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Abstract
This paper proposes an extension of principal component analysis to non-stationary
multivariate time series data. A criterion for determining the number of final retained
components is proposed. An advance correlation matrix is developed to evaluate
dynamic relationships among the chosen components. The theoretical properties of the
proposedmethod are given.Many simulation experiments showour approachperforms
well on both stationary and non-stationary data. Real data examples are also presented
as illustrations. We develop four packages using the statistical software R that contain
the needed functions to obtain and assess the results of the proposed method.

Keywords Dimension reduction · Eigenanalysis · Moving cross-covariance · Moving
cross-correlation · Multivariate time series · Non-stationary data

1 Introduction

Multivariate time series analysis has many applications, as it can account for inter-
relations between variables. Advanced technology nowadays allows for the collection
of multivariate natured data in a wide range of fields, such as economics, industry,
healthcare, and social networks. Many of the existing models, such as VARIMAmod-
els, face the challenge of complexity in their structures, even when modelling series
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with large dimensions. This complexity occurs because the number of parameters
expands enormously fast as the dimension increases. Therefore reducing the dimen-
sion of the series becomes critical to manage such data.

Many approaches have been proposed in literature for dimension reduction. Factor
models arewidelyused tools to reduce thedimensionof a vector time series by applying
eigenanalysis on the covariance matrix of the data. See, for example, Peña and Box
(1987), Stock and Watson (1988, 2002), Bai and Ng (2002), Forni et al. (2005), Peña
and Poncela (2006), Pan and Yao (2008), Lam and Yao (2012), and many others.
These models treat the variables of an observed series as linear combinations of some
hidden factors that could be interpreted subjectively. Another approach of interest
is the principal component analysis (PCA), where it also applies eigenanalysis on
the covariance matrix of the data. PCA seeks dimension reduction by retaining a
small number of principal components that are linear combinations of the original
variables. PCA is, in fact, a commonly used technique to perform dimension reduction
for static and independent multivariate data. However, because of the dynamic nature
of multivariate time series data, the classical PCA technique will not be applicable.
The reason is that PCA is static, therefore, will not be able to capture the dynamic
dependence between the variables of a multivariate time series. Dimension reduction
for time series data can also be achieved using canonical correlation analysis by Box
and Tiao (1977) and scalar component analysis by Tiao and Tsay (1989).

Ku et al. (1995) introduced dynamic principal component analysis (DPCA) by
including lagged series into the analysis. Without losing a valuable amount of infor-
mation, the results of projected components are linear combinations of both current
and lagged values of the data. However, DPCA assumes a stationary series. Therefore,
it is not suitable for non-stationary series.

Chang et al. (2018) extended PCA by transforming the original series into uncorre-
lated subseries with lower dimensions. This method is called the principal component
analysis for time series (TS-PCA). The resulted subseries can be separately analyzed
as they are uncorrelated. However, this method is also limited to stationary series.

Many PCA-based methods were proposed to account for non-stationarity such as
moving window principal component analysis (MWPCA) by Lennox et al. (2001) and
variable MWPCA by He and Yang (2008). These methods were mostly developed for
processmonitoring,where PCA is performed separately on eachwindow.By including
data from thenext timepoint and excluding those from theoldest timepoint, new results
are obtained based on the new window and so on. However, excluding a large amount
of observation by using one widow at a time would lead to the loss of a valuable
amount of information.

Brillinger (1981) proposed another related approach where the reduction is pro-
duced based on a reconstruction criterion. The resulted dynamic components are linear
combinations of the original series. Peña and Yohai (2016) proposed the generalized
dynamic principal component analysis (GDPCA), where the original data is recon-
structed based on a loss function. This method accounts for non-stationary series and
produces dynamic principal components that could be non-linear combinations of the
original data with nearly zero reconstruction error. This precision is a result of using an
iteration method that minimizes the reconstruction error. However, using this iteration
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method reduces the accuracy of forecasting by using GDPCA’s results; See Peña and
Yohai (2016).

In this paper, we extend DPCA to non-stationary vector time series. The main dif-
ference betweenDPCA and themethodwe propose is that the former uses the classical
covariancematrix of the data, where the latter uses a new form of the covariancematrix
called themoving cross-covariancematrix of the data. This newmatrix updates itself at
each time point and consists of static and dynamic information of the whole series. The
method we propose is different from MWPCA approaches mentioned earlier, where
our method uses all observation to calculate one moving cross-covariance matrix.
Using the moving cross-covariance matrix enables our method to extract static and
dynamic information from series that are allowed to be non-stationarity. Therefore, it
will be called the moving dynamic principal component analysis (MDPCA).

There are other methods that divide analyze time series into windows in order
to analyze the data such as Multivariate Singular Spectrum Analysis (MSSA). Even
though both MSSA and MDPCA aim to produce complex components that consist of
dynamic dependence in the data, the two methods have different purposes. MDPCA
aims to reduce the dimension of a multivariate time series by seeking fewer uncor-
related principal components with directions which can explain most of variation of
the original data. MSSA on the other hand decomposes a time series into a number
of components (i.e. elements such as trend, periodic and random noise) then recon-
structs data by selecting important elements that contain the dynamic information of
the original series; See for example, Golyandina et al. (2001), Broomhead and King
(1986) and Hossein and Rahim (2013).

This paper is arranged as follows. Section 2 reveals the building-structure of
MDPCA, along with a new proposed diagnostic tool to evaluate the relationship
between the retained components. Additionally, a criterion for determining the number
of final retained components is proposed. Section 3 shows the theoretical properties of
our estimators. In Sect. 4, the ability of MDPCA to dimension reduction is examined
on both simulated and real data. We also reveal the R packages that consist of the
necessary functions used to produce and assess MDPCA’s results. Section 5 states
concluding remarks and suggested problems for further research.

2 Methodology

Consider an m-dimensional time series zt = (z1,t , z2,t , . . . , zm,t )
′
, which is allowed

to be non-stationary. The initial step in the MDPCA method is to build an m(l + 1)-
dimensional extended data vector, denoted by yt , which consists of the series zt and
its lagged series up to a pre-specified lag l. Then the extended data vector yt is going
to have the following structure

yt = (z′
t+l , z

′
t+l−1, . . . z

′
t )

′

= (z1,t+l , . . . zm,t+l , z1,t+l−1, . . . zm,t+l−1, . . . , z1,t , . . . zm,t )
′.

The rest of the analyses will be performed on yt instead of zt . Assume the series zt is
observed at T time points. Let m(l + 1) = M and T − l = N . Let Y be an M × N
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extended data matrix whose columns are y1, . . . , yN . A critical feature of the extended
data vector yt is that its cross-covariance matrix will account for the dynamic relations
that exist among the components (i.e., variables) of zt . This idea was first introduced
to PCA by Ku et al. (1995) to reduce the dimension of dynamic data, while PCA is
limited to static data.

For a stationary series, the DPCA of Ku et al. (1995) applies its analysis to the
cross-covariance matrix of yt to reduce the dimension of zt . However, for a non-
stationary series, the results of the DPCA would not be valid as it assumes the first
two moments to be constant for all time points. Furthermore, if DPCA is applied to a
non-stationary series, it could produce correlated dynamic principal components (i.e.,
DPCs). This is mainly because the cross-covariance matrix will not be able to measure
the dynamic dependence between the variables of non-stationary series. One solution
we propose is to use moving cross-covariance matrices instead. These matrices will
allow the capture of dynamic relations among the components of non-stationary time
series because they can be updated as we move in time. Define the cross-covariance
matrix to be

Γt = Var(yt ). (1)

Once zt is observed, the sample cross-covariance matrix defined over window i with
a pre-specified size W = 2w + 1 can be calculated as follows

Γ̂i = 1

2w + 1

i+w∑

t=i−w

(yt − yi )(yt − yi )
′

(2)

where

yi = 1

2w + 1

i+w∑

t=i−w

yt

where w is a positive integer. Then, the moving cross-covariance matrix is defined as

MΓ = 1

N − 2w

N−w∑

i=w+1

Γi (3)

where Γi is the cross-covariance matrix defined over window i of yt . The building
structure of MΓ will make it more suitable to measure the dynamic dependence
between non-stationary series’ components as it collects its information from the
cross-covariance matrices defined over the updated local windows of yt . In specific,
the first cross-covariance matrix is calculated over the first window, then the second
cross-covariance matrix is calculated over the second window (i.e. by including the
next time point and excluding the oldest one), and so on. Then the moving cross-
covariance matrix uses all these cross-covariance matrices to extract the dynamic
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dependence from yt as a whole. Based on sample data,MΓ can be estimated bulging
in Γ̂i into Eq. (3) as

M̂Γ = 1

N − 2w

N−w∑

i=w+1

Γ̂i . (4)

Note that the moving cross-covariance matrixMΓ is an M × M symmetric matrix
which has a spectral decomposition as follows:

MΓ = UΛU
′
.

Correspondingly, the sample moving cross-covariance matrix M̂Γ has the following
spectral decomposition:

M̂Γ = ÛΛ̂Û
′

(5)

where Û is an M × M orthogonal matrix whose columns are the eigenvectors of M̂Γ

and Λ̂ is an M × M diagonal matrix consists of the eigenvalues of M̂Γ along its
diagonal. Let λ̂ j , 1 ≤ j ≤ M , be the j th eigenvalue of M̂Γ (i.e., λ̂ j is the ( j, j)th
element of Λ̂), where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂M . Let û j be the corresponding eigenvector
(i.e., û j is the j th column of Û). MDPCA reduces the dimension of zt by producing
M uncorrelated moving dynamic principal components (MDPCs) and transform yt
into a space with dimension k < m such that

λ̂1 + · · · + λ̂k

λ̂1 + · · · + λ̂M
� 1. (6)

Here, the value of k also indicates the number of MDPCs being used to reconstruct the
data. The optimal value for k is the minimum number of MDPCs that consist of the
maximum variation of the data and the minimum reconstruction error. More details
about determining the optimal choice of k will be provided in the next section.

Remark 1 Averaging the local sample variance–covariance matrices in Eq. (2) will
formulate the estimation of the global average variance–covariance matrix (i.e. the
sample moving cross-covariance matrix) in Eq. (4). The aim of this procedure is to
allow non-stationarity while measuring variation and cross-covariation. This proce-
dure can be carried out by following a few steps. First, we determine the window
size (i.e. W ) based on the degree of stationarity of the data. Then calculate the first
local sample variance–covariance matrix based on the observations from times 1 to
W . Then calculate the second local sample variance–covariance matrix based on the
observations from times 2 toW +1, and so on. Averaging these local sample variance–
covariance matrices produce a global smoothed covariance matrix that consists of the
dynamic dependence of the original series.
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2.1 OptimizingMDPCA’s results

In order to improve the results of MDPCA, one would choose optimal values for the
window size W , the number of lags l to include in the extended data vector, and the
number of retained MDPCs.

Choosing a size forW is vital to enhance the results ofMDPCA and extract accurate
information from the data. The size of W depends on the degree of stationarity of
the data. Small window sizes will be more suitable for data that exhibit strong non-
stationarity. Hence, determining a size forW can be done by looking at the time series
plot and assessing the stationarity of the data. More analyses on determining the size
of W will be conducted in the simulations section of this article. Notice that MDPCA
can be applied on both stationary and non-stationary series by adjusting the window
size, as mention earlier. Therefore, DPCA is a special case ofMDPCAwhereW = N .

In the following, we are going to provide a procedure to determine the optimal size
for l. Additionally, a new criterion will be proposed in order to objectively determine
the number of optimal components (i.e. MDPCs) to retain.

2.1.1 Choosing optimal number of lags

Including more lagged series can provide more dynamic information to the analy-
sis; however, it would also increase the dimension of yt , which makes the analysis
more complicated. Therefore, one would include only lagged series that provide more
dynamic information related to the original series in order to gain accurate results with
the lowest dimension possible for yt . In order to choose an optimal value for l, we are
going to adapt the procedure suggested by Ku et al. (1995), which can be summarized
as follows:

1. Start with l = 0.
2. Build the extended data vector yt by including l lagged series.
3. Apply MDPCA to yt and obtain all MDPCs.
4. Set j = m(l + 1) and r(l) = 0 where r is the number of relations.
5. Determine if the j th MDPC provides a linear relation. If yes, go to next step,

otherwise go to step 7.
6. Set j = j − 1 and r = r(l) + 1, then repeat step 5.
7. Calculate the number of new relations by:

rnew(l) = r(l) −
l−1∑

k=0

(l − k + 1)rnew(k)

if rnew(l) ≤ 0, go to step 9, otherwise go to next step.
8. Set l = l + 1, go to step 2.
9. Stop.

The above steps assumed the size ofW to be given or already determined. The number
of significant MDPCs can be determined by examining the plot of the eigenvalues of
M̂Γ . Then, the number of relations r can be obtained by subtracting the number
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Fig. 1 Eigenvalues’ contribution rate plots after applying MDPCA to a series of five variables with three
static and two dynamic relations

of significant MDPCs from the total number of variables (i.e. r = M− number of
significant MDPCs).

Here we provide a diagram example to clarify the idea behind the above procedure.
Suppose we consider a series zt which consists of five variables that have some rela-
tionships among them. Assume the contribution rate plot of eigenvalues after applying
MDPCA with 0, 1, 2, and 3 lags are shown in Fig. 1. Then three static relations are
found when MDPCA with l = 0 is applied because only two MDPCs have signifi-
cantly high contribution rates. Notice that by including each lag, new relations might
be detected, and the previous relations will be repeated (l + 1) times. By applying
MDPCA with l = 1, eight relations are found, which are the three static relations
repeated twice and two new dynamic relations that are exposed by including the first
lagged series. By using MDPCA with l = 2, 13 relations are found, which are the
three static relations repeated three times, and two dynamic relations repeated twice.
Hence, no new relations are found, and the procedure would suggest not including
more lags as l = 1 is the optimal choice.

Notice that in the above example, if these five variables are independent and do not
have any relationship between them, then all MDPCs resulted from applyingMDPCA
will be significant. Therefore, no relation will be detected in this case (i.e. r = 0).
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2.1.2 Retained component criterion (RCC)

Once W and l are already determined, and MDPCA is applied to yt , then the next
task is to choose the optimal number of MDPCs to retain, k. This can be done by
balancing between the following desires: maximizing the percentage of explained
variance, minimizing the MSE (i.e., mean of squared error) of reconstructing the
original data, and reducing the dimension of the series. The percentage of explained
variance can be measured as given in Eq. (6). The following equation calculates the
MSE of reconstructed data by the first k MDPCs:

MSEk

⎛

⎝yt yrecont ) = 1

MN

M∑

j=1

N∑

t=1

(y j,t −
k∑

v=1

û j,vCv,t

⎞

⎠
2

(7)

where yrecont is the reconstructed data by the first k MDPCs, û j,v is the vth element
of the j th eigenvector of M̂Γ and Cv,t is the t th observation of the vth MDPC (Cv)
which can be obtained by left multiplying yt by the transpose of the first v columns
of Û. Notice that choosing more MDPCs will increase the percentage of explained
variance and reduce the MSE of reconstructed data; however, it will also increase the
final dimension. Therefore, our goal here is to retain the minimum number of MDPCs
that explain most of the variation and haveminimum reconstruction error. In literature,
this is usually done subjectively by balancing between the above desires. To this end,
we are going to propose a criterion that can balance between the above desires and
objectively suggests the optimal number of MDPCs to retain. This criterion will be
called the retained component criterion (RCC).

In order to determine the optimal number of MDPCs, we need to measure the
effect of adding each MDPC on the accuracy of the final results of MDPCA, where
maximum accuracy can be achieved by explaining all variations in the original data
and reducing the MSE of reconstructed data to zero. Notice, we are going to assume
that both the percentage of explained variance and the MSE of reconstructed data are
equally important to measure the accuracy of MDPCA’s results.

Consider the case where a time series yt with dimension M is observed. Assume
an ideal case where all M variables are independent and equally important to explain
the variability in the data. In particular, all variables consist of equally important
information and contribute equally to the variation in yt . Then after applyingMDPCA
to yt , we expect that each MDPC will equally explain 1/M% of the total variation
of yt and reduce the MSE of reconstructing the data by an equal amount of 1/M%.
Therefore, each MDPC will improve the accuracy of the final results of MDPCA by
2/M%. The reason behind assuming an ideal case and giving the components of yt
equal weights is to include an objective penalty term in our criterion for retaining
an extra MDPC in the final results. Before we move further, consider the following
definition. Let MaxMSE be the maximum MSE of reconstructing data defined by

MaxMSE = 1

MN

M∑

j=1

N∑

t=1

(y j,t )
2. (8)
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Notice that MaxMSE is equivalent to the MSE of reconstructing data with no MDPCs
available and replacing elements of yrecont in (7) by zeros.

Then, the RCC criterion of the first k MDPCs is defined as

RCCk = 2 −
⎛

⎝
k∑

j=1

λ̂ j/

M∑

j=1

λ̂ j

⎞

⎠ − ((MaxMSE − MSEk)/MaxMSE) + (2k/M)(9)

where λ̂ j is the largest j th eigenvalue of the matrix M̂Γ defined in (3), MaxMSE is
defined in (8), andMSEk is given in (7). TheRCCcriterion consists of threemain terms:
the term (

∑k
j=1 λ̂ j/

∑M
j=1 λ̂ j ), which represents the percentage of explained variance

by first k MDPCs, the term ((MaxMSE − MSEk)/MaxMSE), which represents the
percentage of reduced MSE by the first k MDPCs, and the term (2k/M), which is
a penalty for retaining k MDPCs. The constant “2” is included in the calculation in
(9) to retain positive values for the RCC criterion. This is a technical reason as the
constant value will not change the final decision of the RCC criterion. The optimal
number of MDPCs to retain is the number corresponding to the minimum RCC value
in (9). Furthermore, the RCC criterion can be used to determine the optimal number
of components in most of the PCA-based reduction methods (e.g., classical PCA and
DPCA).

For example, consider a series yt with dimension M = 8. After applying MDPCA,
if the first MDPC explains 50% of the total variation of yt (i.e.,

∑k
j=1 λ̂ j/

∑M
j=1 λ̂ j =

0.5) and reduces MaxMSE by 85% (i.e., (MaxMSE − MSEk)/MaxMSE = 0.85),
then the RCC criterion will have a value of 2 − 0.5 − 0.85 + 0.25 = 0.9. Now, let
the second MDPC explains 40% of the total variation of yt and reduces MaxMSE by
10%, then the RCC criterion of the first two MDPCs will have a value of 2 − (0.5 +
0.4)− (0.85+0.1)+ (0.25+0.25) = 0.65. Hence, adding the second component will
contribute significantly to increase the accuracy of MDPCA’s results. Additionally,
if the third MDPC explains 5% of the total variation of yt and reduces MaxMSE by
3%, then the RCC criterion of the first three MDPCs will have a value of 2 − (0.5 +
0.4+ 0.05) − (0.85+ 0.1+ 0.03) + (0.25+ 0.25+ 0.25) = 0.87, which means that
adding the third MDPC will increase the accuracy by a non-significant amount. This
can be explained as the penalty of using the third MDPC is larger than the amount of
accuracy added to MDPCA’s results. Hence, for this example, the optimal number of
retained MDPCs will be 2, as it has the lowest RCC of 0.65.

2.2 MDPCA calculation procedure

The following is a summary of the steps of MDPCA:

1. Create the extended data vector yt by including lagged series up to lag l.
2. Calculate the moving cross-covariance matrix M̂Γ based on yt .
3. Calculate the eigenvalues and the corresponding eigenvectors of M̂Γ .
4. Use the RCC criterion to determine k, the optimal number of MDPCs to retain.
5. Left multiplying yt by the first kth columns of the matrix Û

′
defined in (5) produces

the transformed data with reduced dimension.
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2.3 Evaluating dynamic relationships betweenMDPCs

For stationary series, examining for a significant correlation between the variables
of a multivariate time series can be done by visualizing tools such as the cross-
correlation plots, which is a generalization of the autocorrelation function plot (ACF)
of Box and Jenkins (1976) to the multivariate time series. Methods involving test-
ing the significance of the multiple null hypotheses exist in literature such as the
multivariate portmanteau statistic; See Hosking (1980). However, the methods men-
tioned above were developed to capture the dynamic dependence of stationary series
and would not be meaningful for non-stationary series because they use the classical
correlation function with a fixed mean throughout the calculations. Methods such as
co-integration searches for stationary linear combinations of non-stationary series.
However, co-integration is concerned with the long-run relationships between non-
stationary variables; See Engle and Granger (1987), Johansen (1995). To this end, we
need to extend some of the methods mentioned above to find correlated components or
variables of non-stationary series by using a bit different measurement of correlation
that can be updated as we move forward or backward in time. Hence, we propose
the use of a moving cross-correlation function. This function will be used to check
whether two non-stationary variables are correlated. It will also be used to evaluate
the relationship betweenMDPCs. Before we proceed further, the following definitions
are needed. Define the lag l cross-covariance matrix of yi as

Γi (l) = Cov(yi , yi−l). (10)

Also, define the lag l cross-correlation matrix of yi to be

ρi (l) = Corr(yi , yi−l) = S−1
i Γi (l) S

−1
i−l (11)

where l is a non-negative integer, Γi (l) is defined in (10) and Si is the diagonal matrix
of the standard deviations of yi . The ( j, j)th element of Si is the square root of the
( j, j)th element of Γi (0) defined over yi . The above functions can be estimated using
the following formulas as follows. The sample lag l cross-covariance matrix over
window yi with a pre-specified size of W = 2w + 1 will be calculated using

Γ̂i (l) = 1

2w + 1

i+w∑

t=i−w

(yt − yi )(yt−l − yi )
′

(12)

where

yi = 1

2w + 1

i+w∑

t=i−w

yt .
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Then, Γ̂i (l) defined in (12) can be used to calculate the sample lag l moving cross-
correlation matrix over the window yi , ρ̂i (l), to estimate ρi (l) as

ρ̂i (l) = Ŝ
−1
i Γ̂i (l) Ŝ

−1
i−l (13)

where the ( j, j)th element of Ŝi is the square root of the ( j, j)th element of Γ̂i (0)
defined over the same window yi . Further, define the lag l moving cross-correlation
matrix of the series yt to be

Mρ(l) = 1

N − 2 max(l, w)

N−max(l,w)∑

i=max(l,w)+1

ρi (l). (14)

Based on sample data, we can estimate Mρ(l) using the sample lag l moving cross-
correlation matrix as follows

M̂ρ(l) = 1

N − 2 max(l, w)

N−max(l,w)∑

i=max(l,w)+1

ρ̂i (l). (15)

Notice that M̂ρ(l) will be updated at each time point as we move in time to account
for non-stationary series.

Based on the above-stated definitions, both visualization and multiple hypotheses
testing methods can be developed to check for the significance of correlations between
the components of either stationary or non-stationary series. For visualization, one
can plot the sample moving cross-correlation matrices with different time lags l =
0,±1,±2, . . . ± p; where p is a positive integer taken to be p = 10 log10(N/M),
similarly to those in ACF plot. The significance of the correlation can be evaluated by
looking at the 95% confidence interval computed using ±1.96/

√
N . We demonstrate

the use of the moving cross-correlation function in the following examples.

Example 1 This example is a short simulation study to test the ability of the moving
cross-correlation plots to capture the dynamic relationship among different variables
of a multivariate time series. A window with size 101 will be used in the calculation of
the moving cross-correlation function. The results then will be compared with those
based on the cross-correlation function.

The simulated data in this example consists of eight variables and a sample of size
1200, where three different non-stationary models were used to generate three sub-
series of 4, 3, and 1 variable as described below. Let at , bt , and ct be three independent
standard normal white noises, which are the innovation terms of the following three
models, respectively, then:

⎧
⎪⎨

⎪⎩

y j,t = ut+ j−1, j = 1, 2, 3 and 4

y j,t = vt+ j−4, j = 5, 6 and 7

y j,t = wt , j = 8

(16)
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where (ut , vt , wt )
′
satisfies

⎧
⎪⎨

⎪⎩

�ut = 0.6 � ut−1 + at + 0.5at−1

�vt = bt + 0.8bt−1 − 2.2bt−2

�wt = −0.55 � wt−1 − 0.5 � wt−2 + 0.4 � wt−3 + ct

(17)

A time series plot of the simulated multivariate time series is available in Fig. 2,
where all variables exhibit non-stationary behaviours. First, we examine the sam-
ple cross-correlation plots (i.e., using the classical cross-correlation function) of the
data; See Figs. 3, 4, 5, and 6. Based on these plots, a strong dynamic relationship
exists among the eight variables, which implies that all three simulated subgroups are
strongly correlated. The last result contradicts with the way that we simulated the data.
Therefore, the cross-correlation plots could lead to non-correct results when dealing
with non-stationary series.

On the other hand, the samplemoving cross-correlation plots of the simulated series
are provided in Figs. 7, 8, 9, and 10. Three uncorrelated subgroups of 4, 3, 1 variable
are detected, where the variables in each subgroup are strongly correlated.

The main reason that we obtained different results using the two visualization
methods above is the non-stationarity nature of the data. Therefore, we can conclude
that the moving cross-correlation plots can capture the dynamic relationship between
non-stationary series. Furthermore, it can be shown that the above two methods will
produce similar conclusions when applied to stationary series.

3 Theoretical properties

To show the reliability of the results obtained by the proposed MDPCA, we shall
prove the consistency of the estimated MDPCs, which are generated by left multi-
plying the extended data matrix by Û

′
in (5). Therefore, we shall show that Û is a

consistent estimator of U. We are going to approach the consistency by showing that
D(M (Û),M (U))→ 0 asW →∞. Here,W is thewindow size used in the calculation
ofMDPCA,M (U) is the linear space spanned byU’s columns, and D(M (Û),M (U))

is the distance between the spaces M (Û) and M (U). For ease of notation, we are
going to use c, c1, c2, . . . to denote constants whose values might be different from
place to place.

For two positive integers c1 < c2, let B1 and B2 be any c2 × (c2 − c1) matrices
satisfying the condition B′

iBi = I(c2−c1)×(c2−c1), where i ∈ {1, 2}. Define the distance
between the B1 and B2 to be

D(B1,B2) =
√
c2 − c1 − tr(B1B′

1B2B′
2). (18)

Notice that D(B1,B2) = 0 if and only if M (B1) = M (B2). This measurement was
applied by Pan and Yao (2008), Chang et al. (2018).

It is important to know that the convergence of Û is implied by the convergence
of M̂Γ in (4). This can be seen since Û consists of the eigenvectors of M̂Γ . The
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fact that M̂Γ is calculated based on moving windows whose width depends on the
stationarity of the data makes the moving cross-covariance function more complicated
than the ordinary cross-covariance function. However, the consistency of M̂Γ still can
be reached as each window in M̂Γ is calculated as in the stationary case. Therefore,
the convergence of the estimated moving principal components MDPCs will depend
on the size of W . Recall that W ≤ N , where W = N when data is stationary, and W
gets smaller as the data becomes more non-stationary.

In the following work, we approach the consistency assuming the dimension M
to be fixed. The needed conditions will be stated. Moreover, since time series data is
known to be dependent data, we are going to consider the following measurement of
dependence:

θl = sup
c

sup
A∈F c−∞B∈F∞

c+l

|P(A ∩ B) − P(A)P(B)| (19)

where F c4
c3 is the σ -field generated by yt for c3 ≤ t ≤ c4. This measurement of

dependence [i.e., θl in (19)] is called the mixing coefficients in literature and θl = 0
if the time series is a sequence of independent random variables. This measurement
indicates that the two data observed at two time points, which are l times apart, are
going to be independent as l → ∞. More information on the use of the mixing
coefficients can be found in Bradley (1986).

Assumption 1 Assume that

sup
i

max
1≤ j≤M

E |y j,i − E(y j,i )|2q

to be upper bounded by a positive constant c for some constant q > 2, where y j,i is
the j th component of yi .

Assumption 2 Assume that

∞∑

l=1

θ
1−2/q
l < ∞

for q defined in Assumption 1, where θl is the mixing coefficient defined in (19).

Theorem 1 Assume the dimension M is fixed. Let Assumptions 1 and 2 hold. Then,
for Û = (Û1, . . . , ÛM ) obtained by (5), it is true that

max
1≤ j≤M

D(M (Û j ),M (U j ))
P−→ 0

as W → ∞, where “
P−→” means convergence in probability.

The proof of Theorem 1 will be provided in the “Appendix”.
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4 Simulations and real data examples

In this section, we are going to test the ability of the proposed method on both real and
simulated multivariate time series data. The following examples will focus on non-
stationary series. Recall, MDPCA and DPCA produce identical results when applied
to stationary data since MDPCA uses a window of size W = N in the stationary
case. The performance of MDPCA will be assessed by considering the percentage
of explained variance (i.e., contribution percentage), the MSE of reconstructed data,
and the moving cross-correlation plots of the retained MDPCs. All analyses are done
using R software. The needed functions to produce and assess MDPCA’s results can
be found under the following R packages (i.e. libraries): MACF of Alshammri (2020a),
MCOV of Alshammri (2020b), MDPCA of Alshammri (2020c) and RCC_MDPCA of
Alshammri (2020d).

4.1 Simulations

In the following simulation studies, we are going to apply MDPCA with different
combinations of window and lag sizes on simulated datasets of different dimensions
and sample sizes. Each simulation will be replicated 500 times. Data sets will be
generated using arima.sim command in R.

Example 2 In this example, we apply the MDPCA on a non-stationary series zt with
ten variables. This example consists of two parts. The first part studies the results of
MDPCA when using different combinations of W and l. The second part compares
the effect of the size of T on MDPCA’s results. The series zt is generated using five
different models, such that each model produces two correlated variables as follows.

Let at , bt , ct , dt and et be independent standard normal white noises, which are the
innovation terms of the following five models, respectively, then:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

z j,t = ut+ j−1, j = 1 and 2

z j,t = vt+ j−3, j = 3 and 4

z j,t = wt+ j−5, j = 5 and 6

z j,t = xt+ j−7, j = 7 and 8

z j,t = qt+ j−9, j = 9 and 10

(20)

where (ut , vt , wt , xt , qt )
′
satisfies

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�ut = 0.75 � ut−1 + at + 0.9at−1

�vt = 0.6 � vt−1 + bt − 1.4bt−1

�wt = −0.7 � wt−1 + ct − 2.3ct−1

�xt = −0.5 � xt−1 + dt + 0.55dt−1

�qt = 0.6 � qt−1 + et + 1.65et−1

(21)
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Table 1 A comparison between the results of MDPCA with different options of W and l in Example 2

Results Options of W and l
W = 101 and l = 1 W = 201 and l = 1 W = 301 and l = 1

Contribution % 96.48% 97.01% 97.34%

Mean (SD) (0.01) (0.01) (0.01)

MSE 359.27 350.18 309.09

Mean (SD) (234.25) (246.62) (226.98)

W = 101 and l = 5 W = 201 and l = 5 W = 301 and l = 5

Contribution % 94.59% 96.11% 96.71%

Mean (SD) (0.01) (0.01) (0.01)

MSE 403.74 335.89 333.04

Mean (SD) (288.54) (221.02) (213.36)

A time series plot of the simulated data is shown in Fig. 11, where it can be seen
that every two variables represent a different non-stationary model. First, we would
like to see the results of MDPCA with different options of W and l. Based on 500
replicas, Table 1 is a comparison between the results of MDPCA with different sizes
of W and l when applied to the simulated series zt with 1500 samples, where two
MDPCs are considered. For the mean percentages of explained variance by the two
MDPCs, the percentages obtained by using l = 1 are higher than those obtained
by using l = 5. However, the percentages differ by a small amount, which can be
justified as using more lagged data (i.e., l = 5) can include more information to the
analysis. For example, two MDPCs, on average, explain 96.48% of the variance of
the data when using MDPCA withW = 101 and l = 1, compared with 94.59% when
using W = 101 and l = 5. The standard errors of explained variance in all cases
are 0.01, which indicates steady percentages in all replicas. For the mean of MSE of
reconstructed data, it ranges between 309.09 and 403.74, where it has its lowest when
W = 301 and l = 1 are used, and it has its highest whenW = 101 and l = 5 are used.

Furthermore, the dynamic dependence between the two MDPCs can be revealed
by plotting the means of the absolute value of the moving cross-correlation with
W = 101; See Figs. 12, 13 and 14 and the corresponding standard errors in Table 6.
There are no dynamic relationships between the twoMDPCs for both caseswhen using
W = 101. However, the correlations get slightly larger and cross the significance line
as we increase the window size from W = 201 to W = 301.

Therefore, based on the above discussion, the dimension of the simulated non-
stationary series with ten variables in this example can be best reduced by using
MDPCA with W = 101 and l = 1 or MDPCA with W = 101 and l = 5.

Second, we would like to see the results of MDPCAwhen the series zt has different
sample sizes (i.e., T = 200, 400, 600, and 800). In this part, we are considering
MDPCA with W = 101 and l = 5. Based on 500 replicas, the results of applying
MDPCAondifferent sizeswhen simulating zt are shown inTable 2,where twoMDPCs
are considered. For the mean percentage of explained variance, the highest percentage
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Table 2 A comparison between the results of MDPCA with different sample sizes in Example 2

Results MDPCA (W = 101, l = 5)
T = 200 T = 400 T = 600 T = 800

Contribution% 96.68% 94.54% 94.61% 94.67%

Mean (SD) (0.03) (0.02) (0.01) (0.01)

MSE 52.68 95.24 148.57 191.59

Mean (SD) (37.04) (66.27) (87.82) (125.03)

of 96.68% was obtained when T = 200, then decreased to 94.54% when T = 400,
then followed by a continued increase to 94.61% when T = 600 and 94.67% when
T = 800. The standard errors of the percentage of explained variance decreased from
0.03 when T = 200 to 0.01 when T = 600, then stay at this value for larger sample
sizes. This indicates a more steady performance for T ≥ 600. For the mean of MSE
of reconstructed data, its value has a positive relationship with T . For example, the
mean MSE was 52.68 when T = 200, then increased to 191.59 when T = 800. The
MSE values are not steady for each replica as they have large standard errors (e.g.,
66.27 standard error when T = 400).

On the other hand, the means of the absolute value of the moving cross-correlation
with W = 101 indicates a significant dynamic relationship between the two MDPCs
when T = 200; See Fig. 15. The correlations then decreased between the twoMDPCs
when T = 400 with some minor significant cross-correlations. For the cases where
T = 600 and 800, the plots indicate uncorrelated MDPCs; See Fig. 16. Also, Table 7
shows the standard errors of the absolute value of the moving cross-correlation. We
notice an improvement on the errors when increasing the sample size of the data. For
example, the standard errors range between 0 and 0.24 when T = 200, comparing
with 0–0.12 when T = 800. Notice by applying MDPCA to the simulated data with
T = 600 we are able to obtain similar results to those with T = 1500. Therefore,
even though we increased the dimension of zt tom = 10, MDPCA still performs well
on data with moderate sample sizes.

Example 3 In the following simulation study, MDPCA is applied to a non-stationary
series zt that consists of 15 variables. This study consists of two parts. The first part
compares the MDPCA’s results when using different combinations of W and l. The
second part compares the effect of the size of T on MDPCA’s results. The data is
generated using five different models, such that each model produces three correlated
variables.

Let at , bt , ct , dt and et be independent standard normal white noises, which are the
innovation terms of the following five models, respectively, then:

123



Moving dynamic principal component analysis for… 2263

Table 3 A comparison between the results of MDPCA with different options of W and l in Example 3

Results Options of W and l
W = 101 and l = 1 W = 201 and l = 1 W = 301 and l = 1

Contribution% 96.13% 96.85% 97.22%

Mean (SD) (0.01) (0.01) (0.01)

MSE 348.56 331.78 314.06

Mean (SD) (230.96) (223.55) (207.18)

W = 101 and l = 5 W = 201 and l = 5 W = 301 and l = 5

Contribution% 94.43% 95.90% 96.54%

Mean (SD) (0.01) (0.01) (0.01)

MSE 364.54 345.85 327.43

Mean (SD) (254.41) (227.12) (221.58)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

z j,t = ut+ j−1, j = 1, 2 and 3

z j,t = vt+ j−4, j = 4, 5 and 6

z j,t = wt+ j−7, j = 7, 8 and 9

z j,t = xt+ j−10, j = 10, 11 and 12

z j,t = qt+ j−13, j = 13, 14 and 15

(22)

where (ut , vt , wt , xt , qt )
′
satisfies

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�ut = 0.75 � ut−1 + at + 0.9at−1

�vt = 0.6 � vt−1 + bt − 1.4bt−1

�wt = −0.7 � wt−1 + ct − 2.3ct−1

�xt = −0.5 � xt−1 + dt + 0.55dt−1

�qt = 0.6 � qt−1 + et + 1.65et−1

(23)

Based on 500 replicas, Table 3 shows the results of MDPCA with different combi-
nations ofW and l applied to zt with 2000 samples where twoMDPCs are considered.
It can be seen that the mean percentages of the explained variance by the two MDPCs
increase slightly as we increase W . For example, the mean percentage is 96.13%
when using MDPCA with W = 101 and l = 1 then increases to 97.22% when using
MDPCA with W = 301 and l = 1. Also, the percentages are slightly lower when
using more lagged data (i.e., when increasing l). For example, the mean percentage
is 96.85% when using MDPCA with W = 201 and l = 1 then decreases to 95.90%
when using MDPCA with W = 201 and l = 5. The standard error of the percentage
of explained variance has a small value of 0.01 in all cases. Additionally, the MSE of
reconstructed data has large standard errors, which means that its value can be small
or large, depending on the data. For example, the mean MSE is 359.27 when using
MDPCA with W = 101 and l = 1, and has a standard error of 234.25.
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Additionally, the plot of the means of the absolute value of the moving cross-
correlation with W = 101 indicates no dynamic relationships between the two
components when using MDPCA with W = 101; See Fig. 17. However, minor, but
significant, correlations between the two components for all cases where MDPCA is
used with W = 201; See Fig. 18. The correlations become slightly larger when using
MDPCA with W = 301; See Fig. 19. Small standard errors of the absolute value of
the moving cross-correlation are reported in Table 8, where their values range between
0 to 0.08 in all cases.

Based on the above results, we can best reduce the dimension of the simulated non-
stationary series with 15 variables in this example by using MDPCA with W = 101
and l = 1, or MDPCA with W = 101 and l = 5.

To see the effect of changing the sample size of zt on the MDPCA, we are
going to apply MDPCA with W = 101 and l = 1 on zt with sample sizes
T = 200, 400, 600, and 800. The results based on 500 replicas are summarized
in Table 4, where two MDPCs are considered. Similar values, about 96.25%, for
the mean percentage of explained variance are obtained in all cases with small stan-
dard errors. For example, a mean percentage of 96.35% and a standard error of 0.02
are obtained when T = 200, compared with 96.22% and 0.01 when T = 800.
The mean MSE of reconstructed data and the corresponding standard error get
larger as we increase T . For example, a mean MSE of 42.66 with a standard error
of 28.68 is obtained when T = 200, compared with 183.39 and 129.85 when
T = 800.

Additionally, the means of the absolute value of the moving cross-correlation with
W = 101 are plotted in Figs. 20 and 21. It can be seen that the two MDPCs have
significant cross-correlations when T = 200. The correlations become smaller with
minor significant correlations for | l |≥ 10when increasing the dimension to T = 400.
Uncorrelated MDPCs are obtained when T = 600 and T = 800. The standard
errors of the absolute value of the moving cross-correlation are reported in Table 9,
where the values can be improved by increasing the sample size. For instance, the
standard errors range between 0 and 0.23 when T = 200 comparing with 0–0.11
when T = 800. Therefore, in this example, MDPCA performs well when applied to
zt with T ≥ 600. The MDPCA was able to reduce the dimension of zt from 15 to
2.

By the end of the above simulation studies, we conclude that the proposedMDPCA
is able to reduce the dimension of a multivariate time series by taking into account
both the dynamic and non-stationarity behaviors of the data. It was noticed that the
performance of MDPCA was steady even though we increased the dimension of the
tested series.

4.2 Real data examples

Example 4 In this example, the MDPCA will be applied to daily stock prices of 17
USA companies in US Dollars from November 07, 2013 to December 18, 2017. The
sample size of the data is 1036 days. The names of the 17 companies are shown in
Table 5. The data is accessible on Yahoo! Finance.
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Table 4 A comparison between the results of MDPCA with different sample sizes in Example 3

Results MDPCA (W = 101, l = 1)

T = 200 T = 400 T = 600 T = 800

Contribution% 96.35% 96.25% 96.23% 96.22%

Mean (SD) (0.02) (0.01) (0.01) (0.01)

MSE 42.66 91.74 130.54 183.39

Mean (SD) (28.68) (63.65) (92.59) (129.85)

The time series plots of the daily stock prices of the 17 companies reveal
the non-stationarity behavior of the daily stock prices; See Figs. 22 and 23. Fig-
ure 24 shows the last 36 sample moving cross-correlation plots with W = 101
of the stock prices before the transformation. The daily stock prices of the 17
companies are moderately correlated. For example, the company MetLife Insur-
ance is strongly correlated with Prudential Financial and weakly correlated with
McKesson.

By looking at Figs. 22 and 23, MDPCA with W = 101 will be used. The
optimal number of lags is l = 1, as shown in Fig. 25, where ten static and
seven dynamic relations were found. Figure 26 consists of an eigenvalues’ plot
along with the relative RCC criterion plot. The RCC has values of 0.508, 0.490,
0.489, 0.486, and 0.502 for the first three, four, five, six, and seven MDPCs
receptively. Thus, the optimal number of MDPCs to retain is six MDPCs, as
suggested by the RCC criterion. The six MDPCs explain 90.25% of the total vari-
ation in the data and produce a reconstruction error of 304.55. The retained six
MDPCs are uncorrelated, as shown in the sample moving cross-correlation plots in
Fig. 27.

To conclude, MDPCA with W = 101 and l = 1 was able to reduce the dimen-
sion of the daily stock prices of the USA companies from 17 to 6 by accounting
for the non-stationarity and the dynamic dependence in the stock prices. Notice that
MDPCA was applied directly to the original stock prices. This will prevent any loss
of information caused by dealing with, for example, the log return of the prices.

5 Concluding remarks

In this paper, we introduced MDPCA, which is a PCA-based dimension reduction
method that is used to reduce the dimension of multivariate time series data by trans-
forming them into uncorrelated components. MDPCA is a generalization of DPCA of
Ku et al. (1995) to non-stationary series. DPCA can be considered as a special case of
MDPCA when W = N .

We used three methods to assess MDPCA’s results. The moving cross-correlation
functionwhich evaluates the dynamic relationships between the final retainedMDPCs.
The MSE of reconstructed data. The percentage of explained variance.
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Table 5 Names and labels of the 17 USA companies in Example 4

No. Label Name No. Label Name

1 ESRX Express scripts holding 10 KR Kroger-The Kroger

2 FB Facebook 11 LOW Lowe’s

3 F Ford motor 12 MCK McKesson

4 GE General electric 13 MET MetLife Insurance

5 GM General motor health 14 MSFT Microsoft

6 HD The home depot 15 PEP PepsiCo

7 IBM IBM 16 PG The Procter & Gamble

8 INTC Intel 17 PRU Prudential Financial

9 JNJ Johnson & Johnson

Choosing the window size for MDPCA depends on the stationarity of the data.
Shorter windows are suitable for series with strong non-stationary behavior, and the
opposite is true. Determining an optimal window size for MDPCA can be a subject
for further research.

The RCC criterion is a new tool to determine the optimal number of MDPCs
to retain. This criterion balances between the following two desires, reducing the
dimension of the data and increasing the accuracy of the final results. Additionally,
the RCC criterion can be employed to determine the optimal number of retained
components in PCA-based reduction methods.

The asymptotic properties of our estimator Û, the matrix that consists of the eigen-
vectors of the moving cross-covariance matrix of the data, are studied. Under some
regularity assumptions, we show that Û is a consistent estimator of U with W−1/2

convergence rate.
We carried out many simulations considering non-stationary series with different

dimensional and sample sizes. MDPCA was able to reach dimensional reduction and
performs well even for reasonably small sample sizes (i.e., T = 400). A real data
example was used to confirm the results of the simulations.

Data availability The data used to support the findings of this article are available at Yahoo! Finance via
https://finance.yahoo.com.
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Appendix A: Proofs

The proof of Theorem 1 is shown here. The following lemma of Chang et al. (2018)
is useful to state our results.

Lemma 1 Assume for γ > 2, E(|y j,t−μ j |2γ ) is uniformly bounded away from infinity
for j = 1, . . . , p, and t ≥ 1. Let the mixing coefficients

θl = sup
j

sup
A∈F j

−∞B∈F∞
j+l

(|P(A ∩ B) − P(A)P(B)|)

satisfy the condition
∑∞

l=1 θ
1−2/γ
l < ∞. Let the dimension M is fixed, then ‖∑̂y(l)−

∑
y(l)‖2 = Op(1/

√
T ) for each l ≤ l1, where l1 is a pre-described positive integer

number.

The following lemma is based on Lemma 1.

Lemma 2 Let the Assumptions 1 and 2 hold. Also, if we assume the dimension M to
be fixed, then for each i , ‖Γ̂i −Γi‖2 = Op(1/

√
W ) as W → ∞, where Γi and Γ̂i are

defined in (1) and (2), respectively.

Proof of Lemma 2 By assuming Assumptions 1 and 2, then Lemma 1 can be applied
on each window, and we have

‖Γ̂i (l) − Γi (l)‖2 = Op(1/
√
W )

for the lagged covariance matrices up to any specified lag l1. Notice that MDPCA is
only considering cross-covariance with no lags (i.e., Γi = Γi (0)), thus the following
is true

‖Γ̂i − Γi‖2 = Op(1/
√
W ).


�
The following lemma is based on the results from Lemma 2.

Lemma 3 Assume the dimension M is fixed, and under the Assumptions 1 and 2, then
the following holds as W → ∞,

‖M̂Γ − MΓ ‖2 P−→ 0,

where MΓ and M̂Γ are defined in (3) and (4), respectively.

Proof of Lemma 3 By assuming the dimension M to be fixed, and under Assumptions
1 and 2, from Lemma 2, we have

‖Γ̂i − Γi‖2 = Op(1/
√
W )
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for each i , which implies

‖Γ̂i − Γi‖2 P−→ 0

for each i , as W → ∞. Therefore,

‖M̂Γ − MΓ ‖2 = ‖ 1

N − 2w

N−w∑

i=w+1

Γ̂i − 1

N − 2w

N−w∑

i=w+1

Γi‖2

≤ 1

N − 2w

N−w∑

i=w+1

‖Γ̂i − Γi‖2 P−→ 0.

Proof of Theorem 1 Assume the dimension M is fixed. Let the Assumptions 1 and 2
hold. By applying the results of theorem 8.1.10 of Golub and Van Loan (1996), we
have

max
1≤ j≤M

D(M (Û j ),M (U j )) = Op(‖M̂Γ − MΓ ‖2)

Therefore, from Lemma 3, it holds that, as W → ∞,

max
1≤ j≤M

D(M (Û j ),M (U j ))
P−→ 0.

Appendix B: Tables and figures

See Tables 6, 7, 8, 9 and Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26 and 27.
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Fig. 2 A time series plot of the simulated series with 8 variables

Fig. 3 Sample cross-correlation plots of the simulated series with 8 variables—part 1

Fig. 4 Sample cross-correlation plots of the simulated series with 8 variables—part 2
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Fig. 5 Sample cross-correlation plots of the simulated series with 8 variables—part 3

Fig. 6 Sample cross-correlation plots of the simulated series with 8 variables—part 4
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Fig. 7 Sample moving cross-correlation plots with a window size 101 of the simulated series with 8
variables—part 1

Fig. 8 Sample moving cross-correlation plots with a window size 101 of the simulated series with 8
variables—part 2
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Fig. 9 Sample moving cross-correlation plots with a window size 101 of the simulated series with 8
variables—part 3

Fig. 10 Sample moving cross-correlation plots with a window size 101 of the simulated series with 8
variables—part 4
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Fig. 11 A time series plot of the simulated series with 10 variables in Example 2

Fig. 12 Plots of the mean of the absolute value of the moving cross-correlations between two MDPCs in
Example 2 [Left: MDPCA (W = 101, l = 1), Right: MDPCA (W = 101, l = 5)]
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Fig. 13 Plots of the mean of the absolute value of the moving cross-correlations between two MDPCs in
Example 2 [Left: MDPCA (W = 201, l = 1), Right: MDPCA (W = 201, l = 5)]

Fig. 14 Plots of the mean of the absolute value of the moving cross-correlations between two MDPCs in
Example 2 [Left: MDPCA (W = 301, l = 1), Right: MDPCA (W = 301, l = 5)]
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Fig. 15 Plots of the mean of the absolute value of the moving cross-correlations between two MDPCs with
different sample sizes in Example 2 [Left: T = 200, Right: T = 400]

Fig. 16 Plots of the mean of the absolute value of the moving cross-correlations between two MDPCs with
different sample sizes in Example 2 [Left: T = 600, Right: T = 800]

123



2282 F. Alshammri, J. Pan

Fig. 17 Plots of the mean of the absolute value of the moving cross-correlations between two MDPCs in
Example 3 [Left: MDPCA (W = 101, l = 1), Right: MDPCA (W = 101, l = 5)]

Fig. 18 Plots of the mean of the absolute value of the moving cross-correlations between two MDPCs in
Example 3 [Left: MDPCA (W = 201, l = 1), Right: MDPCA (W = 201, l = 5)]
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Fig. 19 Plots of the mean of the absolute value of the moving cross-correlations between two MDPCs in
Example 3 [Left: MDPCA (W = 301, l = 1), Right: MDPCA (W = 301, l = 5)]

Fig. 20 Plots of the mean of the absolute value of the moving cross-correlations between two MDPCs with
different sample sizes in Example 3 [Left: T = 200, Right: T = 400]
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Fig. 21 Plots of the mean of the absolute value of the moving cross-correlations between two MDPCs with
different sample sizes in Example 3 [Left: T = 600, Right: T = 800]

Fig. 22 A time series plot of the daily stock prices of the 17 USA companies in Example 4—part 1

Fig. 23 A time series plot of the daily stock prices of the 17 USA companies in Example 4—part 2
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Fig. 24 Last 36 sample moving cross-correlation plots with W = 101 of the daily stock prices of the 17
USA companies before applying MDPCA in Example 4

Fig. 25 Eigenvalues’ plots after applying MDPCA with W = 101 to the 17 USA companies in Example 4

123



2286 F. Alshammri, J. Pan

Fig. 26 Top: An eigenvalues’ plot of the 17 USA companies in Example 4 after applying MDPCA with
W = 101 and l = 1, Bottom: RCC plot

Fig. 27 Sample moving cross-correlation plots of the MDPCs of the 17 USA companies after MDPCA
with W=101 and l=1 is applied in Example 4
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