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On the Examination of the Reliability of Statistical Software for Estimating Regression 
Models with Discrete Dependent Variables 

Abstract 

The numerical reliability of statistical software packages was examined for logistic regression 

models, including SAS 9.4, MATLAB R2015b, R 3.3.1., Stata/IC 14, and LIMDEP 10. Thirty 

unique benchmark datasets were created by simulating alternative conditional binary choice 

processes examining rare events, near-multicollinearity, quasi-separation and nonlinear 

transformation of variables. Certified benchmark estimates for parameters and standard errors of 

associated datasets were obtained following standards set-out by the National Institute of 

Standards and Technology. The logarithm of relative error was used as a measure of accuracy for 

numerical reliability. The paper finds that choice of software package and procedure for estimating 

logistic regressions will impact accuracy and use of default settings in these packages may 

significantly reduce reliability of results in different situations. 
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On the Examination of the Reliability of Statistical Software for Estimating Regression 
Models with Discrete Dependent Variables 

1. INTRODUCTION 

The primary objectives of statistical software are to provide descriptive statistical analysis of 

data and estimate statistical models. Researchers use the results from statistical software 

packages for policy analysis, prediction, inference, etc. Researchers often assume the 

estimated results are reliable, meaning the results for statistical models are numerically 

accurate.  Numerical accuracy of results, regardless of the use of the statistical software 

package, is one of the crucial factors for credible research. However, research has shown that 

different statistical packages may provide different estimated results for the same problem 

(McCullough and Vinod 1999). A scenario may exist where two researchers are solving the 

same problem with the same data and methods, but using different statistical packages and 

find different estimates. In such a case, either the statistical packages (or at least one of them) 

may be inaccurate or one of the authors (or both) did not properly estimate the statistical 

model or procedures (McCullough 1998; Odeh et al. 2010). In the former case, the problem 

can be avoided by utilizing statistical software packages that have undergone rigorous and 

passable assessment of the numerical accuracy of the estimation routines being used.    

However, in most cases, the results are considered inaccurate either due to data problems or 

statistical procedures rather than considering the statistical software as a possible source of 

error. In general, researchers assume that the built-in estimation procedures of software 

packages are reliable and interpret the results assuming they were correctly estimated (Odeh et 

al. 2010).  

Researchers often focus on user-friendliness and speed of software packages, often 

ignoring the numerical accuracy of software, as they trust the software developer has ensured 
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this (McCullough 2000b). If the estimated results are not reliable, then it has strong negative 

implications for policy analysis, statistical inference, prediction etc., which weakens the work 

of applied researchers (Tomek 1993). Given the nonlinear nature and the widespread use of 

discrete choice models, these models could be prone to numerical issues as evidenced by 

McCullough and Vinod (2003) and Stokes (2004). McCullough and Vinod (2003) state “from 

the fact that a computer software package produces a solution to an estimation problem, it 

does not necessarily follow that the solution is accurate, or even that a solution exists (p. 

873).” Estimates can be sensitive to the nonlinear algorithms or solvers used to estimate the 

results and the associated parameters, including starting points, line search procedures, the 

way in which derivatives are computed, and the termination/convergence criteria 

(McCullough and Vinod 2003; Odeh et al. 2010).1 The two main problems for many nonlinear 

models are: (i) that an algorithm provides solutions while another may fail, and (ii) even if 

both algorithms provide solutions, one may be more numerically accurate (McCullough and 

Renfro 2000). Thus, reliability of estimation results and subsequent prediction and inference 

depends on the numerical accuracy of the estimation procedure and associated nonlinear 

algorithm used.  

The purpose of this paper is to (i) develop a suite of benchmark datasets for testing 

logistic regression procedures using maximum likelihood estimation, and (ii) examine the 

numerical reliability of statistical software packages used for the estimation of logistic 

regression models. The procedures outlined in the paper were used to develop thirty unique 

and varying benchmark datasets to provide a robust method for testing the reliability of 

 
1 In any empirical work, researchers do not know true values, thus cross validation of research results 

becomes critical for verifying the numerical reliability of estimates from nonlinear models. 
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logistic regression estimation procedures. These benchmark datasets were then used to assess 

the procedures in five commonly used statistical software packages: SAS 9.4, MATLAB 

R2015b, R 3.3.1, Stata/IC 14, and LIMDEP 10. Assessment of statistical software examined 

the numerical accuracy of the results (parameter estimates and standard errors) estimated by 

these packages using the benchmark datasets produced with available algorithms, multiple 

starting points, multiple convergence criteria, different estimation commands/procedures and 

whether errors are correctly identified and reported during estimation. To the authors’ 

knowledge no systematic attempt to assess the actual statistical reliability of econometric and 

statistical software procedures for estimating discrete choice models based on certified results 

has been undertaken. This paper starts with the basic logistic regression model for this 

assessment and the reliability results here will likely apply and extend to other discrete choice 

techniques in the literature, including other binary choice models, multinomial regression 

models, and other logistic regression techniques.   

 

2. BACKGROUND 

Many past studies have examined the reliability of software packages including SAS, 

MATLAB, STATA, and LIMDEP. (e.g. Musa et al. 1987; McCullough 1998, 1999b; 

Kolenikov 2001; Keeling and Pavur 2007; Odeh et al. 2010). These studies have mainly 

focused on linear and nonlinear regression models using National Institute of Science and 

Technology (NIST) benchmark datasets (NIST 2014). These datasets do not consider models 

with discrete dependent variables. Thus, there has not been any systematic examination of the 

numerical reliability of software packages for discrete choice models, including logistic 

regression estimation routines.  
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Huber and Train (2001) examined similarities and differences between classical and 

Bayesian methods for mixed logit models and found that Bayesian approaches had benefits for 

numerical accuracy in small samples. However, this study did not examine the reliability of 

software. Oster (2002, 2003) used exact methods to compare StatXact, LogXact, Stata, 

Testimate, and SAS based on hardware requirements, documentation, data entry, estimation 

results etc. Chang and Lusk (2011) compared the maximum likelihood estimator for SAS 9.2, 

LIMDEP 9 (contains NLOGIT 4), and Hole’s model (a user written add-in module) for 

STATA 11 to examine the accuracy of the mixed logit model estimation using Monte Carlo 

simulation methods. They used the default algorithm and tolerance level for each software 

package. Results showed that the solution procedures reached convergence, except for Hole’s 

model when sample size was 200 observations. In addition, all packages provided accurate 

estimates of willingness-to-pay measures, but bias was observed when the sample size was 

less than 200 observations.  Chang and Lusk (2011) essentially compared the performance of 

different software packages against each other, but did not use certified values from a certified 

benchmark dataset to assess the reliability of the procedures examined. McKenzie and 

Takaoka (2003) found that LIMDEP 8.0 was unable to indicate a problem with an unidentified 

probit/logit model, given that the parameters of the probit model being examined were not able 

to be identified (i.e. estimated).  

Logistic regression is one of the most widely used discrete choice models in a large 

number of disciplines. The nonlinear benchmark tests from NIST examining the accuracy of 

nonlinear least squares problems could potentially provide an assessment of maximum 

likelihood estimators, however, they are not designed for them (Altman et al. 2004). Cameron 

and Trivedi (2009) find that the nonlinear least squares (NLS) estimator for models arising 
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from the simple exponential family (i.e. of which the logistic regression is a member of) when 

the conditional mean is nonlinear and heteroskedastic errors are present does not provide 

accurate estimates. This arises from the fact that the NLS estimator can be significantly less 

efficient than MLE. In addition, the standard error estimates may not be valid due to the 

presence of heteroskedastic errors. Thus, logistic (and other discrete choice) regression model 

estimation procedures (using maximum likelihood estimation) in software packages may 

require the use of additional benchmark testing beyond those traditionally used to test 

nonlinear least squares procedures, because the logistic regression model is a specialized 

model of the maximum likelihood estimator (McCullough 1999a; NIST 2014).  

The two main contributions of this paper are the development of a unique set of 

benchmark datasets that can be used to test additional and newer versions of statistical 

software and a comparative examination of the numerical reliability of alternative software 

packages. The results from this study show the strengths and weaknesses of software packages 

that provide logistic regression estimation procedures. The software vendors may address 

inadequacies if they exist. Due to past reliability studies, software vendors have fixed 

problems in newer versions of their software. For example, results obtained for nonlinear 

regression estimates from LIMDEP 8.0 are better than LIMDEP 7.0 (Odeh et al. 2010). In 

addition, researchers can use the information to choose a software package based on the 

properties of their data. The benchmark datasets developed highlight some of main concerns 

encountered in estimation of logistic regression models (e.g. low cut-off or probability of 

occurrence, small samples, multicollinearity, and quasi-separation). 
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3. LOGISTIC REGRESSION MODEL 

Let 𝑌  be a Bernoulli random variable with mean 𝐸 𝑌 𝑝 𝐏 𝑌 1  and variance equal 

to 𝑝 1 𝑝 . Let 𝐗  be a 𝐾 1  vector of explanatory variables. Then the conditional 

probability (or mean) is given by 𝐏 𝑌 1|𝐗 1 𝑒𝑥𝑝 𝜂 𝐗𝒊; 𝜷 , where 𝜂 𝐗𝒊; 𝜷  is 

referred to as the predictor or index function. This can be represented as a statistical model: 

𝑌 1 𝑒𝑥𝑝 𝜂 𝐗𝒊; 𝜷 𝑢 ,    (1) 

where 𝑢  is a zero mean IID random error term.  The functional form of 𝜂 𝐗𝒊; 𝜷  is usually 

chosen to be linear in the explanatory variables, parameters or both, but is dependent upon 

the distributional properties of the explanatory variables (Bergtold et al. 2010; Kay and Little 

1987).  

While a number of alternative estimators for the logistic regression model are 

available, the most commonly used is the maximum likelihood estimator (MLE), given the 

distributional properties of the dependent variable are known. The log-likelihood function 

used to estimate the logistic regression model given by (1) is: 

𝐿 𝜷; 𝑌 , 𝐗𝒊 ∑ 𝑌 ln 𝐹 𝐗𝒊; 𝜷 1 𝑌 ln 1 𝐹 𝐗𝒊; 𝜷 ,  (2) 

where 𝐹 𝐗𝒊; 𝜷 1 𝑒𝑥𝑝 𝜂 𝐗𝒊; 𝜷 . To find the estimates of 𝜷, the log-likelihood 

function given by equation (2) is maximized given the data. Because the log-likelihood function 

is non-linear in the parameters and a closed-form solution for the MLE estimator of  𝜷 may not 

be available, iterative numerical methods are used to maximize the log-likelihood function and 

obtain parameter estimates. These methods require the use of a nonlinear algorithm that has 

various components: starting point, choice of search procedure, gradient calculation procedure, 

and termination criteria (Train 2003). Each of these chosen components may have an effect on 
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the numerical accuracy and reliability of model estimation. An algorithm either uses the gradient 

of the log-likelihood function: 

    ∇ 𝐿 ∑ 𝑌 𝐹 𝐗𝒊; 𝜷 𝐗𝒊,     (3) 

or a numerical approximation of it during optimization. Once an optimal solution or estimate of 

𝜷 is obtained, the asymptotic covariance matrix of the MLE estimator for 𝜷 may be calculated 

using the inverse of the Hessian of the log-likelihood function: 

   Cov 𝜷 ∑ 𝐹 𝐗𝒊; 𝜷𝒊 𝟏 𝐹 𝐗𝒊; 𝜷 𝐗𝒊𝐗𝒊
𝟏
.  (4) 

This estimator can be calculated using the analytic solution given by equation (4) or using a 

numerical approximation of it (Cameron and Trivedi 2009).   

3. BENCHMARK DATA SETS 

This section provides the methods used to define a set of benchmark datasets that can be used 

to test the reliability of logistic regression estimation procedures in statistical software 

packages. McCullough and Renfro (1998) state that benchmark datasets should be chosen to 

answer two questions: (1) “What models can software packages estimate?” and (2) “What 

models should they be able to estimate?” (p. 60). Following McCullough and Renfro (1998), a 

suite of benchmark datasets are developed to estimate logistic regression models with 

predictor (index) functions that are linear in the parameters (𝜷), under the assumption that 

standard statistical software packages should be able to estimate such models. Furthermore, to 

examine the extent to which alternative statistical software packages can reliably estimate such 

models, a suite of benchmark datasets are developed using different models that take into 

account a number of issues that arise in estimation of logistic regression models including 

functional form, low probability of occurrence (cut-off value), near-multicollinearity between 
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regressors, and quasi-separation.2 The development of thirty benchmark datasets that examine 

different estimation issues involving estimation of logistic regression models provides a 

starting point to examine the reliability of software packages that provide discrete choice 

model estimation routines and to help establish a set of standards for statistical software 

implementing such procedures. 

 

3.1 Data Generation 

  Arnold et al. (1999) show that the existence of the logistic regression model depends on the 

compatibility between the conditional distribution 𝑓 𝑌 |𝐗𝒊; 𝜷  and the inverse conditional 

distribution𝑓 𝐗𝒊|𝑌 ; 𝜽 . That is: 𝑓 𝑌 |𝐗𝒊; 𝜷 𝑓 𝐗𝒊; 𝝑 𝑓 𝐗𝒊|𝑌 ; 𝜽 𝑓 𝑌𝒊; 𝑝 𝑓 𝑌𝒊, 𝐗𝒊; 𝝋 , 

where 𝑓 𝐗𝒊; 𝝑  is the multivariate marginal distribution of 𝐗𝒊, 𝑓 𝑌𝒊; 𝑝  is the marginal 

distribution of 𝑌𝒊; 𝑓 𝑌𝒊, 𝐗𝒊; 𝝋  is the multivariate distribution of 𝑌𝒊 and 𝐗𝒊; and 𝝑 and 𝝋 are 

appropriate sets of parameters. Thus, data can be generated using the conditional distribution 

𝑓 𝑌 |𝐗𝒊; 𝜷  and marginal distribution 𝑓 𝐗𝒊; 𝝑  or the inverse conditional distribution 

𝑓 𝐗𝒊|𝑌 ; 𝜽  and marginal distribution 𝑓 𝑌𝒊; 𝑝 . Bergtold et al. (2010) and Scrucca and 

Weisberg (2004) generate data for the logistic regression model using the inverse conditional 

distribution and marginal distribution of 𝑌𝒊. This allows for a more parsimonious method of 

generating data as it provides a systematic way to specify the predictor (index) function, 

capturing potential nonlinear terms that are based on the distributional assumptions concerning 

𝐗𝒊. This arises from the result that 𝜂 𝐗𝒊; 𝜷 ln 𝐗𝒊| ;𝜽

𝐗𝒊| ;𝜽
ln  (Bergtold et al. 

 
2 Quasi-separation (also known as quasi complete separation) occurs when a collection of covariates can 
almost completely separate the outcome groups in the discrete choice model. That is, only a few 
observations are left that make the outcome groups overlap or in terms of discriminant analysis, the 
discriminant can almost perfectly delineate the outcome groups (Hosmer et al. 2013).  
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2010; Kay and Little 1987). Following the inverse conditional approach, data are generated in 

two steps. First p is specified and a random sequence of data is generated for 𝑌𝒊 based on 

𝑓 𝑌𝒊; 𝑝 , which is a Bernoulli distribution. Second, using the randomly generated Yi, data is 

generated for Xi using the assumed distribution for 𝑓 𝐗𝒊|𝑌 ; 𝜽  (Bergtold et al. 2010).     

  Thirty benchmark datasets are generated using the inverse conditional approach for 

reliability testing purposes. Twenty-nine of these datasets are randomly generated using 

MATLAB as described above. The final dataset is empirical survey data from a survey 

examining conservation practice adoption on farms in Alabama. This final dataset was used to 

provide an example with a significant number of covariates. Table 1 summarizes the thirty 

benchmark data sets and associated parameters used for data generation. The table provides 

the dataset name, cutoff point, functional form of the predictor, level of multicollinearity 

between covariates, number of observations, and amount of variation within covariates (if 

relevant). The datasets vary in difficulty by changing the conditions under which they were 

generated. These conditions include: changing the P(Y = 1) (i.e. the cutoff value); varying the 

amount of noise or variation in the data (through the variance parameters of the dataset); 

varying the degree of near multicollinearity between covariates; introducing different 

nonlinear transformations with respect to the explanatory variables into the predictor/index 

function; and introducing quasi-separation into a dataset. For example, a number of datasets 

were generated with explanatory variables that were nearly collinear by changing the degree of 

correlation between covariates from 0.75 to 0.995. Collinearity is a significant challenge in 

environmental, economic and ecological research and different software handles it differently. 

Similarly, for cut-off points, we generated datasets with cutoffs (i.e. P(Yi = 1)) from 0.015% to 

19% with different size datasets. The cutoff value for the cutoff4 benchmark dataset was set at 
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0.015%, which may arise in modeling of extreme events, such as credit default or credit card 

fraud. Cases may exist where data has a significant amount of variation. The multivariate3 

dataset is generated with covariates that have significantly high variability, modeled using 

high variances and moderate correlations between covariates. Other benchmark datasets can 

help to evaluate models with index functions that are nonlinear in the covariates, such as 

multivariate1 and multivariate2, as well as multivariate5 and multivariate6.   

 

3.2 Estimation of Certified Parameter Values  

For each benchmark dataset and associated logistic regression model, certified values for the 

parameters (𝜷), associated asymptotic standard errors, and log-likelihood function are 

estimated using procedures designed following those used for the Statistical Reference 

Datasets (StRD) from the National Institute of Standards and Technology (NIST) (NIST 

2014). All benchmark estimation was completed using Mathematic 7.0 (Wolfram 2015b). 

Mathematica has the ability to do “extreme precise computations via arbitrary precision 

calculation (McCullough 2000a, p. 200).” That is, this software package can perform the 

optimization of the log-likelihood function with high precision and offers a number of 

algorithmic options. McCullough (2000a) found that earlier versions were able to perfectly 

replicate the certified values (reported to 11 significant digits) for the StRD nonlinear least 

squares benchmark datasets, by setting Mathematic 4.0 to do all calculations with 30 

significant digits. The authors were able to replicate these results with Mathematica 7.0. Given 

this performance, Mathematica 7.0 was used to obtain the certified values for this study.   

Following NIST standards, certified values for the parameters (𝜷), associated 

asymptotic standard errors, and log-likelihood function were generated manually using code 
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generated by the authors. To simulate and maintain high precision during estimation, all 

calculations were set to be calculated with 50 significant digits.  For each benchmark dataset 

generated, the associated log-likelihood function given in equation (2) was optimized using 

three alternative algorithms in Mathematica 7.0 at two alternative starting points: Broyden-

Fletcher-Goldfarb-Shanno Quasi-Newton algorithm; Conjugate Gradient algorithm using the 

Fletcher and Reeves update; and a derivative free approach called the principal axis method 

(Wolfram 2015a). The two starting points for parameter estimates are (i) the null vector with 

the value for the intercept replaced by the unconditional log odds, and (ii) the estimated 

parameters from the associated linear probability model. For derivative based algorithms, the 

gradient was calculated analytically using equation (3), providing greater precision than 

numerical derivative approximation methods (McCullough 1998). Parameter estimates and the 

optimal value of the log-likelihood function were certified when estimates from two of the 

three algorithms used matched, having 11 or more significant digits in common. Certified 

asymptotic standard errors were then estimated analytically at the same level of precision in 

Mathematica 7.0 (i.e. 50 digits of carry-through) using equation (4) once certified parameter 

estimates were obtained. Full descriptions of the benchmark datasets with certified values and 

the generated data are available for all 30 benchmark datasets as a supplementary file to this 

paper.   

 

4. RELIABILITY ASSESSMENT METHODS 

We assess five commonly used software packages in statistics and econometrics that are used 

to estimate logistic regression models: (i) SAS version 9.4, SAS Institute Inc., release July 10, 

2013; (ii) MATLAB version 8.6.0.267246 (R2015b), MathWorks, release September 3, 2015; 
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(iii) R version 3.3.1, R Core Team, release June 21, 2016; (iv) STATA/IC version 14, 

StataCorp LP, release  April 7, 2015; and (v) LIMDEP version 10, Econometric Software Inc. 

(which contains NLOGIT version 5), release June 8, 2012.  Our analysis was performed on a 

personal computer with 64-bit operating system on Microsoft Windows 7 Professional Service 

Pack 1. Each of these packages and the associated logistic regression estimation routines are 

summarized in Table 2. For both SAS and STATA, multiple procedures were examined to 

estimate logistic regression models. The choice of these estimation procedures within the 

packages was based upon the ability to output actual estimates at the level of precision 

computed by the program. Thus, the sets of procedures examined are not necessarily 

exhaustive of the procedures that can estimate logistic regression models. For example, in 

SAS, other logistic regression procedures exist, including PROC SURVEY LOGISTIC and 

PROC GENMOD. 

   To examine the numerical reliability of statistical software, the logarithm of relative 

error (LRE) is used as a measure of accuracy following McCullough (1998) and other 

reliability studies (e.g. Odeh et al. 2010). The LRE is calculated as:  

𝐿𝑅𝐸  𝑙𝑜𝑔
|𝑞 𝑐|

|𝑐|
 

where q denotes the estimated value and c stands for the certified (correct) value. If the 

certified value is zero, the LRE measure is undefined. In such a case, the log absolute error 

(LAE = −log10|q|) can be used in its place. The first nonzero digit and the digits succeeding it 

are considered. The LRE measures the number of significant digits of the estimated results in 

comparison to the certified value. For example, an LRE value of 6.5 indicates that the 

estimated result is accurate to six significant digits. The higher the LRE score, the more 

accurate the estimate. If a program reports a negative LRE value, meaning the estimated result 



15 

 

is far from the certified value, the LRE is reported as zero (McCullough and Wilson 1999). 

For non-linear models, McCullough (1998) uses a minimum LRE score of 4 as a threshold to 

indicate if a software program is accurate. If more accuracy is needed, the results can be 

reinterpreted with a higher minimum LRE threshold (e.g. 6). For each benchmark dataset, a 

number of parameter estimates and standard errors are estimated. The LREs for each 

parameter and standard error are calculated and the minimum LRE value obtained for the 

estimated parameters and associated standard errors are reported. The minimum LRE, which 

represents the least accurate estimated parameter, is reported to indicate how far the estimated 

solution was from obtaining the certified solution. Reporting an average or a range of values 

may understate how inaccurate an estimated solution may be. Full reliability results are 

available from the authors upon request.   

Users estimating logistic regression models may consider changing software 

settings/options, such as choice of algorithm, choice of different starting points, lowering 

tolerance levels for termination criteria, and use of analytic derivatives to improve accuracy. A 

program that fails to give the minimum level of accuracy may give less accurate results for 

more difficult problems. Thus, for each software package and logistic regression estimation 

command examined, the benchmark dataset models are estimated using the (i) default settings 

(i.e. the naïve approach) and (ii) user determined settings. Optional user settings were 

determined by adjusting the choice of algorithm and level of convergence required for 

termination to achieve the highest obtainable minimum LRE using the following procedures 

(when these could be changed by the user). For each statistical procedure and software 

package, each benchmark dataset was estimated for each available algorithm for each starting 

point. For example, each benchmark data set was estimated using PROC LOGISTIC in SAS 
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9.4 using both the Fisher’s Scoring and Newton-Raphson algorithms for each starting point. 

To determine the optimal user setting for the tolerance level, for each benchmark dataset, 

algorithm and starting point combination, the associated logistic regression model was 

estimated starting at the default tolerance level. The model was then re-estimated, decreasing 

the tolerance level by a magnitude or 1e-3 each time. This was repeated until the minimum 

LRE did not change for two consecutive reductions in the tolerance level. For example, using 

PROC LOGISTIC in SAS 9.4, the default tolerance level is 1e-8 for the gradient. This 

tolerance level was decreased from 1e-8 to 1e-11, then to 1e-14, and so on, until the minimum 

LRE for the parameter estimates remained constant. Table 2 summarizes the software and 

settings available that were examined in this study for each software package, including 

estimation commands, estimation algorithms available, ability to change starting points, and 

convergence or termination criteria for the estimation algorithm. If a package’s default settings 

give lower LRE values than optional user setting, then it indicates that default settings 

provided less accurate estimation results compared to optional user settings, which may likely 

be the case for estimation of logistic regression models (McCullough and Vinod 2003). 

   A set of starting points can be changed by users in most of the logistic regression 

packages examined (Table 2). The one exception here is the GLMFIT command in MATLAB 

that determines its own starting point. Since convergence of algorithms can be sensitive to 

choice of starting points for nonlinear problems, alternative starting points may provide more 

accurate results (McCullough and Vinod 2003). When the starting points for estimation 

routines can be changed, accuracy for each benchmark dataset and model was examined for 

both starting points provided in the benchmark datasets. The two starting points are (i) zeros 
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with the intercept equal to the unconditional odds ratio of the dependent variable and (ii) 

estimates from the corresponding linear probability model (in the parameters). 

There are many numerical algorithms that can be used for maximizing the log-

likelihood function during maximum likelihood estimation of the logistic regression model. 

The most widely used optimization method (algorithm) is the Newton Raphson (NR) (Train 

2003). Other algorithms available include the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

Quasi-Newton algorithm, Berndt-Hall-Hall-Hausman (BHHH) algorithm, Davidon-Fletcher-

Powell (DFP) Quasi-Newton algorithm, conjugate gradient methods, and  Fisher Scoring (FS) 

algorithms, among others (see Bazaraa et al. 2006; Greene 2002). Each algorithm requires 

stopping or termination criteria to indicate that a local optimal solution has been obtained. 

Researchers many times have the option of choosing among a number of nonlinear algorithms 

and convergence criteria for the chosen algorithm. For example, in the PROC LOGISTIC and 

PROC QLIM statements (commands) in SAS (SAS Manual 2009), the default gradient 

convergence is set equal to 1E −8, but researchers can change it, but in some packages, 

including MATLAB and R, the convergence criteria cannot be changed. A number of 

alternative convergence criteria may be considered. These include: (i) | L(βn+1) − L(βn)| < ε; (ii) 

max (|βn+1 − βn|) < ε; (iii) gT(−H−1)g < ε where g is the gradient and H is the Hessian of the 

log-likelihood function; and (iv) ||g(βn)|| < ε, where ε is a very small number, usually less that 

1E-4. For all algorithms assessed, derivatives were calculated using numerical methods 

(differencing).  

The results (comparison of minimum LRE scores for different setting) that will be 

generated for each software package provides information about the strengths and weaknesses 

of the different statistical software that gives flexibility to researchers to choose appropriate 
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software packages and commands; adjust settings based on their problem situation; and allow 

software vendors to address potential reliability issues in newer versions of their software.  

 

5. NUMERICAL RELIABILITY ASSESSMENT RESULTS 

Thirty logistic regression models were estimated using the benchmark datasets in each 

software package. Estimation was conducted for two alternative starting points using default 

and optional user settings (as determined by the authors) in each statistical software package. 

If a software package has more than one procedure to estimate logistic regression models, then 

results are reported for each procedure examined. Results for the minimum LRE for both the 

default and optional user settings for both sets of starting points are reported in Tables 3 to 6. 

Tables 3 (parameter estimates) and 5 (standard error estimates) present the results for the 

default settings for each procedure and statistical package. Tables 4 (parameter estimates) and 

6 (standard error estimates) present the results using user optional settings. For MATLAB and 

R, only default settings are examined as users have limited options for controlling the 

estimation algorithms. A value of NS indicates that an algorithm did not converge or no 

optimal solution was obtained for the particular setting (i.e. the model did not estimate). 

Following the literature, an LRE score greater than or equal to 4 is required to meet the 

minimum standard of reliability of nonlinear regression estimation following McCullough 

(1998). In some cases, a user may want higher reliability. In that case, they may want to 

consider higher LREs, such as 6, to assess software reliability. 

For parameter estimates obtained using default settings, the LOGIT command in 

STATA (for both starting points, D1 and D2), GLM in R (for starting point one), and 

GLMFIT in MATLAB met a minimum LRE criteria of 4 for 26 of the thirty benchmark 
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datasets (Table 3). Similarly, PROC LOGISTIC in SAS estimated parameters reliably on 19 

and 17 of the 30 benchmark models for each set of starting points. The LOGIT command in 

LIMDEP met the minimum LRE criteria for 27 and 26 of the benchmark models using the 

default setting for each set of starting pointss. Similar results were found for the minimum 

LRE scores of the estimated standard errors (Table 5).  

In general, the optional user settings were able to improve algorithmic performance 

and reliability. In some cases, it allowed a procedure for a given statistical package to meet the 

minimum LRE score. For example, consider the Cutoff5 benchmark dataset and model 

estimated using PROC LOGISTIC in SAS. For both starting points, the minimum LRE for the 

parameter and standard error estimates were 2.8 (Table 3) and 4.3 (Table 5) respectively. 

When optional user settings were used by lowering the tolerance criteria, the minimum LRE 

for both starting points for the parameters and standard errors increased to 6.9 (Table 4) and 

8.5 (Table 6), respectively.  

The results for each statistical package are examined and discussed in more detail 

below. If any warning or error messages were obtained, they are also reported in this section. 

A nonlinear procedure may fail in at least one of two ways. The procedure could report an 

error message after a failed attempt to solve the problem or the procedure could incorrectly 

solve the problem and report the result without providing an error message. The former issue 

can be considered a miserable failure of the procedure, whereas the second one is more likely a 

disastrous failure of the procedure (Murray 1972).  

 



20 

 

5.1 Stata 14 

All thirty datasets were estimated with the LOGIT, BINREG, and GLM procedures in STATA 

14. Users can change tolerance (convergence) criteria, estimation algorithm, and starting 

points for each procedure (Table 2).  

Using default settings for model estimation, STATA 14 met the minimum LRE criteria 

for 26 of the thirty benchmark datasets for the LOGIT and GLM procedures for both starting 

points. However, the BINREG command only met the minimum LRE criteria of 4 for 22 of 

the datasets for both starting points. Similarly, for the standard error estimates, the minimum 

LRE criteria was met for 27 of the datasets for the LOGIT and GLM procedures for both 

starting points. The BINREG procedure only met the minimum LRE criteria for 23 of the 

datasets for both starting points.  

After examining all potential combinations of user optional settings, the logistic 

regression commands met the minimum LRE criteria for 26 of the thirty benchmark datasets 

for both starting points. For standard error estimates, LOGIT, BINREG and GLM performed 

reliably on 27, 26 and 25 of the benchmark datasets for starting point one, and 25, 22 and 21 of 

the benchmark datasets for starting point two, respectively. On average, the user determined 

setting provided a small increase in reliability over the default settings. For the BINREG 

procedure though, using the user determined settings allowed for reliable estimation of the 

Cutoff1, Cutoff 3, Cutoff 4 and Cutoff 7 benchmark models. Under default settings, the 

algorithm used to estimate each of these benchmark models did not converge to a solution.  

The user-defined algorithm and tolerance settings that provided the lowest LRE scores 

varied by benchmark dataset, starting point and procedure used. There was no consistency in 

the setting that provided the most reliable results. For example, for the Multicollinearity3 
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benchmark dataset, the optimal user settings for the LOGIT procedure were found using the 

DFP algorithm for starting point 1 and the BFGS algorithm for starting point 2. For the 

BINREG and GLM procedures, the lowest LRE was obtained using the BFGS algorithm for 

starting point 1 and the NR algorithm for starting point 2. The default tolerance setting 

provided the same reliability as lower tolerance levels for all procedures and starting points. 

Thus, it is recommended that researchers examine different algorithms and associated 

parameter settings in STATA 14 to ensure that they are obtaining the most reliable estimation 

results.  

At times, estimation algorithms in the different procedures were not able to reliably 

estimate models. For the Multicollinearity1, Multivariate4, Cutoff6 and Quasisep2 benchmark 

datasets, use of the default and user determined settings for each procedure reported low LRE 

values (the number of significant digits was less than 4 for parameter estimates) for the 

procedures assessed. The estimation routines converged to a solution that were inaccurate. No 

error messages were reported during estimation of these models. In contrast, when a model 

failed to estimate (e.g. a NS result in Tables 3 and 4) an error message was provided indicating 

the algorithm did not converge to a solution.  

 

5.2 Matlab 2015b 
 
All the benchmark models were estimated with GLMFIT in the statistics toolbox. Users are 

not able to change algorithm, convergence criteria, or starting points in the procedure. Thus, a 

limitation of the GLMFIT procedure in MATLAB is that it only provides the use of one 

algorithm (Newton-Raphson) to estimate logistic regression models. This software package 

reliably estimated 26 and 28 models out of the thirty benchmark datasets for the parameter 
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estimates and associated standard errors, respectively.  MATLAB failed to reliably estimate 

the Multicollinearity1, Multivariate4, Cutoff6 and Quasisep2 datasets and did not provide any 

error messages during estimation. 

 

5.3 R 3.3.1   

This software package uses the GLM command for the estimation of logistic regression 

models. For starting point one with default and user optional settings, 26 models met the 

minimum LRE criteria of four. For starting point two for both default and user optional 

settings, 25 models met the minimum criteria. However, for standard errors only 23 datasets 

met the LRE criteria for both starting points. R provided a warning message for Multivariate5 

for the second set of starting points: “fitted probabilities numerically 0 or 1 occurred,” 

indicating a problem with estimation. R provides a limited number of user options to control 

estimation. For the GLM command, users only can change starting points. The only estimation 

procedure tested here was iterated reweighted least squares (R Core Team 2013).  

 

5.4 Limdep 10 

LIMDEP uses the LOGIT (BLOGIT) command to estimate logistic regression models 

(Econometric Software, Inc. 2012). This software package reliably estimated 27 and 26 

datasets for starting points one and two using default settings. LIMDEP estimated 27 models 

reliably with user optional setting for both starting points. Results for standard error estimation 

were similar (Tables 5 and 6).  At times, the user determined settings provided significantly 

better results than the default settings. For example, consider the Cutoff1 and Cutoff2 

benchmark datasets. The package provided a minimum LRE of 5.8 and 5.9 for starting point 1, 
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respectively. Using the user option settings, the minimum LRE was able to be increased to 

10.2 and 10.8, respectively. As with STATA 14, the best algorithm and tolerance settings were 

dataset and starting point specific. Thus, users should try different combinations of algorithms 

and associated parameter settings to ensure reliable model estimation. It should be mentioned 

that LIMDEP was the only package to be able to reliably estimate the models associated with 

the Multicolinearity1 and Quasisep2 benchmark datasets.  

LIMDEP did provide error messages when algorithms failed to converge or problems 

were encountered. For example, for Multivariate7, estimating the associated logistic regression 

using the BHHH algorithm failed. LIMDEP provided a warning: “the likelihood is flat, try 

refitting and examining the derivatives.”   

 

5.5 Sas 9.4 

Logistic regression models were estimated with PROC LOGISTIC and PROC QLIM in SAS. 

For parameter estimates using PROC LOGISTIC with default settings, 19 and 17 of the 

benchmark models estimated met the minimum LRE for starting points one and two, 

respectively. In contrast, 26 models were reliably estimated using user optional settings for 

both starting points. Of particular interest is that the marginal increase in reliability of 

parameter estimates using user optional settings was significant for this procedure. Both 

algorithmic options available in this procedure performed similarly. Significant gains in 

reliability were obtained by significantly lowering the tolerance level for the estimation 

algorithms (e.g. to 1e-15). Results for reliable estimation of standard errors was similar 
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between the default and user optional settings. PROC LOGISTIC reliably estimated standard 

errors for over 25 of the benchmark datasets for default and user optional settings.  

Using PROC QLIM, 24 benchmark models were reliably estimated using the default 

settings for both starting points. Likewise, 27 and 26 models were estimated reliably using 

user optional determined settings for both starting points, respectively. PROC QLIM was able 

to reliably estimate standard errors for 22 and 21 of the benchmark datasets for starting points 

one and two in both settings, respectively. Using default settings, PROC QLIM performed 

more reliably than PROC LOGISTIC.  With user optional settings, performance was more 

equivalent. In addition, PROC QLIM was the only procedure in all the software packages 

examined to be able to reliably estimate the Multivariate4 benchmark model.  

The PROC LOGISTIC statement showed some warning or error messages. For 

example, for both algorithms and tolerance levels for both sets of starting points, the procedure 

showed the following error messages when estimating Multivariate4: “in calculating the 

expected values, predicted probabilities less than 1e-6 and greater than 0.999999 were changed 

to 1e-6 and 0.999999, respectively.” In PROC QLIM, when the conjugate gradient algorithm 

did not converge, it showed an error message: “optimization cannot be completed.” The PROC 

QLIM statement, in general, reported an error message when an algorithm did not converge or 

optimal solution (i.e. estimates) was not found. 

 

5.6 Discussion  

The results show that many of the packages were able to reliably estimate quite a few of the 

benchmark models, assuming a minimum LRE of 4 was reliable enough. Even if the same 

number of models were estimated reliably using default and user optional settings, reliability 
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was often improved (i.e. obtaining higher LREs) with user optional settings. In some cases, the 

marginal gain in performance was significant. For example, the Base benchmark dataset, the 

minimum LRE score for parameter estimates for starting point two using the default setting in 

LIMDEP was 6.6 (Table 3), but with user optional setting it increased to 10.6 (Table 5). Users 

should consider varying user optional settings in software packages where they are available to 

ensure they are obtaining the most reliable results. 

If a modeler requires greater reliability, the modeler may want to examine the results 

using a minimum LRE of 6. Using this criteria and user optional settings, MATLAB reliably 

estimated parameters for 26 and standard errors for 27 of the benchmark datasets. LIMDEP 

reliably estimated parameters for 27 (26) and standard errors for 28 (27) of the benchmark 

datasets for starting point 1 (2). This comparison can be carried out on all of the statistical 

software packages examined. Results indicate that some procedures and statistical packages 

provide higher reliability when the minimum LRE is increased, but this does vary significantly 

across packages. If higher reliability is needed, both MATLAB and LIMDEP would be good 

choices. For other packages (including LIMDEP), users would likely want to change user 

optional settings to obtain the most reliable results.    

This study indicates that the results are sensitive in nonlinear models to the choice of 

statistical software, algorithm, and tolerance level used during estimation. For example, the 

only package to reliably estimate the multicollinearity1 benchmark dataset was LIMDEP. 

Thus, LIMDEP may want to consider the use of this package if similar forms of 

multicollinearity exist in their data. Finally, it should be emphasized, that replication of the 

results of published articles might not be possible if researchers do not document the name of 

software package, command or routines (and options) used for data analysis. Since replication 
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is the basis of science, if results cannot be replicated, then they are likely harder to trust. This  

makes it difficult to assess the relevance of the research within a profession’s accumulated 

body of knowledge or as a basis for policy analysis (McCullough and Vinod 2003).  

6. CONCLUSION 

The numerical reliability of estimating logistic regression models for five statistical and 

econometric software packages widely used by applied researchers in multiple disciplines was 

examined. The packages were SAS 9.4, MATLAB R2015b, R 3.3.1, STATA/IC 14, and 

LIMDEP 10. To test the reliability, thirty unique benchmark datasets were created following 

the procedures established by the National Institute of Science and Technology for their 

nonlinear regression benchmark datasets. Logistic regression models for the thirty benchmark 

datasets were estimated for different procedures in each of the statistical software packages. 

The reliability of the software packages and associated procedures was assessed using the 

minimum LRE of the parameters and asymptotic standard errors obtained, computed using the 

benchmark values for the parameter and standard error estimates. We followed previous 

literature and tested the default settings for each package and then adjusted the options in each 

software package to obtain an optimal user optional setting to try and obtain closer estimates 

to the certified values for each benchmark dataset. In reality, the certified benchmark values 

will be unknown, thus modelers and researchers should follow the suggestions of McCullough 

and Vinod (2003) to verify their results. Furthermore, the authors believe that the results 

should extend to other binary choice models (e.g. probit model) and multinomial models, 

given the similarity to logistic regression models.  

Software reliability testing results suggest that logistic regression estimation 

procedures in the software packages were able to meet the minimum LRE requirement of 4 for 
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many of the benchmark datasets. It was not expected that a package is able to reliably estimate 

logistic regression models for all thirty datasets to be considered reliable. A minimum LRE 

criteria of 4 may not be reliable enough in some situations and a modeler should instead 

examine these results using a higher minimum LRE (e.g. of 6). It did become apparent though, 

that users should be careful when only using default settings. The BINREG procedure in 

STATA and PROC LOGISTIC in SAS both performed comparatively worse using the default 

settings. When user optional settings were determined by changing tolerance criteria and 

algorithm choice, reliability results significantly improved for both packages. Overall, user 

optional settings resulted in better and more accurate performance than default settings. In 

some cases, no default settings were available to change, limiting the flexibility of the package 

as in the case of MATLAB and R.  

  This study expands on the reliability testing of software packages for statistical 

estimation by considering discrete choice models using maximum likelihood estimation. 

Furthermore, the study provides thirty unique benchmark datasets with certified parameter and 

standard error estimates for reliability testing that can be used to test other statistical software 

packages and future versions of software 
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Table 1. Benchmark dataset specifications  
Datasets P (Yi =1) 

Cutoff Point 
Predictor Functional Form Collinearity 

(ρ)a 
N Varianceb 

Base P = 0.6 η(X;b) = b0 + b1X - 200 σ1 = 1 
Multicollinearity1 P = 0.6 η(X;b) = b0 + b1X1 + b2X2  ρ12 = 0.75 500 σ1 = 1.5 

σ2 = 1.5 
Multicollinearity2 P = 0.6 η(X;b) = b0 + b1X1 + b2X2 ρ12 = 0.95 500 σ1 = 1.5 

σ2 = 1.5 
Multicollinearity3 P = 0.6 η(X;b) = b0 + b1X1 + b2X2 

 
ρ12 = 0.995 500 σ1 = 1.5 

σ2 = 1.5 
Multicollinearity4 P = 0.6 η(X;b) = b0 + b1X1 + b2X2 + b3X1

2 + b4X1X2 + b5X2
2 

 
ρ12 = 0.75 1000 σ10 = 1 

σ11 = 1.5 
σ20 = 1.5 
σ21 = 2 

Multicollinearity5 P = 0.6 η(X;b) = b0 + b1X1 + b2X2 + b3X1
2 + b4X1X2 + b5X2

2 
 

ρ12 = 0.95  1000 σ10 = 1 
σ11 = 1.5 
σ20 = 1.5 
σ21 = 2 

Multicollinearity6 P = 0.6 η(X;b) = b0 + b1X1 + b2X2 + b3X1
2 + b4X1X2 + b5X2

2  
 

ρ12 = 0.995 1000 σ10 = 1 
σ11 = 1.5 
σ20 = 1.5 
σ21 = 2 

Multicollinearity7 P = 0.6 η(X;b) = b0 + b1X1 + b2X2 + b3X3
 + b4X4

 

 
ρij = 0.985  
∀ i, j = 1,.. 4, i 
≠ j 

1000 σ = 1 

Multicollinearity8 P = 0.4 
 

η(X;b) = b0 + b1X1 + b2X2 + b3 X1X2
  ρ0 = 0.3 

ρ1 = 0.7 
 

50 - 

Multicollinearity9 P = 0.4 
 

η(X;b) = b0 + b1X1 + b2X2 + b3X3 + b12X1X2 + b13X1X3 + b23X2 X3 + b123X1X2X3 
 

ρ0 = 0.3 
ρ1 = 0.7 

400 σ = 1 

Multicollinearity10 P = 0.4 
 

η(X;b) = b0 + b1X1 + b2X2 + b3X3 + b11X1
2 + b12X1X2 + b13X1X3 + b23X2X3 + 

b112X1
2X2 + b113X1

2X3 + b123X1X2X3 + b1123X1
2X2X3 

ρ0 = 0.3 
ρ1 = 0.7 

325 σ = 1 – 3 

Multicollinearity11 P = 0.4 
 

η(X;b) =  b0 + b1X1 + b2X2 + b3X1X2 
 

ρ0 = 0.8 
ρ1 = 0.4 

89 - 
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Table 1 Continued. 
Datasets P (Yi =1) 

Cutoff Point 
Predictor Functional Form Collinearity 

(ρ)a 
N Varianceb 

Multivariate1 P =0.6 η(X;b) =  b0 + b1X1 + b2Ln(X2) + b3X3 
 

- 300 σ = 1 
 
 

Multivariate2 P = 0.6 η(X;b) = b0 + b1X1 + b2X1
2  + b3X2 + b4Ln(X2) + b5X3 

 
- 300 σ1 = 0.9 

σ2 = 1.8 
Multivariate 3 P = 0.4 

 
η(X;b) = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5  
 

ρij = 0.5 
 ∀ i, j = 1,..,5, 
i ≠ j 

1000 σi = 15 
 

Multivariate4 P = 0.4 
 

η(X;b) = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 ρij = 0.3- 0.7 
∀ i, j = 1,…,5, 
i ≠ j 

1000 σi = 1 
 

Multivariate5 P = 0.5 
 

η(X;b) = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b11X1
2 + b12X1X2 + b13X1X3 + 

b14X1X4 + b15X1X5 + b22X2
2 

  + b23X2X3 + b24X2X4 + b25X2X5 + b33X3
2 

 + 
b34X3X4   + b35X3X5 + b44X4

2 
 +  b45X4X5 + b55X5

2  

ρij = 0.15 - 
0.35  
∀ i, j = 1,..,5, i 
≠ j  

100 σ = 1 

Multivariate6 P = 0.4 
 

η(X;b) = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b11X1
2 + b12X1X2 + b13X1X3 + 

b14X1X4 + b15X1X5 + b22X2
2 

  + b23X2X3 + b24X2X4 + b25X2X5 + b33X3
2 

 + 
b34X3X4   + b35X3X5 + b44X4

2 + b45X4X5 + b55X5
2 

ρij =0.1- 0.6,  
i, j = 1-5, i ≠ j 

200 σ = 0.5 -0. 
77 

Multivariate 7 P = 0.4 
 

η(X;b) = b0 + b1X1 + b2X2 ρ = 0.75 
 

9 σ1 = 0.25 
σ2 = 0.40 
 

Cutoff1 P= 0.05 η(X;b) = b0 + b1X1 + b2X2 
 

ρ12 = 0.99 
 

50 σ = 1 

Cutoff2 P =0.15 η(X;b) = b0 + b1X1 + b2Ln(X2) + b3X3  
 

- 32 σ = 1 

Cutoff3 Ρ = 0.0005  η(X;b) = b0 + b1X1 + b2X2 + b3X3 + b4X4 ρ12 = 0.96 
ρ34 = 0.96 
 

5000 σ = 0.2- 2.5 

Cutoff4 P = 0.00015 η(X;b) = b0 + b1X1 + b2X2 + b3X3 
 

ρ = 0.7 –  
(- 0.85) 

20000 σ = 1 
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Table 1 Continued.     
Datasets P (Yi =1) 

Cutoff Point 
Predictor Functional Form Collinearity 

(ρ)a 
N Varianceb 

Cutoff5 
P = 0.05 

η(X;b) = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b11X1
2 + b12X1X2 + b13X1X3 + 

b14X1X4 + b15X1X5 + b22X2
2 

  + b23X2X3 + b24X2X4 + b25X2X5 + b33X3
2 

 + 
b34X3X4   + b35X3X5 + b44X4

2 
 +  b45X4X5 + b55 X5

2 

ρij =0.3 – 0.5  
∀ i, j = 1,…,5, 
i ≠ j 

500 σ = 1- 2 

Cutoff6 P = 0.10 η(X;b) = b0 + b1X1 + b2X2 + b12X1X2 ρ0 = 0.2, ρ1 = 
0.9 
 
 

65 - 

Cutoff7 P = 0.10 η(X;b) = b0 + b1X1 + b2X2 + b12 X1X2 
 

ρ0 = 0.3, ρ1 = 
0.8 
 

17500 - 

Cutoff8 P= 0.19 η(X;b) = b0 + b1X1 + b2X2 + b3X3 + b11X1
2 + b12X1X2    + b13X1X3 + b23X2X3 + 

b112X1
2X2 + b113 X1

2X3 + b123X1X2X3 + b1123X1
2X2X3 

ρ0 = 0.4, ρ1 = 
0.7 
 

200 - 

Empirical1c - η(X;b) = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6X6 + b7X7 + b8X8   + b9X9  + 
b10X10 + b11X11 + b12X12 + b13X13 

- 1081 - 

Quasisep1d - η(X;b) = b0 + b1X - 100 - 
Quasisep2d - η(X;b) = b0 + b1X + b2X2 + b3X3

 + b4X4 + b5X5 -  60 - 
a Collinearity in the datasets was determined by changing the correlation between the explanatory variables. Given that the inverse conditional distribution is 
dependent on the value of Yi = 0,1, the correlation between covariates may change, giving the potential the specification of values for  ρ0 and ρ1. 
b Variability was introduced by specifying the value of the standard error of a given covariate.  
c The empirical dataset is taken from survey data collected by the authors examining conservation practice adoption in Alabama.  
d The estimation of the datasets examining quasi-separation are generated following the procedures in Ryan (1997). 
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Table 2. Statistical package assessed and associated details 

Software 
Package 

Version Logistic 
Regression 
Command

Estimation Method and Algorithmic Options a Starting Point 
Option  
(Yes/No)b 

Default Tolerance 
Setting(s)c 

LIMDEP 
NLOGIT 5 

10 LOGIT Maximum Likelihood  
NR (Default) 
Other options: BFGS,  BHHH, and DFP 

Yes Gradient: 1e-6 
 

MATLAB 8.6.0.2672
46  

(R2015b) 

GLMFIT Maximum Likelihood  
NR (Default) 

No Parameters: 1e-6 

R 3.3.1  
  
 

GLM IRLS 
FS 

Yes Objective function :1e-8 

SAS 9.4 
 

PROC LOGISTIC, 
PROC QLIM 

Maximum Likelihood  
LOGISTIC: FS (Default) 
Other option: NR 
QLIM: QN (Default) 
Other options: CONGRA, NR with line search, 
TRUREG

Yes Gradient: 1e-8 

STATA/IC 14  LOGIT 
BINREG 
GLM 

Maximum Likelihood  
NR (Default) 
Other options: BFGS,  BHHH, and DFP 

Yes NR technique: nrtol (1e-
5) and other techniques: 
qtol (1e-5)

a Estimation Methods:  ML (Maximum Likelihood) and IRLS (Iteratively Reweighted Least Squares) 
Algorithms: NR (Newton-Raphson ), BHHH (Berndt-Hall-Hall-Hausman ), BFGS (Broyden-Fletcher-Goldfarb-Shanno),and DFP (Davidon-Fletcher 
Powell), FS ( Fisher’s Scoring), , QN (Quasi Newton), CONGRA (Conjugate Gradient), TRUREG (Trust Region Optimization) 
b This option indicates if the specified procedure allows the user to specify the starting point. 
c The convergence criteria used are when the (i) gradient (gradient, relative gradient or scaled gradient) is less than tolerance; (ii) change in the 
parameter vector is less than tolerance; and (iii) the change in the deviance (for IRLS) or log-likelihood function is less than tolerance.  For example, 
STATA default tolerance setting for the NR technique is nrtol (1e-5) and other technqiues use qtol (1e-5).
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Table 3. Minimum LRE for parameter estimates using default settings 

Dataset 

STATA MT R LIMDEP SAS
LOGIT BINREG GLM GF GLM LOGIT LOGISTIC QLIM

D1 D2 D1 D2 D1 D2 D D1 D2 D1 D2 D1 D2 D1 D2
Base 10.9 6.7 10.9 6.6 10.9 6.6 10.8 10.9 10.8 10.9 6.6 5.4 6.6 8.2 6.4
Multico1 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 10 9.1 0.7 0.7 0.7 0.7 
Multico2 9.7 9.3 9.7 9.3 9.7 9.4 10.5 9.7 10.7 9.7 10.7 4.7 5.2 6.8 10.1
Multico3 7.1 7.9 7.1 9.1 7.1 9.1 10.7 8.4 10.8 8.4 10.8 4.3 5.8 8.9 9.6
Multico4 7 7.1 7 7.1 7 7.1 10.2 10.2 10.2 10.2 10.2 5.5 5.3 8.4 8.4
Multico5 7.1 6.9 7.1 6.9 7.1 6.9 10.5 9.3 9.0 9.3 9.0 4.6 4.4 8.9 8.1
Multico6 7.0 6.6 7.0 6.6 7.0 6.6 10.2 6.9 6.9 6.9 6.9 6.9 6.9 8.1 8.9
Multico7 6.4 6.4 6.3 6 6.3 6.0 10.5 9.7 10.5 9.7 6.6 5.0 6.6 6.6 6.3
Multico8 10.1 9.6 10.1 9.5 10.1 9.5 10.1 10.1 8.2 6.2 8.2 6.2 3.9 7.2 6.3
Multico9 5.9 5.8 5.9 5.8 5.9 5.8 10.3 6.0 9.6 6.0 9.6 6.0 4.3 6.7 6.3
Multico10 4.8 4.8 5.6 5.6 4.8 4.8 10.4 9.1 10.4 9.1 10.4 3.6 4.6 3.9 4.8
Multico11 5.4 7.5 5.4 7.5 5.4 7.5 10.2 10.2 7.5 5.4 7.5 5.4 2.9 4.5 4.7
Multivar1 8.2 8.1 8.2 8.1 8.2 8.1 10.6 9.3 10.6 9.1 7.2 4.4 7.2 7.4 8.0
Multivar2 7.5 7.5 7.5 7.5 7.5 7.5 10.6 9.5 8.6 1.7 1.7 4.5 4.0 8.0 7.1
Multivar3 10.3 7.7 10.3 7.7 10.3 7.7 10.3 10.3 7.7 6 7.7 6.0 3.4 7.5 8.4
Multivar4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 7.8 2.4 
Multivar5 5.1 5.1 5.1 5.1 5.1 5.1 10.3 8.0 0.0 8.0 0.0 3.4 3.7 5.8 5.2
Multivar6 6.7 6 6.6 6.1 6.6 6.1 10.3 7.7 7.5 7.7 7.5 3.7 3.6 4.5 4.1
Multivar7 7.1 7.1 7.1 7.1 7.1 7.1 10.6 10.6 11 7.2 11 7.2 5.5 5.4 5.7
Cutoff1 8.5 8.1 NS NS 8.5 8.1 10.2 5.8 5.7 5.8 10.2 2.0 2.0 3.3 3.7 
Cutoff2 5.7 5.7 5.7 5.7 5.7 5.7 10.8 10.8 10.8 5.9 5.9 5.9 5.9 4.5 5.3
Cutoff3 5.9 5.9 NS NS 6.9 6.9 10.6 7.3 7.3 7.3 7.3 7.3 7.3 7.4 6.1
Cutoff4 5.5 5.5 NS NS 5.7 5.7 10.4 10.4 10.4 6.8 6.8 6.8 6.8 7.6 6.6
Cutoff5 4.5 4.5 4.6 4.6 4.6 4.6 10.3 6.9 6.9 6.9 6.9 2.8 2.8 3 2.9 
Cutoff6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cutoff7 8.4 9 NS NS 8.4 9.0 10.8 6.7 6.6 6.7 6.6 3.1 3.1 6.4 5.4
Cutoff8 5.9 5.7 6.1 5.8 6.1 5.8 10.4 7.7 7.6 7.7 7.6 3.7 3.7 5.1 6.0
Empirical1 6.0 10.7 6.0 10.7 6.0 10.7 10.7 10.7 10.7 6.4 6.6 6.4 6.3 5.5 5.4
Quasisep1 6.5 6.6 5.2 4.0 5.2 5.3 10.3 8.0 10.3 8.0 7.0 4.1 7.0 8.3 8.2
Quasisep2 3.6 3.6 3.6 3.7 3.6 3.6 3.6 3.6 3.6 10.2 9.2 3.6 3.6 3.6 3.6 
              
Number of Datasets Meeting Minimum LRE Criterion  
LRE ≥ 4.0 26 26 23 23 26 26 26 26 25 27 27 19 18 24 24
LRE ≥ 6.0  15 18 17 16 18 18 26 25 24 24 26 8 8 17 16
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Note: D = Default Settings; 1 = Starting Point 1; 2 = Starting point 2, NS= did not converge to a solution, MT: MATLAB, GF: GLMFIT. Bolded numbers 
indicate minimum parameter estimates with an LRE below a reliability threshold value of 4. 
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Table 4. Minimum LRE for parameter estimates with user optional settings 

 STATA MT    R LIMDEP SAS

 LOGIT BINREG GLM GF  GLM LOGIT LOGISTIC QLIM
Dataset U1 U2 U1 U2 U1 U2 D D1 D2 U1 U2 U1 U2 U1 U2
Base 10.9 8.4 10.9 8.4 10.9 8.4 10.8 10.9 10.8 10.9 10.6 10.9 10.8 10.6 6.6
Multico1 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 10 9.1 0.7 0.7 0.7 0.7 
Multico2 9.7 9.3 9.7 9.3 9.7 9.4 10.5 9.7 10.7 9.7 10.7 9.7 10.7 10.2 10.1
Multico3 8.7 8.2 7.9 9.1 7.9 9.1 10.7 8.4 10.8 8.9 10.8 8.4 10.8 8.9 9.6
Multico4 7.0 7.1 7.0 7.1 7.0 7.1 10.2 10.2 10.2 10.2 10.2 10.2 10.2 9.7 9.5
Multico5 7.8 7.1 7.2 7.2 7.2 7.2 10.5 9.3 9.0 9.3 9.0 9.3 9.0 10.4 9.4
Multico6 7.0 7.0 7.0 7.2 7.0 7.0 10.2 6.9 6.9 10.2 10 10.2 10.2 8.1 8.9
Multico7 6.5 6.4 6.7 6.2 6.7 6.2 10.5 9.7 10.5 9.7 7.9 9.7 10.5 7.9 6.9
Multico8 10.1 9.6 10.1 9.5 10.1 9.5 10.1 10.1 8.2 10.1 9.1 10.1 8.2 8.6 8.2
Multico9 5.9 5.8 6.4 5.8 6.4 5.8 10.3 6.0 9.6 9.0 9.6 6.0 9.6 6.7 9.3
Multico10 5.4 5.0 5.6 5.6 5.4 5.0 10.4 9.1 10.4 9.1 10.4 9.1 10.4 8.0 9.0
Multico11 10 7.5 10 7.5 10 7.5 10.2 10.2 7.5 10.2 7.9 10.2 7.5 6.7 8.9
Multivar1 8.3 8.1 8.3 8.1 8.3 8.1 10.6 9.3 10.6 10.8 7.4 9.1 7.2 9.2 9.8
Multivar2 7.5 7.5 7.5 7.5 7.5 7.5 10.6 9.5 8.6 1.7 2.5 9.5 8.6 8.7 8.1
Multivar3 10.3 7.7 10.3 7.7 10.3 7.7 10.3 10.3 7.7 10.4 9.9 10.3 7.7 10.2 8.4
Multivar4 2.6 2.6 2.5 2.5 2.5 2.5 2.4 2.4 2.4 2.4 2.4 2.4 2.4 7.8 2.4 
Multivar5 5.5 5.3 5.5 5.3 5.5 5.3 10.3 8.0 0.0 8.0 7.5 8.0 8.1 9.1 9.0
Multivar6 6.7 6.3 6.6 6.3 6.6 6.3 10.3 7.7 7.5 7.7 8.3 7.7 7.5 8.6 7.5
Multivar7 7.1 7.2 7.6 7.6 7.9 7.6 10.6 10.6 11 7.7 11 10.6 11 6.8 7.3
Cutoff1 8.5 8.1 8.5 8.1 8.5 8.1 10.2 5.8 5.7 10.2 10.2 5.8 5.7 6.8 6.8
Cutoff2 6.5 6.4 6.5 6.4 6.5 6.4 10.8 10.8 10.8 10.8 10.8 10.8 10.8 8.1 7.6
Cutoff3 6.3 6.3 6.9 6.9 6.9 6.9 10.6 7.3 7.3 8.0 7.7 7.3 7.3 7.5 7.5
Cutoff4 5.5 5.5 5.7 5.7 5.7 5.7 10.4 10.4 10.4 8.0 8.0 10.4 10.4 9.0 9.0
Cutoff5 4.5 4.6 4.6 4.7 4.6 4.7 10.3 6.9 6.9 6.9 10.6 6.9 6.9 8.4 7.3
Cutoff6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cutoff7 8.4 9.0 8.4 9 8.4 9.0 10.8 6.7 6.6 9.8 10.2 6.7 6.7 7.7 7.9
Cutoff8 6.2 6.4 6.5 6.3 6.5 6.3 10.4 7.7 7.6 9.7 7.7 7.7 7.6 7.7 7.6
Empirical1 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 7.4 7.2 10.7 10.7 10.6 10.5
Quasisep1 6.5 6.6 5.4 6.6 6.6 6.6 10.3 8.0 10.3 9.1 9.1 8.0 10.3 8.3 8.2
Quasisep2 3.6 3.6 3.6 3.7 3.6 3.6 3.6 3.6 3.6 10.2 9.2 3.6 3.6 3.6 3.6 
      
Number of Datasets Meeting Minimum LRE Criterion 
LRE ≥ 4.0 26 26 26 26 26 26 26 26 25 27 27 26 26 27 26
LRE ≥ 6.0  21 21 21 21 21 21 26 25 24 27 27 25 25 27 26
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Note: D = Default Settings; U = User Optimized Setting; 1 = Starting Point 1; 2 = Starting point 2, NS= did not converge to a solution, MT: MATLAB, GF: 
GLMFIT, MATLAB and R have no user optional settings. Bolded numbers indicate minimum parameter estimates with an LRE below a reliability threshold 
value of 4.  
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Table 5. Minimum LRE for standard errors using default settings 

Dataset  

STATA MT R LIMDEP SAS
LOGIT BINREG GLM GF GLM LOGIT LOGISTIC QLIM

D1 D2 D1 D2 D1 D2 D D1 D2 D1 D2 D1 D2 D1 D2
Base 11.3 7.3 11.3 7.3 11.3 7.3 11.3 6.3 7.3 11.3 7.3 6.3 7.3 5.6 5.6
Multico1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 10.5 9.7 0.1 0.1 0.1 0.1 
Multico2 9.9 9.5 9.9 9.5 9.9 9.5 10.7 5 5.4 9.9 11 5.0 5.4 4.7 4.7
Multico3 6.7 7.2 6.7 7.2 6.7 7.2 6.0 4.1 5.5 8.2 10.7 4.1 5.5 3.1 3.1
Multico4 8.4 7.9 8.4 7.9 8.4 7.9 10.1 6.0 5.8 10.1 10.1 5.9 5.8 4.8 4.8
Multico5 7.9 7.3 7.9 7.3 7.9 7.3 8.7 4.9 4.7 9.7 9.3 4.9 4.7 4.6 4.7
Multico6 7.1 6.8 7.1 6.8 7.1 6.8 6.8 3.7 3.7 7.3 7.2 7.3 7.2 2.4 2.4 
Multico7 5.1 5.1 5.1 5.1 5.1 5.1 6.9 4.7 6.4 9.4 6.4 4.7 6.4 3.4 3.4 
Multico8 10.5 10.1 10.5 10.1 10.5 10.1 7.1 6.6 4.4 6.6 8.8 6.6 4.4 5.7 5.7
Multico9 5.9 7.2 7.3 7.2 5.9 7.2 10.4 4.3 5.4 8.2 10.5 8.2 8.2 5.1 5.1
Multico10 7.1 7.1 7.1 7.1 7.1 7.1 10.2 5.6 6.4 10.2 10.2 5.6 6.4 4.1 4.1
Multico11 7.3 9.0 7.3 9.0 7.3 9.0 10.2 7.3 4.5 7.3 9.0 7.3 4.5 5.7 5.7
Multivar1 8.4 8.4 9.5 8.4 8.4 8.4 9.7 4.9 7.8 9.6 7.7 4.9 7.7 5.4 5.4
Multivar2 7.9 7.9 7.9 7.9 7.9 7.9 9.2 5.2 4.7 2.5 2.5 5.2 4.7 4.5 4.5
Multivar3 10.7 8.7 10.7 8.7 10.7 8.7 10.7 6.9 4.4 6.9 8.7 6.9 4.4 5.7 5.7
Multivar4 3.7 3.7 3.7 3.7 3.7 3.7 9.3 4.2 4.0 8.4 8.0 4.2 4.0 5.7 3.9 
Multivar5 7.3 7.3 7.3 7.3 7.3 7.3 9.9 5.0 0.0 9.7 0.0 5.0 5.4 5.1 5.2
Multivar6 6.7 6.4 6.7 6.5 6.7 6.4 8.9 4.1 4.1 8.1 8.0 4.1 4.1 4.6 4.6
Multivar7 6.2 6.2 6.2 6.2 6.2 6.2 10.3 7.2 5.4 7.2 10.5 7.2 5.4 3.7 3.7 
Cutoff1 10.6 10.4 NS NS 10.6 10.4 10.0 3.9 3.9 7.7 10.3 3.9 3.9 4.3 4.3
Cutoff2 6.5 6.6 6.5 6.6 6.5 6.6 8.4 6.7 6.7 6.7 6.7 6.7 6.7 5.0 4.9
Cutoff3 5.8 5.8 NS NS 5.8 5.8 9.5 3.8 3.8 7.5 7.5 7.5 7.5 4.1 4.1
Cutoff4 5.2 5.2 NS NS 5.2 5.2 8.6 6.7 6.7 6.7 6.7 6.7 6.7 4.6 4.6
Cutoff5 5.7 5.7 5.7 5.7 5.7 5.7 10.2 4.3 4.3 8.5 8.5 4.3 4.3 4.0 4.0
Cutoff6 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.1 1.1 0.9 0.9 0.9 0.9 
Cutoff7 8.8 10.1 NS NS 8.8 10.1 9.2 3.6 3.5 7.1 7.1 3.6 3.5 4.8 4.8
Cutoff8 6.3 6.1 6.3 6.1 6.3 6.1 10.0 4.0 4.0 8.1 8.0 4.0 4.0 4.9 4.9
Empir1 6.5 10.3 6.5 10.3 6.5 10.3 9.1 6.9 6.8 6.9 6.8 6.9 6.8 5.2 5.2
Quasisep1 4.0 4.0 4.0 4.0 4.0 4.0 6.8 3.9 6.8 7.7 6.8 3.9 6.8 2.7 2.7 
Quasisep2 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 9.5 9.7 4.1 4.1 0.0 0.0 
     
Number of Datasets Meeting Minimum LRE Criterion 
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LRE ≥ 4.0 27 27 23 23 27 27 28 23 23 28 27 25 26 22 21
LRE ≥ 6.0  20 21 19 19 20 21 27 9 8 28 27 11 11 0 0

Note: D = Default Settings; U = User Optimized Setting; 1 = Starting Point 1; 2 = Starting point 2, NS= did not converge to a solution, MT: MATLAB, GF: 
GLMFIT. Bolded numbers indicate minimum parameter estimates with an LRE below a reliability threshold value of 4.  
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Table 6. Minimum LRE for standard errors with user optional settings 

  STATA MT R LIMDEP SAS
  LOGIT BINREG GLM GF GLM LOGIT LOGISTIC QLIM
Dataset U1 U2 U1 U2 U1 U2 D D1 D2 U1 U2 U1 U2 U1 U2
Base 11.3 9.7 11.3 9.7 11.3 9.9 11.3 6.3 7.3 11.3 11.1 11.3 11.3 5.6 5.6
Multico1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 10.5 9.7 0.1 0.1 0.1 0.1 
Multico2 9.9 9.4 9.9 9.5 9.9 9.5 10.7 5.0 5.4 9.9 11 9.9 11 4.7 4.7
Multico3 7.2 7.3 7.3 7.2 7.3 7.2 6.0 4.1 5.5 8.8 10.7 8.2 10.8 3.1 3.1
Multico4 8.4 1.4 8.4 1.4 8.4 1.4 10.1 6.0 5.8 10.1 10.1 10.1 10.1 4.8 4.9
Multico5 7.9 8.1 7.9 7.9 7.9 7.9 8.7 4.9 4.7 9.7 9.3 8.8 8.8 4.6 4.6
Multico6 7.1 7.1 7.1 1.6 7.1 7.1 6.8 3.7 3.7 9.8 9.9 9.9 10.6 2.4 2.5 
Multico7 5.1 5.6 0.2 0.2 0.2 0.2 6.9 4.7 6.4 9.4 8.4 9.4 10.5 3.4 3.4 
Multico8 10.5 10.1 10.5 10.1 10.5 10.1 7.1 6.6 4.4 10.5 10.1 10.5 8.8 6.1 5.7
Multico9 7.3 7.2 7.3 7.3 7.3 7.3 10.4 4.3 5.4 10.1 10.5 8.2 8.2 5.1 5.1
Multico10 6.8 0.5 7.1 7.1 6.8 0.5 10.2 5.6 6.4 10.2 10.2 10.3 10.2 4.1 4.1
Multico11 10.2 9.0 10.2 9.0 10.2 9.0 10.2 7.3 4.5 10.2 9.7 10.2 9.0 5.8 5.8
Multivar1 8.7 8.4 8.7 8.4 8.7 8.4 9.7 4.9 7.8 10.6 8.2 9.6 7.7 5.4 5.4
Multivar2 7.9 7.9 7.9 7.9 7.9 7.9 9.2 5.2 4.7 2.5 2.5 10.4 9.3 4.5 4.5
Multivar3 10.7 8.7 10.7 8.7 10.7 8.7 10.7 6.9 4.4 10.8 10.7 10.7 8.7 5.7 5.7
Multivar4 0.0 0.0 0.0* 0.0 0.0 0.0 9.3 4.2 4.0 6.3 6.8 4.2 4.0 5.7 3.8 
Multivar5 7.2 6.8 7.2 6.8 7.2 6.8 9.9 5.0 0.0 9.7 9.3 9.8 9.8 5.1 5.1
Multivar6 6.7 6.6 6.7 6.7 6.7 6.7 8.9 4.1 4.1 8.1 8.5 8.1 8.0 4.9 4.9
Multivar7 6.2 6.2 6.1 0.0 6.1 0.0 10.3 7.2 5.4 7.6 10.5 10.3 10.5 3.7 3.7 
Cutoff1 10.6 10.4 10.6 10.4 10.6 10.4 10 3.9 3.9 10.3 10.3 7.7 7.7 4.3 4.4
Cutoff2 7.4 7.1 7.4 7.1 7.4 7.1 8.4 6.7 6.7 10.1 10.1 10.1 10.1 4.9 4.9
Cutoff3 6.5 5.7 5.8 5.8 5.8 5.8 9.5 3.8 3.8 9.3 8.0 7.5 7.5 4.1 4.1
Cutoff4 5.2 5.1 5.2 5.2 5.2 5.2 8.6 6.7 6.7 8.2 8.2 10.2 10.2 4.6 4.6
Cutoff5 6.4 6.4 5.7 5.7 5.7 5.7 10.2 4.3 4.3 8.5 10.2 8.5 8.5 4.0 4.0
Cutoff6 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.1 1.1 0.9 0.9 0.9 0.9 
Cutoff7 8.8 10.1 8.8 10.2 8.8 10.1 9.2 3.6 3.5 10.5 10.0 7.1 7.1 4.8 4.9
Cutoff8 5.8 5.8 7.0 6.7 7.0 6.7 10 4.0 4.0 9.9 8.1 8.1 8.0 4.9 5.0
Empir1 10.3 10.3 10.3 10.3 10.3 10.3 9.1 6.9 6.8 9.8 8.4 10.3 10.3 5.2 5.2
Quasisep1 5.7 5.7 4.0 3.9 0.0 3.9 6.8 3.9 6.8 9.4 9.4 7.7 10.4 2.7 2.7 
Quasisep2 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 9.5 9.7 4.1 4.1 0.0 0.0 
     
Number of Datasets Meeting Minimum LRE Criterion 
LRE ≥ 4.0 27 25 26 22 25 22 28 23 23 28 28 28 28 23 22
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LRE ≥ 6.0  22 19 21 18 21 18 27 9 8 28 28 26 26 1 0
Note: D = Default Settings; U = User Optimized Setting; 1 = Starting Point 1; 2 = Starting point 2, NS= did not converge to a solution, MT: MATLAB, GF: 
GLMFIT, MATLAB has no user optional settings. Bolded numbers indicate minimum parameter estimates with an LRE below a reliability threshold value of 
4.  
 


