our opinion, this is due
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to several reasons.
Mainly, it is a matter of need. Until recently the usual statistical models had only few parameters

and the corresponding derivatives were easily evaluable using finite differences. On the other hand, the
ASM was mainly used for problems, where derivatives with respect to infinite dimensional parameters
are needed, such as the optimal control of partial differential equations (PDEs) (Lions, 1971). For those
problems, the ASM is the only viable way to compute the gradient of a cost functional.

The second possible reason is the lack of interdisciplinary publications in statistical literature with
the fields where the ASM plays the role of a classical technique. One of the exceptions that elegantly
connects the worlds of the PDE-constrained inverse problems and that of Bayesian inference is the paper
(Martin et al., 2012). Meteorology is probably the field where the relationship between differential
models and stochastic processes is the most advanced (Lewis et al., 2006).

The third and probably rather influential reason is that the results presented in literature regarding the
ASM do not take into account the specifics of statistical estimation, particularly that the measurements
can not be altered or interpolated in any way. In this paper, we present an ASM framework for ODE
based statistical models, which recognizes and resolves this issue. The ODE case can be addressed in
generality, which is not possible for PDE-constrained problems.

The dynamical models described by ODEs are rather widely used in science. They are simply indis-
pensable for acquiring essential knowledge about complex biological systems (Murray, 2002; Draelants
et al., 2012) as is the case for other fields studying intricate matters such as psychology and economics.
In chemistry, regardless of the criticism (Gillespie, 1977), the reaction-rate equations 1 are still exten-
sively employed. We are motivated by applications in PK/PD modeling and virology (Lavielle et al.,
2011; Tornøe et al., 2004).

The sensitivity analysis of ODEs is well established in literature. Let us only mention a classical
book on the optimal control of ODEs (Cesari, 1983). Moreover, many results that are intended for PDEs
are directly applicable to ODEs, since from the mathematical point of view, an ODE could be simply
seen as a PDE without a spatial differential operator. However, as already mentioned, the relevant results
presented in literature, do not take into account the specifics of statistical estimation.

The ASM is usually applied in a PDE-constrained context. The fidelity between the data and the
PDE-based model is measured in a Lebesgue space Lp−norm, particularly in L2 sense, as is also the case
of the above mentioned paper (Martin et al., 2012). It implies that the data are considered to be defined
almost everywhere in the space or in the space-time in the case of time-dependent problems. This is
however in a strong contrast with statistical philosophy. The measurements are ultimately discrete and
sacred. E.g. by interpolating the measurements, new ones are generated and that can not be tolerated.

The main contribution of this paper is that it recognizes and resolves this problem. We show, that the
discrete data yyy can be combined with the continuous model (1) at the level of the likelihood functional (2).

1Considering spatial phenomena such as diffusion and(or) convection leads to PDE models, see for example (Slodička
and Balážová, 2010).
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The resulting adjoint problem contains a Dirac delta source corresponding to individual measurement
times. The developments are fully supported by rigorous proofs.

The subsequent numerical analysis shows that the ASM application for statistical estimation is far
from obvious and more work is still needed to reach its efficiency in the deterministic setting.

Moreover, only the first order results are normally available, since the ASM is usually applied in
infinite dimensional setting, as explained above. We supply the Hessian computation as well.

Another contribution is a highly efficient implementation of the results and its benchmarking with
respect to finite differences and sensitivity equation approach.

To our best knowledge, we do not know about similar results in the literature.
Last but not least, this interdisciplinary paper aims to popularize this quite underused but potentially

very useful method in the statistical community and help those working with ODE based models to
compute the corresponding ODE-model sensitivities more efficiently. Recently, with boom in general
availability and dimensionality of data, ODE models with a high number of parameters are being em-
ployed. The evaluation of gradients becomes very costly and consequently various derivative-free meth-
ods have become more popular, see for example Delyon et al. (1999). The application of the ASM makes
derivative-based algorithms again competitive. The gradient can be computed with a cost (measured by
model evaluations) that is essentially independent of the number of the parameters. The Hessian can be
computed as well, with essentially linear cost in the number of the parameters instead of the quadratic
one.

The paper is divided as follows. In Section 2 we analyze the sensitivity of initial value problem (1)
with respect to its parameter vector φφφ . In Section 3, we present in detail the here mentioned approach
to combine discrete data with continuous model. Then in Section 4 we obtain the ASM for computing
of the gradient and Hessian of (2) with respect to φφφ . In Section 5 its implementation is discussed and in
Section 6 its efficiency is tested on a number of examples.

2 Sensitivity of model

In this preparatory section we will discuss the well-posedness of the initial value problem (1) as well as
the existence of its derivative with respect to the parameters φφφ . We follow the presentation in (Zeidler,
1985) with all the relevant notation, so we can be rather concise.

The first Gatèaux differential of a function f with respect to xxx in direction hhh is denoted by D f (xxx;hhh).
Then, let us denote by sss := Duuu(φφφ ;hhh), i.e. the first Gatèaux differential (we will show it is Fréchet as
well) of the model function uuu with respect to the parameters φφφ in direction hhh. If it exists, the formal
differentiation of (1) yields that sss is the solution to the following initial value problem

dtsss = Juuu( fff )sss+ Jφφφ ( fff )hhh, t ∈ [0,T ],

sss(0) = Jφφφ (uuu0)hhh,
(8)
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known as the sensitivity equation. Here Jφφφ ( fff ) : Rp→Rm and Juuu( fff ) : Rm→Rm are the Jacobians of the
r.h.s. fff of the model (1) with respect to the model parameters φφφ and the state variables of the model uuu,
respectively. The analogical is the meaning of Jφφφ (uuu0).

Let eeei, i = 1, . . . , p be the canonical basis in Rp. Solving (8) for hhh = eeei for each i = 1, . . . , p yields
sss = (∂uuu1

∂φφφ i
, ∂uuu2

∂φφφ i
, . . . , ∂uuum

∂φφφ i
)∗, if the partial derivatives exist. It means that to compute the whole jacobian

Jφφφ (uuu) one needs to integrate p initial value problems (8). The complexity is essentially identical to
that of the first-order finite difference approximation, as will be confirmed in Section 6. The sensitivity
equation approach is however still preferred if high accuracy is needed.

Let us restate the Theorem 4.D from (Zeidler, 1985) in our context.

Theorem 1. Suppose that the mappings fff : U ⊆R×Rm×Rp→Rm and uuu0 : V ⊆Rp→Rm are Ck,k≥ 1
and that U, V are open sets containing (0,uuu0(φφφ 0),φφφ 0) and φφφ 0, respectively. Then:

• (a) There exists an interval (−a,a),a > 0, and an open neighborhood U(φφφ 0) such that the initial
value problem (1) has exactly one solution for each φφφ ∈U(φφφ 0).

• (b) The mapping (t,φφφ) 7→ uuu(t;φφφ) is Ck on (−a,a)×U(φφφ 0), and (8) holds.

Since our initial value problem (1) slightly differs from that of (Zeidler, 1985) and also for the com-
pleteness we present a proof in Appendix A.

From now on, any formal differentiation of uuu with respect to the parameters φφφ is justified by Theorem
1. The theorem provides only a local result regarding the existence and the uniqueness of the solution uuu
of the ivp (1). Consequently, we have to assume that T < a.

3 Connecting the worlds

Measurements yyyi are acquired at discrete time points ti. In statistics, these measurements should not be
tempered with in any way, e.g. they cannot be interpolated, which stands for augmentation.

On the other hand the model (1) is a continuous one and since the adjoint-state method (ASM) deals
extensively with the model and the functional (2), it is necessary to work in continuous setting.

We will connect the discrete data and the continuous model on the level of the likelihood functional.
One can write

∑
i

d(yyyi,ggg(ti,φφφ)) =
∫ T

0
δ{t− ti}d(yyy(t),ggg(t,φφφ))dt (9)

where, by the classical misuse of notation, δ{t− ti} is the Dirac delta function of the set of all measure-
ment times ti. In order to achieve that the above integral is well-defined, we will consider a small positive
ε , such that the functions yyy(t) := yyyi, t ∈ (ti− ε, ti + ε) for all measurement times ti are well defined. We
emphasize, that by doing so, we do not generate new measurements. We merely assume an infinitesi-
mally small interval of their validity. The yyy(t)-values outside of intervals t ∈ (ti−ε, ti+ε) are irrelevant.
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For clarity, we extend the function yyy(t) outside of these intervals by linear interpolation to continuous
functions on whole interval [0,T ] 2.

For the well-posedness of (9), also the model ggg(t,φφφ) has to be at least continuous around each ti. Let
us assume that P ∈L (Rm,Rn), i.e. P is a linear operator from Rm to Rn. The linearity is a sufficient
condition for the validity of

P(uuu(t,φφφ))−P(uuu0(φφφ)) =
∫ t

0
P( fff (t,φφφ ,uuu))dt (10)

which will be needed for the subsequent developments. From now on we write Puuu instead of P(uuu).
Let us point out that this assumption is usually not restrictive in practical applications. The eventual
non-linear transformations can be applied a priori to the data yyy or included in fff . Now, since the solution
uuu to (1) is at least continuously differentiable (Theorem 1) and a linear operator preserves continuity,
ggg(t,φφφ) is trivially continuous.

As a convenience, for any distribution d and sufficiently smooth function f , we denote by 〈d, f 〉 the
duality between them on the time interal [0,T ]. We will also need the scalar product (·, ·) in the Hilbert
space L2([0,T ]). Using this notation, (9) can be rewritten as

∫ T

0
δ{t− ti}d(yyy(t),ggg(t,φφφ))dt = 〈δ{t− ti},d(yyy(t),ggg(t,φφφ))〉 . (11)

Let us introduce short notation {δ} for δ{t − ti}. At last, the equality (9) defines a seminorm on
C([0,T ],Rn), since the l.h.s. is a discrete norm. We denote this seminorm simply as ‖·‖.

Using the gluing notation above, we can prove the following lemma that allows us to evaluate the
first differential of (2) using the solution sss to the sensitivity equation (8).

Lemma 1. Let the assumptions of Theorem 1 be fulfilled for k = 1 and let the metric d be C1. Then the
functional (2) is Fréchet differentiable and the differential D l(φφφ ;hhh) can be expressed as

D l(φφφ ;hhh) = 〈{δ}duuu(yyy,ggg(t,φφφ)),sss〉, (12)

where sss is the unique solution to sensitivity equation (8).

A proof can be found in Appendix A. Moreover, due to the linearity of (8), the differential D l(φφφ ;hhh)
can be easily written in the linearized form D l(φφφ ;hhh) = l′(φφφ)hhh. Since we work in finite dimensional
spaces, the expression

∇l(φφφ) ·hhh := l′(φφφ)hhh for all hhh ∈ Rp (13)

well defines the gradient ∇l(φφφ) of l as an element in Rp for each fixed φφφ , i.e. ∇l : Rp→ Rp.

2Other continuous “interpolation” are possible such as piecewise-linear or by cubic splines, but they are less graphic.
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As explained in Section 2, p initial value problems (8) have to be computed to evaluate ∇l(φφφ) for
some φφφ .

4 Adjoint-state method

In this Section we will introduce adjoint-state method (ASM) for computation of the gradient and the
Hessian of (2). The results are strongly influenced by the peculiar coupling between the discrete mea-
surements and the continuous model (1). Let us directly present the main statement.

Theorem 2. Let the assumptions of Lemma 1 be fulfilled. Then the first Fréchet differential in (12) can
be also written as

D l(φφφ ;hhh) =−vvv∗(0)Jφφφ (uuu0)hhh−
(
Jφφφ ( fff )hhh,vvv

)
(14)

where vvv is the unique solution to the following initial value problem

dtvvv =−J∗uuu( fff )vvv+{δ}duuu(yyy,ggg(t,φφφ)), t ∈ [0,T ],

vvv(T ) = 0.
(15)

A proof is again presented in Appendix A. Obviously, Equation (14) is written in linearized form.
We get

∇l =−vvv∗(0)Jφφφ (uuu0)−
(
vvv,Jφφφ ( fff )

)
, (16)

where the second term on the r.h.s. is a vectorial integral. This is a very efficient way to compute the
gradient. One has to only integrate one adjoint problem (15) and evaluate the expression (16), i.e. to
compute p scalar products in L2([0,T ]).

Let us discuss the result a little. The ivp (15) is a special ODE. First, it has absolutely no physical,
chemical, biological or any other interpretation of the underlying scientific field of equation (1). The
best way to look at it is that it is a special dual problem (see the proof) to the sensitivity equation (8),
which allows us to efficiently compute the gradient of (2) (and the Hessian as well as we will see.)
Then, it is a final time problem to be integrated from T to the initial time 0. It is a linear ODE like
the sensitivity equation. Its r.h.s. contains the term {δ}duuu(yyy,ggg(t,φφφ)), which expresses how quickly the
distance between the data and the model changes when changing the model variable uuu.

Probably the most important fact to note about the ASM is that it operates at a higher level than the
sensitivity equation method. It does not supply the derivative of the state uuu, but directly the one of the
likelihood functional (2). By considering the model together with (2), the efficiency can be achieved.

The numerical issues regarding the integration of (15) will be discussed in Section 5.

Example 1. Let us consider the distance (4) corresponding to the multivariate normal distribution of
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the residual errors. Then the derivative duuu(yyy,ggg(t,φφφ)) in the r.h.s of (15) reads

duuu(yyy,ggg(t,φφφ)) =−P∗
Σ
−1(yyyi−ggg(ti,φφφ)). (17)

The adjoint problem is dependent on the residual covariance matrix Σ and on the post-processing oper-
ator P.

4.1 Evaluating Hessian

Let us depict the second Gatèaux differential of a functional f with respect to xxx in directions hhh1 and hhh2

as D2 f (xxx;hhh1,hhh2). Then, let us introduce notation ςςς := D2uuu(φφφ ;hhh1,hhh2). We will show that ςςς is Fréchet
as well. By formally differentiating (8) one more time with respect to φφφ we obtain that ςςς is a solution to
the following initial value problem

dtςςς = fff φφφφφφ hhh1hhh2 + fff φφφuuuhhh1sss2 + fff uuuφφφ sss1hhh2

+ fff uuuuuusss1sss2 + Juuu( fff )ςςς , t ∈ [0,T ],

ςςς(0) = (uuu0)φφφφφφ
hhh1hhh2

(18)

known as the second sensitivity equation. Here sss1, sss2 are the solutions to (8) for hhh = hhh1, hhh = hhh2, respec-
tively. The second order derivatives in (18) are essentially three-dimensional tensors. In Appendix A the
following lemma is proven.

Lemma 2. Let the assumptions of Theorem 1 be fulfilled for k = 2 and let the metric d be C2. Then the
second Fréchet differential of (2) with respect to the model parameters φφφ can be written as

D2l(φφφ ;hhh1,hhh2) =
〈
{δ},d2

uuuuuusss1sss2
〉
+ 〈ςςς ,{δ}duuu(yyy,ggg(t,φφφ))〉 , (19)

where ςςς is the unique solution to (18). Moreover, the second term in (19) can be rewritten using the
solution vvv to (15) as

〈ςςς ,{δ}duuu(yyy,ggg(t,φφφ))〉=−(uuu0)φφφφφφ
hhh1hhh2 · vvv(0)−

(
fff φφφφφφ hhh1hhh2,vvv

)
−
(

fff φφφuuuhhh1sss2,vvv
)
−
(

fff uuuφφφ sss1hhh2,vvv
)
− ( fff uuuuuusss1sss2,vvv) .

(20)

Solving (18) for hhh1 = eeei, hhh2 = eee j for each i= 1, . . . , p, i= 1, . . . , p yields ςςς =( ∂ 2uuu1
∂φφφ i∂φφφ j

, ∂ 2uuu2
∂φφφ i∂φφφ j

, . . . , ∂ 2uuum
∂φφφ i∂φφφ j

)∗.
It means that to compute the Hessian Hφφφ (uuu), one needs to integrate the second sensitivity equation (18)
p(p+1)/2 times. For that one moreover needs to compute p sensitivities sssi for each h = eeei, i = 1, . . . , p.
The cost is essentially identical to that of the first order finite difference approximation. Again, it is
beneficial if high accuracy is needed.
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On the other hand, the evaluation of the Hessian Hφφφ l of (2) via (20) requires us to only compute one
adjoint problem (15), p sensitivity equations (8) and p(p+1)/2 times the four scalar products from (20).
This is a very efficient and accurate way how to compute the Hessian.

As before with the gradient, we see that the ASM supplies the sensitivity at the level of the functional,
not that of the underling model state uuu.

4.1.1 Hessian via adjoint with finite differences

Let us present an alternative way to efficiently compute the Hessian of (2), which is slightly less accurate
than using (20) but much simpler to implement. The idea is to combine (14) with finite differences as
follows

Hi(l(φφφ))≈
∇l(φφφ +heeei)−∇l(φφφ)

h
, (21)

where Hi stands for the i-th column of H (or row) and h is a small positive real number. We recall that
{eeei : 1 ≤ i ≤ p} is the canonical basis in Rp. Each of p gradients ∇l(φφφ + heeei), 1 ≤ i ≤ p is computed
using (14). Together p+1 adjoint initial value problems (15) need to be integrated.

5 Implementation of ASM

In this Section we will describe an implementation of the ASM presented in Section 4. At the core of the
developments is the adjoint initial value problem (15). Even if it is a rather simple linear ODE-system,
it is a quite difficult one to solve numerically because of its r.h.s. containing the Dirac delta function
source term.

Our implementation closely follows the constructive proof of Theorem 2 in Appendix A. At each
measurement time ti, ODE-solver is stopped, duuu(yyyi,ggg(ti,φφφ)) is explicitly added to the current solution
and then the integration is resumed. We solve a sequence of initial value problems (32) instead of the
original ivp (15).

Unfortunately, the repetitive restarting of the ODE solver has a negative impact on the performance.
The “energy of the measurement residual” is added to the dynamical system at once via the initial con-
dition. The time derivative in (32) is proportional to vvv(ti). The steepness of the solution forces the ODE-
solver to advance in many small time steps, which leads to a high number of iterations. We will see in
Section 6, that the efficiency of ASM is indeed strongly dependent on the number of measurements.

However, equation (32) is a quite simple linear ODE-system, which should be exploitable in multiple
ways. Though the increasing of the numerical efficiency of backward integration while preserving the
statistical rigor is a very interesting scientific goal, it is out of the scope of this contribution and left for
the future research.

We tackle (15) using CVODES solver from the SUNDIALS package (Hindmarsh et al., 2005). The
leading author of the development team, Alan Hindmarsh, is the creator of the famous LSODE - Liver-
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more Solver for Ordinary Differential Equations (Hindmarsh, 1980). CVODE and CVODES are written
in ANSI standard C (LSODE is in Fortran 77). CVODES is an extended CVODE code with both forward
and backward sensitivity abilities (Serban and Hindmarsh, 2005).

Remark 1. Let us imagine, we would not explicitly integrate the Dirac delta function out. It can be
approximated in many different ways, but the most suitable (uninformative) from the statistical point of
view is the approximation using Gaussian

δ
σ
i (t) :=

1
σ
√

2π
e−

(t−ti)
2

2σ2 , (22)

where σ can be seen as a measure of the trust that the measurements have been taken precisely at the
times ti. Let us define δ σ (t) := ∑i δ σ

i (t). Using this approximation, the adjoint system (15) becomes

dtvvv =−J∗uuu( fff )vvv+δ
σ (t)duuu(yyy,ggg(t,φφφ)), t ∈ [0,T ],

vvv(T ) = 0.
(23)

Here, the adjoint problem (23) represents an interesting antagonism between the efficiency of the
ASM and the statistical rigorousness one expects. The higher the trust in the measurement times, the
smaller the σ and consequently higher the derivative of the r.h.s of (23) with respect to time which makes
this dynamical system more and more difficult for an ODE solver to integrate.3

6 Numerical experiments

In this section we will consider for simplicity but without any loss of generality the Gaussian log-
likelihood (5) with Σ = I.

All the numerical experiments presented in this Section are computed in Di f f MEM. It is a package
for the fitting of mixed-effect models constrained by differential equations. The package is under active
development by the authors and the algorithms presented in this paper are only a subset of its abilities.

At present, only ODE dynamical models are supported. Di f f MEM employs CVODE ODE solvers
for quick and robust solution of those models. It uses Eigen linear algebra package (library) to represent
its internal memory containers and to solve underlying linear systems.

For all the experiments in this Section, the ODE solvers’ absolute accuracies are set to 10−14 and the
relative ones to 10−10. These accuracies are sufficient to remove considerations about accuracy of the
ODE-solver from the analysis.

We will study the efficiency and robustness of adjoint-state method (ASM) for computing the deriva-
tives of the likelihood.

3The variance σ2 has here a purely ad hoc use for the above argument. We are not interested if it is prescribed or estimated
from the data.

11



6.1 Linear model

To start, let us consider the classical linear ordinary differential equation (ODE)

dtuuu = Auuu, t ∈ [0,T ],

uuu(0) = uuu0,
(24)

where A is a d×d−dimensional matrix, the elements of which represent the model parameters. This sim-
ple model is ideal toy-example to comprehend the importance of ASM for models with high dimensional
parametric space.

Let us consider diagonal matrix A. Then the dimensions of the parametric space and of the solution
coincide (p = m). Moreover, we can easily calculate the exact solution

uuui = uuu0,ieφφφ it , i = 1, . . . , p, (25)

where φφφ i = Aii.

We consider 13 different dimensions of φφφ , ranging from 2 to 122. For each of them we have randomly
generated 100 parameter-samples φφφ as follows

φφφ i ∼U [−1.1,−0.1], 1≤ i≤ p. (26)

We set uuu0 = 1. The number of observation time points N, regularly spread in [0,100], is set constant to
11.

The corresponding synthetic data yyy are also perturbed as follows:

yyyi ∼U [yyyi,yyyi +10−1 max(yyy)], 1≤ i≤ N, (27)

where max(yyy) ∈ Rn is a constant vector containing at each position the same maximum. We would like
to emphasize that any reasonable perturbation leads to the same results. It is only important that the data
are perturbed outside of the log-likelihood mode.

We have computed the gradient of likelihood using finite differences (FD), the ASM approach (14)
and using the sensitivity equation (SE) (8). We recall that the last two approaches are implemented using
the CVODES forward- and backward- sensitivity abilities and all the thinkable settings are identical to
make comparison as sound as possible. The results are presented in Figure 1.

The timings of FD, ASM and of SE are presented in Figure 1(a). The first conclusion is that our im-
plementation of SE-approach is optimal since the timings of FD and SE more or less coincide. Actually
SE is always a slightly faster method. Given the significantly higher accuracy of SE with respect to FD
(1(d)), it renders FD-approach redundant.

Somewhere around 10 parameters ASM becomes on average more efficient than SE. Moreover, given
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Figure 1: Adjoint gradient for linear ODE model: parameter space dimension
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the non-parametric prediction intervals based on the 100 samples, it is from around 15 parameters virtu-
ally always more time-efficient than SE. This reasoning is conservative since it does not take the corre-
lation between ASM and SE timings into account. Moreover, the variance of timings is for dim(φφφ)> 10
lower for ASM than for SE, see Figure 1(b), rendering timing predictions for ASM more reliable.

The time efficiency of both ASM and SE is negatively impacted by exclusive use of dense matrices
in Di f f MEM. The equations (8), (15), (14) require evaluation of Jacobians Juuu( fff ) and Jφφφ ( fff ). These
are extremely sparse 4. More importantly, because of the dense matrix implementation only rather small
systems can be solved. Sparse matrix implementation is planned for the future versions of Di f f MEM.
Both ASM and SE are influenced to the same degree and the relative comparison holds.

The speedup of ASM vs. SE (1(c)) is roughly linear in the number of the parameters but it slows
down slightly for higher parameter dimensions. The suspected cause here is the cost of memory access
when CVODES evaluates the forward solution uuu during the backwards integration of (15).

The accuracy of both ASM and SE with respect to the exact gradient of the likelihood (5) is presented
in Figure 1(d). Both methods achieve virtually identical accuracy since the forward- and backward-
solvers use the same relative and absolute tolerances.

Now we will examine the efficiency of ASM and SE with respect to the number of time observations.
We fix the dimension of the problem at e.g. dim(φφφ) = 50. The number of time observations dim(y) in
[0,100] fluctuates between 2 and 122 in 12 steps. For each number we again compute 100 gradients
using (8) and (14). The parameters φφφ are again generated using (26). The results are presented in Figure
2.

The SE approach efficiency is essentially independent of the number of time observations (2(a).) The
ASM efficiency however decreases with increasing number of observations. As explained in Section 5,
the backward adjoint integrator needs after each data point a large number of small time steps to account
for the steepness of the adjoint solution vvv. The negative impact is the most clearly visible in Figure 2(c).
For many practically relevant problems 5, the number of measurements is rather low, making this issue
less pronounced. Anyhow, increasing the numerical efficiency of backward integration while preserving
the statistical rigor is obviously a very interesting direction for future research.

Implicitly, since for the diagonal linear model p = n, also the dimension of the solution space plays
a role. But we do not compare the speed and accuracy of the different methods with respect to m or n,
since their complexities with respect to these are the same.

Now, again using the problem (24), we will illustrate the efficiency of computing the Hessian of (5)
with respect to φφφ employing the expression (20). We compare this (SA approach) with Hessian evaluated
using the finite difference approximation (FD) and the one computed using (21) (FA).

Remark 2. First-order Gauss-Newton approximation of the Hessian, where the second term in (19) is
neglected, is not included in the comparison. When the model does not yet well approximate the data,

4The diagonal system (24) is the most sparse system one can think of.
5PK/PD, virology.
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Figure 2: Adjoint gradient for linear ODE model: number of time observations

15



the second order term (20) can be arbitrarily large with respect to the first order term in (19). This is a
well known fact but often overlooked. Let us return to the linear model (24) for a deeper insight. In this
case, the first order approximation F of the Hessian of the likelihood H is

Fk,k =−
N

∑
i=1

eφφφ ktieφφφ ktit2
i , k = 1, . . . , p

Fk,l = 0, k 6= l

(28)

and the second order term S is

Sk,k =−
N

∑
i

(
eφφφ kti− yyyi

)
eφφφ ktit2

i , k = 1, . . . , p

Sk,l = 0, k 6= l.

(29)

We see that the first order approximation F carries absolutely no information about how far the solution
is from the data. The Gauss-Newton approximation error can thus be arbitrarily large when yyy is not well
approximated by the solution eφφφ t , especially for the values corresponding to small measurement times.

This is for example exploited in the well-known Levenberg-Marquardt method for the least-square
minimization (Moré, 1978), which dynamically switches from the gradient descent method (GD) to the
Gauss-Newton (GN) method. The GD is used to get sufficiently close to a minimum, so that the GN
approximation is reliable.

The overall setup stays identical to the one used for the gradient, i.e. the one corresponding to Figure
1. For convenience, we consider a shorter parameter range dim(φφφ) ∈ [2,52], since the finite difference
approximation of Hessian, to which we compare the ASM, has quadratic complexity in p. It makes the
experiments more time prohibiting in comparison to the gradient. The results are depicted in Figure 3.

FD-adjoint, i.e. approximating hessians using (21), is the most time-efficient approach (Figure 3(a)).
The speedup with respect to the finite difference approximation (FD) is linear in dim(φφφ) as expected
(Figure 3(c)). The FD-adjoint Hessian accuracy is usually sufficient (Figure 3(d)) and moreover it is
behaving well as a function of the dimension of the parametric space.

If higher accuracy up to machine precision is desirable, one can compute Hessian using (20), i.e.
using SA-approach. Our SA-implementation is however clearly slower than the FD-adjoint despite of a
rather optimal coding. FD-adjoint is superior time-wise mainly due to its simplicity.

To conserve space, we do not include any experiments for Hessian with respect to the number of
measurement times N. But obviously, for the Hessian computed via FD-adjoint, the results for gradient
are directly applicable. We will analyze the dependence on N for the following model in Section 6.2.
Here we have focused on p− scaling only, which cannot be tested for the realistic model.
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Table 1: Parameters of the latent dynamic HIV model
φφφ λ γ µNI µL µA µV p αL π ηNRT I ηPI
φφφ 0 2.61 .0021 .0085 .0092 .289 30 641 1.6e−5 .443 .90 .99

6.2 Latent dynamic HIV model

Now we are going to assess the efficiency and accuracy of ASM for a more realistic model - latent
dynamic HIV model from Lavielle et al. (2011):

dtTNI = λ − (1−ηNRT I)γTNIVI−µNITNI,

dtTL = (1−π)(1−ηNRT I)γTNIVI−αLTL−µLTL,

dtTA = π(1−ηNRT I)γTNIVI +αLTL−µATA,

dtVI = (1−ηPI)pTA−µVVI,

dtVNI = ηPI pTA−µVVNI,

(30)

where TNI is the number of not-infected CD4 cells, TL of latent infected CD4 cells and TA the number
of active infected CD4 cells producing new virons. The number of infectious viruses is VI and the non-
infectious VNI . The 11 parameters φφφ represent mostly rates of change. The two of them ηNRT I,ηPI ∈ [0,1]
represent the efficacies of two types of antiviral therapies. The available measurements yyyi are restricted to
the cumulative counts of CD4 cells and the virons, i.e. Vi j =VI +VNI and Ti j = TNI +TL+TA respectively.
For the details see Lavielle et al. (2011). We have p = 11, m = 5 and n = 2.

The setup of the experiments stays rather similar to the previous ones. The parameters are generated
randomly around φφφ 0 which is presented in Table 1 as follows:

φφφ i ∼U [0.95φφφ 0,i,1.05φφφ 0,i], 1≤ i≤ p. (31)

The efficacies ηNRT I and ηPI can be sometimes generated out of the allowed range [0,1). We project
them back:

φφφ i = min(φφφ i,0.999), i ∈ {10,11}.

The corresponding synthetic measurements yyy are perturbed using (27).
For the HIV model p is fixed and we can supply the results only with respect to N. We again observe

in Figure 4(a) that the efficiency of (16) is strongly dependent on the number of observations. For up
to 5 observations it is more efficient than the sensitivity equation (SE) approach. Thus even for rather
small models, the ASM approach for the computation of the gradient of (2) can be advised for certain
applications, such as mixed effects modeling in pharmacokinetics and pharmacodynamics, as in (Lavielle
et al., 2011). However, for small models with a high number of observation points, the SE approach is
clearly more efficient. Accuracy-wise, both approaches are equivalent (Figure 4(d)).
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In Figure 5 the corresponding results for the Hessian computation of (2) are presented. Three ways
are compared: finite difference (FD) approximation, the ASM approach (SA) using (19) and (20) and
the mixed approach (FA) using (21).

First, again as for the diagonal linear model in Section 6.1, the efficiency of the FD approximation
is virtually independent of the number of measurements (Figure 5(a)). This is not the case for the SA
and FA approaches. However, due to its simplicity, the mixed FA approach is clearly more efficient than
SA. It is more efficient than the FD approach up to 5 measurements, which corresponds to the previous
results for the computation of the gradient.

The accuracies in Figure 5(d) are compared to the results of SA approach, as no exact solution is
available. For the linear model (24), this approach was shown to be accurate up to the machine precision.
The mixed FA approach achieves stable accuracies around 10−6, two orders of magnitude better then the
full finite difference approximation.

7 Conclusions

We have derived and analyzed the adjoint-state method for computation of the gradient and the Hessian
of likelihood functionals for time series data modeled by ordinary differential equations. We interfaced
the discrete data and the continuous model on the level of likelihood functional, using the concept of
point-wise distributions. The resulting adjoint problem (15) then contains a Dirac delta source corre-
sponding to individual measurement times. The developments are fully supported by the corresponding
theoretical results. The implementation of a solver to (15) closely follows the constructive proof of its
well-posedness.

Then, we compared the efficiency of the resulting ASM with finite differences and sensitivity equa-
tion (SE) approaches, both for the gradient and the Hessian. First, the implementation of SE approach
is so efficient, that it renders the finite difference approximation practically obsolete, due to its superior
accuracy. Second, the ASM efficiency is dependent on the number of measurement times, which is not
the case for SE approach. For models with a high-number of parameters and a small number of mea-
surement times, the ASM is a clear winner. It starts to be competitive even for rather small models like
the latent dynamic HIV model from Section 6.2 (11 parameters, 6 measurement times).

In future, we plan a sparse matrix code rewrite, which would allow for solution to bigger ODE
systems and also a computationally more efficient implementation. Then, the preconditioning of Newton
solver step during the CVODES integration of (15) is an interesting possibility to speed up the ASM.

SUPPLEMENTAL MATERIALS

Appendix A: Appendix containing the proof of the presented results

19



N

5 10 15 20

lo
g

(t
im

e
[s

])

-2.6

-2.4

-2.2

-2

-1.8

-1.6
Timings (a)

Adjoint mean time

Adjoint prediction interval

Sensitivity mean time

Sensitivity prediction interval

N

5 10 15 20

lo
g

(t
im

e
[s

])

-6.6

-6.55

-6.5

-6.45

-6.4

-6.35

-6.3

-6.25

-6.2

-6.15
Variance of the timings (b)

Adjoint

Sensitivity

N

5 10 15 20

x
 t

im
e

s

0

0.5

1

1.5

2

2.5
Speedup (c)

Adjoint vs. sensitivity

N

5 10 15 20

lo
g

(r
e

la
ti
v
e

 a
c
c
u

ra
c
y
)

-20

-18

-16

-14

-12

-10

-8
Accuracy (d)

Adjoint (with respect to sensitivity)

Adjoint variance

Figure 4: Adjoint gradient for HIV model: number of time observations

20



N

0 5 10 15 20

lo
g

(t
im

e
[s

])

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2
Timings (a)

Sensitivity-adjoint mean time

Sensitivity-adjoint prediction interval

Finite difference mean time

Finite difference prediction interval

FD-adjoint mean time

FD-adjoint prediction interval

N

0 5 10 15 20

lo
g

(t
im

e
[s

])

-4.6

-4.4

-4.2

-4

-3.8

-3.6
Variance of the timings (b)

Sensitivity-adjoint

Finite differences

FD-adjoint

N

0 5 10 15 20

x
 t

im
e

s

0

0.5

1

1.5

2

2.5
Speedup (c)

Sensitivity-adjoint vs. FD

FD-adjoint vs. FD

N

0 5 10 15 20

lo
g

(r
e

la
ti
v
e

 a
c
c
u

ra
c
y
)

-14

-12

-10

-8

-6

-4

-2
Accuracy (d)

Finite differences

Finite differences variance

FD-adjoint

FD-adjoint variance
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A Proofs

Proof of Theorem 1

First, when compared with Theorem 4.D from Zeidler (1985) we work with X =Rm and P =Rp. Those
are complete normed vector spaces i.e. they are Banach spaces. Second, the initial condition is dependent
only on parameter φφφ , not on any free parameter y as in Theorem 4.D.

Set J = [−1,1]. Let us do the following rescaling: t = sa, zzz(s) := uuu(as)− uuu0(φφφ) for all s ∈ J. Then
(1) is equivalent to

zzz′(s)−a fff (as,zzz(s)+uuu0(φφφ),φφφ) = 000 for all s ∈ J,zzz(0) = 000.

This can be written as an operator equation F(zzz,a,φφφ) = 0 with the operator F : ZZZ×AAA→WWW and spaces
ZZZ = {zzz ∈ CCC1(J,Rm) : zzz(0) = 000}, WWW = C(J,Rm). The space AAA contains all the parameters (a,φφφ), i.e.
AAA = R×Rp.

Set qqq = (000,0,φφφ). Both F and Fz are continuous at qqq. Obviously, F(qqq) = 000 and Fzzz(qqq)zzz = zzz′. The
crucial observation is that for every www ∈WWW , there exists exactly one zzz ∈ ZZZ with zzz′ = www, namely zzz(s) =∫ s

0 www(t)dt. Hence Fzzz(qqq) : ZZZ→WWW is bijective. The implicit function theorem yields the conclusions (see
e.g. Theorem 4.B in Zeidler (1985)). �

Proof of Lemma 1

After realizing that l depends on φφφ only through uuu, (12) is formally a direct application of the chain rule
(duuu denotes the derivative of the metric with respect to the model state uuu.)

The r.h.s. of (12) is a well-posed finite expression. First, we have assumed that the metric is suffi-
ciently smooth, thus duuu is continuous. Second, sss is continuous as well owing to Theorem 1. A distribution
can be rescaled by any at least continuous function, as here {δ} by duuu.

Thus, the first differential on the l.h.s of (12) exists as well. It is moreover continuous, i.e. it is
Fréchet. 6 �

Proof of Theorem 2

First, let us assume that we have already constructed a unique solution vvv to (15) up to a certain mea-
surement point ti. The adjoint problem is solved backwards in time. Consequently, we will construct its
prolongation on [ti, ti−1).

Let vvv+i be the ODE solution just before integrating the measurement at time ti, i.e. at time t+i . We

6An alternative argumentation could employ equivalence (9).
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simply stop the integration at t+i , add duuu(yyyi,ggg(ti,φφφ)) to vvv+i and solve

dtvvv =−J∗uuu( fff )vvv, t ∈ (ti, ti−1),

vvv(ti) = vvv+i +duuu(yyyi,ggg(ti,φφφ)).
(32)

This is a simple linear ODE with a continuous coefficient J∗uuu( fff ), since f ∈CCC1. The classical results yield
the global solution on (ti, ti−1) (see e.g. Theorem 5.1 and Theorem 5.2 from (Coddington and Levinson,
1955).) This concludes the proof of the existence and uniqueness.

Now, we prove (14). Let us without a loss of generality assume that there are no measurements in
times 0 and T. It is a well-known result of theory of distributions (in the sense of functional analysis),
that the classical integration by part formula

∫ T

0
dtvvvwww dt = [vvvwww]T0 −

∫ T

0
vvvdtwww dt (33)

is valid for www∈CCC1 even if the derivative dtvvv exists on [0,T ] only in a weak sense, i.e. almost everywhere.
Actually, (33) is the definition of the weak derivative of vvv taking only www ∈ CCC1

0([0,T ]). Consequently,
since sss ∈CCC1([0,T ]), we can safely proceed as follows

〈sss,{δ}duuu(yyy,ggg(t,φφφ))〉
(15)
= 〈sss,dtvvv+ J∗uuu( fff )vvv〉

(8)
=−vvv∗(0)Jφφφ (uuu0)hhh− (dtsss− Juuu( fff )sss,vvv)
(8)
=−vvv∗(0)Jφφφ (uuu0)hhh−

(
Jφφφ ( fff )hhh,vvv

)
.�

(34)

Proof of Lemma 2

The existence and uniqueness of ςςς is a direct results of Theorem 1. Now, (20) is derived as follows:

〈ςςς ,{δ}duuu(yyy,ggg(t,φφφ))〉
(15)
= 〈ςςς ,dtvvv+ J∗uuu( fff )vvv〉
(15),(18)

= −(uuu0)φφφφφφ
hhh1hhh2 · vvv(0)

− (dtςςς ,vvv)+(Juuu( fff )ςςς ,vvv) .

(35)

This after substituting for Juuu( fff )ςςς from (18) directly yields (20). Analogically to the proof of Theorem
2, we needed ςςς ∈CCC1([0,T ]) to be able to integrate by parts.�
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