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Abstract

Stochastic differential equations (SDEs) are increasingly used in longitudinal data analysis, com-
partmental models, growth modelling, and other applications in a number of disciplines. Parameter
estimation, however, currently requires specialized software packages that can be difficult to use
and understand. This work develops and demonstrates an approach for estimating reducible SDEs
using standard nonlinear least squares or mixed-effects software. Reducible SDEs are obtained
through a change of variables in linear SDEs, and are sufficiently flexible for modelling many situ-
ations. The approach is based on extending a known technique that converts maximum likelihood
estimation for a Gaussian model with a nonlinear transformation of the dependent variable into an
equivalent least-squares problem. A similar idea can be used for Bayesian maximum a posteriori
estimation. It is shown how to obtain parameter estimates for reducible SDEs containing both
process and observation noise, including hierarchical models with either fixed or random group
parameters. Code and examples in R are given. Univariate SDEs are discussed in detail, with ex-
tensions to the multivariate case outlined more briefly. The use of well tested and familiar standard
software should make SDE modelling more transparent and accessible.

Keywords: stochastic processes, longitudinal data, growth curves, compartmental models,
mixed-effects, R
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1. Introduction

Stochastic differential equation (SDE) models incorporate random elements into ordinary dif-
ferential equations, representing the effects of a noisy environment on rates of change. In addition
to their traditional applications in physics and engineering (Gardiner 1985), SDEs are becoming
routine in finance (Kunita 2010, Kloeden and Platen 1992, Sec. 7.3) and pharmacokinetics (Kris-
tensen et al 2005, Klim et al 2009, Donnet and Samson 2013), and are increasingly used in fields
like econometrics (Paige and Allen 2010, Bu et al 2010, 2016), animal growth (Lv and Pitchford
2007, Strathe et al 2009, Filipe et al 2010), oncology (Sen 1989, Favetto and Samson 2010), and
forestry (Garćıa 1983, Broad and Lynch 2006, Batho and Garćıa 2014). Other applications in-
clude Artzrouni and Reneke (1990), Cleur (2000), Driver et al (2017). In particular, deterministic
growth curves are commonly fitted to repeated measurements assuming that observation error is
the only source of randomness (Davidian and Giltinan 2003), but an SDE growth model can be
more realistic (Hotelling 1927, Donnet et al 2010). In addition to environmental or process noise,
some models include also observation errors (Garćıa 1983, Donnet et al 2010, Donnet and Samson
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2013). Another extension of the basic SDE is to hierarchical models with repeated measurements,
where some parameters may be specific to each individual or group. Such local parameters can be
fixed numbers (Garćıa 1983) or, more often, are viewed as random in mixed-effects models (Donnet
and Samson 2008, Klim et al 2009, Picchini et al 2010, Driver et al 2017).

Parameter estimation for general SDEs is a difficult problem, with most algorithms employing
approximations to maximum likelihood (e. g., Nielsen et al 2000, Bishwal 2008, Picchini et al 2010,
Donnet and Samson 2013). Bayesian methods have also been proposed (Donnet et al 2010, Brouste
et al 2014, King et al 2016, Whitaker et al 2017). R packages implementing estimation for various
types of SDE models include ctsem, dynr, mixedsde, msde, pomp, sde, Sim.DiffProc, and yuima
(CRAN 2017); pomp and yuima include Bayesian procedures. An alternative method is presented
here for SDEs that can be reduced to linear by a change of variables. The approach is based
on an extension of ideas of Box and Cox (1964) and Furnival (1961), which convert maximum-
likelihood (ML) estimation for a transformed Gaussian model into a least-squares problem. The
same principle can be used to obtain Bayesian maximum a posteriori (MAP) estimates. The sum
of squares can be minimized with standard statistical software like the nls function in R, or nlme
for mixed-effects formulations (Pinheiro and Bates 2000).

The general methodology is described in the next section, followed by its application to SDE
models with observation errors in Section 3. Examples in R are given. The SDE models may
include hierarchical structures with group fixed or random effects (Sec. 3.3). To simplify, only
univariate SDEs are discussed in full detail, with extensions to vector-valued multiresponse models
treated more briefly in Section 3.4. A Conclusions section closes the article.

2. Transformed Gaussian model

2.1. Example 1

Venables and Ripley (2002, Sec. 8.7) describe a dataset containing measurements of the concen-
tration of a chemical GAG in the urine of 314 children of various ages. Assume that one wants an
equation summarizing the relationship between GAG concentration (variable y) and age (variable
x). Plotting shows that the relationship is nonlinear, so that a simple linear regression y = β0 +β1x
is unsatisfactory. A common strategy is to try regressions on transformations of x and/or y, such
as logarithms or various positive or negative powers. We shall find “good” exponents for powers
in both x and y.

Instead of a simple power transformation, it is slightly more convenient to use

y(λ) =

{
yλ−1
λ if λ 6= 0

ln y if λ = 0
(1)

(Box and Cox 1964). This is an increasing function of y for any λ, it is continuous in λ at λ = 0,
and includes the logarithmic transformation as a special case. Physicists call eq. (1) a generalized
logarithm (Martinez et al 2008).

The model is then
y

(λy)
i = β0 + β1x

(λx)
i + εi . (2)

Assuming that the εi are independent and normally distributed, it is possible to write down the
likelihood function and use a general optimization algorithm to find the maximum likelihood (ML)
estimates for the parameters β0, β1, λx, λy, and σ2 = Var[εi]. However, the optimization can be

3



time-consuming and ill-conditioned, requiring good starting points to achieve convergence. Box and
Cox (1964) showed a way of converting the likelihod maximization into a least-squares solution,
which is more efficient and stable. Furnival (1961) had used the same idea to devise an index
for comparing dependent variable transformations. Specifically, Box and Cox (1964) considered
various one- and two-parameter transformations on the left-hand side and a linear right-hand side,
solving by ordinary linear least squares. Estimation in eq. (2) is similar, except that with a free
λx it requires a non-linear least-squares procedure.

The next two sections develop an extension of the Box–Cox–Furnival approach, needed for the
application to SDEs. The ML estimation for Example 1, both by the method of Box and Cox
(1964) and by direct maximization of the likelihood, is presented in Section 2.4.

2.2. Generalized formulation

Consider a vector of n observations y = (y1, . . . , yn), and a transformation

z = ϕ(y,θ1)

that may depend on a vector of unknown parameters θ1. Assume that ϕ is one-to-one and differen-
tiable over the admissible domain, and that the transformed variables follow a Gaussian nonlinear
model

zi = fi(θ2) + εi ,

where the εi are independent normally distributed with mean 0 and a common variance σ2. In
Box and Cox (1964) and in Section 2.1 the transformations are of the simpler form zi = ϕ(yi,θ1),
fi takes the form f(xi,θ2) where xi is a vector of predictors, and the parameters in θ1 and in θ2

are different. Those restrictions are not imposed here. In particular, we denote by θ the vector
containing the union of the elements from θ1 and θ2, some of which may be the same, and write

z = ϕ(y,θ) (3)

and
zi = fi(θ) + εi , (4)

There is no loss in generality from the assumption of homoscedastic uncorrelated errors in
eq. (4), because any other correlation structure can be accommodated through a linear transfor-
mation (Sec. 2.5).

2.3. Maximum likelihood

The following extends the results of Box and Cox (1964) and Furnival (1961) to the more
general formulation of eqns. (3)–(4):

Proposition 1. Let

J = J(y,θ) = abs

(∣∣∣∣∂ϕ∂y
∣∣∣∣) = abs

(∣∣∣∣{∂ϕi∂yj

}∣∣∣∣) (5)

be the absolute value of the Jacobian determinant of the transformation (3), and write

ui =
εi

J1/n
=
ϕi(y,θ)− fi(θ)

J(y,θ)1/n
. (6)
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Then, the ML estimate of θ is the value θ̂ that minimizes the sum of squares S(θ) =
∑
u2
i . The

ML estimate of σ2 is

σ̂2 = J(y, θ̂)2/nS(θ̂)

n
. (7)

Proof. The probability density of y, and hence the likelihood in terms of the original observations,
is the product of the density of z and the absolute value of the Jacobian of the transformation
(e. g., Wilks 1962, Sec. 2.8),

L =
1

(2π)n/2σn
exp

(
−
∑
ε2i

2σ2

)
J . (8)

Substituting εi = J1/nui (from eq. (6)) and σ = J1/nσu,

L =
1

(2π)n/2σnu
exp

(
−
∑
u2
i

2σ2
u

)
. (9)

This has the form of a normal density, and therefore the standard normal theory applies (e. g.,
Seber and Wild 2003, Sec. 2.2.1). Briefly, equating to 0 the derivative of L with respect to σ2

u it is
found that, for given θ, the likelihood is maximized by

σ2
u =

∑
u2
i

n
. (10)

Substituting into eq. (9),

max
σ2
u

L =

(
n

2π
∑
u2
i

)n/2
exp(−n/2) .

Clearly, the ML estimate θ̂ can be calculated minimizing over θ the sum of squares
∑
ui(y,θ)2.

Equation (10) and σ2 = J2/nσ2
u give eq. (7).

An alternative variance estimator with n− p instead of n in the denominator of eq. (7) is often
used, which generally has less bias but a larger mean square error. It may be worth noting that in
general the ui are not Gaussian, even though the likelihood takes that form.

2.4. Solution of Example 1

Eq. (2) corresponds to (3)–(4) with zi = y
(λy)
i and θ = (β0, β1, λx, λy).

In this instance the Jacobian matrix is diagonal, and the determinant is the product of the
diagonal elements ∂zi/∂yi. Then, as shown by Furnival (1961) and by Box and Cox (1964),

J1/n = ẏλ−1 , (11)

where ẏ denotes the geometric mean of the yi.
R commands for finding the solution are given in Appendix A. First, the exponents are fixed

as λx = 1 and λy = 0, and a simple linear regression ln y = β0 + β1x is used to produce suitable
starting points for the optimization. Then, the sum of squares of the ui from eq. (6) is minimized
with the nonlinear regression procedure nls, making use of eq. (11). The ML estimates are found
to be

β0 = 3.314 , β1 = −0.3502 , λx = 0.4249 , λy = 0.1032 .
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From eq. (7), the ML variance estimate is σ2 = 0.3839.
A more convenient and parsimonious relationship can be obtained by rounding λx = 0.5, λy = 0,

and using the linear regression
ln y = 3.366− 0.5069

√
x .

It is also shown in Appendix A that the same estimates are obtained by direct minimization
of the negative log-likelihood from eq. (8), confirming the validity of the Box–Cox approach.

2.5. Correlation

Suppose that the εi in eq. (4) are not independent. Let the variance-covariance matrix of the
vector ε = (ε1, . . . , εn) be

Var(ε) = σ2C , (12)

where the matrix C may depend on unknown parameters. The Cholesky factorization gives C as
the product of a lower-triangular matrix L and its transpose:

C = LL′ . (13)

It follows that the elements of L−1ε are uncorrelated, and so are those of L−1z (e. g., Seber and
Wild 2003, Sec. 2.1.4, where the upper-triangular Cholesky factor U = L′ is used). Therefore, with
the substitution ϕ(y,θ) → L−1ϕ(y,θ) in eq. (3) we are in the same situation as before. Eq. (5)
becomes

J = abs

(∣∣∣∣∂L−1ϕ

∂y

∣∣∣∣) = abs

(∣∣∣∣{∂ϕi∂yj

}∣∣∣∣) /|L| , (14)

with

|L| =
n∏
i=1

lii

since the determinant of a triangular matrix is the product of the elements on the diagonal, and
those elements lii in L are positive. In practice it is better to use logarithms to prevent numerical
overflow or underflow:

|L|1/n = exp

(
1
n

n∑
i=1

ln lii

)
. (15)

With this J , the vector of ui for the sum of squares is now

u =
L−1ε

J1/n
(16)

(c. f. eq. (6)).

2.6. Maximum a posteriori estimation

In Bayesian MAP estimation the likelihood is weighted by an a priori parameter distribution
density:

max
θ,σ2

L(θ, σ2)p(θ) .

If L is Gaussian, this has the same form as eq. (8) with p(θ) in place of J . Therefore, analogously
to Sec. 2.3, the MAP estimate of θ is the value θ̂ that minimizes the sum of squares S(θ) =∑

(εi/p
1/n)2, and the estimate of σ2 is σ̂2 = p(θ̂)2/nS(θ̂)/n. Of course, this can be combined with

variable transformations as above.

6



3. Stochastic differential equations

The behavior of systems that evolve in time is often modelled by a relationship betwn a magni-
tude x and its rate of change, given by a differential equation dx/dt = f(x). In many situations the
rate is subject to perturbations, due to varying environmental conditions, that cause substantial
deviations from the predicted trajectory. It is then more realistic to include noise, represented by
a random function ε(t):

dx

dt
= f(x) + g(x)ε(t) . (17)

In particular, ε may be assumed to be white noise, where the values ε(t) have the same distribution
for all t, with mean 0, and values for different t’s are uncorrelated. Such an SDE was proposed by
Langevin in 1908 as a simpler formulation of Einstein’s 1905 theory of Brownian motion. Hotelling
(1927) used a similar model for logistic population growth. By the middle of the 20th Century
it had been found that a rigorous mathematical treatment of the theory becomes surprisingly
complex. Textbooks go over extensive advanced mathematical background material before dealing
with SDEs (Allen 2007, Arnold 1974, Gardiner 1985, Henderson and Plaschko 2006, Kloeden and
Platen 1992, Øksendal 2003). For modelling, an intuitive understanding may suffice.

One problem with eq. (17) is that a completely uncorrelated ε(t) would be discontinuous every-
where and have infinite variance. The way around that is to work instead with its integral W (t),
known as a Brownian motion or Wiener process. Increments ∆W represent the accumulated white
noise over a time interval ∆t, and are uncorrelated for non-overlapping intervals. Because of this,
the expected value of ∆W is 0 and the variance is proportional to |∆t|; the proportionality constant
is standardized as 1. As a sum of a potentially large number of uncorrelated increments, W (t) is
Gaussian. The white noise in eq. (17) would correspond to the limit of ∆W/∆t as ∆t tends to 0
but, although W (t) is continuous, its fine structure is exceedingly rough (it is not differentiable),
and such limit does not exist. SDEs are therefore conventionally written in terms of differentials:

dX(t) = f [X(t), t] dt+ g[X(t), t] dW (t) , (18)

also called a continuous-time diffusion model. The capital letters emphasize the fact that X(t)
and W (t) are random variables. In general, f and g can depend on time, in a time-variant SDE,
although it is more common to assume that behavior does not change over time (time-invariant or
autonomous). The function f is sometimes called the drift or trend, and g the diffusion function
or volatility.

Another difficulty lies with the definition of the integral of the second term on the right-hand
side of eq. (18). There X and W are stochastic processes and, unlike what happens with ordinary
functions, when representing the integral as the limit of a sum the location within a time interval
where X(t) is evaluated makes a difference. Two definitions are commonly used, that of Ito,
with X(t) evaluated at the start of each interval, and that of Stratanovich, based on the interval
mid-point. We will use only volatilities g independent of X, in which case Ito and Stratonovich
coincide, and the rules of ordinary calculus hold. A useful fact is that, for any sufficiently well-
behaved function g,

δ =

∫
g(t) dW (t) is Gaussian with E[δ] = 0 and Var[δ] =

∫
g(t)2 dt . (19)

More generally, the state of the system may be specified by several variables, and then X(t) is
a vector. To simplify the presentation only one-dimensional time-invariant SDEs will be discussed
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in detail, mentioning briefly the main changes needed for time-variant models. Most results can be
extended to multiple state variables by substituting appropriate vectors and matrices (Sec. 3.4).

In general, explicit forms for the probability distributions associated to eq. (18) are not available,
and parameter estimation is difficult (Nielsen et al 2000, Bishwal 2008, Donnet and Samson 2013).
Linear SDEs, however, are more tractable and can be explicitly solved. The same is true for any
process that can be reduced to a linear SDE through a sufficiently smooth nonlinear transformation
(Kloeden and Platen 1992, Sec. 4.3). The model used here is a linear SDE

dY = (β0 + β1Y ) dt+ σp dW , (20)

where Y is a one-to-one differentiable transformation Y = ϕ(X,λ) of the original variable X,
parameterized by a one- or higher-dimensional vector λ. The constants β0, β1, σp, and the elements
in λ, are parameters to be estimated. There are no additional difficulties if a parameter appears
both in the transformation and in the rest of the model, so that, more generally,

Y = ϕ(X,θ) , (21)

where θ is a vector including all the model parameters. In the literature, Y and dW are often
written as Y (t) and dW (t), or as Yt and dWt, respectively.

The data are observations xi of X(ti) at n occasions t1 < t2 < · · · < tn. Optionally, the
observations may be subject to measurement or sampling errors such that

yi = ϕ(xi,θ) = Y (ti) + εi ; i = 1, . . . , n , (22)

with independent normal errors εi ∼ N(0, σ2
m). The initial condition Y (t0) at t0 < t1 may be a

known or unknown constant, or a Gaussian random variable. In general, Y (t0) = y0 + ε0, with
ε0 ∼ N(0, σ2

0) and independent of the other εi (σ0 may be 0).
In a time-variant model, β0, β1 and σp can be functions of t, possibly containing unknown

parameters. The transformation ϕ could also depend on t (Bu et al 2016).
The linear SDE in eq. (20) is known as the Ornstein-Uklenbeck process in physics, or the Vasicek

model in financial economics. Parameter estimation for linear SDEs, including multivariate and
mixed-efects models with observation errors, has been implemented in the R packages PSM by
Klim et al (2009) and ctsem by Driver et al (2017). Reducible SDEs have been used by Garćıa
(1983), Lv and Pitchford (2007), Paige and Allen (2010), Filipe et al (2010), and Bu et al (2010,
2016).

A power transformation Y = Xλ in eq. (21) produces a stochastic version of the Bertalanffy-
Richards growth model (von Bertalanffy 1949, Richards 1959), which is very flexible and includes
other commonly used models as special cases: von Bertalanffy’s animal growth equation with
λ = 1/3, the Mistcherlich or monomolecular with λ = 1, and the logistic with λ = −1. The
Box-Cox transformation Y = X(λ) from eq. (1) includes in addition the Gompertz model, λ = 0
(Garćıa 1983, Seber and Wild 2003, sections 7.3 and 7.5.3). Garćıa (2008) discusses a “double
Box-Cox” transformation, with two shape parameters, that covers nearly all the sigmoid growth
curves from the literature.

In some applications the emphasis lies on modelling the volatility, as the trend may not be
important if the system operates near the steady state (Bu et al 2010, 2016). A volatility function
g(X, t) can be converted to one that does not depend on X by using the Lamperti transform

Y =

∫
dX

g(X, t)
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(see Moller and Madsen 2010, for details). In particular, an SDE with multiplicative error σX dW
can be converted to one with additive error σ dW by a logarithmic transformation.

3.1. Estimation

From linearity, Y (t) and the yi are Gaussian. The means, variances and covariances needed for
the likelihood can be obtained by integrating eq. (20). Assume for now that β1 6= 0, the changes
needed if β1 = 0 are indicated later. As in linear ordinary differential equations, let us multiply
throughout by the integrating factor e−β1t. Using the rule for differentiation of a product,

d
[
e−β1t(Y + β0/β1)

]
= e−β1t d(Y + β0/β1) + d(e−β1t)(Y + β0/β1)

= e−β1t[ dY − (β0 + β1Y ) dt] ,

so that
d
[
e−β1t(Y + β0/β1)

]
= σpe

−β1t dW . (23)

Integrating both sides between t0 and ti,

e−β1ti [Y (ti) + β0/β1]− e−β1t0 [Y (t0) + β0/β1] = σp

∫ ti

t0

e−β1t dW (t) .

Finally, substituting Y (ti) = yi − εi from eq. (22), and solving for yi,

yi = −β0/β1 + eβ1(ti−t0) (y0 + β0/β1 − ε0) + εi + δ0i ; i = 1, . . . , n , (24)

where, from (19),

δ0i = σp

∫ ti

t0

eβ1(ti−t) dW (t)

is a Gaussian random variable. For a time-variant model, similar results are obtained replacing
e−β1t with the integrating factor exp

[
−
∫
β(t) dt

]
, and moving σp(t) inside the integral (Kloeden

and Platen 1992, Sec. 4.4). This can be generalized to the multidimensional case (Sec. 3.4).
The means, variances and covariances determining the Gaussian probability density of a sample

(y1, . . . , yn) can be obtained from eq. (24) (Garćıa 1983). The methods of Sec. 2 can then be used,
noting that xi and yi here correspond to yi and zi in Sec. 2. A sum of squares

∑
u2
i , calculated

from the observations x1, . . . , xn, can be minimized to compute ML or MAP estimates for the
parameters λ, β0, β1, σp, σm, and possibly y0 and σ0.

The covariance matrix of the yi is dense, all the yi are correlated because the integrals in δ0i

involve overlapping time intervals. It is more convenient to introduce an additional transformation
from y to z that produces diagonal or tri-diagonal covariance matrices, simplifying computation.
The idea is to consider changes between consecutive observations, integrating eq. (23) from ti−1

to ti instead of from t0 to ti. The stochastic integrals are then independent, because the time
intervals do not overlap. If there is an observation error, it affects the observed changes over the
adjacent intervals, so that these are correlated, but intervals further apart remain independent.
The relationship between consecutive observations is obtained substituting i− 1 for 0 in eq. (24):

yi = −β0/β1 + eβ1∆i (yi−1 + β0/β1 − εi−1) + εi + δi ; i = 1, . . . , n , (25)
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where ∆i ≡ ti − ti−1 and

δi = σp

∫ ti

ti−1

eβ1(ti−t) dW (t) .

From (19), the δi are independent Gaussian random variables with E[δi] = 0 and

Var[δi] = σ2
p

∫ ti

ti−1

e2β1(ti−t) dt =
σ2
p

2β1

(
e2β1∆i − 1

)
.

Define
zi = yi + β0/β1 − eβ1∆i (yi−1 + β0/β1) ; i = 1, . . . , n . (26)

The Jacobian of the transformation y → z is 1, so that the zi can be directly substituted for the
yi in the likelihood. From eq. (25),

zi = −eβ1∆iεi−1 + εi + δi .

Therefore,

E[zi] = 0 ; i = 1, . . . , n (27a)

Var[z1] = e2β1∆1σ2
0 + σ2

m +
σ2
p

2β1

(
e2β1∆1 − 1

)
(27b)

Var[zi] = e2β1∆iσ2
m + σ2

m +
σ2
p

2β1

(
e2β1∆i − 1

)
; i = 2, . . . , n (27c)

Cov[zi, zi−1] = Cov[zi−1, zi] = −eβ1∆iσ2
m ; i = 2, . . . , n (27d)

Cov[zi, zj ] = 0 if |i− j| > 1 (27e)

(Garćıa 1983, Seber and Wild 2003, Sec. 7.5.3). It can be seen that the zi are the conditional
residuals yi − E[yi|yi−1] and, as expected, they are uncorrelated if σm = 0, or are negatively
correlated with the adjacent zi−1 and zi+1 otherwise.

If β1 = 0, the relevant equations are:

dY = β0 dt+ σp dW

d(Y − β0t) = σp dW

yi − εi − β0ti − yi−1 + εi−1 + β0ti−1 = δi

zi = yi − yi−1 − β0∆i = εi − εi−1 + δi

Var[z1] = σ2
m + σ2

0 + σ2
p∆1

Var[zi] = 2σ2
m + σ2

p∆i ; i = 2, . . . , n

Cov[zi, zi−1] = −σ2
m ; i = 2, . . . , n

3.2. Computational details

To apply the methods of Section 2, it is necessary to express the covariance matrix as the
product of an unknown parameter σ2 and a matrix C , see eq. (12). One could take σ2 = σ2

m or
σ2 = σ2

p, but this would fail if σ2 = 0. A better option is

σ2 = σ2
m + σ2

p . (28)
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Then, with the re-parametrization

σ2
m = σ2η , σ2

p = σ2(1− η) , σ2
0 = σ2η0 , (29)

if β1 6= 0 the non-zero elements of C are

c11 = e2β1∆iη0 + η + (1− η)
e2β1∆1 − 1

2β1
(30a)

cii = e2β1∆iη + η + (1− η)
e2β1∆i − 1

2β1
; i = 2, . . . , n (30b)

ci,i−1 = ci−1,i = −eβ1∆iη ; i = 2, . . . , n . (30c)

If β1 = 0,

c11 = η + η0 + (1− η)∆1 (31a)

cii = 2η + (1− η)∆i , i = 2, . . . , n (31b)

ci,i−1 = ci−1,i = −η , i = 2, . . . , n . (31c)

The ML method is invariant under re-parametrization (Zacks 1971, Sec. 5.1). In the optimization
one needs to ensure that 0 ≤ η ≤ 1.

It remains to find L such that C = LL′, and then ln J =
∑

ln|∂ϕi/∂xi| −
∑

ln lii, and u =
L−1z/J1/n (see equations (13)–(16)). In R this could be done using the base functions chol and
baksolve, or the corresponding sparse-matrix functions from package Matrix. We show instead a
generic method that makes efficient use of the structure of C.

Because C is tri-diagonal, L has non-zero elements only on the diagonal and sub-diagonal, and
C = LL′ gives

c11 = l211

cii = l2i,i−1 + l2ii ; i = 2, . . . , n

ci,i−1 = li,i−1li−1,i−1 ; i = 2, . . . , n .

Therefore, L can be calculated sequentially from

l11 =
√
c11

for i = 2, . . . , n

li,i−1 = ci,i−1/li−1,i−1

lii =
√
cii − l2i,i−1 .

Similarly, from L−1z = v and z = Lv,

z1 = l11v1

zi = li,i−1vi−1 + liivi ; i = 2, . . . , n ,

which can be solved as

v1 = z1/l11

for i = 2, . . . , n

vi = (zi − li,i−1vi−1)/lii .
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The two loops can be combined into one. The R function logdet.and.v in Appendix B uses this
to compute ln|L| and v = L−1z.

Now the vector u can be computed with function uvector from Appendix B, given user-
supplied functions for the transformation x → y and its derivative. The ML parameter estimates
are found by minimizing the sum of squares

∑
u2
i . The same function uvector may be used to

calculate estimates for σp, σm and σ0 and the maximized log-likelihood value.
If it is known that there are no observation errors (σm = 0), the zi are uncorrelated and the

calculations can be greately simplified.
MAP estimates can be produced by adjoining a prior distribution as shown in Section 2.6. A

prior on η such as a Beta distribution might be useful to force it away from the extremes η = 0
and η = 1.

3.2.1. Example 2

Pinheiro and Bates (2000, Ch. 6, Example 1) present data consisting of 6 height–age observa-
tions in each of 14 loblolly pine trees. This Loblolly dataset is included in the standard R data
collection (R Development Core Team 2009). In this example we use only the first tree, tree #301.
The height hi = H(ti) is in feet, and the age or time t is in years.

A suitable model is
dHc

dt
= b(ac −Hc) .

Integration gives the Bertalanffy-Richards growth curve

H = a {1− [1− (h0/a)c] exp [−b(t− t0)]}1/c

that, as explained above, for small c approximates the Gompertz curve used by Pinheiro and Bates
(2000), and for c = −1 coincides with the logistic from the original study. The parameter a is
the curve upper asymptote, b is a time scale factor, and c determines the location of the inflection
point. Assume H(0) = 0.

Now introduce additive process noise,

dHc = b(ac −Hc) dt+ σp dW , (32)

and measurement error,
hci = H(ti)

c + εi , i = 1, . . . , 6 ,

with the εi independent normally distributed with mean 0 and variance σ2
m.

The calculations are shown in detail in Appendix C. To facilitate convergence, initial estimates
were first obtained fixing η = 0.5 (η is the relative measurement variance from eqns. (28)–(29)),
minimizing the sum of squares of u using uvector and nls. Then, the sum of squares was
minimized with η constrained to be between 0 and 1. The result was a = 72.55, b = 0.0967,
c = 0.5024, η = 1.000, σp = 0, σm = 0.04865, with a maximized log-likelihood value of -3.988.

The result is on the boundary η = 1, suggesting that most of the variability arises from mea-
surement errors, with an indication of ill-conditioning and little effect of η on the other parameter
estimates. It has been found that with small datasets like this one it is often difficult to discriminate
between environmental and observational sources of error (Garćıa 1983).

As an alternative to the additive noise, consider multiplicative process noise:

dHc = b(ac −Hc)( dt+ σp dW ) = b(ac −Hc) dt+ bσp(a
c −Hc) dW .

12



The Lamperti transform suggests

Y = ϕ(H,θ) = ln|ac −Hc| .

Under the Stratanovich interpretation of the SDE the ordinary calculus rules hold, and

dY = −bdt+ bσp dW

(ignoring an inconsequential change of sign in W ). The measurement errors are assumed to be
independent, of the form

yi = Y (ti) + εi , εi ∼ N(0, σ2
m) .

There seem to be good reasons to prefer Stratanovich to Ito in this instance (Kloeden and
Platen 1992, Section 6.1). For the more common Ito interpretation, it is found from Ito’s formula
(Gardiner 1985, eq. (4.3.14)) that the equations differ only by a change of parameters: dY =
−(b+ 1

2b
2σ2
p) dt+ bσp dW . We keep the previous formulation.

The ML estimation for the multiplicative noise version gave a = 77.11, b = 0.08405, c = 0.54946,
η = 1.000, σp = 0, σm = 0.01577, with a maximized log-likelihood value of -3.568 (details in
Appendix C). The log-likelihood is not significantly different from the one for the additive model,
and on a graph the two curves are quite close (Figure 1).

Multiplicative models for most classical growth curves can be derived using Box-Cox transfor-
mations, as special cases of either Y = ln[−(H/a)(c1)](c2) or Y = ln[−(1 − H/a)(c1)](c2) (Garćıa
2008). The Bertalanffy-Richards family corresponds to c2 = 0

3.3. Hierarchical models

Often the data consists of several measurements on each of a number of individuals or sampling
or experimental units (units, for short). For instance, the height measurements at various ages on
each of 14 trees in the Loblolly dataset of Example 2. This is known as panel, repeated measures,
or longitudinal data, and gives rise to hierarchical or multilevel models; the case of two hierarchical
levels is discussed here. Some parameters may vary among units (local), while others are common
to all units (global), possibly after a re-parametrization of the original model. Local parameters
may be treated simply as fixed unknown values, called nuisance parameters if they are not the main
object of interest (Garćıa 1983). More commonly, in mixed-effects models, the locals are viewed
as “random”, possibly reflecting sampling from some hypothetical super-population (Pinheiro and
Bates 2000, Snijders 2003). Mixed-effects SDE examples include Donnet and Samson (2008), Klim
et al (2009), Picchini et al (2010), Driver et al (2017), and Whitaker et al (2017).

In the derivations of Section 2, let us substitute a double subscript ij for i, indicating observation
i = 1, . . . , nj in unit j = 1, . . . ,m. Then, the observations become y = (y11, . . . , ynm,m), or
y = (y1, . . . ,ym), where yj is the vector of nj observations yij in unit j. With these notational
changes, it is seen that the arguments and results of Section 2 are still valid, provided that σ2 is
common to all units (global). However, some computations can be simplified:

It is commonly assumed that the units are statistically independent. Assume also that the
transformations involve only observations in the same unit, that is, zij = ϕij(yj ,θj). The pa-
rameters θj can vary from unit to unit. Then, assuming that σ2 is common to all units, eq. (16)
becomes

u =

(
L−1

1 ε1(y1,θ1), . . . ,L−1
m εm(ym,θm)

)
J1/n

(33)
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Figure 1: Data and fitted models for Example 2. Continuous curve: additive process noise. Dashed curve:
multiplicative process noise.
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where J in eq. (14) can be obtained from

J = abs

(∣∣∣∣∂L−1ϕ

∂y

∣∣∣∣) = abs

 m∏
j=1

∣∣∣∣∣∂L−1
j ϕj

∂yj

∣∣∣∣∣
 .

Applying this to the SDEs, one can compute vj = L−1
j zj and lnJjfor each unit as before

(Section 3.2), and obtain u = v/J1/n with v = (v1, . . . ,vm) and lnJ =
∑

ln Jj .
To ensure a global σ2 under realistic circumstances, assume that σm can be written as the

product of a possibly local multiplier µm(θj) = µmj and a global parameter σM , and similarly for
σ0 and σp:

σm = µmjσM , σ0 = µ0jσZ , σp = µpjσP . (34)

Then, define
σ2 = σ2

M + σ2
P , η = σ2

M/σ
2 , η0 = σ2

Z/σ
2 , (35)

so that in eqs. (27) we substitute

σ2
m = σ2µ2

mjη , σ2
0 = σ2µ2

0jη0 , σ2
p = σ2µ2

pj(1− η)

to obtain the analogous of eq. (30) for unit j

c11j = e2β1j∆1jµ2
0jη0 + µ2

mjη + (1− η)µ2
pj

e2β1j∆1j − 1

2β1j
(36a)

ciij = e2β1j∆ijµ2
mjη + µ2

mjη + (1− η)µ2
pj

e2β1j∆ij − 1

2β1j
, i = 2, . . . , n (36b)

ci,i−1,j = ci−1,i,j = −eβ1j∆ijµ2
mjη , i = 2, . . . , n (36c)

with ∆ij = tij − ti−1,j .
In the case β1j = 0, eqs. (31) become

c11j = µ2
mjη + µ2

0jη0 + (1− η)µ2
pj∆1j (37a)

ciij = 2µ2
mjη + (1− η)µ2

pj∆ij , i = 2, . . . , n (37b)

ci,i−1,j = ci−1,i,j = −µ2
mjη , i = 2, . . . , n . (37c)

An extension of the function uvector to handle hierarchical models is listed in Appendix D.

3.3.1. Fixed local parameters

Viewing both global and local parameters as unknown constants, estimation is relatively simple
in R, where function nls allows vector-valued parameters. This feature seems to be documented
only in the last example of the nls help page, which appears also on page 219 of Venables and
Ripley (2002).

The method performs reasonably well for at least several hundred parameters. Presumably, nls
exploits special structure through matrix partitioning strategies, as in Griewank and Toint (1982),
Garćıa (1983), or Soo and Bates (1992). It was verified that the approach gives exactly the same
results as the method of Garćıa (1983), which is based on direct optimization of the log-likelihood
(software and documentation available at http://forestgrowth.unbc.ca/sde). Computation
times are much longer than those of Garćıa’s compiled Fortran code, but that is not an impediment
with modern computing hardware.
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Example 3.. Consider fitting Richards SDE models simultaneously to all the 14 trees of the
Loblolly dataset of Example 2. The parametrization can be important here, so re-write eq. (32)
using the Box-Cox transformation of eq. (1), ensuring that a and b are proper scale parameters:

Y = (H/a)(c)

dY = −Y d(bt) + σP dW (bt) = −bY dt+
√
|b|σP dW (t) .

Assume that the measurement error is negligible compared to the process noise.
See Appendix E for details of the calculations.
First, take a as local, i. e., the asymptotes aj vary from tree to tree. The ML estimates are

found to be:

a1 = 68.37, . . . , a14 = 78.84, b = 0.09472, c = 0.4918, σP = 0.03359 ,

with a log-likelihood of -88.4. For comparing models with different numbers of parameters one can
use Akaike’s Information Criterion AIC = 210.8, or Schwarz’s Bayesian Information Criterion BIC
= 252.1. These indices penalize twice the negative log-likelihood by subtracting a quantity that
increases with the number of estimated parameters.

Trying with a global and b local gives

a = 73.08, b1 = 0.08912, . . . , b14 = 0.1031, c = 0.4916, σP = 0.03231 ,

with log-likelihood = -85.2, AIC = 204.3, BIC = 245.6. The log-likelihood (or equivalently, the
AIC or BIC) indicates that this model fits the data slightly better than the one with a local.

Taking both a and b as locals gave worse AIC and BIC values than those for the one-local
versions. Other structures could be defined by re-parametrization, substituting functions of other
global and local parameters for a, b and c (Garćıa 1983).

3.3.2. Random local parameters

A more popular alternative is to view local parameters as, in some sense, random. This is known
as a nonlinrar mixed-effects model (Pinheiro and Bates 2000). The easiest situation to understand
and justify is where the units are thought to be a random sample from a population where the
parameters follow certain frequency function. We adopt the usual assumption of Gaussian local
parameter distributions. In mixed-effects modelling terminology, the units are sometimes called
groups (of observations), the global parameters and the means of the locals are fixed effects, and
the deviations of the local parameters from their means are random effects.

With this approach the number of unknown parameters is much reduced, instead of one local
parameter value for each unit it is only necessary to estimate a mean and a variance (and possibly
covariances among locals). On the other hand, there are additional model assumptions, and the
estimation algorithms are more complicated. The model may be questionable when, as is often
the case, rather than being a simple random sample the units are chosen to have a more efficient
coverage of a range of conditions.

A mixed-effects SDE model can be estimated by maximum likelihood using standard packages
and the uij computations above. In R one can use function nlme from the package of the same
name, or nlmer from package lme4. These functions do not support bounds on parameter values,
so that in SDEs with observation errors it would be necessary to do multiple runs with given values
of η, or alternatively, to embed the mixed-effects estimation within a one-dimensional optimization
over η (e. g., using optimize).
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Example 4.. The b-local version from Example 3 was fitted as a mixed-effects model using the
nlme R package (Appendix F). It was necessary to relax the default tolerance in order to achieve
convergence. The ML estimates for the global parameters were a = 73.43 and c = 0.4938. In this
formulation b is a random variable, so that it does not make sense to speak of “estimates”, but the
software provides “predictions” b1 = 0.08973, . . . , b14 = 0.09964, and a mean 0.09381.

The log-likelihood was −101.78, which is not comparable to that in Example 3 because there are
less free parameters in the mixed-effects approach. The AIC and BIC should be more informative.
The AIC = 213.6 compared to the AIC = 204.3 in Example 3 suggests that the fixed-parameters
model is better than the mixed-effects version. However, the opposite is true for the BIC that
penalizes the number of parameters more heavily, 225.7 vs. 245.6.

3.4. Multivariate SDEs

Some applications use a system of SDEs or, equivalently, a vector-valued SDE (e. g., Garćıa
1984, Klim et al 2009, Picchini and Ditlevsen 2011, Donnet and Samson 2013, Driver et al 2017).
Analogously to the single-variable case, we assume that there is a random p-dimensional vector Y
that follows a linear SDE

dY = (AY + b) dt+ S dW . (38)

Here A and S are p× p matrices, and b is a p-vector, any or all of them dependent on parameters
in θ, and W is a vector of p independent Wiener processes.

The observations xi at time ti are related to Y by a one-to-one transformation

yi = ϕ(xi,θ) , (39)

and may be subject to observation error according to

yi = Y (ti) + εi , εi ∼ N(0, V ) . (40)

The errors εi are uncorrelated across observation times, and independent of the process noise W .
The initial conditions are Y (t0) = y0 + ε0, with ε0 ∼ N(0,V0). All this can apply to units
with different parameter values θj and expected initial conditions y0j ; non-essential indices will be
omitted.

A useful example of transformation y = ϕ(x,θ) is

yk = xck11 xck22 · · ·x
ckp
p , k = 1, . . . , p ,

which can be conveniently denoted as y = xC, defining xC ≡ exp(C lnx). This gives a flexible
multivariate analog of the Bertalanffy-Richards SDE (Garćıa 1984).

In the time-invariant case the matrix exponential e−At is an integrating factor (see Moler
and Van Loan 2003, or the expm package in R for definitions and computation of the matrix
exponential). For non-singular A,

d
[
e−At

(
Y + A−1b

)]
= e−AtS dW

(c. f. eq. (23)). Then,

e−Ati
[
Y (ti) + A−1b

]
− e−Ati−1

[
Y (ti−1) + A−1b

]
=

∫ ti

ti−1

e−AtS dW (t) .
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Multiplying by eAti and substituting Y (ti) = yi − εi,

zi ≡ yi + A−1b− eA∆i
(
yi−1 + A−1b

)
= εi − eA∆iεi−1 + δi (41)

with ti − ti−1 ≡ ∆i and

δi =

∫ ti

ti−1

eA(ti−t)S dW (t) ,

E[δi] = 0 ,

Var[δi] =

∫ ti

ti−1

eA(ti−t)SS′eA(ti−t)′ dt =

∫ ∆i

0
eAtSS′eAt′ dt (42)

similarly to eq. (19) (Gardiner 1985, Sec. 4.4.6, and Sec. 4.4.9 for the time-variant case).
Therefore, eq. (41) defines a transformation {yi} → {zi} with unit Jacobian, such that the zi

(or zij) are Gaussian with

E[zi] = 0 ; i = 1, . . . , n (43a)

Var[z1] = V + eA∆0V0eA∆0
′
+ Var[δ1] (43b)

Var[zi] = V + eA∆iVeA∆i
′
+ Var[δi] ; i = 2, . . . , n (43c)

Cov[zi, zi−1] = −eA∆iV ; i = 2, . . . , n . (43d)

Garćıa (1984) obtained explicit likelihoods for systems where oscillations are not admissible,
for which A = P−1ΛP, eA∆i = P−1eΛ∆iP, and Λ is a diagonal matrix of real eigenvalues. That
includes dynamical systems with monotonic state variables, for instance, forest plantations where
diameter and height increases and number of trees decreases over time. There it is convenient to
take the elements of Λ and P instead of those of A as parameters to be estimated.

For general A, it is found through integration by parts of eq. (42) that:

Proposition 2. Var[δi] satisfies

A Var[δi] + Var[δi]A
′ = eA∆iSS′eA∆i

′ − SS′ . (44)

Proof. Making use of the fact that A and eAt commute,

d eAtSS′eAt′ = d
(
eAtS

) (
eAtS

)′
=
(
AeAtS dt

) (
eAtS

)′
+
(
eAtS

) (
AeAtS dt

)′
= A

(
eAtSS′eAt′ dt

)
+
(

eAtSS′eAt′ dt
)

A′ .

Integrating between 0 and ∆i and using eq. (42),

eA∆iSS′eA∆i
′ − SS′ = A Var[δi] + Var[δi]A

′ .
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Eq. (44) is known as a continuous-time Lyapunov equation. A recent review of solution methods
is contained in Simoncini (2016, Sec. 5).

The likelihood for the linear SDE can also be derived less directly by writing it as a product of
the conditional densities of yi given the previous y0, . . . ,yi−1. The conditional expectations and
variance-covariance matrices can be computed recursively using the Kalman filter (e. g., Donnet
and Samson 2013, Sec. 4.2.1).

Regardless of how the likelihood is produced, the Furnival-Box-Cox device following the meth-
ods of Sec. 3 can then be used to reduce the likelihood maximization to minimizing a sum of
squares. Multidimensionality does not introduce additional conceptual issues, although the details
and notation can be complicated. MAP estimation as in Section 2.6 is also feasible.

Taking advantage of the ML re-parametrization invariance, it is preferable to estimate Cholesky
factors instead of optimizing directly over variance-covariance matrices like V or V0 (e. g., Garćıa
1984). This ensures that the matrix will be positive-definite, as it should. The case of S in eq. (38)
is more delicate, because the likelihood function depends only on the product SS′, or on the
Cholesky factor of SS′. This means that a full square matrix S in unidentifiable, that is, different
S’s produce the same observation distribution. Therefore, a triangular matrix should replace S
in the optimization. Driver et al (2017) directly assume that S in eq. (38) is triangular; it is not
always clear how the issue is handled in other software.

4. Conclusions

Furnival (1961) and Box and Cox (1964) showed how maximum likelihood estimation involving
nonlinear transformations of Gaussian dependent variables can be achieved by minimizing a sum of
squares. The technique has many potential applications, the focus here is on stochastic differential
equation modelling. A similar idea can be applied to Bayesian maximum a posteriori estimates.

SDEs are more realistic than traditional approaches in longitudinal data analysis and other
applications, but wider acceptance has been hampered by mathematical and computational com-
plexity. Linear SDEs allow explicit solutions, and are suitable for compartmental and other models
(Cleur 2000, Kristensen et al 2005, Klim et al 2009, Favetto and Samson 2010, Cuenod et al 2011,
Driver et al 2017, Seber and Wild 2003, Sec. 8.8). However, they may not be appropriate in more
general situations. Much more flexibility is achieved by allowing nonlinear transformations of vari-
ables in linear SDEs. The resulting so-called reducible SDEs are mathematically tractable, and
extensions of the Furnival-Box-Cox method make parameter estimation possible using standard
nonlinear least-squares or mixed-effects software.

Mixed-effects modelling has become a de facto requirement for publication in many scientific
journals, but the underlying assumptions are not always justifiable. Often, a model with group
fixed-effects may be preferable. A somewhat obscure feature of the nls function in R makes the
implementation of such fixed parameters models particularly simple.

The proposed methods have been discussed and demonstrated in detail for univariate SDEs.
Results match those computed by direct maximization of the likelihood functions. Extensions to the
multivariate case are outlined more briefly. There are no conceptual difficulties in these, although
the best choice of implementation specifics is not obvious, and likely to be problem-dependent.

Being able to use well tested and familiar standard software should make SDE modelling more
transparent and accessible. Within the class of reducible SDEs, the methodology can also provide
more flexibility in model specification compared to special-purpose software packages. Ease of use
and understanding may contribute to a wider adoption of these models.
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Appendices — R computer code

Appendix A. Example 1, Section 2.4

> bc <- function(y, lambda){ # Box-Cox transformation

+ if (abs(lambda) < 1e-9) log(y)

+ else (y^lambda - 1) / lambda

+ }

> x <- MASS::GAGurine$Age # data

> y <- MASS::GAGurine$GAG

> lm(log(y) ~ I(x - 1)) # find suitable starting points

> # (with lambda.y = 0, lambda.x = 1)

Call:

lm(formula = log(y) ~ I(x - 1))

Coefficients:

(Intercept) I(x - 1)

2.8522 -0.1139

> # Minimize sum of squares:

> gm <- exp(mean(log(y))) # geometric mean

> nls(rep(0, length(y)) ~ (bc(y, lambda.y) - beta0 - beta1 *

+ bc(x, lambda.x)) / gm^(lambda.y - 1), start = c(beta0=2.9,

+ beta1=-0.11, lambda.x=1, lambda.y=0))

Nonlinear regression model

model: rep(0, length(y)) ~ (bc(y, lambda.y) - beta0 - beta1 * bc(x,

lambda.x))/gm^(lambda.y - 1)

data: parent.frame()

beta0 beta1 lambda.x lambda.y

3.3142 -0.3502 0.4249 0.1032

residual sum-of-squares: 3214

Number of iterations to convergence: 10

Achieved convergence tolerance: 1.808e-06

> # Estimate for sigma:

> n <- length(y)

> gm^(0.1032 - 1) * sqrt(3214 / n)

[1] 0.383853

>

> # Round the lambdas for a more parsimonious model:

> lm(log(y) ~ sqrt(x))

Call:

lm(formula = log(y) ~ sqrt(x))
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Coefficients:

(Intercept) sqrt(x)

3.3665 -0.5069

The results are verified by direct minimization of the negative log-likelihood from eq. (8),

− lnL = n
2 ln(2πσ2) +

∑
ε2i

2σ2
− ln J :

> neglogL <- function(theta){# theta = (beta0,beta1,lambda.x,lambda.y,sigma)

+ (n/2) * log(2 * pi * theta[5]^2) + sum((bc(y, theta[4]) - theta[1] -

+ theta[2] * bc(x, theta[3]))^2) / (2*theta[5]^2) - n * (theta[4] - 1) *

+ log(gm)}

> optim(par = c(3, -0.4, 0.4, 0.1, 0.4), fn = neglogL)

$par

[1] 3.3140471 -0.3502047 0.4248816 0.1031103 0.3837414

$value

[1] 810.6863

$counts

function gradient

422 NA

$convergence

[1] 0

$message

NULL

Appendix B. Functions for ML parameter estimation in SDE models, Section 3.2

The following function computes ln|L| and v = L−1z.

logdet.and.v <- function(

# Calculate log(det(L)) and v = L^-1 z

cdiag, # vector with the diagonal elements of C, c[i, i]

csub, # vector with sub-diagonal c[i, i-1] for i > 1

z)

{

v <- z

ldiag <- sqrt(cdiag[1])

logdet <- log(ldiag)

v[1] <- z[1] / ldiag

for (i in 2:length(z)) {

lsub <- csub[i] / ldiag

ldiag <- sqrt(cdiag[i] - lsub^2)

logdet <- logdet + log(ldiag)

v[i] <- (z[i] - lsub * v[i - 1]) / ldiag

}

list(logdet = logdet, v = v)

}
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The function uvector that follows computes the vector u, given logdet.and.v and user-
supplied functions phi(x, theta) for the transformation x→ y and phiprime(x, theta) for its
derivative. Once

∑
ui is minimized, uvector can be used to calculate the ML estimates for σp, σm

and σ0, and the maximized log-likelihood value, if final = TRUE and the optimal parameter values
are passed in the arguments.

uvector <- function(

# If final = FALSE (default), returns vector whose sum of squares

# should be minimized.

# If final = TRUE, passing the ML parameter estimates returns a

# list with the sigma estimates and the maximized log-likelihood.

# Requires a transformation function y = phi(x, theta), and a

# function phiprime(x, theta) for the derivative dy/dx, where

# theta is a list containing all the parameters.

x, t, # data vectors

beta0, beta1, eta, eta0, x0, t0, # SDE parameters

lambda, # named list with additional parameter(s) for phi

final = FALSE)

{

theta <- c(list(beta0=beta0, beta1=beta1, eta=eta, eta0=eta0,

x0=x0, t0=t0), lambda)

s <- order(t); t <- t[s]; x <- x[s] # ensure increasing t

n <- length(x)

y <- phi(x, theta)

y0 <- phi(x0, theta)

Dt <- diff(c(t0, t))

if (beta1 != 0) {

ex <- exp(beta1 * Dt)

ex2 <- ex^2

z <- y + beta0 / beta1 - ex * (c(y0, y[-n]) + beta0 / beta1)

cdiag <- ex2 * eta + eta + (1 - eta) * (ex2 - 1) / (2 * beta1)

cdiag[1] <- cdiag[1] - ex2[1] * (eta - eta0)

csub <- -ex * eta

} else { # beta1 == 0

z <- y - c(y0, y[-n]) - beta0 * Dt

cdiag <- 2 * eta + (1 - eta) * Dt

cdiag[1] <- cdiag[1] - eta + eta0

csub <- -rep(eta, n)

}

ld.v <- logdet.and.v(cdiag, csub, z)

logJ <- sum(log(abs(phiprime(x, theta)))) - ld.v$logdet

Jn <- exp(logJ / n) # J^(1/n)

u <- ld.v$v / Jn

if (!final) return (u) # "normal" exit

# Else, at optimum, calculate sigma.p, sigma.m and sigma.0

# estimates, and the log-likelihood:

ms <- sum(u^2) / n # mean square

sigma2 <- Jn^2 * ms # estimate for sigma^2

list(sigma.p = sqrt((1 - eta) * sigma2), sigma.m = sqrt(eta *

sigma2), sigma.0 = sqrt(eta0 * sigma2), loglikelihood =

-(n / 2) * (log(ms) + log(2 * pi) + 1))

}
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Appendix C. Example 2, Section 3.2.1

Extract tree 301:

> (lob301 <- Loblolly[Loblolly$Seed == 301, ])

height age Seed

1 4.51 3 301

15 10.89 5 301

29 28.72 10 301

43 41.74 15 301

57 52.70 20 301

71 60.92 25 301

Appendix C.1. Additive process noise

The functions for the transformation Hc and its derivative cHc−1 are

> phi <- function(H, theta) H^theta$c

> phiprime <- function(H, theta) with(theta, c * H^(c - 1))

To facilitate convergence, start by fixing η = 0.5 (η is the relative measurement variance from
eqns. (28)–(29)). Minimizing the sum of squares of u using nls, with an initial guess a = 70,
b = 0.1, c = 1,

> nls(~ uvector(x = height, t = age, beta0 = b * a^c, beta1 = -b, eta = 0.5,

+ eta0 = 0, x0 = 0, t0 = 0, lambda = list(c = c)), data = lob301,

+ start = list(a = 70, b = 0.1, c = 1))

Nonlinear regression model

model: 0 ~ uvector(x = height, t = age, beta0 = b * a^c, beta1 = -b,

eta = 0.5, eta0 = 0, x0 = 0, t0 = 0, lambda = list(c = c))

data: lob301

a b c

71.96058 0.09947 0.49217

residual sum-of-squares: 1.829

Number of iterations to convergence: 6

Achieved convergence tolerance: 1.145e-06

The option algorithm = "port" allows upper and lower bounds on the parameters, and we
use it now for 0 ≤ η ≤ 1:

> nls(~ uvector(x = height, t = age, beta0 = b * a^c, beta1 = -b, eta = eta,

+ eta0 = 0, x0 = 0, t0 = 0, lambda = list(c = c)), data = lob301,

+ start = list(a = 70, b = 0.1, c = 0.5, eta = 0.5), algorithm = "port",

+ lower = c(0, 0, 0, 0), upper = c(100, 1, 2, 1))

Nonlinear regression model

model: 0 ~ uvector(x = height, t = age, beta0 = b * a^c, beta1 = -b,

eta = eta, eta0 = 0, x0 = 0, t0 = 0, lambda = list(c = c))

data: lob301

a b c eta

72.5459 0.0967 0.5024 1.0000

residual sum-of-squares: 1.327

Algorithm "port", convergence message: relative convergence (4)
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Finally, calculate the variance estimates and the maximized log-likelihood:

> uvector(x = lob301$height, t = lob301$age, beta0 = 0.0967 * 72.5459^0.5024,

+ beta1 = -0.0967, eta = 1, eta0 = 0, x0 = 0, t0 = 0,

+ lambda = list(c = 0.5024), final = TRUE)

$sigma.p

[1] 0

$sigma.m

[1] 0.04865072

$sigma.0

[1] 0

$logLikelihood

[1] -3.9882

Appendix C.2. Multiplicative process noise

> phi <- function(H, theta)

+ with(theta, log(abs(a^c - H^c)))

> phiprime <- function(H, theta)

+ with(theta, - c * H^(c - 1) / (a^c - H^c))

> nls(~ uvector(x = height, t = age, beta0 = -b, beta1 = 0, eta = eta,

+ eta0 = 0, x0 = 0, t0 = 0, lambda = list(a = a, c = c)), data = lob301,

+ start = list(a = 72, b = 0.1, c = 0.5, eta = 0.5), algorithm = "port",

+ lower = c(0, 0, 0, 0), upper = c(100, 1, 2, 1))

Nonlinear regression model

model: 0 ~ uvector(x = height, t = age, beta0 = -b, beta1 = 0, eta = eta,

eta0 = 0, x0 = 0, t0 = 0, lambda = list(a = a, c = c))

data: lob301

a b c eta

77.10687 0.08405 0.54946 1.00000

residual sum-of-squares: 1.154

Algorithm "port", convergence message: relative convergence (4)

> uvector(x = lob301$height, t = lob301$age, beta0 = -0.08405, beta1 = 0,

+ eta = 1, eta0 = 0, x0 = 0, t0 = 0,

+ lambda = list(a = 77.10687, c = 0.54946), final = TRUE)

$sigma.p

[1] 0

$sigma.m

[1] 0.01576683

$sigma.0

[1] 0

$logLikelihood

[1] -3.568224
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Appendix D. ML estimation in hierarchical SDE models, Section 3.3

Extending the function uvector of Appendix B,

> uvector

function(

# If final = FALSE (default), returns vector whose sum of squares

# should be minimized.

# If final = TRUE, passing the ML parameter estimates returns a

# list with the sigma estimates and the maximized log-likelihood.

# Requires a transformation function y = phi(x, theta), and a

# function phiprime(x, theta) for the derivative dy/dx, where

# theta is a list containing all the parameters.

x, t, unit = NULL, # data and unit id vectors

beta0, beta1, eta, eta0, x0, t0, # SDE parameters. Some of these

# may be local, given as a vector of values for each observation

lambda, # named list of additional parameters(s) for phi,

# possibly local vectors

mum = 1, mu0 = 1, mup = 1, # optional sigma multipliers

sorted = FALSE, # data already ordered by increasing t?

final = FALSE)

{

if(is.null(unit)) unit <- rep(1, length(x)) # single unit

if(length(unique(eta)) > 1 || length(unique(eta0)) > 1)

stop("eta and eta0 must be global")

theta <- data.frame(unit, beta0, beta1, eta, eta0, x0, t0,

lambda, mum, mu0, mup)[!duplicated(unit), ] # one row per unit

v <- c()

n <- logJ <- 0

for(id in theta$unit){

theta.j <- theta[match(id, theta$unit), ]

j <- unit == id

x.j <- x[j]

t.j <- t[j]

if(!sorted){ # ensure increasing t

s <- order(t.j)

x.j <- x.j[s]

t.j <- t.j[s]

}

n.j <- length(x.j)

y <- phi(x.j, theta.j)

y0 <- phi(theta.j$x0, theta.j)

Dt <- diff(c(theta.j$t0, t.j))

muetam <- theta.j$mum^2 * theta.j$eta

mueta0 <- theta.j$mu0^2 * theta.j$eta0

muetap <- theta.j$mup^2 * (1 - theta.j$eta)

if (theta.j$beta1 != 0) {

ex <- exp(theta.j$beta1 * Dt)

ex2 <- ex^2

z <- y + theta.j$beta0 / theta.j$beta1 - ex *

(c(y0, y[-n.j]) + theta.j$beta0 / theta.j$beta1)

cdiag <- (ex2 + 1) * muetam + muetap * (ex2 - 1) /
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(2 * theta.j$beta1)

cdiag[1] <- cdiag[1] - ex2[1] * (muetam - mueta0)

csub <- -ex * muetam

} else { # beta1 == 0

z <- y - c(y0, y[-n.j]) - theta.j$beta0 * Dt

cdiag <- 2 * muetam + muetap * Dt

cdiag[1] <- cdiag[1] - muetam + mueta0

csub <- rep(- muetam, n.j)

}

ld.v <- logdet.and.v(cdiag, csub, z)

v <- c(v, ld.v$v)

logJ <- logJ + sum(log(abs(phiprime(x.j, theta.j)))) -

ld.v$logdet

n <- n + n.j

}

if(n != length(x)) stop("Should not happen, something wrong!")

Jn <- exp(logJ / n) # J^(1/n)

u <- v / Jn

if (!final) return (u) # "normal" exit

# Else, at optimum, calculate sigma.P, sigma.M and sigma.Z

# estimates, and the log-likelihood:

ms <- sum(u^2) / n # mean square

sigma2 <- Jn^2 * ms # estimate for sigma^2

list(sigma.P = sqrt((1 - eta) * sigma2),

sigma.M = sqrt(eta * sigma2),

sigma.Z = sqrt(eta0 * sigma2),

logLikelihood = -(n / 2) * (log(ms) + log(2 * pi) + 1))

}

For clarity, a simple for loop has been used rather than potentially more efficient or elegant
R-specific shortcuts. This uvector is backward compatible with the previous version, giving the
same results for single units.

Appendix E. Example 3, Section 3.3.1

The transformation functions are

> phi <- function(H, theta) with(theta,

+ ifelse(abs(rep_len(c, length(H))) < 1e-9,

+ log(H / a), ((H / a)^c - 1) / c))

> # (works for vectors and scalars)

> phiprime <- function(H, theta) with(theta,

+ (H / a)^(c - 1) / a)

First, take a as local. Local parameters in nls are indexed by a factor identifying the units,
Seed in this case. A vector with one element per observation is passed on to the model function.
On the other hand, values for the factor levels, one element per unit, are used in the starting values
and output. The ML estimates are:

> (alocal <- nls(~uvector(x = height, t = age, unit = Seed,

+ beta0 = 0, beta1 = -b, eta = 0, eta0 = 0, x0 = 0, t0 = 0,

+ lambda = list(a = a[Seed], c = c), mup = sqrt(abs(b))),
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+ data = Loblolly, start = list(a = rep(72, 14), b = 0.1, c = 0.5)))

Nonlinear regression model

model: 0 ~ uvector(x = height, t = age, unit = Seed, beta0 = 0,

beta1 = -b, eta = 0, eta0 = 0, x0 = 0, t0 = 0, lambda =

list(a = a[Seed], c = c), mup = sqrt(abs(b)))

data: Loblolly

a1 a2 a3 a4 a5 a6 a7 a8

68.36651 69.11596 71.87593 70.69002 70.44039 71.38285 72.90628 70.92199

a9 a10 a11 a12 a13 a14 b c

74.01902 74.77264 75.44943 76.41765 76.91871 78.84126 0.09472 0.49182

residual sum-of-squares: 40.35

Number of iterations to convergence: 3

Achieved convergence tolerance: 5.947e-06

> p <- unname(coef(alocal)) # parameter estimates

> uvector(x = Loblolly$height, t = Loblolly$age, unit = Loblolly$Seed,

+ beta0 = 0, beta1 = - p[15], eta = 0, eta0 = 0, x0 = 0,

+ t0 = 0, lambda = list(a = p[Loblolly$Seed], c = p[16]), mup =

+ sqrt(abs(p[15])), final = TRUE)

$sigma.P

[1] 0.03358892

$sigma.M

[1] 0

$sigma.Z

[1] 0

$logLikelihood

[1] -88.39581

> logLik(alocal) # another way

’log Lik.’ -88.39581 (df=17)

> AIC(alocal) # AIC or BIC for comparing models with different

[1] 210.7916

> BIC(alocal) # numbers of parameters (lower is better)

[1] 252.1155

Now try a global and b local:

> (blocal <- nls(~uvector(x = height, t = age, unit = Seed,

+ beta0 = 0, beta1 = -b[Seed], eta = 0, eta0 = 0, x0 = 0, t0 = 0,

+ lambda = list(a = a, c = c), mup = sqrt(abs(b[Seed]))),

+ data = Loblolly, start = list(a = 72, b = rep(0.1, 14), c = 0.5)))

Nonlinear regression model

model: 0 ~ uvector(x = height, t = age, unit = Seed, beta0 = 0,

beta1 = -b[Seed], eta = 0, eta0 = 0, x0 = 0, t0 = 0,

lambda = list(a = a, c = c), mup = sqrt(abs(b[Seed])))

data: Loblolly

a b1 b2 b3 b4 b5 b6 b7

73.08143 0.08912 0.09082 0.09495 0.09053 0.08915 0.09111 0.09496

b8 b9 b10 b11 b12 b13 b14 c
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0.08957 0.09680 0.09819 0.09843 0.09984 0.09984 0.10313 0.49156

residual sum-of-squares: 37.35

Number of iterations to convergence: 4

Achieved convergence tolerance: 2.256e-06

> p <- unname(coef(blocal))

> uvector(x = Loblolly$height, t = Loblolly$age, unit = Loblolly$Seed,

+ beta0 = 0, beta1 = -(p[-1])[Loblolly$Seed], eta = 0, eta0 = 0,

+ x0 = 0, t0 = 0, lambda = list(a = p[1], c = p[16]),

+ mup = sqrt(abs((p[-1])[Loblolly$Seed])), final = TRUE)

$sigma.P

[1] 0.03231109

$sigma.M

[1] 0

$sigma.Z

[1] 0

$logLikelihood

[1] -85.15201

> c(AIC(blocal), BIC(blocal))

[1] 204.3040 245.6279

Finally, with both a ad b locals,

> (ablocal <- nls(~uvector(x = height, t = age, unit = Seed,

+ beta0 = 0, beta1 = - b[Seed], eta = 0, eta0 = 0, x0 = 0, t0 = 0,

+ lambda = list(a = a[Seed], c = c), mup = sqrt(abs(b[Seed]))),

+ data = Loblolly, start = list(a = rep(72, 14), b = rep(0.1, 14),

+ c = 0.5)))

Nonlinear regression model

model: 0 ~ uvector(x = height, t = age, unit = Seed, beta0 = 0,

beta1 = -b[Seed], eta = 0, eta0 = 0, x0 = 0, t0 = 0,

lambda = list(a = a[Seed], c = c), mup = sqrt(abs(b[Seed])))

data: Loblolly

a1 a2 a3 a4 a5 a6 a7

68.31203 67.27849 68.61879 73.81971 75.66951 75.05226 72.12885

a8 a9 a10 a11 a12 a13 a14

76.93856 72.22306 72.02841 73.72472 74.01390 75.85147 76.05177

b1 b2 b3 b4 b5 b6 b7

0.09497 0.09821 0.10087 0.08990 0.08659 0.08913 0.09631

b8 b9 b10 b11 b12 b13 b14

0.08571 0.09807 0.09972 0.09784 0.09888 0.09668 0.09960

c

0.49060

residual sum-of-squares: 30.67
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Number of iterations to convergence: 4

Achieved convergence tolerance: 6.068e-07

> logLik(ablocal)

’log Lik.’ -76.87568 (df=30)

> c(AIC(ablocal), BIC(ablocal))

[1] 213.7514 286.6759

Appendix F. Example 4, Section 3.3.2

Fit the b-local version from Example 3 as a mixed-effects model:

> library(nlme)

> (blocal.nlme <- nlme(0 ~ uvector(x = height, t = age, unit = Seed,

+ beta0 = 0, beta1 = -b, eta = 0, eta0 = 0, x0 = 0, t0 = 0,

+ lambda = list(a = a, c = c), mup = sqrt(abs(b))), data = Loblolly,

+ fixed = a + b + c ~ 1, random = b ~ 1, groups = ~Seed,

+ start = c(a = 72, b = 0.1, c = 0.5),

+ control = nlmeControl(pnlsTol = 0.01)))

Nonlinear mixed-effects model fit by maximum likelihood

Model: 0 ~ uvector(x = height, t = age, unit = Seed, beta0 = 0,

beta1 = -b, eta = 0, eta0 = 0, x0 = 0, t0 = 0,

lambda = list(a = a, c = c), mup = sqrt(abs(b)))

Data: Loblolly

Log-likelihood: -101.7804

Fixed: a + b + c ~ 1

a b c

73.43276915 0.09381183 0.49381270

Random effects:

Formula: b ~ 1 | Seed

b Residual

StdDev: 0.003814812 0.7307142

Number of Observations: 84

Number of Groups: 14

To achieve convergence it was necessary to increase the tolerance pnlsTol from the default
0.001. It may be wise to scale the variables, e. g., specifying x = height / 10, t = age / 10

and adjusting the start values accordingly, to make quantities closer to 1 as recommended in the
nlme documentation. That did not make much difference in this instance.

One can obtain predictions for the units (not estimates, since here the locals are random
variables and not parameters):

> coef(blocal.nlme)

a b c

329 73.43277 0.08972720 0.4938127

327 73.43277 0.09095265 0.4938127

325 73.43277 0.09400202 0.4938127

307 73.43277 0.09087038 0.4938127

331 73.43277 0.08972664 0.4938127

311 73.43277 0.09129559 0.4938127
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315 73.43277 0.09407617 0.4938127

321 73.43277 0.09010012 0.4938127

319 73.43277 0.09536543 0.4938127

301 73.43277 0.09631403 0.4938127

323 73.43277 0.09647272 0.4938127

309 73.43277 0.09739088 0.4938127

303 73.43277 0.09743172 0.4938127

305 73.43277 0.09964012 0.4938127

>

> c(AIC(blocal.nlme), BIC(blocal.nlme))

[1] 213.5608 225.7149

> c(AIC(blocal), BIC(blocal))

[1] 204.3040 245.6279
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