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2 Román Salmerón Gómez et al.

1 INTRODUCTION

General linear regression (GLR) models are widely applied to analyze the relation between
a dependent variable (Y) and a set of regressors (X1, . . . ,Xp, p ≥ 1). This relation allows us to
quantify the value of the dependent variable based on the values of the regressors. The model
is defined for n observations and p regressors, as follows:

Y = Xβ + u, (1)

where u is the random disturbance (which is supposed to be spherical), Xn×p = [X1, . . . ,Xp] is
a matrix of observations of the regressors, Yn×1 is a vector of the observations of the dependent
variable and βp×1 = (β1, . . . , βp)

t is a vector of coefficients regressors.
Multicollinearity exists in the data when there is a strong linear relationship between the

regressors. Depending on the degree, collinearity is said to be exact or approximate. Following
Stock and Watson (2012), we say there is exact collinearity if one of the regressors is a perfect
linear function of the remaining regressors (or one of them). In this case, an estimation is not
possible. On the other hand, approximate multicollinearity arises when one of the regressors
is highly, but not perfectly correlated with the other regressors. Johnston and Dinardo (2001)
indicate that regressors are often close to linear dependence, in which case the ordinary least
squares (OLS) method can be applied, although the estimators may present very high standard
errors.

The concept of multicollinearity is relatively clear. However, the definition of an independent
or explanatory variable as a synonym of regressor is not as clear because some authors consider
the constant term to be an independent variable, while others do not.

According to Johnston and Dinardo (2001), in the model given by (1), the equation identifies
p−1 explanatory variables or regressors (X2,X3. . . . ,Xp) that influence the dependent variable.
The vector X1 is a column of ones, allowing the existence of an intercept term in the equation.
This seems to indicate that the constant term is not considered as an independent variable.
This reasoning is supported by other authors, such as Wooldridge (2009), who indicates that
the linear regression model (1) can be expressed as follows:

Y = β1 + β2X2 + β3X3 + · · ·+ βpXp + u, (2)

where there are p − 1 independent variables and a constant term. Stock and Watson (2012)
presented a similar interpretation of model (2). Therefore, these authors seem to corroborate
the idea that the constant term is not considered as an independent variable.

However, for example, Uriel et al. (1997) propose that to homogenize the treatment of the
regressors in model (1), the intercept term should be multiplied by the regressor X1, which
always takes values equal to one. Novales (1993) and Gujarati (2003) interpret the regression
model as incorporating a constant term that accompanies a first explanatory variable X1, the
value of which is always one (X1t = 1, t = 1, 2, 3, . . . , n).

To clarify the notation, it is considered that the intercept is an independent variable
and the linear regression model is defined as expression (2) considering n observations, p

independent/explanatory variables or regressors (as synonyms) and X1t = 1, for t = 1, . . . , n,
representing the intercept. With this consideration, two kinds of near multicollinearity can be
distinguished:
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Diagnosis and quantification of the non-essential collinearity 3

– Non-essential: near-linear relationship between the intercept with at least one of the remaining
independent variables.

– Essential: near-linear relationship between at least two independent variables excluding the
intercept.

This distinction is relevant, as statistical packages, widely used in econometrics, such as
GRETL or R (package car) do not allow the measurement of the degree of multicollinearity
existing in the simple linear regression (SLR, model (2) for p=2). That is, they deny the
existence of non-essential multicollinearity. In contrast, this study begins from the SLR to
diagnose the occurrence of non-essential multicollinearity in multiple linear regression. Thus,
considering that in the SLR model could be presented collinearity, the next step is to apply
measures to diagnose its presence. This study analyzes the application of the Variance Inflation
Factor (VIF) and the Condition Number (CN) to a SLR.

On the other hand, Novales (1993) states that collinearity in an SLR means that the
explanatory variable X2 is approximately constant. At the same time, Christensen (2018)
stated that Gunst (1984) pointed out that collinearity of a single variable with the intercept
is easily diagnosed by a small coefficient of variation. Thus, we also examine how small the
variance (or coefficient of variation) of the independent variable must be to cause worrying
collinearity. Finally, the collinearity detected in a SLR, can only be non-essential. Thus, the
method of detecting collinearity in the SLR will also detect non-essential collinearity in a GLR.

The remainder of this paper is structured as follows. Section 2 analyzes the application of
the VIF and the CN to a SLR. As alternative measures, and following Novales (1993) and Gunst
(1984), section 3 examines how small the variance or coefficient of variation of X2 must be to
cause serious collinearity. This analysis is interesting because the calculation of these measures
is simpler than that of other diagnosis measures. Section 4 analyzes the indices presented by
Stewart (1987) noting that traditionally they have been wrongly identified as variance inflation
factors and showing the application to quantify the essential and non-essential collinearity. The
application to the multiple linear regression is shown in section 5 using an empirical example
in the field of finance. In this case, the variance is used as a risk measure. Finally, section 6
concludes the paper.

2 COLLINEARITY DIAGNOSTICS

Given model (1), where X1t is equal to 1 for t = 1, . . . , n, the most popular measures used to
diagnose collinearity are presented below:

– The Variance Inflation Factor (VIF):

V IF (i) =
var(β̂i)

var(β̂0
i )

=
1

1−R2
i

, i = 2, . . . , p, (3)

where β̂ is the OLS estimator of model (1), β̂
0
is the OLS estimator of model (1) supposing

that the independent variables are orthogonal and R2
i is the coefficient of determination of

the following auxiliary regression:

Xi = X−iδ +w, (4)
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4 Román Salmerón Gómez et al.

where X−i is equal to matrix X, after eliminating variable Xi, for i = 2, . . . , p. Because
0 ≤ R2

i ≤ 1, it is verified that V IF (i) ≥ 1, i = 2, . . . , p. VIF values greater than 10 indicate
that the linear regression model presents a significant degree of collinearity. As pointed
out by Curto and Pinto (2011), the real impact on variance can be overestimated by the
traditional VIF. To solve this, Curto and Pinto (2011) presented a corrected version known
as the corrected VIF (CVIF) that was posteriorly improved by Salmerón et al. (2017). In
spite of these alternatives, the VIF remains the most widespread collinearity measure.

– The Condition Number (CN):

K(X) =

√
ξmax

ξmin

, (5)

where ξmax and ξmin are the maximum and minimum eigenvalues of matrixXtX, respectively.
Note that before calculating the eigenvalues, the matrix X has to be transformed to
have columns of unit length. Values of CN between 20 and 30 indicate moderate
collinearity, whereas values higher than 30 indicate serious collinearity, Belsley
(1982).

The following subsections applies these measures to a SLR model.

2.1 VIF in a SLR

The auxiliary regression (4) of an SLR given by:

Y = β1 + β2X2 + u, (6)

is defined as follows:

X2 = α+w, (7)

where the OLS estimator is given by:

α̂ = (1t1)−11tX2 =
1

n
·

n∑

t=1

X2t = X2, (8)

where 1 is an n× 1 vector of ones. In this case, et = X2t −X2 for t = 1, . . . , n. Then:

SSRaux = ete =
n∑

t=1

(
X2t −X2

)2
= n · V ar(X2),

SSTaux =
n∑

t=1

(
X2t −X2

)2
= SSRaux,

where V ar(X2) is the sample variance of X2 and SSRaux and SSTaux are, respectively, the
sum of squares of the residuals and total of the regression (7).
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Diagnosis and quantification of the non-essential collinearity 5

Thus, it is evident that the coefficient of determination of the auxiliary regression will
always be equal to zero:

R2
aux = 1− SSRaux

SSTaux

= 1− n · V ar(X2)

n · V ar(X2)
= 0. (9)

Consequently, it makes no sense to use the VIF to diagnose the possible existence of collinearity
in an SLR.

Example 1 For a SLR given by (6) and supposing that β1 = 1 and β2 = 0.5, a dependent
variable Y is calculated considering u ∼ N(0, 1) and X2 = (3.1, 2.9, 3, 3.1)t:

1 ·




1
1
1
1


+ 0.5 ·




3.10
2.90
3

3.10


+




−1.53
−0.64
1.66
0.08


 =




1.02
1.81
4.16
2.47


 .

The OLS estimation of SLR model is β̂ = (9.97,−2.51)t. If we perturb X2 to X∗2 =

(3.1, 2.9, 3.12, 3.1)t is obtained β̂
∗
= (−11.47, 4.53)t.

It is observed significant differences between the OLS estimations that also differ substantially
from the true parameters. This is a symptom of serious collinearity: large variation in
the estimations for slight changes in the sample. Calculating the VIF using various software
packages, it is concluded that GRETL does not allow us to calculate the VIF in a linear
regression model. The same occurs in R when trying to obtain the VIF in an SLR: a) using
the library “car” generates the message: “Error in vif.default(lm(y x2)): model contains fewer
than 2 terms,” and b) incoherent results are obtained when using the library “fmsb” since the
VIF will always be equal to one in an SLR and, however, this library provides results of:

V IF (1) = 1.375, V IF (2) = 1.000372,

for the two data sets, respectively. We are not aware of other libraries that calculate the VIF
in R. Other software such as Stata and SPSS provide an option to calculate the VIF, always
obtaining a value of one. Thus, the duality mentioned in the introduction when considering
the constant term as an explanatory variable is also reflected in popular statistical software
packages applied to analyze linear regression models.

In addition, given the results obtained from Stata and SPSS, it is possible to conclude that
there is no collinearity, because the VIF is equal to 1. Thus, although such software enables the
diagnosis of collinearity in the SLR, they can lead to an erroneous conclusion when the VIF is
applied, to say that there is not a degree of worrying multicollinearity when it does exist. Thus,
for example, the Condition Numbers for X = [1 X2] and X∗ = [1 X∗2] are, respectively, 72.5407
and 68.1926. Then, using this measure (that will be analyzed in the following subsection), we
conclude that the model presents collinearity because the values are higher than 30.

Finally, note that the variance of the variables X2 and X∗2 is 0.006875 and 0.008075,
respectively. This supports the idea that a small variance in the explanatory variable can
lead to collinearity in the SLR. ♦
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6 Román Salmerón Gómez et al.

2.2 CN in a SLR

The CN for model (6) is calculated as follows. First, the matrix X must be transformed to

obtain a matrix, X̃, with columns of unit length:

X =




1 X21

...
...

1 X2n


 , X̃ =




1√
n

X21√
∑

n
t=1

X2

2t

...
...

1√
n

X2n√
∑

n
t=1

X2

2t


 .

Then, the eigenvalues of the following matrix must be calculated:

X̃tX̃ =

(
1 a

a 1

)
,

where:

a =

∑n

t=1 X2t√
n
∑n

t=1 X
2
2t

=
X2√

V ar(X2) +X
2

2

. (10)

Note that |a| ≤ 1 because if |a| > 1, we have that V ar(X2) < 0, which is not possible. In
addition, a = ±1 if V ar(X2) = 0 (in this case, X2 is an n dimensional constant vector of
X̄2 ∈ R). This expression can be rewritten as:

a =
|1t ·X2|√
n· ‖ X2 ‖

=

√(
X2

‖ X2 ‖

)t (
1 · 1t

n

)
·
(

X2

‖ X2 ‖

)
,

which is just the square root of the orthogonal projection of the unit vector X2

‖X2‖ onto the line

spanned by the column 1, that is, the natural way of measuring closeness of X2 to 1. However,
the section continues with expression (10) in order to exploit its relation with the condition
number (see section 3).

Thus, due to the eigenvalues are 1 ± a, if it is considered that 0 ≤ a ≤ 1, consequently
1 + a is the maximum eigenvalue, and 1 − a is the minimum eigenvalue. When a < 0, it is
evident that the maximum eigenvalue is 1− a and the minimum eigenvalue is 1 + a. Thus, by
considering b = −a the results obtained for a follow automatically. Note that the sign of a is
given by

∑n

t=1 X2t or, equivalently, by X2.
Then, the CN is given by:

CN =

√
1 + a

1− a
, a > 0. (11)

From this expression, it is possible to conclude that the CN is an increasing function in a,

because 1+a
1−a

is an increasing function in a: the derivative is always positive
(

2
(1−a)2 > 0

)
and the

square root is a monotonic increasing function. Additionally, it is verified that lima→0 CN = 1
and lima→1 CN = +∞. Figure 1 shows expression (11) for values of a in the interval [0, 0.999).

On the other hand, from expression (10), is possible to conclude that a can be close to 1
(and, consequently, the CN will be very large) if V ar(X2) is close to zero or a can be close to
0 (and, consequently, the CN will be close to 1) if:
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Diagnosis and quantification of the non-essential collinearity 7
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Fig. 1 Representation of the CN in a SLR as a function of a

– The variance of the variable X2 is sufficiently large in relation to its mean. Thus, a large
variance is associated with an absence of collinearity.

– The mean of the variable X2 is close to zero. In this case, the explanatory variable is
orthogonal to the constant term, because it is verified that:

0 = 1tX2 =
n∑

t=1

X2t.

Therefore, a = 0 and CN = 1 (from this result is evident that the solution is to center the
problematic variable). Thus, it is possible to obtain values of a close to zero, even with a
small variance (for further detail, see Example 2).

– The size of the sample, n, is large. Here, the CN decreases as n increases. Salmerón and
Blanco (2016) analyze the relation between collinearity and a reduction in the sample size.

These questions are displayed in Figure 2 where the CN is represented for different values of the
mean and variance of X2 following expressions (10) and (11). For large values of the variance,
the CN tends to its minimum value, while for small values of the variance the CN decreases as
the mean tends to zero.
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8 Román Salmerón Gómez et al.
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Fig. 2 Representation of the CN in a SLR as a function of the mean and the variance of X2

considering that X2 ∈ [−20, 20] and V ar(X2) ∈ [0.1, 10]

Example 2 Suppose the following two data sets for the model (6):

X2 =




0.1
0.1
0.1
−0.2


 , X∗2 =




0.1
0.1
0.3
−0.2


 .

Here, the variances are small (0.016875 and 0.031875, respectively), but the values of the
CN are close to one (1.211 and 1.505, respectively). Therefore, these values of the CN are not
coherent?. In this case, the means are so close to zero (0.025 and -0.075, respectively) that the
CN is showing the quasi-orthogonality of X2 and X∗2 with the constant term. ♦

3 HOW SMALL SHOULD THE VARIANCE BE FOR MULTICOLLINEARITY
TO EXIST?

Note in Example 2 that a small variance alone is not necessarily indicative of serious multicollinearity.
Novales (1993) warned that this result is generally valid.

Thus, to determine how small the variance of the explanatory variableX2 must be for serious
multicollinearity to exist in model (6), we need to control the possible orthogonality between
this variable and the constant term. Since quasi-orthogonality is captured by the mean of
X2, we require both descriptive statistics. As previously commented, this idea was presented by
Gunst (1984) who stated That the “nonconstant” predictor variables are essentially constant
is apparent from their coefficients of variation [...] a coefficient of variation this small calls
for immediate investigation of collinearity [...]. However, the author did not provide any
information about how small has to be the coefficient of variation.
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Diagnosis and quantification of the non-essential collinearity 9

From expression (11), if the CN is higher than h then it is verified that:

a >
h2 − 1

h2 + 1
,

while that:

a > k ⇔ V ar(X2) <
1− k2

k2
·X2

2.

Then, if k = h2−1
h2+1 :

CN > h⇔ V ar(X2) <
4h2

(h2 − 1)2
·X2

2.

In this case, taking into account the thresholds usually applied for the CN, it is possible to
conclude for h = 20 there is moderated collinearity in SLR if:

V ar(X2) < 0.01005019 ·X2

2 ⇔
V ar(X2)

X
2

2

< 0.01005019. (12)

and for h = 30 there is high collinearity in SLR if:

V ar(X2) < 0.004454337 ·X2

2 ⇔
V ar(X2)

X
2

2

< 0.004454337. (13)

Thus, by taking into account the possible orthogonality between the explanatory variable
and the constant term, we have determined how small the variance must be in model (6) for

serious multicollinearity to exist. Indeed, taking into account that V ar(X2)

X
2

2

is the square of the

coefficient of variation of X2, CV (X2), it is obtained that the rules given by (12) and (13) are,
respectively, equivalents to:

CV (X2) < 0.1002506, CV (X2) < 0.06674082. (14)

The advantage is that these measures are calculated practically in all the statistical and
econometric software available to the researcher.

At the same time, this result complements the suggestion made by Gunst (1984) since he
did not provide a bound to determine how small has to be the coefficient of variation of a
variable to avoid the existence of worrying collinearity. Indeed, this contribution fills a gap in
the scientific literature since it provides an answer to the comment recently presented by Velilla
(2018): Although the collinearity in this problem may be perhaps explained by the contribution
of the intercept, it is not clear how to determine exactly the reasons why.

The implications for the GLR are immediate. It is clear that the VIF is unable to detect
non-essential multicollinearity while the CN is able to do so (example 1). The same occurs
in the case of the GLR (see the following Remark 1). However, value of the CN above the
established thresholds do not allow establish if the degree of worrying collinearity is essential
or non-essential. This is essential, as the treatment of both types of collinearity is different.
However, applying the rules obtained in this section using the mean and the variance of each
variable will allow distinguishing the type of collinearity and the causing variables. Thus, it
would reveal the variables that need to be centered to solve the detected problem.
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10 Román Salmerón Gómez et al.

Remark 1 For n ∈ {15, 20, 25, . . . , 200}, µ1, µ2 ∈ {−15,−14.25, . . . , 14.25, 15} and σ2 ∈ {0.1, 0.2,
. . . , 10}, we have the matrix X = [1 X2 X3], where Xi ∼ N(µi, σ

2) for i = 2, 3, and 1 is a
vector of ones with adequate dimensions.

Of 6387800 simulations, we introduce only those where σ2 < 0.01 · µ2
1 or σ2 < 0.01 ·

µ2
2 (i.e., 727776 (11.39%)). For these cases, the VIF and CN obtained presents the following

characteristics:

Minimum Mean Maximum
CN 12.33433 34.18785 209.961
VIF 1 1.016467 5.103372

Here, the VIF is unable to detect the degree of existing multicollinearity. However, the CN
does do so because it takes into account the role of the constant term. Therefore, depending
on the variance and mean of the explanatory variables, the previous decision rules can be used
successfully, as in the case of the multiple linear regression (p ≥ 2).

On the other hand, Berk (1977) shows that the CN is an upper bound of the maximum
VIF. That is, the CN captures certain information about multicollinearity that the VIF does
not. Our results support this observation. More specifically, the CN captures the relationship
with the intercept while the VIF ignores it completely. �

Finally, although the goal of this paper is the detection and quantification of non-essential
multicollinearity, it could be interesting to analyze the treatment of the centering variable and
how can it be interpreted in relation to the coefficient of variation.
Thus, it is worth to remembering the following: The decision to center or not to center the
data in linear least squares depends solely on the substantive meaning of the data. We can
give hundreds of examples of data for which centering (or subtracting some meaningful nonzero
value) is the only sensible decision to make. We can give just as many examples for which it
is sensible not to center, Wood (1984).

In addition, given a variable Z with coefficient of variation CV (Z) =

√
V ar(Z)

|Z| , its transformation

z = Z−a
b

, being a ∈ R, b > 0, presents the following coefficient of variation CV (z) =

√
V ar(Z)

|Z−a| .

Consequently, although a change of scale affects the magnitude of the estimates, it can not
mitigate the non-essential collinearity due to the fact that the coefficient of variation is invariant.
However, a change of origin does not modify the estimates although it does mitigate the
non-essential collinearity.
Within the change of origin, the transformation a = Z is the most efficient in statistical terms
since it leads to CV (z)→ +∞. At the same time, other changes of origin could exist that are
less efficient than centering but that allow the increase of the coefficient of variance above the
thresholds given by the expressions (14), mitigating the non-essential collinearity and with a
better interpretation. These results support the comment by Belsley (1984) about structural
interpretability: Even variates like price, weight, profits or acceleration, which seem to have
natural origins of zero, might be structuraly interpretable with respect to different origins in
certain situations. The Dow-Jones average, for example, for a long time had a psychological
plateau of 800 (nowadays its is 1200). If one were modeling such aspescts of stock market
behavior it is quite possible that large and small relative changes should be assessed with respect
to the deviation of the Dow-Jones from this plateau, and not from zero.
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Diagnosis and quantification of the non-essential collinearity 11

4 QUANTIFICATION OF NON-ESSENTIAL COLLINEARITY: Stewart indices

Appendix A presents the index of Stewart for any matrix and shows its application to measure
the linear relation between the columns of that matrix. Next, the measure will be contextualized
in the multiple and simple linear regressions.

4.1 Stewart indices in a multiple linear regression

Applying this index in a model similar to (1) where X1 = 1, expression (21) is given by:

k2i =
Xt

iXi

Xt
iXi −Xt

iX−i ·
(
Xt
−iX−i

)−1 ·Xt
−iXi

=

{ 1

1− 1

n
X
−i·(Xt

−i
X
−i)

−1·Xt

−i

, i = 1

Xt
iXi

SSRi
, i = 2, . . . , p,

, (15)

where X−i is a file vector composed of the sum of the elements of variables X−i and SSRi is
the sum of squared residuals of auxiliary regression (4).

When i = 1, the orthogonality between the constant term and the rest of independent
variables are measured, it is to say, the non essential collinearity. From (15) it is obtained that

k21 ≥ 1 since
(
Xt
−1X−1

)−1
is semidefined positive and k21 = 1 if X−1 = 0, it is to say, if all

variables of X−1 are centered. Note that in this case, non-essential collinearity is not present
as 1 is orthogonal to X−1, which is captured by k21 with its minimum value.

On the other hand, if i = 2, . . . , p if Xt
iX−i = 0 it is obtained that Xi = 0, since 1 is present

in Xi. It is to say, in this case orthogonality implies no correlation. Also, the expression given
by (15) can be expressed as:

k2i =
SSTi

SSRi

+ n · X
2

i

SSRi

= V IF (i) + n · X
2

i

SSRi

, (16)

where V IF (i) is defined as (3), since Xt
iXi = n ·

(
V ar(Xi) +X

2

i

)
= SSTi+n ·X2

i where SSTi

is the total sum of squares of auxiliary regression (4). Finally, k2i ≥ 1 since V IF (i) ≥ 1 and

n · X
2

i

SSRi
≥ 0.

From expression (16) it is possible to state that the indices of collinearity presented by
Stewart (1987) have been traditionally wrongly identified as VIFs since in Stewart’s original
paper he states: Since our collinearity indices (or rather their squares) are already present in
the statistics literature as variance inflation factors [...]. From (16) is evident that this analogy
only is verified when the variable Xi for which it is calculated has zero mean. It is possible
to find papers where the Stewart index has been mistakenly identified with the VIF, such
as: Jensen and Ramı́rez (2013) and, more recently, Velilla (2018). This second paper is very
interesting since it treats to identify also the collinearity caused by the intercept. The anomaly
in the following definition of the VIF:

V IF (β̂j) =
||xj ||22
s2j

· V IF (α̂j),
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12 Román Salmerón Gómez et al.

is highlighted by Christensen (2018) in his comment about the paper presented by Velilla but
without clarifying what is the cause. In this sense, by following the notation of Velilla (2018)

where V IF (α̂j) = 1
1−R2

i

=
SCTj

SCRj
and taking into account that ||xj ||22 = n ·

(
var(Xj) +X

2

j

)

and s2j = n · var(Xj) it is obtained that:

V IF (β̂j) =
n ·

(
var(Xj) +X

2

j

)

n · var(Xj)
· SCTj

SCRj

= V IF (α̂j) +
n ·X2

j

SCRj

.

Note that this expression coincides with expression (16) of our contribution.
As this study shows, the VIF is unable to capture the non-essential collinearity; therefore, this
measure must be exclusively associated with essential collinearity. Consequently, the second
term of (16) should be identified with non-essential collinearity. This is supported by the fact
that this second term is equal to zero when the analyzed variable is centered, which is the
solution to the non-essential collinearity. From this last association, the ratio:

V IF (i)

k2i
=

1

1 + n · X
2

i

SSRi

,

is the proportion of essential collinearity in Xi and the ratio:

n · X
2

i

SSRi

k2i
=

1
SSTi

n·X2

i

+ 1
,

is the proportion of non-essential collinearity in Xi, i = 2, . . . , p. The proportion of essential
collinearity existing in Xi is worrying if V IF (i) > 10, while in the case of non-essential
collinearity, it is necessary to follow the rules given by (12), (13) or (14).

4.2 Stewart index in a simple linear regression

The Stewart index for model (6) is calculated from:

X =




1 X21

...
...

1 X2n


 , XtX =




n n ·X2

n ·X2

n∑
t=1

X2
2t


 ,

(
XtX

)−1
=

1

n2 · V ar(X2)
·




n∑
t=1

X2
2t −n ·X2

−n ·X2 n


 ,

then

k21 = k22 =

n ·
n∑

t=1
X2

2t

n2 · V ar(X2)
=

n2 ·
(
V ar(X2) +X

2

2

)

n2 · V ar(X2)

= 1 +
X

2

2

V ar(X2)
.

(17)
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Diagnosis and quantification of the non-essential collinearity 13

Note that:

– The two possible indices coincide, k21 = k22 = k2, since both should detect the unique
possible collinearity: the non-essential collinearity.

– The non-essential collinearity is diagnosed from the mean and the variance of X2 as it is
shown in section 3. Indeed, beginning from rule given by (12) the collinearity existing in
model (6) will be worrying if

k2 > 1 +
1

0.01005019
= 100.5006,

and by following rule (13), if:

k2 > 1 +
1

0.004454337
= 225.5003.

– Note again that ratio
X

2

2

V ar(X2)
coincide with the inverse of CV (X2)

2, where CV denotes the

coefficient of variation. It is to say, the high values of
X

2

2

V ar(X2)
and, consequently, of k2, are

associated with a lower coefficient of variation (greater homogeneity in the values of X2).
– The expression given by (17) is a particular case of the one given by (16) for p = 2 since a)

as shown the VIF is always equal to 1 in the SLR and b) in this case, see subsection 2.1,

SCRaux =
n∑

t=1
(X2t −X2)

2 and, then, 1
n
SCRaux = V ar(X2).

Finally, taking into account that k2 =
V ar(X2)+X

2

2

V ar(X2)
and a = X2

√

V ar(X2)+X
2

2

it is obtained

that:

a =
X2√

k2 · V ar(X2)
,

and then the following relation can be established:

k2 =
X

2

2

V ar(X2)
·
(
CN2 + 1

CN2 − 1

)2

.

Remark 2 For n ∈ {15, 20, 25, . . . , 200}, µ ∈ {1, 6, 11, . . . , 41, 46} and

σ2 ∈ {0.0001, 0.0002, . . . , 0.0008, 0.001, 0.002, . . . , 0.008, 0.01, 0.02, . . . , 0.1, 0.15, . . . , 0.5},
we have matrix X = [1 X2], where X2 ∼ N(µ, σ2) and 1 is a vector of ones with adequate
dimensions. To calculate the CN, this matrix is transformed to obtain unit length columns (see
subsection 2.2).

As this calculation is repeated 10 times, 106400 simulations are obtained. For these cases,
the Stewart index and CN present the following characteristics:

Minimum Mean Maximum
Stewart index 1.641497 647929.2 5.236914 ·107

CN 2.082144 780.32797 14473.30414

In this case, both measures are able to detect the relation with the constant term. Indeed,
a quadratic relation is observed between both indices from the representation of the simulated
values of the Stewart index and the CN (see Figure 3). �
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14 Román Salmerón Gómez et al.
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Fig. 3 Relation between the CN and the Stewart index

5 EMPIRICAL APPLICATION IN FINANCE

In order to illustrate the contribution of this study, this section presents an analysis of the
following financial model of Euribor (100%):

Euribor = β1 + β2HICP+ β3BC+ β4GD+ u, (18)

where HICP is the Harmonized Index of Consumer Prices (100%), BC is the Balance of
Payments to net current account (millions of euros), GD is the Government Deficit to net
non-finacial accounts (millions of euros) and u is a random disturbance (centered, homoscedastic,
and uncorrelated).

The data set is taken from the database of Eurostat (2018) and EMMI (2018). These
temporal series are composed by 47 Eurozone observations for the period January 2002 to July
2013 (quarterly and seasonally adjusted data).

Table (1) displays the estimations, VIF and CN of model (18). Given these results it is
observed that VIFs to the three explanatory variables are smaller than 10, however CN is bigger
than 20 presenting a multicollinearity problem. The results of CN and VIFs are contradictory
which suggests the existence of a possible non essential collinearity problem (relathionship with
the intercept) since VIF like it is said before does not take under consideration the constant
term.
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Diagnosis and quantification of the non-essential collinearity 15

Table 1 Estimations of model (18). Estimated standard deviations are shown in parentheses.

Estimation VIF V ar(Xi) < 0.01 ·X
2

i

Intercept 4.376 (1.258)
HICP -0.002 (0.013) 1.351 33.072 < 0.01 · 54.7622

BC -3.647 ·10−5 (3.897 ·10−6) 1.059 105.219 6< 0.01 · 4503884642

GD 1.971 ·10−5 (2.202 ·10−6) 1.285 4837.298 6< 0.01 · 17106995122

R2 0.820
Fexp 70.68
σ̂2 0.297
CN 33.072

Table 2 Stewart’s index for model (18)

k2i V IF (i) n ·
X

2

i

SSRi
% essential % non-essential

Intercept 250.281 0 % 100 %
HIPC 280.175 1.351 278.824 0.482 % 99.518 %
BC 1.115 1.059 0.056 94.959 % 5.041 %
GD 5.529 1.285 4.244 23.234 % 76.765 %

To mitigate this problem, is not necessary to apply other alternative estimation methods,
there is only to center the independent variable that presents this problem. But what independent
variable is it?, for this is used the expression of variance exposed previously. In Table (1) is
showed like the variable HICP presents a possible problem of non essential multicollinearity
as the condition of variance is verified. In addition, if the index of collinearity given by Stewart
(1987) (see Table 2) is calculated a worrying non-essential collinearity is detected, as k21 presents
a high value. Furthermore, it is possible to identify the independent variableHICP as the cause,
and that 99.518% of the collinearity caused by this variable is non-essential.

Therefore, this variable is centered and consecutively the new model (19) is estimated:

Euribor = β1 + β2HICP∗ + β3BC+ β4GD+ u, (19)

where HICP∗ is the centered Harmonized Index of Consumer Prices. In this case, we conclude
that non essential collinearity has been mitigated, since the new CN is smaller than 20 (see
Table 3) and VIFs remain constant (see Table 4), due to these are not affected for origin or
scale changes (see Garćıa et al. (2016)). From Table 4 it is possible to conclude that for HIPC
the non-essential collinearity has been eliminated and only essential collinearity remains.

On the other hand, about the estimation (see Table 3) is obtained that the estimator and the
estimated variance of the constant term has changed. The variance has diminished considerably,
mitigating one of the symptoms of collinearity. However, the estimator and estimated variance
of unchanged variables remain the same in both models. The model is globally significant since
the experimental statistic (Fexp) allows to reject the null hypothesis. Also, the coefficient of
determination (R2), the global significance (Fexp), and the estimated variance (σ̂2), are the
same in both models.
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16 Román Salmerón Gómez et al.

Table 3 Estimations of model (19). Estimated standard deviations are shown in parentheses.

Estimation
Intercept 4.158 (0.184)
HICP∗ -0.002 (0.013)
BC -3.647 ·10−5 (3.897 ·10−6)
GD 1.971 ·10−5 (2.202 ·10−6)
R2 0.820
Fexp 70.68
σ̂2 0.297
CN 5.329

Table 4 Stewart’s index for model (19)

k2i V IF (i) n ·
X

2

i

SSRi
% essential % non-essential

Intercept 5.344 0 % 100 %
HIPC 1.351 1.351 0 100 % 0 %
BC 1.115 1.059 0.056 94.959 % 5.041%
GD 5.529 1.285 4.244 23.234 % 76.765 %

Besides, in a financial prediction model, a lower variance means lower risk and a better
prediction, because the standard deviation and volatility are lower. From this point of view, we
require that the financial variable has the lowest possible variance. However, as discussed above,
a lower variance of the independent variable may mean greater non essential multicollinearity
in an GLR model. Then, the existence of worrying non-essential collinearity may be relatively
common in financial econometric models.

6 CONCLUSION

The SLR given by expression (6) is relevant, despite being the simplest case of a linear
regression, because it allows us to detect, for example, the impact of variations in the explanatory
variable X2 on the dependent variable (see Novales (2010), pp. 95–96).

One of the problems that can affect the estimation of this impact is the existence of severe
multicollinearity. In this case, it is well known that unstable estimators can be obtained, leading
to unexpected signs. However, as discussed in the introduction, there is some ambiguity about
whether this problem exists in a SLR. For example, the software GRETL does not
allow the application of common tools to determine the seriousness of existing
multicollinearity in these types of models while in R is possible to do, for example,
with the recently published package multiColl, Salmeron et al. (2019).

Following Novales (1993), we considered that it is possible that a SLR presents serious
collinearity owing to a small variance of the explanatory variable X2. Thus, one of the goals
of this study was to determine how small this variance needs to be for collinearity becomes a
serious problem. Using the CN, we obtained an expression that links the variance of X2 with its
mean, and indicates when the collinearity in the SLR becomes problematic. This contribution
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Diagnosis and quantification of the non-essential collinearity 17

reinforces the idea given by Gunst (1984) that the coefficient of variation may serve as a measure
to detect the non-essential multicollinearity.

Then, we have shown that the VIF is unable to detect the presence of collinearity in the
SLR because its value is always equal to one, regardless of the data set. This is because the
VIF ignores the constant term (this question was disregarded in papers such as Jensen and
Ramı́rez (2013) and Velilla (2018)). Thus, specialized packages, such as Stata or SPSS, should
not provide this measure for a SLR because it could lead to misleading conclusions.

Although this study focuses on SLR, the results are easily extendible to general regressions.
In the case of multiple linear regressions, collinearity becomes a problem when one of the
variables verifies the condition obtained from its mean and variance. In this case, the non-essential
collinearity detected can be mitigated by centering or another change of origin considered more
appropriate for interpretations purposes) the independent variables and eliminating the relation
with the constant term. Note that this kind of collinearity will not be detected by the VIF
because it ignores the constant term and the CN does not clarify if the detected collinearity
is essential or non-essential. Consequently, it is not possible to know if the collinearity will be
mitigated by centering the independent variable. However, with the rules proposed in this study,
it is possible to know if the model presents non-essential collinearity, which variables provoke
it, and consequently, the variables that have to be centered. This solution will mitigate the
non-essential collinearity without requiring the application of other alternative methodologies
such as ridge, raise, Lasso, etc.

Thus, if statistical software such as Stata, SPSS, GRETL or R incorporate this relation
between the mean and the variance of each independent variable in a multiple linear regression,
it will allow for the diagnosis of non-essential collinearity and indicate the variables that must be
centered to mitigate it. Note that this relation can be expressed as a function of the coefficient
of variation that is already calculated by such software, but not in the context presented in
this study. In any case, note that it seems not appropriate the application of a unique measure
to diagnose the existence of worrying collinearity. The use of the CV proposed in this paper
can be complemented by other kinds of measures existing in the literature.

Finally, it is shown that the collinearity indices presented by Stewart (1987) can be used
to determine the percentage of essential and non-essential collinearity of each independent
variable, which cannot be determined by the VIF or the CN. Traditionally, these indices have
been misinterpreted as VIFs.

A Stewart indices

Given matrix A with dimensions n × p partitioned as A = [A1, . . . ,Ai, . . . ,Ap] = [Ai,A−i] where |A| is the
determinant of A and A−i is equal to A after eliminating column i, Stewart (1987) defined the following index
to measure the relation between Ai and the rest of the columns of A:

k2i =
|At
−iA−i| ·A

t
iAi

|AtA|
, i = 1, . . . , p. (20)

Since |AtA| = |At
−iA−i| · |A

t
iAi −At

iA−i ·
(

At
−iA−i

)

−1

·At
−iAi|, is clear that:

k2i =
At

iAi

At
iAi −At

iA−i ·
(

At
−iA−i

)

−1

·At
−iAi

, i = 1, . . . , p. (21)
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18 Román Salmerón Gómez et al.

Then, it is verified that:

k2i = 1, if At
iA−i = 0,

k2i 6= 1, if At
iA−i 6= 0,

where 0 is a vector composed of zeros with appropriate dimensions. In addition, when i = 1, . . . , p, it is verified
that:

– k2i > 1 if At
−iA−i is positive defined.

– k2i < 1 if At
−iA−i is negative defined.

Thus, this index can capture the orthogonality between Ai and the rest of the columns of matrix A.
However, note that orthogonality does not imply that there is no correlation:

At
iAj =

n
∑

k=1

AikAjk = 0 ; corr(Ai,Aj) = −
Ai ·Ai

√

n
∑

k=1

(

Aik −Ai

)2
·

√

n
∑

k=1

(

Ajk −Aj

)2

= 0,

for i, j = 1, . . . , p, i 6= j, unless the columns have zero mean.

References

Belsley DA (1982) Assessing the presence of harmful collinearity and other forms of weak data through a test
for signal-to-noise. Journal of Econometrics 20(2):211–253

Belsley DA (1984) Demeaning conditioning diagnostics through centering. The American Statistician
38(2):73–77

Berk KN (1977) Tolerance and condition in regression computations. J Amer Statist Assoc 72:863–866
Christensen R (2018) Comment on a note on collinearity diagnostics and centering. The American Statistician

72(1):114–117
Curto JD, Pinto JC (2011) The corrected vif (cvif). Journal of Applied Statistics 38(7):1499–1507
EMMI (2018) European money markets institute. URL: https://wwwemmi-benchmarkseu pp Checked:

01–02–2018
Eurostat (2018) European commission. URL: http://eceuropaeu/eurostat/web pp Checked: 01–02–2018
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