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Abstract This article proposes a Bayesian ap-

proach to estimating the spectral density of a sta-

tionary time series using a prior based on a mix-

ture of P-spline distributions. Our proposal is moti-

vated by the B-spline Dirichlet process prior of Ed-

wards et al. (2019) in combination with Whittle’s

likelihood and aims at reducing the high computa-

tional complexity of its posterior computations. The

strength of the B-spline Dirichlet process prior over

the Bernstein-Dirichlet process prior of Choudhuri

et al. (2004) lies in its ability to estimate spectral

densities with sharp peaks and abrupt changes due

to the flexibility of B-splines with variable number

and location of knots. Here, we suggest to use P-

splines of Eilers and Marx (1996) that combine a

B-spline basis with a discrete penalty on the ba-

sis coefficients. In addition to equidistant knots, a

novel strategy for a more expedient placement of

knots is proposed that makes use of the information

provided by the periodogram about the steepness of

the spectral power distribution. We demonstrate in

a simulation study and two real case studies that
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this approach retains the flexibility of the B-splines,

achieves similar ability to accurately estimate peaks

due to the new data-driven knot allocation scheme

but significantly reduces the computational costs.

Keywords P-splines · B-splines · Bernstein-

Dirichlet process prior · spectral density estimation ·
Whittle likelihood

1 Introduction

The power spectral density (psd), or simply spec-

tral density, describes the distribution of the power

or variance over the individual frequency compo-

nents of a time series. It embodies useful infor-

mation for the study of stationary time series.

For a zero-mean weakly stationary time series, an

absolutely summable autocovariance function, i.e.∑∞
h=−∞ |γ(h)| < ∞, guarantees the existence of a

continuous and bounded spectral density function

given by

f(λ) =
1

2π

∞∑
h=−∞

γ(h) exp (−ihλ) ,

where −π < λ ≤ π is the angular frequency.

Methods to estimate this function range from

parametric to nonparametric approaches. The for-

mer are mainly based on fitting autoregressive mov-
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ing average (ARMA) models. However, the cor-

responding spectral density will be biased if the

ARMA model does not adequately describe the de-

pendence structure of the time series. This is a down-

side of all parametric approaches. They are efficient

if the model fits well but because they make restric-

tive assumptions about the data-generating mecha-

nism, their inference is sensitive to model misspeci-

fications and may be severely biased. Bayesian non-

parametric approaches, on the other hand, put a

prior distribution on the set of all possible densities

that could have generated the data not just a small

parametric subset thereof. They thus avoid the prob-

lem of choosing between different parametric mod-

els by an intrinsic data-driven determination of the

model complexity.

As the periodogram fluctuates around the true

spectral density, most nonparametric methods for

spectral density estimation hinge on smoothing the

periodogram

In(λl) =
1

2πn

∣∣∣∣∣
n∑
t=1

Yt exp (−itλl)

∣∣∣∣∣
2

,

in one way or another, where λl = 2πl/n for l =

0, . . . , ν = b(n− 1)/2c are the Fourier frequencies

and Y = (Y1, . . . , Yn) is a stationary time series of

length n. The periodogram ordinates evaluated at

the Fourier frequencies are asymptotically indepen-

dent and follow exponential distributions with mean

f(λl). Thus, they are asymptotically unbiased esti-

mates of f(λl) but not consistent (Brockwell and

Davis, 1991).

Most Bayesian approaches to psd estimation use

the so-called Whittle likelihood, introduced by Whit-

tle (1957) as an approximation to the likelihood of a

Gaussian stationary time series. Based on the limit-

ing independent exponential distribution of the pe-

riodogram values, the Whittle likelihood for a mean

centred weakly stationary time series Y of length n

is defined as

L(Y |f) =

ν∏
l=1

1

f(λl)
e−In(λl)/f(λl)

∝ exp

{
−

ν∑
l=1

(
log f(λl) +

In(λl)

f(λl)

)}
. (1)

Advantages of this approximation are that it de-

pends directly on the spectral density, unlike the

true Gaussian likelihood function, and gives a good

approximation for non-Gaussian time series under

certain conditions as shown by Shao and Wu (2007).

Bayesian nonparametric prior specifications for

the psd include Carter and Kohn (1997) who used a

smoothing prior on the log psd. Rosen et al. (2012)

segmented a nonstationary time series into station-

ary segments. For each stationary segment, they de-

composed the log psd into a linear and nonlinear

component and put a linear smoothig spline prior

on the nonlinear part. Pensky et al. (2007) propose

Bayesian wavelet-smoothing of the log psd and re-

cently, Cadonna et al. (2017) modelled the log psd as

a mixture of Gaussian distributions with frequency-

dependent weights and mean functions. Gangopad-

hyay et al. (1999) modelled the log-spectral den-

sity function by piecewise polynomials of low order

between strategically placed knots on the support

of the psd, allowing the data to select the number

and location of the knots. A reversible jump Markov

chain Monte Carlo (RJMCMC; Green, 1995) algo-

rithm was implemented to sample from the posterior

distribution. Similarly, frequentist approaches such

as Rodŕıguez-Álvarez et al. and Wood and Fasiolo

(2017) model the log spectral density by a linear

combination of splines with variable knots and com-

bine these with adaptive smoothing.

Penalized splines have been used for a time-

domain analysis of time series data e.g. to model the

mean as a smooth function of time by Krivobokova
et al. (2006) or for fitting and forecasting univariate

nonlinear time series by Wegener and Kauermann

(2017), but not in the frequency domain for esti-

mating the spectral density. The P-spline prior on

the spectral density function that we are going to

propose is related to the Bernstein-Dirichlet process

(BDP) prior introduced by Choudhuri et al. (2004)

and combined with the Whittle likelihood. The BDP

prior is a mixture of beta densities with weights in-

duced by a Dirichlet process. The number of com-

ponents, which is a smoothing parameter, is given

a discrete prior. Edwards et al. (2019) extended the

method by replacing the beta densities with B-spline

densities. Similar to Gangopadhyay et al. (1999), the
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specification of the number and location of the B-

spline densities is data-driven, however it avoids a

RJMCMC algorithm by putting a second Dirichlet

process prior on the cdf that induces the inter-knot

distances. Choudhuri et al. (2004) already demon-

strated in a comprehensive simulation study that

the Bayesian psd estimates based on the BDP prior

outperforms in terms of the L1-error the smoothed

periodogram estimates based on Bartlett-Priestley

quadratic kernel, the penalized MLE of Pawitan and

O’sullivan (1994) and autoregressive spectral esti-

mates in most scenarios but noted that the BDP-

based estimates detect peaks correctly but often un-

derestimate the magnitude of sharp peaks. Unlike

the beta densities which have global support on the

interval [0,1], B-spline densities have local support,

thereby increasing their flexibility and allowing bet-

ter modelling of spectral densities with sharp peaks

and abrupt changes. As demonstrated in Edwards

et al. (2019), the B-spline–Dirichlet process (BspDP)

prior outperforms the BDP prior in estimating com-

plex psds. However, this flexibility comes at a high

computational price.

With the aim of reducing the computational cost

of the BspDP prior approach, we suggest to use the

idea of P-splines of Eilers and Marx (1996) that com-

bines a large but fixed number of B-splines with a

simple difference penalty that controls the degree

of smoothness of the spectral density. P-splines, i.e.

equally-spaced B-splines, have been successfully im-

plemented for frequentist nonparametric regression

but to the best of our knowledge not yet for Bayesian

spectral density estimation. We suggest two novel

Bayesian approaches in this paper, both based on the

Whittle likelihood and on a mixture of B-spline den-

sities. Both approaches fix the number of B-spline

densities. The first approach uses equally spaced

knots with a P-spline prior which we define in Sec-

tion III. We demonstrate that this approach yields

significant savings in computational time without

sacrificing accuracy over the BspDP prior approach

for simple spectral structures. The second approach

has a particular focus on spectral densities with

sharp peaks. Instead of an equidistant spacing, the

knots are spread based on the distribution of peaks

in the periodogram. Thus the knot allocation is also

data-driven as with the BspDP prior but the knots

remain fixed once allocated. This novel knot allo-

cation scheme avoids the computational complexity

of the BspDP prior. We show that with this knot

allocation scheme, the estimates of spectral densi-

ties with spikes and abrupt changes improves signif-

icantly without an increase in computing time.

The paper is organized as follows: In order to

set notation and allow for a direct comparison, we

start by reviewing the B-spline densities and the

BspDP prior in Section II. Section III specifies the

P-spline prior for the psd, the novel knot allocations

scheme and the Gibbs sampler used to sample from

the posterior distribution based on the P-spline prior

and Whittle likelihood. In Section IV, we test our

P-spline-based approaches to spectral density esti-

mation and compare results to those based on the

BspDP prior in a simulation study and the appli-

cation to two real time series. The paper concludes

with a discussion of the relative merits of the new

approaches and avenues for future research.

2 Notation and review of the

B-spline–Dirichlet process prior

By an application of the Weierstrass theorem it can

be seen that a mixture of beta densities with only

integer parameters can uniformly approximate any

continuous density on the interval [0, 1] (Choudhuri

et al., 2004). Let G be a cumulative distribution

function (cdf), with continuous density g, then

ĝ(ω) =
K∑
k=1

G

(
k − 1

K
,
k

K

]
β(ω; k,K − k + 1) (2)

=

K∑
k=1

wkβ(ω; k,K − k + 1)

converges uniformly to g(ω), where G(u, v] = G(v)−
G(u), β(ω; a, b) is the beta density with parame-

ters a and b, and wk = G ((k − 1)/K, k/K] are the

weights of the mixture. The Bernstein polynomial

prior, which is used to describe a nonparametric

prior for probability densities in the unit interval,

is based on this approximation (Petrone, 1999a,b).
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Choudhuri et al. (2004) proposed it as a prior on the

spectral density function.

As shown by Perron and Mengersen (2001) for

distributions on the interval [0,1], both mixtures

of B-spline and beta distributions can approximate

these arbitrarily well by increasing the number of

mixture components, i.e. increasing the polynomial

order for the beta distributions and the number of

knots for suitable knot locations for the B-splines.

But the rate of approximation is faster for B-splines

than for beta distributions. This work motivated Ed-

wards et al. (2019) to propose the BspDP prior on

the spectral density function which is based on the

representation (2) but with the beta densities re-

placed by B-spline densities as defined in the follow-

ing.

B-splines and BspDP Prior

A spline of order r + 1 is a function defined piece-

wise by polynomials of degree ≤ r, which meet at

points called knots where the function is continuous.

Any of these spline functions can be described by

basis functions, known as B-splines, in other words,

all spline functions can be represented as a unique

combination of B-splines with the same order and

over the same partition. Without loss of generality,

the global domain of interest is assumed to be the

unit interval [0, 1].

The B-spline basic functions of any order can be

recursively defined as

Bk,0(ω, ξ) =

{
1, ω ∈ [ξk−1, ξk]

0, otherwise

Bk,r(ω, ξ) = vk,rBk,r−1(ω; ξ)+

(1− vk+1,r)Bk+1,r−1(ω; ξ),

where

vk,r =


ω − ξk−1

ξk+r−1 − ξk−1
, ξk−1 6= ξk+r−1

0, otherwise

and

ξ = {0 = ξ0 = ξ1 = · · · = ξr ≤ ξr+1 ≤ · · · ≤ ξK
= ξK+1 = · · · = ξK+r = 1}

is the knot vector. This vector is a non-decreasing

sequence that contains K + r + 1 knots, which can

be divided in 2r external and K∗ = K−r+1 internal

knots. The latter must be ≥ r.
The B-spline densities, i.e. normalized B-spline

functions, are defined by

bk,r(ω; ξ) = (r + 1)
Bk,r(ω; ξ)

ξk+r − ξk−1
.

The BspDP prior proposed by Edwards et al.

(2019) involves two Dirichlet processes, one placed

on G inducing the weights of the B-spline densities

and the other on the knot spacings. In practice, these

are implemented using the stick-breaking represen-

tation (Sethuraman, 1994), for details see Edwards

et al. (2019). For computational reasons, this infinite

series representation of G and H is truncated at a

large but finite positive integer, LG and LH , respec-

tively. These truncations control the quality of the

approximations. Longer series improve the approxi-

mation, but increase the number of calculations and

consequently the computation time.

As shown by Edwards et al. (2019), the approach

based on the BspDP prior outperforms the BDP

prior in estimating spiky spectral densities. In the

case of smooth spectral densities, there is no a sig-

nificant difference in the performance of these two

approaches. However, in practice, the true psd func-

tion is unknown, which makes it necessary to use

methods such as the BspDP that will work well in

all conceivable cases.

To implement the BDP prior, one only has to

calculate the beta densities once and they can be

stored and re-utilized across MCMC steps. On the

other hand, the BspDP prior requires the calcula-

tion of the B-spline densities at each iteration, since

these vary due to varying knot locations. Moreover,

2×(LG+LH) calculations are needed in the truncated

stick-breaking representation of the two Dirichlet

processes at each iteration resulting in a significantly

increased complexity of the BspDP algorithm.

This has prompted us to explore the performance

of two new algorithms, both based on the P-spline

prior algorithm. Both use a fixed number of B-spline

densities and knot locations, avoiding the Dirich-

let processes and the recalculation of the B-spline
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densities. Whereas the first approach uses equidis-

tant knots, the second algorithm proposes a new fast

knot allocation strategy. Both methods preserve the

flexibility of the B-spline densities and their poten-

tial ability to estimate spectral densities with sharp

peaks and abrupt changes.

3 P-spline prior

As the spectral density function f(·) is defined on

the interval [0, π], it is reparametrized and defined

as

f(πω) = τ × sr(ω;w, ξ), ω ∈ [0, 1],

where τ =
∫ 1

0
f(πω)dω is the normalizing constant

and

sr(ω;w, ξ) = sr(ω) =

K∑
k=1

wkbk,r(ω; ξ), (3)

with fixed number K of B-spline densities bk,r(·) of

fixed degree r, weight vector w = (w1, · · · , wK), and

knot sequence ξ.

ξ contains fixed equidistant internal knots on

[0, 1] in our basic P-spline prior. A more judicious

scheme for the placement of knots that improves the

fit for peaked spectral densities is described in sec-

tion “Quantile-based knot placement”.

Smoothing splines in the frequentist context are

based on approximating a given function by a linear
combination of B-splines and putting a penalty on

the integrated squared second derivative as a mea-

sure of roughness. P-splines avoid derivatives by ex-

pressing the penalty as the sum of squares of differ-

ences of the B-spline coefficients. In a Bayesian con-

text, this penalty can be transformed into a prior

distribution for the dth order difference of successive

coefficients, see e.g. Lang and Brezger (2004).

In our approach, the B-spline coefficients wk are

weights, so positive and sum to one. We therefore

reparametrize to the vector v with

vk = log

(
wk

1−
∑K−1
k=1 wk

)
.

After some calculations, it can be shown that the

weights are given by

wk =
evk

1 +
∑K−1
k=1 evk

.

The last weight is defined as wK = 1 −
∑K−1
k=1 wk,

thus they all sum to 1. Then, an indirect prior is

placed on the weights via

v|φ ∼ NK−1(0, (φP )−1)

φ|δ ∼ Gamma(αφ, δβφ)

δ ∼ Gamma(αδ, βδ)

where v = (v1, . . . , vK−1)> is a K − 1 dimensional

parameter vector, φ is the smoothing or penalty pa-

rameter, P = D>D + εIK−1 is the penalty matrix

(which is a full matrix rank matrix for any small

quantity ε, for instance, 10−6) with D the dth or-

der difference matrix (d = 1, 2, . . . ,K − 2), αφ and

αδ are shape parameters, δβφ and βδ are rate pa-

rameters, and Gamma(a, b) denotes a gamma distri-

bution with mean a/b and variance a/b2. We used

first and second order difference penalties in the

simulation study. The 1st order difference matrix D

∈ R(K−2)×(K−1) is defined as
−1 1 0 0 · · · 0

0 −1 1 0 · · · 0
...

. . .
. . .

...

0 · · · 0 −1 1

 (4)

and the 2nd order difference matrix ∈ R(K−3)×(K−1)

as
1 −2 1 0 0 · · · 0

0 1 −2 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 −2 1

 . (5)

The rationale for using discrete second order rough-

ness penalties as an approximation to the usual con-

tinuous roughness measure based on the integral over

the second derivatives is given in Eilers and Marx

(1996).

The parameter vector for the P-spline prior is

θ = (v>, φ, δ, τ)>. We use a robust specification for

the prior distribution of the penalty parameters as
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suggested by Jullion and Lambert (2007) by choos-

ing small values for αδ and βδ, for instance, 10−4.

The choice of αφ and βφ do not affect the spectral

density estimate. Here we set αφ and βφ equal to

1 as used by Bremhorst and Lambert (2016). The

scale parameter τ is given by an inverse gamma prior

IG(ατ , βτ ), which can be considered as a noninfor-

mative prior for ατ = βτ = 0.001 (Edwards et al.,

2019). These are also the prior specifications used in

the simulations and examples in Section 4.

Posterior Computation

The joint posterior distribution of the parameter

vector θ = (v>, φ, δ, τ)> is given by

p(θ|Y ) ∝ L(Y |f)× p(θ)

= L(Y |f)× p(v|φ, δ)× p(φ|δ)× p(δ)× p(τ)

where L(Y |f) denotes the Whittle likelihood defined

in (1). This posterior is proper since all the prior

distributions are proper. We use the Gibbs sampler

to sample from the joint posterior distribution.

Sampling from the full conditional posterior dis-

tributions of φ, δ, and τ can be performed directly.

These are given by

φ|Y , δ,v ∼ Gamma
(
K−1
2 + αφ,

1
2v
>Pv + δβφ

)
,

δ|Y , φ ∼ Gamma (αφ + αδ, βφφ+ βδ) , and

τ |Y , δ, φ,v ∼ IG

(
ατ + ν,

ν∑
l=1

In(λl)
sr(λl/π)

+ βτ

)
.

However, to sample from the full conditional dis-

tribution of v, we use the Metropolis algorithm.

Since the weights in general are larger in those areas

of the frequency domain where the psd has peaks,

we specify their starting value proportionally to the

periodogram. Applying the corresponding transfor-

mation we obtain the starting value for the vector

v. This strategy speeds up the MCMC process by

shortening the burn-in period.

In order to improve the mixing of the chains, we

apply the Metropolis algorithm on a reparametrized

posterior distribution (Lambert, 2007). For this, we

need a pilot posterior sample for v from which we

calculate its mean vector v and covariance matrix

S. Then we define the following re-parametrization

v = S1/2β + v,

where β = (β1, . . . , βK−1)>.

We can update v by modifying β according to

a proposal distribution. In this work, we propose a

univariate proposal value β∗k to update v given by

β∗k = βk + σz,

v∗ = S1/2β∗ + v,

where β∗ = (β1, . . . , β
∗
k , . . . , βK−1)>, z ∼

Normal(0, 1), and σ controls the length of the pro-

posals. We vary σ across iterations in order to get

an acceptance rate between 0.3 and 0.5. Note that

even though the proposal is univariate on β, it is

multivariate on v∗. Alternatively to the Metropolis

step used for v, a data augmentation step based on

Pólya-Gamma auxiliary variables can be used which

would allow for a full Gibbs sampler (Polson et al.,

2013).

The mth cycle of the Gibbs sampler is given by

– Draw vm from p(v|βm−1, φm−1, δm−1, τm−1) us-

ing K−1 univariate Metropolis steps for βk, with

k = 1, . . . ,K−1, according to the reparametriza-

tion described above;

– Draw φm from

Gamma
(
K−1
2 +αφ,

1
2v

m>Pvm+δm−1βφ

)
;

– Draw δm from Gamma (αφ + αδ, βφφ
m + βδ) ;

– Draw τm from

IG

(
ατ+ν,

ν∑
l=1

In(λl)
sr(λl/π)

+ βτ

)
.

The influence of the penalty is determined by

φ. The larger this value is, the smoother is the re-

sulting estimate. It is interesting to note the role of

the penalty matrix P in the rate parameter on the

full conditional posterior distribution of φ. When the

quadratic form v>Pv tends to infinity, this distribu-

tion becomes concentrated at 0+. This limiting be-

haviour yields rougher results. Note that in this case

the prior rate δβφ becomes irrelevant in the full con-

ditional posterior density. On the other hand, when
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v>Pv tends to 0+, the distribution favours large φ

values, yielding smoother estimates. The magnitude

of this quadratic form is controlled by the penalty

order and the number of B-spline densities. In gen-

eral, large order penalties produce lower values for

this quantity, causing smoother results. In this way

the penalty matrix penalizes the inclusion of B-spline

densities.

Ruppert (2002) explained that the degree of

smoothness implied by a certain choice of prior pa-

rameters also depends on the scale of the responses

Y . To avoid the problem, the author suggested to

standardize Y before the sampling process and ap-

ply the inverse operation afterwards. This also allows

to avoid numerical problems in the MCMC process.

We follow his proposal.

Choosing the number of B-splines

The number of B-spline densities plays a critical role

in the model fit and may result in under- or over-

smoothing. Even though the penalty parameter con-

trols the smoothness of the fit, a large number of B-

splines yields rougher and a low number smoother

spectral density estimates. There is a smallest suffi-

cient number which results in a psd estimate that fits

the features of the data whereas choosing a larger

number will have an insignificant effect on the fit.

Unexpectedly, Ruppert (2002) found some cases in

which too many B-splines degrades the fitting in

terms of mean square error. Unfortunately, there is

no consensus in how to find the optimal value of the

number of B-splines.

Eilers et al. (2015) consider the use of K = 100

B-splines a wise choice, unless computational con-

straints are evident. Some algorithms that explore

different number of knots in a trial sequence and find

an optimal value with respect to a certain goodness-

of-fit criterion have been proposed. Ruppert (2002)

suggested a full-search and myopic algorithms which

are based on the generalized cross-validation statis-

tic. However, their results are not conclusive and

this criterion only applies if the penalty param-

eter is treated as a tuning constant (Kauermann

and Opsomer, 2011). Likhachev (2017) also consid-

ered a knot sequence and proposed the selection of

the number of knots based on Akaike’s, corrected

Akaike’s and the Bayesian Information Criterion.

Ruppert (2002) discussed a heuristic rule of

thumb min {n/4, 40}, which is simpler and, in our

experience, seems to work very well in general. This

criterion allocates a knot between max {4, bn/40c}
observations, where b·c stands for the floor function.

We employ this approach in the application Section

for selecting the number of B-spline densities.

Quantile-based knot placement

The knots are often equally spaced in P-spline meth-

ods. This scheme works quite well for smooth psds

without any abrupt changes. However, for spectral

densities with spikes, the algorithm will require a

large number of knots to adequately estimate the

peaks. The B-spline prior method is able to handle

abrupt changes because the knot location is variable

and driven by the data. We propose a new selective

method that allocates the knots according to quan-

tiles of a periodogram-related distribution function

but once allocated, the knots stay fixed. The idea is

to concentrate more effort in those regions that have

potential peaks as detected by the periodogram. It is

similar in spirit to the knot placement of O-splines

(Wand and Ormerod, 2008) in the regression con-

text that make use of the empirical quantiles of the

covariates.

Our knot location proposal works as follow. We

calculate the periodogram and apply a square root
transformation in order to have more regular mag-

nitudes and eliminate a potential trend. Second, we

standardize these values, apply the absolute value

function, and normalise them. We treat this trans-

formed periodogram as a probability mass function

(pmf) and interpolate its distribution function by

the continuous cumulative distribution function F .

Finally, the knots are allocated according to the

quantiles of F . Thus, in those areas in which the

periodogram has sharp and abrupt changes, our pro-

cedure will assign more knots in proportion to their

magnitudes. Hereafter, we will refer to this scheme

as quantile-spaced (Q-spaced) knots.

The procedure can be summarized as follows:
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1. Let x =
(√

In(λ1), . . . ,
√
In(λν)

)
be the square

root of the periodogram values.

2. Define yl =

∣∣∣∣xl − x̄Sx

∣∣∣∣, for l = 1, . . . , ν, where x̄ de-

notes the average and Sx the standard deviation

of x.

3. Define zl = yl∑ν
l=1 yl

, Zl =
∑
j≤l zj , and let F

denote the continuous cdf that interpolates the

Zl.

4. Let q = (q1, . . . , qK∗) be a vector of K∗ equally

spaced points in [0, 1], that is qj = j−1
K∗−1 , for

j = 1, . . . ,K∗.

5. The Q-spaced internal knot vector is

given by the corresponding quantiles

ξ∗ =
(
F−1(q1), . . . , F−1(qK∗)

)
.

Note that this knot allocation algorithm is ap-

plied only once at the beginning of the MCMC pro-

cess. Therefore, its computational cost is negligible.

For non-equidistant knots, it does not make sense

any longer to base the definition of the covariance

matrix of the Gaussian prior on the difference ma-

trices as defined in (4) and (5) because this is an ade-

quate approximation of the derivative-based rough-

ness measures – defined as the integral of the first

and second order derivatives of the P-splines – for

equally spaced knots only. The definition of the dif-

ference matrices could be adjusted using divided dif-

ferences, but here we use the derivative-based penal-

ties as described by Wood (2017). We make use of

the implementation of the derivative-based penalty

matrix by the function bsplinepen in the R-package

fda (Ramsay et al., 2020). This penalty matrix con-
tains the inner products of the respective first and

second order derivatives of the basis functions. In

addition, we normalise this matrix by dividing it by

the maximum absolute column sum.

The quantile based knot allocation can be re-

garded as an empirical Bayes prior since the data

are used to specify the prior distribution. However,

only the locations of the B-splines are determined by

the data, not the parameters of the prior distribution

which in this case are the weights wk associated with

each B-spline bk,r. The main criticism of an empiri-

cal Bayes approach is that the data are being used

twice, once to specify the prior and then again to

update the prior to the posterior. Here, the data are

used only once to specify the knot locations but not

again to update these through the likelihood.

4 Application

We first assess the properties of our P-spline spectral

density estimates in a simulation study and compare

them to estimates based on the BspDP prior. We fur-

thermore apply all approaches to the analysis of the

classical sunspot dataset and the S. Carinae variable

star light intensities, previously analysed by Carter

and Kohn (1997); Huerta and West (1999); Kirch

et al. (2018). As the psd of the S. Carinae time se-

ries contains sharp peaks, its analysis allows to assess

the impact of the periodogram-spaced knots in con-

trast to the equidistant knots. For all the analyses,

we use cubic B-splines (r = 3).

4.1 Simulation study

The setup of our simulation study mirrors that in

Edwards et al. (2019) who compared spectral density

estimates based on the BspDP and the BDP priors.

We generated 300 autoregressive time series of order

1 and 4 with unit variance Gaussian innovations of

length n = {128, 256, 512}. For the AR(1) model,

the first order autocorrelation ρ1 = 0.9 was chosen,

which has a relatively simple spectral density (see

Figure 1). The AR(4) time series with ρ1 = 0.9,

ρ2 = − 0.9, ρ3 = 0.9 and ρ4 = − 0.9 have a

spectral density with two large peaks (see Figure 2).

We estimated the spectral density functions us-

ing the BspDP and P-spline priors. The BspDP-

based analysis was performed via the gibbs bspline

function in the R package bsplinePsd 0.6.0 (Ed-

wards et al., 2018). The algorithm was executed for

100,000 iterations with a burn-in period of 25,000

and thinning factor of 10, resulting in 7,500 samples

used for posterior inference. Pilot analyses showed

that these specifications are suitable in these exam-

ples in terms of convergence (results not shown).

The P-spline analysis was performed using the

gibbs pspline function implemented in the R
package psplinePsd (Maturana-Russel and Meyer,
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2020). A total of 100,000 MCMC samples were gen-

erated using a pilot run of 20,000 iterations with a

burn-in period of 5,000 and thinning factor of 10 to

calibrate the proposals. The final sample consisted

of 80,000 samples with a burn-in period of 5,000 and

thinning factor of 10, resulting in 7,500 samples used

for posterior inferences. This procedure was repli-

cated for both equidistant and Q-spaced knots con-

sidering first and second order penalties.

The theoretical spectral density for an AR(p)

model is given by

f(λ) =
σ2

2π

1

|1−
∑p
j=1 ρj exp(−iλ)|2

,

where σ2 is the variance of the white noise innova-

tions and (ρ1, . . . , ρp) are the model parameters. In

order to compare the psd estimates to the true func-

tion, we use the integrated absolute error (IAE) or

L1-error which is defined as

IAE = ||f̂ − f ||1 =

∫ π

0

|f̂(λ)− f(λ)|dλ,

where f̂(·) is the pointwise posterior median of the

spectral density f(·). The IAE is computed for each

of the 300 replications and its median is calculated.

The results are displayed in Table 1.

For the AR(1) time series, the P-spline prior with

equidistant knots and penalty order d = 1 yields bet-

ter psd estimates than the BspDP prior. A larger

penalty order does not necessarily result in more

accurate psd estimates. In this case of a relatively

smooth spectral density, the Q-spaced knots do not

yield an improvement over the equidistant knots and

the BspDP prior.

For the AR(4) time series, the fit based on

the P-spline prior with Q-spaced knots is better

than the fit based on the B-spline Dirichlet pro-

cess prior and the one based on the P-spline prior

with equidistant knots. In general, the BspDP al-

gorithm achieves higher accuracy than the P-spline

method with equidistant knots. As shown by Ed-

wards et al. (2019), the posterior distribution based

on the BspDP prior yields better results than pos-

terior based on the BDP in terms of median IAE in

this example. Consequently, our P-spline algorithm

n = 128 n = 256 n = 512

AR(1)

B-spline 0.870 0.714 0.594

Equidistant knots

P-spline d = 1 0.769 0.655 0.527

P-spline d = 2 0.698 0.609 0.629

Q-spaced knots

P-spline d = 1 0.848 0.771 0.614

P-spline d = 2 0.920 0.840 0.648

AR(4)

B-spline 2.990 2.202 1.800

Equidistant knots

P-spline d = 1 2.905 2.389 2.306

P-spline d = 2 3.149 2.566 2.387

Q-spaced knots

P-spline d = 1 2.517 1.843 1.486

P-spline d = 2 2.750 1.989 1.673

Table 1 Median IAE for the psd estimates using the
BspDP and the P-spline priors for simulated AR(1) and
AR(4) time series with different penalty orders (d) and
knot location schemes for the P-splines.
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Fig. 1 Estimated log-spectral density for an AR(1) time
series via the P-spline prior algorithm with a first order
penalty. The solid line stands for the true psd, whereas
grey area is the uniform 90% credible band.
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Fig. 2 Estimated log-spectral density for an AR(4) time
series via the P-spline prior algorithm with a first order
penalty. The solid line stands for the true psd, whereas
grey area is the uniform 90% credible band.

with Q-spaced knots outperforms the BDP method

as well.

The IAE measures the accuracy of the point es-

timates of the spectral density. In the following, we

will also compare the coverage of posterior uniform

credible bands. We define the 100(1 − α)% uniform

credible band as

f̂(λ)± ζα ×mad
(
f̂i(λ)

)
, λ ∈ [0, π],

where f̂(λ) is the pointwise posterior median spec-

tral density, mad(f̂i(λ)) is the median absolute de-

viation of the posterior samples f̂i(λ) and ζα is such

that

P

(
max

{
|f̂i(λ)− f̂(λ)|
mad(f̂i(λ))

}
≤ ζα

)
= 1− α.

The idea is to measure the proportion of times

that the true spectral density is fully contained by

the uniform credible band in the 300 replications.

The results are displayed in Table 2. In addition, we

calculate the proportion of times that the uniform

credible band contains the value of the true psd at

each of the Fourier frequencies. The median of these

pointwise coverage proportions are displayed in Ta-

ble 3.

For the AR(1) model, the BspDP and first or-

der penalty P-spline 90% credible bands cover the

whole true spectral density function, i.e. for all fre-

quencies λ, in almost all the 300 independent anal-

yses. In general, the latter method shows diminish-

ing performance as the penalty degree increases. For

the AR(4) model, the P-spline method with equidis-

tant knots performs poorly. On the other hand, the

quantile-based knot scheme yields evidently much

better results, which are comparable (in the case of

the first order penalty) to those obtained via the

BspDP algorithm. For the P-spline priors, the cov-

erage probabilities decrease as the penalty degree or-

der increases, which can be explained by the forced

smoothness imposed by the higher penalty order. As

shown by Edwards et al. (2019), the BspDP algo-

rithm produces better results than the BDP prior in

the AR(4) case, which coverage probability is zero

across n = {128, 256, 512}. Consequently, our P-

spline algorithm with Q-spaced knots outperforms

the BDP method in this case.

Even though the P-spline method with equidis-

tant knots for the AR(4) case performs poorly in

terms of uniform coverage, i.e. the proportion of

times that the credible band covers the true psd com-

pletely in the 300 runs, it is important to note that

this is only because the uniform band does not cover

the psd for just very few frequencies. As is evident

from Table 3, only for a small fraction of the frequen-

cies the psd is not covered by the uniform credible
band. In this context, BspDP and Q-spaced knot P-

spline algorithms perform equally well.

As Edwards et al. (2019) noted, one of the draw-

backs of the BspDP prior is its computational com-

plexity relative to the BDP. This is directly reflected

in the run-time, which is approximately 2-3 times

higher in this example (see Table 3 in Edwards et al.

(2019)). The median run-time in our analyses for

the BspDP prior and the P-spline with Q-spaced

knots are displayed in Table 4. Note that the P-spline

method based on equidistant knots has similar run-

times to the Q-spaced knots. The P-spline method

is approximately 4-6 times faster than BspDP ap-

proach in these examples. This is due to a reduced
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n = 128 n = 256 n = 512

AR(1)

B-spline 1.000 1.000 0.997

Equidistant

P-spline d = 1 1.000 1.000 0.997

P-spline d = 2 0.993 1.000 0.993

Q-spaced knots

P-spline d = 1 1.000 1.000 0.997

P-spline d = 2 0.933 0.527 0.713

AR(4)

B-spline 0.907 0.970 0.897

Equidistant knots

P-spline d = 1 0.547 0.343 0.010

P-spline d = 2 0.320 0.170 0.007

Q-spaced knots

P-spline d = 1 0.800 0.833 0.803

P-spline d = 2 0.313 0.363 0.277

Table 2 Proportion of times that the true psd is entirely
encapsulated within the 90% uniform credible band of the
300 estimates.

n = 128 n = 256 n = 512

AR(1)

B-spline 1.000 1.000 1.000

Equidistant &

Q-spaced knots

P-spline d = 1, 2 1.000 1.000 1.000

AR(4)

B-spline 1.000 1.000 1.000

Equidistant knots

P-spline d = 1 1.000 0.992 0.984

P-spline d = 2 0.984 0.984 0.980

Q-spaced knots

P-spline d = 1 1.000 1.000 1.000

P-spline d = 2 0.984 0.992 0.992

Table 3 Median of the pointwise proportions that the true
psd at each Fourier frequency is contained within the 90%
uniform credible bands.

number of calculations per iteration because the B-

spline densities are calculated only once at the start

of the algorithm and there are no Dirichlet process

approximations via the stick-breaking method.

In general terms, the P-spline algorithm with

our novel quantile-based knot allocation scheme of-

fers the best trade-off between accuracy and com-

putation cost. The rule-of-thumb criterion, K =

min {n/4, 40}, for the number of B-spline densities

n = 128 n = 256 n = 512

AR(1)

B-spline 24.323 28.258 34.093

Q-spaced knots

P-spline d = 1 4.859 7.450 9.606

P-spline d = 2 4.538 6.863 8.783

B-spline/P-spline 6.090 4.368 4.493

AR(4)

B-spline 24.983 29.796 36.913

Q-spaced knots

P-spline d = 1 4.883 7.453 9.665

P-spline d = 2 4.543 6.887 8.827

B-spline/P-spline 6.062 4.591 5.523

Table 4 Median run-times in minutes and relative run-
times with respect to an average of the P-spline run-times.

in the P-spline prior algorithm worked perfectly well

in this example.

4.2 Sunspot data analysis

Sunspots are regions of reduced surface temperature

that are visible as darker spots on the sun’s photo-

sphere. We analyse the average annual mean sunspot

numbers for the year 1700-1987 consisting of 288 ob-

servations. This is a classic dataset used to assess

spectral density estimation methods. A square root

transformation is applied in order to make the ob-

servations more symmetrical and stationary.

As in Edwards et al. (2019), the MCMC algo-

rithm based on the BspDP prior is run for 100,000

iterations, with a burn-in period of 50,000 and thin-
ning factor of 10. Thus, 5,000 samples are used for

the estimation. This took about 22 minutes. The

other specifications are the same as those used in

the simulation study.

The MCMC algorithm based on the P-spline

prior is run in two stages. In the first stage, the

proposal is calibrated for the final run. It consists

of 25,000 iterations with a burn-in period of 10,000

and thinning factor of 10, resulting in 1,500 samples.

Then the algorithm is run for 75,000 iterations with

a burn-in period of 25,000 and thinning factor of 10,

resulting in 5,000 samples. The analysis is performed

using the first order penalty for equidistant and Q-

spaced knots. All other specifications are the same as
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Fig. 3 Log-spectral density estimate for the sunspot data.
The continuous grey line represents the periodogram. The
continuous and dashed lines stand for the posterior median
log psd obtained using the B-spline and P-spline priors,
respectively. The dot lines represents the 90% pointwise
credible bands for the latter prior, which consider a first
order penalty and Q-spaced knots.

those used in the simulation study. A single analysis

takes about 4.5 minutes.

The results for the BspDP and P-spline prior

with first order penalty and Q-spaced knots are dis-

played in Figure 3 (p-spline with equidistant knot

approach results are not shown due to their similar-

ity to the Q-spaced knot estimates). Both methods

reveal a large peak at about 0.09. In other words,

there is a periodic solar cycle of length 1/0.09 ≈ 11

years. These results are consistent with those ob-

tained via the BDP prior (Choudhuri et al., 2004).

However, the BspDP estimation takes approximately

22 minutes compared to only 4.5 minutes for the the

P-spline estimation. Thus the P-spline estimation is

approximately five times more efficient.

4.3 Variable star S. Carinae data analysis

This dataset contains 1,189 visual observations of

the S. Carinae, a variable star in the southern hemi-

sphere sky. These are daily observations collected

by the Royal Astronomical Society of New Zealand,

Time (in 10 days)

In
te

ns
ity

0 50 100 150

6
7

8
9

10

Fig. 4 First 150 observations of the S. Carinae data.

which correspond to 10 day averages of light intensi-

ties over several years. This data set has been anal-

ysed in the literature previously (see for instance

Carter and Kohn (1997); Huerta and West (1999);

Kirch et al. (2018)). It contains 40 missing observa-

tions that in this work have been replaced by the

mean, thus not affecting the general features of the

data. In addition, the data has been squared root

transformed and mean centred. The first 150 obser-

vations are displayed in Figure 4, where the missing

values are replaced by the mean.

Kirch et al. (2018) provided a psd estimate via a

nonparametrically corrected (NPC) approach, which
is able to detect several peaks in the function. These

features make this data set suitable to assess the im-

pact of the knot location on the P-spline estimates.

Again, the P-spline algorithm is run in two

stages. First, a Markov chain of 5,000 samples with a

burn-in period of 1,000 and thinning factor of 10, re-

sulting in 400 points, is used to calibrate the propos-

als of the final run. Then, a Markov chain of 10,000

samples with a burn-in period of 2,000 and thin-

ning factor of 10, that is 800 points, is used for the

psd estimation. We use 40 B-spline densities, based

on the rule-of-thumb criterion discussed above, and

the first order penalty. The whole process takes less

than 1.5 minutes to run and is replicated for equidis-
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Fig. 5 Log-spectral density estimate for the variable star
S. Carinae data based on the P-spline prior. The contin-
uous grey line represents the periodogram whereas the
continuous and dashed black lines stand for the posterior
median log psd obtained using Q-spaced and equidistant
knots, respectively.

tant and Q-spaced knots. The results are displayed

in Figure 5.

The periodogram shows several peaks with the

main one located at around 0.42. When the knots

are equally spaced, the algorithm is unable to cap-

ture the sharpness of this peak, in contrast to the Q-

spaced knots. This is because the periodogram-based

knot allocation puts more knots in those regions

which contain significant peaks as indicated by the

periodogram. The rest of peaks, which are smaller

in comparison to the main one, are slightly better

captured by the equidistant knots, since a large pro-

portion of the Q-spaced knots have been allocated

around the main peak. However, this can easily be

corrected by increasing the number of knots. The psd

estimate based on Q-spaced knots is comparable to

the one obtained via the NPC approach (Kirch et al.,

2018).

5 Discussion

As shown by Edwards et al. (2019), the BspDP prior

outperforms the BDP prior in terms of IAE and uni-

form coverage probabilities for spiky psds. This is

explained by the local support of the B-splines and

its better approximation properties (Edwards et al.,

2019). However, its performance is only achieved at

a much higher computational cost. These character-

istics have motivated our P-spline approach.

Although the P-spline prior is very similar to the

B-spline prior as both are based on mixtures of B-

spline distributions, there is quite a significant differ-

ence. The latter works with a variable number and

location of knots, which are driven by the data. The

P-spline prior assumes a fixed number of knots with

fixed locations, thus almost looks like a special case.

However, the multivariate prior based on the differ-

ence penalty of the basis coefficients controls the

smoothness of the spectral density, a feature that

cannot be achieved with a univariate Dirichlet pro-

cess prior. Most importantly, fixing the number and

location of knots reduces the computational effort

significantly, without sacrificing accuracy as shown

in the application section. To deal with abrupt peaks

in the psd, we propose to locate the knots according

to the peaks detected via the periodogram. This ap-

proach does not affect the computational time and

improves the estimates dramatically.

In our simulation study, we showed that the

equidistant knot scheme for the P-spline method

works quite well in the case of simple spectral

structures (AR(1) model). However, its performance

is surpassed by the quantile-based knot location

scheme for complex structures (AR(4) model). In

this scenario particularly, we can highlight the good
performance of the quantile-based knot scheme. This

method outperforms the BspDP prior in terms of

IAE and run-times, particularly for the complex

psds. Regarding uniform coverage, a first order

penalty P-spline coupled with Q-spaced knots works

best. For this combination, the uniform coverage al-

most reaches the nominal level.

We also assessed our proposal in the classic

sunspot dataset, in which the posterior distribution

based on the BspDP prior is able to estimate cor-

rectly the solar cycle that occurs every 11.07 years.

The posterior distribution based on the P-spline

prior yields almost identical results, but in signifi-

cantly less computational time.
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Finally, we assess the fit of the posterior distri-

bution based on the P-spline prior a under two dif-

ferent knot location schemes: equally spaced and Q-

spaced knots. For this, we estimated the psd for the

S. Carinae time series which has a spectral density

with several sharp peaks. Equidistant knots failed

to capture the main peak of this spectral density

whereas Q-spaced knots significantly improved the

results without affecting the computational time.

The number of B-spline densities was selected ac-

cording to the criterion proposed by Ruppert (2002).

It seems to work well for simple spectral densi-

ties. However, more complex functions could require

larger number of B-spline densities. This can be eval-

uated studying the peaks of the periodogram. Our

knot location proposal is very useful in these situa-

tions. Future research will explore whether the choice

of the number of knots can be related to the entropy

of the periodogram.

As already reviewed in the introduction, many

Bayesian nonparametric approaches to spectral den-

sity estimation propose to put a prior on the log-

spectral density. This could be easily implemented

by modifying (3) to

log f(πω) =

K∑
k=1

vkbk,r(ω, ξ)

and it could be interesting to examine for what class

of spectral densities this prior specification would

yield better posterior inference.

Another interesting question is whether the P-

spline prior can be extended to enable a Bayesian

analysis of multivariate time series. In this case,

the spectral density is a Hermitian positive definite

matrix-valued function. A novel Bayesain nonpara-

metric approach to multivariate spectral density es-

timation was proposed by Meier et al. (2020) based

on a generalization of the Bernstein-Dirchlet pro-

cess prior where Bernstein polynomials are used to

smooth a matrix-Gamma process. An avenue for fu-

ture research will be to explore whether a computa-

tional speed-up might be possible by making use of

P-splines in smoothing the elements of the Cholesky

decomposition of the spectral density matrix.

In conclusion, the P-spline prior with the

quantile-based knot placement scheme offers a more

computationally viable alternative to the BspDP

prior for spectral density estimation. As shown in

this work, it can handle spectral densities with sev-

eral peaks in a reasonable run-time.

The R package psplinePsd can be downloaded

from GitHub.
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