
Computational Statistics (2021) 36:2379–2411
https://doi.org/10.1007/s00180-021-01104-4

ORIG INAL PAPER

Amultigrid preconditioner for tensor product spline
smoothing

Martin Siebenborn1 · Julian Wagner2

Received: 8 July 2020 / Accepted: 15 April 2021 / Published online: 30 April 2021
© The Author(s) 2021

Abstract
Penalized spline smoothing is a well-established, nonparametric regression method
that is efficient for one and two covariates. Its extension to more than two covariates
is straightforward but suffers from exponentially increasing memory demands and
computational complexity, which brings the method to its numerical limit. Penalized
spline smoothing with multiple covariates requires solving a large-scale, regular-
ized least-squares problem where the occurring matrices do not fit into storage of
common computer systems. To overcome this restriction, we introduce a matrix-free
implementation of the conjugate gradient method. We further present a matrix-free
implementation of a simple diagonal as well as more advanced geometric multi-
grid preconditioner to significantly speed up convergence of the conjugate gradient
method. All algorithms require a negligible amount of memory and therefore allow
for penalized spline smoothing with multiple covariates. Moreover, for arbitrary but
fixed covariate dimension, we show grid independent convergence of the multigrid
preconditioner which is fundamental to achieve algorithmic scalability.

Keywords Penalized spline smoothing · Matrix-free algorithms · Memory efficient
algorithms · Multigrid method

1 Introduction

Exploring significant patterns in observed data is a fundamental task in many statis-
tical applications. In nonparametric regression the relationship between the covariate
variables and the variable of interest is modelled by a smooth but not further specified

B Julian Wagner
alop@uni-trier.de

Martin Siebenborn
martin.siebenborn@uni-hamburg.de

1 Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany

2 DFG-RTG Algorithmic Optimization, Universität Trier, Universitätsring 15, 52496 Trier, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-021-01104-4&domain=pdf
http://orcid.org/0000-0001-6786-6480

2380 M. Siebenborn, J. Wagner

function of the covariates, that is

y = s(x1, . . . , x P) + ε.

The function s(·) attempts to capture the important patterns in the data while leaving
out noise and insignificant structures. In this context, penalized spline smoothing
methods have become very popular and led to a wide range of applications for one
and two covariates (cf. Ruppert et al. 2003; Wand and Ormerod 2008; Fahrmeir et al.
2013). The general process is to represent the smooth unknown function by a high
dimensional spline basis and to impose an appropriately chosen roughness penalty
to guarantee smoothness. The influence of the penalty is then controlled by a single
penalty parameter. The idea of penalized spline smoothing traces back to O’Sullivan
(1986) where a rich B-spline basis is combined with a roughness penalty based on
integrals of the squared second order derivatives. It was made popular by Eilers and
Marx (1996) introducing the P-spline by replacing the integral penalty with higher-
order differences of the B-spline coefficients.

The extension of penalized spline smoothing methods to an arbitrary number of
covariates is straightforward but suffers from an exponential growth of the number
of spline coefficients to be estimated within the number of covariates. This issue is
referred to as the curse of dimensionality (cf. Bellman 1957). The computational and
especially memory complexity of the related estimation procedure therefore becomes
numerically infeasible, even for a moderate number of covariates, such that spline
smoothing methods are rarely applied for more than two covariates (cf. Fahrmeir et al.
2013, p. 531).

In the special case that the covariates are located on a regular grid, the spline model
can be reformulated in order to exploit the underlying grid structure as proposed by
Currie et al. (2006) and Eilers et al. (2006), where the numerical complexity only
growth linearly within the number of covariates. A further approach to weaken the
curse of dimensionality is by using sparse grids (cf. Zenger 1991; Bungartz andGriebel
2004), where the problem dimension is reduced significantly by taking the hierarchical
construction of tensor product B-splines into account. These approaches, however, are
designed for gridded covariates and cannot be applied to penalized spline smoothing
on scattered data.

For multivariate and scattered covariates penalized spline smoothing is carried out
via solving a regularized least-squares problem for the B-spline coefficients. The main
challenge is that the underlying tensor product spline basis matrices are large scale,
such that their construction and storage becomes numerically infeasible for increasing
number of covariates. In this paper, we propose a strategy to circumvent explicit
construction and storage of these large matrices by exploiting the underlying tensor
product structure. We refer to this approach as matrix-free approach since it only
requires the construction of very low-dimensional matrices which are negligible in
storage.We apply an iterative solution algorithm, the conjugate gradient (CG)method,
to solve for the normal equation of the regularized least-squares problem since it only
requires computation of matrix-vector products, but not the matrix explicitly. This
finally allows to overcome the bottleneck of memory demands but comes at the price
of a possibly long algorithmic runtime since the normal equation is known to be of

123

Amultigrid preconditioner for tensor product spline… 2381

ill condition. Further, with increasing covariate dimension the condition deteriorates
since the number of observations generally remains unchanged.

In order to also significantly speed-up computation time, we present matrix-free
preconditioning techniques. We introduce a simple diagonal preconditioner and fur-
therwe adapt a numerically advanced geometricmultigrid technique as preconditioner.
Multigridmethod are typically applied for the numerical solution of elliptic partial dif-
ferential equations in two or more dimensions (cf. Brandt 1977; Hackbusch 1978), but
the fundamental principal of building a hierarchy of increasingly fine discretization can
be adapted to penalized spline smoothing. Finally, we come up with matrix-free pre-
conditioned CG methods for penalized spline smoothing, which significantly reduces
memory and computational complexity compared to common estimation methods
and therefore allow to carry out penalized spline smoothing with an arbitrary num-
ber of covariates. Furthermore, for the geometric multigrid preconditioner, we show
grid-independent convergence which is mandatory in order to achieve algorithmic
scalability in the sense that simultaneously doubling the degrees of freedom and the
number of processors leads to constant algorithmic running times. The presented
implementations are available in the R-package mgss (cf. Siebenborn and Wagner
2021).

The remainder of this paper is organized as follows. Section 2 provides the fun-
damentals of penalized spline smoothing in one and especially multiple dimensions
as well as the formulation of the underlying large-scale linear system. In Sect. 3, we
show how to perform memory efficient matrix operations on the occurring matrices
which results in a matrix-free implementation of the CG-method to solve the large-
scale systemwith comparatively small memory requirements.We further show how to
efficiently extract the diagonal of the coefficientmatrix to perform a diagonal precondi-
tioned CG-method. In Sect. 4, we develop a matrix-free implementation of a multigrid
preconditioned CG-method to drastically reduce the computational complexity. Sec-
tion 5 gives some practical remarks how the algorithms can be utilized and extended
the ideas to further problems within the context of penalized spline smoothing. To
show the storage benefits and the numerical performance of the proposed algorithms,
they are compared to traditional methods on artificial test data as well as on real data
for models of international trade in Sect. 6. Finally, Sect. 7 gives a conclusion of the
paper.

2 Penalized spline smoothing

In statistics, smoothing a given data set describes the process of constructing a function
that captures the important patterns in the data while leaving out noise and other fine
scaled structures. More precisely, for given data {(xi , yi) ∈ R

P × R|i = 1, . . . , n},
where the yi ∈ R are observations of a continuous response variable and the xi ∈ R

P

represent the corresponding values of continuous covariates, we seek a smooth, but
not further specified function s(·) : � ⊂ R

P → R so that

yi = s(xi) + εi , i = 1, . . . , n.

123

2382 M. Siebenborn, J. Wagner

A common assumption is that ε1, . . . , εn are independent and identically distributed
(i.i.d.) random errors with zero mean, common variance σ 2

ε , and assumed to be inde-
pendent of the covariates. In penalized spline smoothing methods, initially proposed
by O’Sullivan (1986) and made popular by Eilers and Marx (1996) (see also Ruppert
et al. 2003 and Fahrmeir et al. 2013), the function s(·) is modelled as a spline function
with a rich basis, such that s(·) is flexible enough to capture very complex and highly
nonlinear structures. At the same time, in order to prevent overfitting of the observed
data, an additional weighted roughness penalty is used. The amount of smoothness is
then controlled by a single weight parameter.

2.1 Tensor product splines

We begin by defining a spline basis which forms the underlying linear space for the
representation of s(·). Let � := [a, b] be a bounded and closed interval partitioned
by the knots

K := {a = κ0 < · · · < κm+1 = b}.

Let Cq(�) denote the space of q-times continuously differentiable functions and let
Pq(�) denote the space of polynomials of degree q. We call the function space

Sq(K) := {s ∈ Cq−1(�) : s|[κ j−1,κ j] ∈ Pq
([

κ j−1, κ j
])

, j = 1, . . . ,m + 1}

the space of spline functions of degree q ∈ N0 with knots K. It is a finite dimensional
linear space of dimension J := dim

(Sq(K)
) = m + q + 1. With

{ϕ j,q : j = 1, . . . , J }

we denote its B-spline basis, proposed in de Boor (1978), which is well suited for
numerical applications. To extend the spline concept to P-dimensional covariates, a
tensor product approach is common. Let Sqp (Kp) be the spline space for the p-th
covariate, p = 1, . . . , P , and let

{ϕ p
jp,qp

: jp = 1, . . . , Jp}

denote its B-spline basis. The function

ϕ j,q : � := �1 × · · · × �P → R, ϕ j,q(x) =
P∏

p=1

ϕ
p
jp,qp

(x p),

where j := (j1, . . . , jP)T and q := (q1, . . . , qP)T are multiindices, is called ten-
sor product B-spline. We define the space of tensor product splines as their linear
combination

Sq(K) := span{ϕ j,q : 1 ≤ j ≤ J := (J1, . . . , JP)T }, (2.1)

123

Amultigrid preconditioner for tensor product spline… 2383

which is then a K := ∏P
p=1 Jp dimensional linear space. Note that we use the same

symbol for the univariable and the tensor product spline space as well as for B-splines
and tensor product B-splines. The difference is that we make use of the multiindex
notation for the tensor products. Every tensor product spline s ∈ Sq(K) therefore has
a unique representation

s =
∑

1≤ j≤J

α jϕ j,q ,

and for computational reasons we uniquely identify the set of multiindices { j ∈ N
P :

1 ≤ j ≤ J } in descending lexicographical order as {1, . . . , K }, such that

s =
∑

1≤ j≤J

α jϕ j,q =
K∑

k=1

αkϕk,q (2.2)

with unique spline coefficients αk ∈ R.

2.2 Tensor product penalized spline smoothing

Tensor product penalized spline smoothing with a curvature penalty, in analogy to
O’Sullivan (1986), is carried out solving the optimization problem

min
s∈Sq (K)

n∑

i=1

(s(xi) − yi)
2 + λ

∫

RP

P∑

p1=1

P∑

p2=1

(
∂2

∂xp1∂xp2
s(x)

)2

dx . (2.3)

The objective function consists of three parts. The least squares term

LS(s) :=
n∑

i=1

(s(xi) − yi)
2

measures the goodness-of-fit of the spline to the given observations and the regular-
ization or penalty term

R(s) :=
∫

RP

P∑

p1=1

P∑

p2=1

(
∂2

∂xp1∂xp2
s(x)

)2

dx

penalizes the roughness of the spline. The single penalty parameter λ > 0 balances
the two competitive terms LS(s) and R(s). For λ → 0 no roughness penalization
is imposed such that the spline function tends to the common least-squares spline of
degree q, i.e. the solution of

min
s∈Sq (K)

LS(s),

123

2384 M. Siebenborn, J. Wagner

that tries to interpolates the given data. Conversely, for λ → ∞, all impact is given
to the regularization term such that the smoothing spline tends to be the least-squares
hyperplane. Smoothing parameter selection is an important task in penalized spline
smoothing and a variety of data-driven methods exist. A broad overview is given by
the monographs of Eubank (1988), Wahba (1990), and Green and Silverman (1993).

Using the unique B-spline representation (2.2), we obtain

LS(s) = ‖
α − y‖22,

where
 ∈ R
n×K is element-wise defined as

[i, k] := ϕk,q(xi),

y ∈ R
n denotes the response vector, α ∈ R

K denotes the (unknown) spline coefficient
vector, and ‖ · ‖2 denotes the euclidean norm. Further, for the regularization term we
obtain

R(s) = αT

⎛

⎜
⎝

∑

r∈NP
0 ;|r |=2

2

r !�r

⎞

⎟
⎠α =

∑

r∈NP
0 ;|r |=2

2

r !α
T�rα,

where each �r ∈ R
K×K is element-wise defined as

�r [k, �] =
∫

�

∂rϕk,q(x)∂
rϕ�,q(x)dx = 〈

∂rϕk,q , ∂
rϕ�,q

〉
L2(�)

.

Defining

 :=
∑

r∈NP
0 ;|r |=2

2

r !�r ∈ R
K×K

the optimization problem (2.3) is equivalently formulated in terms of the B-spline
coefficients as

min
α∈RK

‖
α − y‖22 + λαTα. (2.4)

This is a regularized least squares problem and its solution is equivalent to the
solution of the linear equation system

(

T
 + λ

)
α =
T y. (2.5)

Since the coefficient matrix
T
 + λ is positive semi-definite, a solution always
exists. Under very mild conditions on the covariates the coefficient matrix is positive
definite, such that the solution is even unique and analytically given as

123

Amultigrid preconditioner for tensor product spline… 2385

α̂ :=
(

T
 + λ

)−1

T y.

More information on regularized least squares problems can be found inBjörck (1996).
The penalty matrix and the related matrices �r , respectively, require the evalua-

tion of several integral terms that might become numerically extensive. For practical
applications, a huge simplification is provided by Eilers and Marx (1996) where the
knots are equally spaced and the penalty is based on differences of the coefficients of
adjacent B-splines. For P = 1 that is

J∑

j=r+1

�r (α j) = αT (�r)
T �rα = ‖�rα‖22,

where �r (·) denotes the r -th backwards difference operator and �r ∈ R
(J−r)×J

denotes the related difference matrix. A common choice is r = 2. For P > 1, this
penalty is extended to several covariates via

diff :=
P∑

p=1

IJ1 ⊗ · · · ⊗ IJp−1 ⊗ (
�

p
rp

)T
�

p
rp ⊗ IJp+1 ⊗ · · · ⊗ IJP

where �
p
rp ∈ R

(Jp−rp)×Jp denotes the rp-th order difference matrix for the p-th
covariate, ⊗ denotes the Kronecker product, and I(·) denotes the identity matrix of
the respective dimension (see also Fahrmeir et al. (2013) for further detail). Replacing
the curvature penalty matrix with the difference penalty matrix diff in problem
(2.4) yields the so called P-spline. Note that the difference order rp of the P-spline is
not fixed an can be chosen differently in each direction, which simply allows to take
higher order differences into account and can be very useful in practical applications.
Conversely, compared to the curvature penalty, it does only penalize roughness in each
spatial direction but not on their interactions.

Even though the problem (2.5) looks simple, it becomes numerically infeasible for
an increasing number of covariates P , which is shown in the following section. The
main focus of this paper is therefore on an efficient solution of (2.5) in terms of both
memory requirements and computing time.

2.3 Curse of dimensionality

We now look closer on the regularized least-squares problem (2.4) and the related
linear system of equations (2.5), respectively. Since the coefficient matrix
T
+λ

is symmetric and positive definite, a variety of efficient solution methods exists. For
example, the conjugate gradient (CG)method proposed byHestenes and Stiefel (1952)
and presented in the following section can be applied. Note that it makes no difference
for the CG-method if the curvature penalty is replaced by the difference penalty
diff . However, for reasons of simplification, we stick to the curvature penalty in the
following.

123

2386 M. Siebenborn, J. Wagner

Table 1 Number of B-spline
coefficients for varying spatial
dimension P

P = 2 P = 3 P = 4 P = 5

35P 1225 42,875 1,500,625 52,521,875

Unfortunately, penalized spline smoothing is known to suffer from the so called
curse of dimensionality (cf. Bellman 1957), i.e. an exponential growth of the number
of B-spline coefficients K within the dimension of the covariates P such that

K =
P∏

p=1

Jp = O(2P).

As a simple example, equally choosing Jp = 35 B-spline basis functions for each
spatial dimension p = 1, . . . , P , the resulting linear equation system (2.5) is of
dimension 35P . Table 1 gives an overview on the increasing number of degrees of
freedom under increasing dimensionality with which we are dealing within this work.

In practice, of course, any other desired choice of the Jp for each spatial dimension
p = 1, . . . , P is possible. This exponential growth rapidly leads to computational
restrictions, such that spline smoothing becomes impracticable for dimensions P ≥ 3
as already stated by Fahrmeir et al. (2013, p. 531).

Tomake this more clear, in the above setting of Jp = 35 for all p and P = 3 already
the storage of the regularization matrix requires approximately two gigabyte (GB)
of memory, even in a sparse matrix storage format. Since is not the only occurring
matrix and since all the matrices are not only to be stored but to be manipulated, the
method clearly exceeds the internalmemory of common computer systems. Therefore,
to make tensor product penalized spline smoothing practicable for increasing spatial
dimensions P , we need to develop computational and memory efficient methods to
solve the large-scale linear system (2.5).

3 Matrix-free conjugate gradient method

As shown in the previous section, penalized spline smoothing with several covariates
is boiled down to solving a linear system of equations with a symmetric and positive
definite coefficient matrix. The difficulty is hidden in the problem dimension K , since
already for a moderate amount of covariates the coefficient matrix cannot be stored on
common computer systems. In order to make penalized spline smoothing applicable
to multiple covariates, in this section we propose a matrix-free solution strategy that
exploits the underlying structure of the tensor product spline and therefore solely
requires the negligible storage space of small univariate spline matrices.

123

Amultigrid preconditioner for tensor product spline… 2387

3.1 The conjugate gradient method

The conjugate gradient (CG) method, introduced by Hestenes and Stiefel (1952),
is the most popular algorithms to solve a linear system Ax = b with a symmetric
and positive definite coefficient matrix A ∈ R

K×K and an arbitrary right-hand side
b ∈ R

K . The CG-method is known to be an exact method, i.e. it computes the exact
solution x∗ := A−1b in at most K iterations. However, since K might be very large in
practice and due to round-off errors, it is generally used as an iterativemethod. Starting
with an initial guess x0, where typically x0 = 0 or x0 = b, the iterative procedure of
the CG method is presented in Algorithm 1.

Algorithm 1: CG-method
Input: A, b, x0

1 j ← 0
2 p j ← r j ← b − Ax j
3 while ‖r j‖2/‖b‖2 > tolerance do
4 v j ← Ap j
5 w j ← ‖r j‖22/pTj v j

6 x j+1 ← x j + w j p j
7 r j+1 ← r j − w j v j

8 p j+1 ← r j+1 + (‖r j+1‖22/‖r j‖22)p j
9 j ← j + 1

10 end
11 return x j

The computational complexity of the CG-method, i.e. the required number of itera-
tions to reach the tolerance, depends on the condition number of the coefficient matrix
A, that is

cond2(A) := λmax(A)

λmin(A)
≥ 1,

where λmax(A) > 0 and λmin(A) > 0 denote the largest and smallest eigenvalue of
A, respectively. According to Saad (2003) it holds

‖x j − x∗‖A ≤ 2

(√
cond2(A) − 1√
cond2(A) + 1

) j

‖x0 − x∗‖A

for the j-th iterate of the CG-method. At this, ‖ · ‖A denotes the A-induced norm
defined by ‖x‖A := xT Ax for all x ∈ R

K . A condition number close to one therefore
guarantees a fast convergence of the CG-method.

The memory complexity of the CG-method mainly boils down to the storage of the
coefficient matrix A. A major strength of the CG-method is that the matrix A does not
have to exist explicitly but only implicitly by its actions on the iterates x j , i.e. it can be
implemented matrix-free by efficiently computing the vectors v j ← Ap j in line 4 of

123

2388 M. Siebenborn, J. Wagner

Algorithm 1. So, if we know how to compute v j without explicitly storing the matrix
A, the CG-method can be applied with an negligible amount of additional memory.

3.2 Matrix structures

In order to implement amatrix-free version of theCG-method to solve the linear system
of penalized smoothing spline problem (2.5), we need to know how to compute matrix
vector products with the occurring matrices
 ∈ R

n×K ,
T ∈ R
K×n , and ∈ R

K×K

or diff ∈ R
K×K . Therefore, we state some important properties of these matrices

that are based on the tensor product nature of the underlying splines.
For each spatial direction p = 1, . . . , P we define the matrix

p ∈ R
n×Jp ,
p[i, jp] := ϕ

p
jp,qp

(x p
i),

which corresponds to the matrix
 with one single covariate in direction p. Then,
because of the scattered data structure, it holds

T =
P⊙

p=1

T
p ,

where denotes the Khatri-Rao product. For each matrix �r , we analogously define
a matrix for each spatial direction of the respective derivatives, that is

�
p
rp ∈ R

Jp×Jp , �
p
rp [jp, �p] =

〈
∂rpϕ

p
jp,qp

, ∂rpϕ
p
�p,qp

〉

L2(�p)
.

Then it holds

�r =
P⊗

p=1

�
p
rp

due to the tensor property.
A further important property of uniform B-splines, i.e. B-splines with equally

spaced knots, in one variable is the subdivision formula. Let therefore Sq(K2h) and
Sq(Kh) denote univariable spline spaces with uniform knot setK2h andKh with mesh
2h and h, respectively. As shown in Höllig (2003, p. 32) it holds

ϕ2h
j,q = 1

2q

q+1∑

i=0

(
q + 1

i

)
ϕh
2 j−(q+1)+i,q (3.1)

123

Amultigrid preconditioner for tensor product spline… 2389

and consequently for a spline s ∈ Sq(K2h) it follows

s =
J 2h∑

j=1

α2h
j ϕ2h

j,q =
J 2h∑

j=1

α2h
j

1

2q

q+1∑

i=0

(
q + 1

i

)
ϕh
2 j−(q+1)+i,q .

Since Sq(K2h) ⊂ Sq(Kh), and therefore also s ∈ Sq(Kh), it holds

s =
Jh∑

j=1

αh
j ϕ

h
j,q

such that the B-spline coefficients for the different meshes are related through α(h) =
I h2hα

2h , where I h2h ∈ R
Jh×J 2h is element wise defined as

I h2h[i, j] := 1

2q

(
q + 1

i − 2 j + q + 1

)
, i = 1, . . . , Jh, j = 1, . . . , J 2h .

Because of the tensor property of B-splines, the formula carries over to uniform B-
splines with several covariates and the corresponding B-spline coefficients are related
through the matrix

I h2h =
P⊗

p=1

I
h p
2h p

∈ R
Kh×K 2h

, (3.2)

where h := (h1, . . . , hP)T denotes the vector of mesh sizes.

3.3 Matrix operations

By exploiting the presentedmatrix structures, namelyKronecker andKhatri-Rao prod-
ucts, we now describe how tomemory efficiently computematrix-vector products with
those types of matrices.

3.3.1 Kronecker products

Let arbitrary matrices Ap ∈ R
mp×n p be given and let

A :=
P⊗

p=1

Ap ∈ R
m×n, m :=

P∏

p=1

mp, n :=
P∏

p=1

n p

denote their Kronecker product matrix. We aim for the computation of matrix-vector
products with A by only accessing the Kronecker factors A1, . . . , AP . In the case of
mp = n p for all p = 1, . . . , P , an implementation is provided in Benoit et al. (2001)

123

2390 M. Siebenborn, J. Wagner

and we extend their idea to arbitrary factors by Algorithm 2 to form a matrix-vector
product with a Kronecker matrix only depending on the Kronecker factors.

Algorithm 2:Matrix-vector product with Kronecker matrix
Input: A1, . . . , AP , x
Output: v0 := (A1 ⊗ · · · ⊗ AP)x

1 vP ← x
2 for p = P, . . . , 1 do
3 for s = 1, . . . , l p do
4 v̄p,s ← vp[(s − 1)n prp + 1 : sn prp]
5 wp,s ← 0
6 for t = 1, . . . , rp do
7 z p,s,t ← v̄p,s [t, t + rp, . . . , t + (n p − 1)rp]
8 z̄ p,s,t ← Apz p,s,t
9 wp,s [t, t + rp, . . . , t + (mp − 1)rp] ← z̄ p,s,t

10 end
11 vp−1[(s − 1)mprp + 1 : sm prp] ← wp,s

12 end
13 end

3.3.2 Khatri-Rao products

Let arbitrary matrices Ap ∈ R
mp×n with the same number of columns be given and

let

A :=
P⊙

p=1

Ap ∈ R
m×n, m :=

P∏

p=1

mp

denote their Khatri-Rao product matrix. We aim for the computation of matrix-vector
products with A and AT by only accessing the Khatri-Rao factors A1, . . . , AP . By
definition of the Khatri-Rao product it holds

A =
P⊙

p=1

Ap =
[

P⊗

p=1
Ap[·, 1], . . . ,

P⊗

p=1
Ap[·, n]

]

,

where Ap[·, j] ∈ R
mp denotes the j-th column of Ap, so that

Ax =
n∑

i=1

x[i]vi , vi :=
P⊗

p=1

Ap[·, i] ∈ R
m

for all x ∈ R
n . This yields Algorithm 3 to form a memory-efficient matrix-vector

product with a Khatri-Rao matrix only requiring its Khatri-Rao factors. Similarly, it
holds

123

Amultigrid preconditioner for tensor product spline… 2391

AT y =
⎛

⎜
⎝

vT1 y
...

vTn y

⎞

⎟
⎠

for all y ∈ R
m . We can thus formulate Algorithm 4 to form a matrix-vector product

with a transposed Khatri-Rao matrix by only accessing its Khatri-Rao factors.

Algorithm 3: Matrix-vector product with Khatri-Rao matrix
Input: A1, . . . , AP , x
Output: w := (A1 · · · AP)x

1 w ← 0
2 for i = 1, . . . , n do
3 v ← A1[·, i] ⊗ · · · ⊗ AP [·, i]
4 w ← w + x[i]v
5 end

Algorithm 4:Matrix-vector product with transposed Khatri-Rao matrix
Input: A1, . . . , AP , y
Output: w := (A1 · · · AP)T y

1 w ← 0
2 for i = 1, . . . , n do
3 v ← A1[·, i] ⊗ · · · ⊗ AP [·, i]
4 w[i] ← vT y
5 end

Using theAlgorithms 2, 3, and 4we are able to implement amatrix-free CG-method
in order to solve the large-scale linear equation system (2.5). But first, we show how
to extract the diagonal of a matrix AAT ∈ R

m×m without computing the entire matrix,
but only accessing the Khatri-Rao factors A1, . . . , AP . This will be useful later on
for the implementation matrix-free preconditioners to speed up convergence of the
matrix-free CG-method. For j = 1, . . . ,m the j-th diagonal element of AAT is given
by eTj AA

T e j = ‖AT e j‖22, where e j denotes the j-th unit vector. It holds

‖AT e j‖22 =

∥
∥∥∥∥∥∥

⎛

⎜
⎝

vT1 e j
...

vTn e j

⎞

⎟
⎠

∥
∥∥∥∥∥∥

2

2

=

∥
∥∥∥∥∥∥

⎛

⎜
⎝

v1[j]
...

vn[j]

⎞

⎟
⎠

∥
∥∥∥∥∥∥

2

2

=
n∑

i=1

vi [j]2.

This yields Algorithm 5 to extract the diagonal of AAT by only accessing the Khatri-
Rao factors of A.

123

2392 M. Siebenborn, J. Wagner

Algorithm 5: Diagonal of product of Khatri-Rao matrix and its transposed
Input: A1, . . . , AP
Output: d := diag(AAT), where A := A1 · · · AP

1 d ← 0
2 for i = 1, . . . , n do
3 v ← A1[·, i] ⊗ · · · ⊗ AP [·, i]
4 for j = 1, · · · ,m do
5 d[j] ← d[j] + v[j]2
6 end
7 end

3.4 Matrix-free CG-method

After these preparations we come back to the linear equation system (2.5) representing
the penalized smoothing spline problem. In order to apply the CG-algorithm 1 with
A :=
T
 + λ and b :=
T y in a matrix-free approach, we need to compute the
right-hand side
T y once as well as multiple matrix-vector products (
T
+λ)x j .

Since
T can be written as the Khatri-Rao product matrix

T =
P⊙

p=1

T
p

the right-hand side vector b can be computed matrix-free by applying Algorithm 3.
For a matrix-vector product

(
T
 + λ)x =
T (
x) + λ(x)

with arbitrary x ∈ R
K we first note that
 = (
T)T is the transposed of a Khatri-Rao

product matrix such the product v :=
x can be computed matrix-free by applying
Algorithm 4. As for the right-hand side, the product
T (
x) =
T v can be computed
matrix-free by applying Algorithm 3. Thus, we can compute thematrix-vector product

T
x without explicitly forming and storing the infeasibly large matrix
T
 ∈
R

K×K but only storing the comparatively small factor matrices
p ∈ R
n×Jp . For the

product x we recall that

 =
∑

r∈NP
0 ;|r |=2

2

r !�r =
∑

r∈NP
0 ;|r |=2

2

r !

⎛

⎝
P⊗

p=1

�
p
rp

⎞

⎠

is given as a weighted sum of Kronecker product matrices. Since each of the factor
matrices �

p
rp is available and easily fits into storage, the matrix-vector product

x =
∑

r∈NP
0 ;|r |=2

2

r !

⎛

⎝
P⊗

p=1

�
p
rp

⎞

⎠ x

123

Amultigrid preconditioner for tensor product spline… 2393

can be computedmatrix-free by applying Algorithm 2 to each addend
(⊗P

p=1 �
p
rp

)
x .

Note that, since

diff :=
P∑

p=1

IJ1 ⊗ · · · ⊗ IJp−1 ⊗ (
�

p
rp

)T
�

p
rp ⊗ IJp+1 ⊗ · · · ⊗ IJP

is also give as a sum of Kronecker product matrices, the matrix-free CG-algorithm
can be used for the P-spline method as well by simply replacing with diff .

For a given number P of covariates, the matrix-free CG-method applied to the
linear equation system (2.5) solely requires the storage of all occurring Kronecker
and Khatri-Rao factors. Its storage demand therefore grows only linearly in P , i.e. it
is in O(P), which is a significant improvement compared to O(2P) required by the
naive implementation of the CG-method in the full matrix approach. To put this into
rough numbers, as seen in Sect. 2.3, for P = 3 and Jp = 35 for all p = 1, 2, 3 the
storage of the regularizationmatrix requires approximately twoGB of RAM.On the
contrary, only storing its Kronecker factors comes along with approximately 50,000
bytes (= 0.00005 GB). The proposed matrix-free CG-method is implemented within
the R-package mgss (cf. Siebenborn and Wagner 2021) as function CG_smooth.

3.5 The preconditioned CG-method

From amemory requirement perspective, the proposedmatrix-free CG-method allows
to carry out penalized spline smoothing with an arbitrary amount of covariates. A seri-
ous issue, however, might be the runtime of thematrix-free CG-method. Asmentioned
in Sect. 3.1, since the CG-method is exact, the worst-case runtime is bounded above
by the the dimension K of the coefficient matrix. But K will become very large while
incorporating further covariates. In order to further speed up the computations, we
adapt a simple diagonal preconditioner in this section. A numerically more sophisti-
cated geometric multigrid preconditioning technique is presented in Sect. 4.

The main idea of preconditioning techniques is to reformulate a linear equation
system Ax = b as BAx = Bb by means of a symmetric and positive definite precon-
ditioner B in such a way that cond2(BA) � cond2(A). Applying the CG-method to
the preconditioned linear equation system instead of to the original yields to a much
faster convergence, due to the significantly smaller condition number of the coefficient
matrix. Of course, the matrix-matrix product BA is never formed in practice, but is
applied implicitly within the procedure of the preconditioned CG-method (PCG) as
presented in Algorithm 6. As in the CG-method, Algorithm 6 does not need to explic-
itly know and store the coefficient matrix A or the preconditioner B but only their
actions on a vector in form of matrix-vector products are required.

If all diagonal elements ai,i of A are non-zero, the most simplest preconditioner is
the diagonal preconditioner

B := diag(1/a1,1, 1/a2,2, . . . , 1/an,n).

123

2394 M. Siebenborn, J. Wagner

Algorithm 6: PCG-method
Input: A, B, b, x0

1 j ← 0
2 r j ← b − Ax j
3 p j ← z j − Br j
4 while ‖r j‖2/‖b‖2 > tolerance do
5 v j ← Ap j
6 w j ← rTj z j / pTj v j

7 x j+1 ← x j + w j p j
8 r j+1 ← r j − w j v j
9 z j+1 ← Br j+1

10 p j+1 ← z j+1 + (rTj+1Z j+1/r
T
j z j)p j

11 j ← j + 1
12 end
13 return x j

The matrix-vector products Br with the preconditioner in Algorithm 6 then reduce to

Br = (r1/a1,1, r2/a2,2, . . . , rn/an,n)
T .

In order to apply the diagonal precondtioner to the linear system (2.5) we need to
extract the diagonal of the coefficient matrix
T
 + λ, which is a vector of length
K and therefore easily fits into storage. Since the coefficient is not formed explicitly,
we cannot simply extract its diagonal but need a matrix-free approach. It holds

diag(
T
 + λ) = diag(
T
) + λdiag()

= diag(
T
) + λ
∑

r∈NP
0 ;|r |=2

2

r !diag(�r).

Due to the construction of
T as Khatri-Rao product we can extract the diagonal
elements of
T
 by means of Algorithm 5. For the Kronecker-products �r it holds

diag(�r) = diag

⎛

⎝
P⊗

p=1

�
p
rp

⎞

⎠ =
P⊗

p=1

diag(� p
rp)

which finally yields the diagonal of the coefficient matrix without explicitly knowing
the coefficient matrix. If the difference penalty is used instead of the curvature penalty
equivalently holds

diag(diff) = diag

⎛

⎝
P∑

p=1

IJ1 ⊗ · · · ⊗ IJp−1 ⊗ (
�

p
rp

)T
�

p
rp ⊗ IJp+1 ⊗ · · · ⊗ IJP

⎞

⎠

123

Amultigrid preconditioner for tensor product spline… 2395

=
P∑

p=1

diag(IJ1) ⊗ · · · ⊗ diag(IJp−1) ⊗ diag(
(
�

p
rp

)T
�

p
rp)

⊗diag(IJp+1) ⊗ · · · ⊗ diag(IJP).

The proposed matrix-free PCG-method with diagonal preconditioner is also imple-
mented within the mgss-package as function PCG_smooth. It is common practice
to use a preconditioner when applying a CG-method such that we recommend to
use PCG_smooth instead of CG_smooth. Most available preconditioners can be
adjusted to significantly reduce the number of required CG iterations. Increasing the
number of basis functions while keeping the number of observations constant typically
results in larger condition numbers of the system matrix and therefore in an increased
number of iterations. An improved preconditioner that overcomes this issue, i.e. result-
ing in an approximately constant number of CG iterations while increasing the number
of basis functions, is presented in the following chapter.

4 A geometric multigrid preconditioner

The diagonal preconditioner for the CG-method is simple to implement but not always
effective. In this section, we therefore focus on a more sophisticated preconditioner
for the linear equation system (2.5). Since the systems coefficient matrix can not be
stored, for the choice of a preconditioner it is again important that only matrix-vector
products are involved. This especially cancels out the well-established incomplete
Cholesky factorizations as a preconditioner and we thus concentrate on geometric
multigrid (MG) methods in this section.

4.1 Multigrid-method

The origins of multigrid methods date back into the late 70th (see for instance Brandt
1977; Hackbusch 1978; Trottenberg et al. 2000 for an overview). Since then, they
are successfully applied in the field of partial differential equations. The main idea is
to build a hierarchy of—in a geometrical sense—increasingly fine discretizations of
the problem. One then uses a splitting iteration like Jacobi or symmetric successive
overrelaxation (SSOR) to smooth different frequencies of the error e = x∗ − x on
different grids, where x∗ solves Ax∗ = b and x is an approximation. Due to the
decreasing computational complexity, the problem can usually be solved explicitly
on the coarsest grid, e.g. by a factorization of the system matrix. Between the grids,
interpolation and restriction operations are used in order to transport the information
back and forth. This works for hierarchical grids, i.e. that all nodes of one grid are
also contained in the next finer grid. We achieve this by successively halving the grid
spacing from 2h to h. A typical choice for the restriction is the transposed interpolation

given by I 2hh = (
I h2h
)T

.
The outstanding feature of the multigrid method is that under certain circumstances

it is possible to solve sparse, linear systems in optimalO(m) complexity,wherem is the

123

2396 M. Siebenborn, J. Wagner

number of discretization points on the finest grid.Algorithm7 shows the basic structure
of one v-cycle that serves as a preconditioner in the CG method. Here g ∈ {1, . . . ,G}
denotes the grid levels from coarse g = 1 to fine g = G, which coincides with the
original problem.

Algorithm 7:Multigrid v-cycle
Input: Ag , r , g, b

1 if g = 1 then
2 x ← A−1

g b
3 end
4 else
5 x ← smooth(x, b, ν1)
6 r ← b − Ax

7 r ← I g−1
g r

8 e ← v_cycle(Ag−1, r , g − 1, 0)

9 x ← x + I gg−1e

10 x ← smooth(x, b, ν2)
11 end
12 return x

The main ingredients of Algorithm 7 are:

• the system matrices Ag ,

• interpolation matrices I gg−1 and restriction matrices I g−1
g ,

• smoothing iteration method,
• the coarse grid solver A−1

1 .

Note that the smoother (line 5 and 10 in Algorithm 7) does not necessarily have to be
convergent on its own. Typical choices are Jacobi or SSOR, for which the convergence
depends on the spectral radius of the iteration matrix. Convergence is not necessary
for the smoothing property. It is thus recommendable only to apply a small number
of pre- and post-smoothing steps ν1 and ν2, typically between two to ten, such that a
possibly diverging smoother does not affect the overall convergence. This is further
addressed in the discussion of Sect. 6.

It might be tempting to apply an algebraic (AMG) instead of a geometric multigrid
preconditioner. The attractivity stems from the fact that AMG typically works as a
black-box solver on a given matrix without relying a geometric description of grid
levels and transfer operators. Yet, common AMG implementations explicitly require
access to the matrix, which is prohibitively memory consuming for the tensor-product
smoothing splines. In the following, we concentrate on a memory efficient realization
of the matrix-vector product in line 6 of Algorithm 7, the interpolation and restriction
in lines 7 and 9 as well as the smoothing operation in lines 5 and 10.

123

Amultigrid preconditioner for tensor product spline… 2397

4.2 MGCG algorithm for penalized spline smoothing

We aim to apply a matrix-free version of the multigrid v-cycle of Algorithm 7 as a
preconditioner in the CG method to solve the linear system (2.5). Therefore, we focus
on the different parts of the v-cycle in more detail.

4.2.1 Hierarchy

For the multigrid method, we require hierarchical grids denoted by g = 1, . . . ,G,
where g = 1 is the coarsest and g = G the finest grid. Since we do not assume initial
knowledge on the data we propose to base the underlying spline space onmp = 2g−1
equidistant knots in each space dimension p = 1, . . . , P to achieve best computational
performance. From a practical point of view, any other number of equidistant knots
will do and the numbers do not have to coincide for the various spatial directions. For
g = 1, . . . ,G we define the coefficient matrix

Ag :=
T
g
g + λg.

With

Kg := dim(Sq(Kg)) =
P∏

p=1

(2g + qp) = (2g + 3)P

we denote the dimension of the spline space Sq(Kg) and hence the size of the coef-
ficient matrix Ag ∈ R

Kg×Kg on grid level g. Thus, we obtain a hierarchy of linear
systems for which we can use the subdivision properties given in Sect. 3.2 for grid
transfer.

4.2.2 Grid transfer

For the transfer of a data vector from grid g to grid g + 1, we require a prolongation
matrix I g+1

g ∈ R
Kg+1×Kg . Due to the subdivision formula and the tensor product

nature of the splines, we can use (3.2) for this purpose. For the restriction matrix

I gg+1 ∈ R
Kg×Kg+1 we choose I gg+1 :=

(
I g+1
g

)T
, which yields the Garlerkin property

Ag = I gg+1Ag+1 I
g+1
g .

The restriction and prolongation matrices do not fit into storage as well, but to apply
the v-cycle Algorithm 7 only matrix-vector products with I g+1

g and I gg+1 are required.
Since

I g+1
g =

P⊗

p=1

I g+1,p
g,p and I gg+1 :=

(
I g+1
g

)T =
⎛

⎝
P⊗

p=1

I g+1,p
g,p

⎞

⎠

T

=
P⊗

p=1

(
I g+1,p
g,p

)T
,

123

2398 M. Siebenborn, J. Wagner

these product can be memory efficiently computed by means of Algorithm 2.

4.2.3 Smoothing iteration

To apply the Jacobi method as a smoother, we additionally require the diagonal of the
coefficient matrix, which is a vector of length Kg . In principle, this is not prohibitively
memory consuming, however, since the coefficient matrix is not explicitly accessible,
we cannot simply extract its diagonal. However, Algorithm 5 allows the memory
efficient computation of the diagonal of
T

g
g for all g = 1, . . . ,G, and the diagonal
of each matrix �r ,g is directly given by the diagonal property of Kronecker matrices.
In contrast to the Jacobi smoother, the SSOR method additionally requires explicit
access to all elements in one of the triangular parts of the coefficient matrices. It
would be possible to compute the desired elements entry-wise within each iteration,
but this would be computationally very expensive, since these elements have to be
computed repeatedly in each iteration and for each grid level such that these methods
are way too expensive. Therefore, we commit to the Jacobi method, implemented in
Algorithm 8, as smoothing iteration. However, in Sect. 6 we also test a SSOR smoother
in the multigrid algorithm, yet we apply this only to low dimensional tests where we
can explicitly assemble and keep the coefficient matrix in memory.

Algorithm 8: Memory efficient Jacobi iteration for spline smoothing

Input: diag(
T
g
g + λg), α, b

1 Dinv ← 1/diag(
T
g
g + λg) // Algorithm 5

2 for j = 1, . . . , ν do

3 r ← b −
(

T
g
g + λg

)
α // Algorithm 4, 3, and 2

4 α ← α + ωDinvr
5 end

4.2.4 Coarse grid solver

On the coarsest grid g = 1 the v-cycle algorithm requires the exact solution of a
linear system with coefficient matrix A1 ∈ R

K1×K1 . Since K1 � KG we assume
an explicitly assembled coarse grid coefficient matrix in a sparse matrix format. This
allows a factorization of A1, that can be precomputed and stored in memory. Keeping
the factorization inmemory is important, since each call of themultigrid preconditioner
requires a solution of a linear system given by A1. Due to the symmetry of the matrix
we apply a sparse Cholesky factorization. Yet, in higher dimensional spaces even
the coarse grid operators might be prohibitively memory consuming. Recall that the
number of variables K1 grows exponentially with the space dimension P . We then
apply the matrix-free PCG algorithm also as a coarse grid solver. Note that the overall
scalability is not affected since the computational costs of the coarse grid solver are
fixed, even when the fine grid G is further subdivided as G ← G + 1.

123

Amultigrid preconditioner for tensor product spline… 2399

4.2.5 MGCG-method

Putting everything together we obtain Algorithm 9, which performs one v-cycle of
the multigrid method for the large-scale linear system (2.5) with negligible memory
requirement. The v-cycle can be interpreted as linear iteration with iteration matrix

CMG,G = Cν2
smooth

(
InG − I GG−1

(
InG−1 − CMG,G−1

)
A−1
G−1 I

G−1
G AG

)
Cν1
smooth,

CMG,1 = 0,
(4.1)

where Csmooth denotes the iteration matrix of the utilized smoothing iteration as stated
in Saad (2003, p. 446). Note that the iteration matrix is only for theoretical investi-
gations and is never assembled in practice. Finally, applying the multigrid v-cycle

Algorithm 9: Memory efficient v-cycle for penalized spline smoothing
1 v_cycle(α, b, g, ν)

2 if g = 1 then

3 α ←
(

T
1
1 + λ1

)−1
b

4 end
5 else
6 α ← JAC(α, b, g, ν1) // Algorithm 8

7 r ←
(

T
g
g + λg

)
α − b // Algorithm 4, 3, and 2

8 r ← I g−1
g r // Algorithm 2

9 e ← v_cycle(0, r , g − 1, ν) // Algorithm 9

10 α ← α − I gg−1e // Algorithm 2

11 α ← JAC(α, b, g, ν2) // Algorithm 8
12 end
13 end

as preconditioner for the CG method yields Algorithm 10 as memory efficient multi-
grid preconditioned conjugated gradient (MGCG) method to solve the large-scale
linear system (2.5). It is also implemented within the mgss-package as function
MGCG_smooth. As we show in chapter 6, compared to the CG- and PCG-algorithm,
the MGCG-method for the penalized spline problem (2.5) provides grid independent
convergence in the sense that the number of iterations remains constant although the
number of spline basis functions is increased. Nevertheless, note that the overall run-
time yet increases, since each iteration becomes computationally more expensive due
the larger problem dimension.

123

2400 M. Siebenborn, J. Wagner

Algorithm 10:Memory efficient MGCG method for penalized spline smoothing

1 r ←
T
G y // Algorithm 3

2 p ← z ← v_cycle(0, r ,G, ν) // Algorithm 9
3 while ‖r‖2/‖b‖2 > tolerance do

4 v ←
(

T
G
G + λG

)
p // Algorithm 4, 3, and 2

5 w ← ‖r‖22/pT v

6 α ← α + wp
7 r̃ ← r
8 r ← r − wv

9 z̃ ← z
10 z ← v_cycle(0, r ,G, ν) // Algorithm 9

11 p ← z + (rT z/r̃ T z̃)p
12 end

5 Some practical remarks

In this section we give some information about how to use the proposed algorithms
and how to extend the ideas to further problems occurring in the context of penalized
spline smoothing.

5.1 Algorithmic remarks

First, it is important to mention that penalized spline smoothing is a well-established
and widely used method in statistical modelling and that its properties are well stud-
ied. The proposed algorithms in this paper, i.e. CG_smooth, PCG_smooth, and
MGCG_smooth, do not change the general method or its modelling process but only
the way how the underlying optimization problem is solved. This numerical novelty
leads to fast and memory efficient algorithms that in the end allow to carry penalized
spline smoothing over to multiple covariates.

Using the CG_smooth or the PCG_smoothmethod, there are no practical limita-
tions to the modelling process and no numerical setups have to be made. Of course, as
in the one and two dimensional case, the user has to think about the underlying model
that has to be fitted, i.e. the number of knots, the spline degree, the penalty term, the
weight of the penalty, the desired interaction and so on. However, if these decisions
are made, they can directly be passed as input parameters. Since the function also
returns the R-squared and the Root Mean Square Error (RMSE), different models can
be directly compared.

More care on the numerical setup has to be given within the MGCG_smooth
method, since it is based on a much more sophisticated preconditioner. Compared
to CG_smooth or PCG_smooth that can deal with any introduced type of models,
solvingwith MGCG_smooth is restricted to a special kindmodels, since it only allows
for the curvature penalty and the number of inner knots has to be of the exponential
form 2G . Further, the weight of the Jacobi-method ω has to be manually set and this
choice can heavily influence the convergence rate. We recommend to start with a
smaller value, e.g. ω = 0.1 and to check whether or not the error reduces significantly

123

Amultigrid preconditioner for tensor product spline… 2401

by around a factor of five to ten in the first iterations. If this is not the case, ω can
be increased. These restrictions on the models and the numerical effort, however, are
rewarded with a much faster convergence which will become more clear in Sect. 6.

Typically, a promising strategy for faster convergence is also to combine the meth-
ods by performing a few iterations of the MGCG_smooth function (by setting K_max
or tolerance) and then switching to the PCG_smoothmethod using the result of
the MGCG-algorithm as initial guess alpha_start.

5.2 Predictions

Let α̂ denote the solution of (2.5) such that the fitted spline is given as

ŝλ :=
K∑

k=1

α̂kϕk,q .

Evaluation of the spline at the original observations xi leads to the fitted values ŷi :=
ŝλ(xi) and evaluating the spline at each observation, i.e. computing all fitted values at
once, is efficiently performed via

ŷ :=
α̂ ∈ R
n .

The matrix-vector product
α̂ again can be computed by means of Algorithm 4. The
spline coefficients, the fitted values as well as the residuals are directly returned from
all of the functions CG_smooth, PCG_smooth, and MGCG_smooth.

In practice, the interest is not only in the smoothed values but rather in predicted
values at unobserved data points x̃ j ∈ R

P , i.e. ŝλ(x̃ j), for j = 1, . . . ,m. Defining

̃ ∈ R

m×K element wise as

̃[j, k] := ϕk,q(x̃ j)

the vector of predicts is given by ỹ :=
̃α̂. Since, as before,
̃ does not fit into storage,
we define the univariate B-spline matrices evaluated at the unobserved data points as

̃p ∈ R
n×Jp ,
p[i, jp] := ϕ

p
jp,qp

(x p
i)

and conclude that

̃T =
P⊙

p=1

̃T
p .

Again usingAlgorithm4,we obtain the vector of desired predictions ỹ. The underlying
method to obtain those predicts is also implemented within the mgss-package in the
predict_smooth function.

123

2402 M. Siebenborn, J. Wagner

5.3 Smoothing parameter selection

As mentioned in Sect. 2, selecting an adequate smoothing parameter λ > 0 is an
important task in penalized spline smoothing. In practice, data-driven methods such
as cross-validation techniques are frequently used. Therefore, let again

α̂ :=
(

T
 + λ

)−1

T y

denote the analytical solution of (2.5) and let

ŷλ :=
α̂ =

(

T
 + λ

)−1

T y = Sλy

be the resulting predicts for a given λ, where

Sλ :=

(

T
 + λ

)−1

T ∈ R

n×n

is refereed to as smoother matrix or hat matrix. In cross-validation (CV) the smoothing
parameter is determined as solution of

min
λ>0

1

n

n∑

i=1

(
yi − ŷλ[i]
1 − Sλ[i, i]

)2

,

where [·] and [·, ·] denote the entries of the respective vector and matrix, respectively.
Since the calculation of the hat matrix and its diagonal elements can be numerically
complex, the diagonal elements Sλ[i, i] are frequently approximated by their average

Sλ[i, i] ≈ 1

n

n∑

j=1

Sλ[j, j] = 1

n
trace(Sλ), i = 1, . . . , n,

where trace(·) denotes the trace of a square matrix. This leads to the generalized
cross-validation (GCV) method, where the regularization parameter is determined as
the solution of

min
λ>0

1

n

n∑

i=1

(
yi − ŷλ[i]

1 − trace(Sλ)n−1

)2

. (5.1)

In order to solve the optimization problem, it is common practice to perform a grid
search. That is, a reasonable subset of parameters is specified and the parameter with
the smallest objective function value is selected.

To evaluate the objective function of (5.1) for a fixed λ we finally need to compute
ŷλ = Sλy and trace(Sλ). Even if Sλ ∈ R

n×n fits into storage it can not be computed
since it requires the computation and inversion of
T
 + λ ∈ R

K×K . Therefore,
we also need a matrix-free approach to compute, or at least estimate, the trace of

123

Amultigrid preconditioner for tensor product spline… 2403

Sλ as recently proposed by Wagner et al. (2021). They implemented a matrix-free
Hutchinson trace estimator and carried out data-driven smoothing parameter selection
via a fixed point iteration based on a mixed-model formulation of the penalized spline
smoothing method. For generalized cross validation, however, it suffices to estimate
the trace by their matrix-free Hutchinson trace estimator which is implemented within
estimae_trace function of the mgss-packages. Further ideas of stochastic trace
estimation can be found for example in Avron and Toledo (2011) or Fitzsimons et al.
(2016).

The trace of the hat matrix, in this context also referred to as degrees of freedom

dffit(λ) := trace(Sλ)

is not only required for smoothing parameter selection but also for model diagnostics
and inference such as the Akaike information criterion (AIC)

log

(
n∑

i=1

(yi − ŷi)
2

)

+ 2
dffit
n

or the corrected Akaike information criterion(AICc)

log

(
n∑

i=1

(yi − ŷi)
2

)

+ 2
dffit + 1

n − dffit − 2

as well as for the estimation of confidence and prediction bands. More information is
given by Ruppert et al. (2003).

5.4 Interactionmodels

Beneath the choice of an adequate number of knots, the spline degree, the utilized
penalty and its weight there is also the question of the adequate interaction. As already
mentioned in Sect. 2.3, increasing the number of covariates in the tensor product
penalized spline model requires a data set of adequate size to support the complexity.
Further, and much more important, modeling interactions between covariates needs
much care and should be done reasonably. Therefore, it is often useful not to model
interactions between all covariates but only between suitable subsets. Thus, the user
has to choose a suitable model somewhere between the additive approach

y =
P∑

p=1

s p(x p) + ε

where the s p are univariate smooth functions and the full interaction model

y = s(x1, . . . , x P) + ε

123

2404 M. Siebenborn, J. Wagner

where s is a smooth function with a P-dimensional input vector. That is, we choose
L suitable sets

U � ⊂ {1, . . . , P}, � = 1, . . . , L

and consider the model

y =
L∑

�=1

s�(x�) + ε

where x� ∈ R
P�

are the covariate values in U �. The introduced matrix-free methods
can then analogously be applied to compute all the spline functions s�. The complexity
of the model is then determined by max(P�) instead of P .

6 Numerical results

In this section we apply the presented algorithms to artificial data as well as to real
world data on international trades and analyze their performance.

6.1 Numerical performance on test data

First,wedemonstrate the numerical performanceof the presented algorithms in a selec-
tion of synthetic test cases. On the one hand, we consider various spatial dimensions
P = 1, . . . , 4 in order to investigate the computational complexity of the algorithms.
On the other hand, we successively apply uniform grid refinements for a maximum
grid level of G = 4, . . . , 7 in each dimension in order to inspect the scalability of the
multigrid preconditioner. The algorithmic building blocks,which are critical to compu-
tational performance, are accelerated by using the RCPP extension library, introduced
inEddelbuettel (2013) andEddelbuettel andFrançois (2011), and programmed in C++.
These are in particular the matrix-vector products with the coefficient matrix (Algo-
rithm 2, 3, 4), interpolation and restriction (Algorithm 2), and the Jacobi smoother
(Algorithm 8). Throughout this section, we consider the following test data set

{(xi , yi) : i = 1, . . . , 100,000}, P = 1, . . . , 4,

obtained by uniformly random sampling of the normalized, multivariate sigmoid func-
tion

fP : [0, 1]P → [0, 1], x �→ 1

1 − exp
(−16

(‖x‖22P−1 − 0.5
))

enriched by normally distributed noise ε ∼ N (0; 0.12), i.e.

yi := fP (xi) + εi .

123

Amultigrid preconditioner for tensor product spline… 2405

Fig. 1 Plot of the (undisturbed) sigmoid test function for P = 1 and P = 2

For P = 1 and P = 2 the related sigmoid functions are depicted in Fig. 1. We con-
sider these functions since they are irrational functions which exhibit similar behavior
for different covariate dimension P . However, since the performance of the solution
algorithms is in focus, the exact formof the generating function is ofminor importance.

In a first test case, we fix the spatial dimension to P = 2 and successively refine
the B-spline basis on G = 1, . . . , 7 grids. We then consider four different tests. In
each of them, G ∈ {4, . . . , 7} is chosen to be the maximum grid level for the v-cycle
of the multigrid preconditioner. The coarsest grid g = 1 is used for the coarse grid
solver in each case. This leads to problem dimensions of K1 = (21 + 3)2 = 25 on the
coarse grid and KG = (2G + 3)2 on the finest grid. Note that the unpreconditioned
CG method simply uses the discretization matrix AG on the G-th grid. The required
iterations as well as the computational time of the methods are shown in Fig. 2, where
a logarithmic scale is used. We observe that the number of unpreconditioned conju-
gate gradient iterations significantly increases under grid refinements, i.e. increasing
number of basis functions, which is due to the increasing condition number of the sys-
tem matrix. For both of the multigrid methods, the Jacobi and SSOR preconditioned
MGCG algorithms, the number of iterations is almost constant (i.e. 1-2 for SSOR and
4 for Jacobi). This result illustrates that the multigrid preconditioner enables a scal-
able solver for the regularized least squares problem (2.5) determining the smoothing
spline. Clearly, the computational times are increasing since we run only a single core
code and each iteration becomes computationally more expensive when increasing K .
A standard approach here is to distribute the matrix between an increasing number of
processors in a cluster computer and one obtains almost constant running times in the
sense of weak scalability. Note that this is not achievable by the plain CG solver due
to the increasing number of iterations.

The next test under consideration is the comparison of computational complexity
with respect to the spatial dimension. Table 2 shows the number of required iterations
of the utilized methods in the dimensions P = 1, . . . , 4 together with the CPU time
in seconds. The underlying hardware is one core of a Xeon W-2155 processor. One
can observe that each of the preconditioned iterations is more expensive with respect
to computational time. Yet, the MGCG is significantly faster due to the small number

123

2406 M. Siebenborn, J. Wagner

Fig. 2 Number of preconditioned and unpreconditioned conjugate gradient iterations under uniform grid
refinements in P = 2 dimensions

Table 2 Required number of
iterations of the considered
methods for various dimensions
with G = 5 grids and
computational time in seconds

CG MGCG_JAC MGCG_SSOR

P = 1 22 (1.05) 2 (0.91) 1 (< 0.01)

P = 2 73 (4.41) 4 (4.59) 2 (0.37)

P = 3 367 (103.31) 14 (79.9) –

P = 4 747 (2745.98) 19 (1927.6) –

of iterations. Note that the computational time of the SSOR multigrid preconditioned
iteration is not comparable since it does not rely on the matrix-free approach. This is
only for the comparison of MGCG iterations. Since the SSOR smoother needs access
to all matrix entries, we explicitly assemble the coefficient matrix
T
 + λ in R’s
sparse format and use it for the algorithm.

Crucial for the convergence speed of the CG method in the unpreconditioned as
well as in the preconditioned case is the condition of the respective coefficient matrix,
that is

T
G
G + λG

for the pure CG method and

CMG,G ·
(

T

G
G + λG

)

for the MGCG method. An explicit form of the iteration matrix of the multigrid
method is given in (4.1), i.e. one call of Algorithm 7 is equivalent to a matrix-vector
product with CMG,G . Note that for the Jacobi smoother and for the SSOR smoother
different preconditioning matrices CMG,G,JAC and CMG,G,SSOR arise. Figure 3 visu-
alizes the distribution of the eigenvalues of the respective coefficient matrices for the
P = 2 and G = 5 case. Additionally, Table 3 shows the condition number of the
(un)preconditioned iteration matrix for the CG algorithm. Note that we only compute
the eigenvalues in the P = 2 test case due to the computational complexity, since we
have to assemble a matrix representation of the preconditioned system matrix. That

123

Amultigrid preconditioner for tensor product spline… 2407

Fig. 3 Eigenvalues of the (un)preconditioned coefficient matrices for G = 5 grids and P = 2 dimensions

Table 3 Condition number of
the coefficient matrices for
G = 5 grids and P = 2
dimensions

CG MGCG_JAC MGCG_SSOR

Condition 1933.27 1.82 1.03

is, we have to run the v-cycle on each of the K -dimensional unity vectors to obtain a
matrix on which we then perform an eigenvalue decomposition. Here it can be seen
that the multigrid preconditioner pushes the eigenvalues towards 1, which explains
the significant lower number of required MGCG iterations. Although it seems that the
multigrid preconditioner with SSOR smoother outperforms the Jacobi smoother, it is
prohibitively expensive with respect to memory requirement. For the SSOR iteration
the entire upper triangular part of the systemmatrix is required, which is not efficiently
accessible in our matrix-free approach. In P = 3 dimensions, the MGCG with SSOR
smoother for the considered test problem requires approximately 30 GB of RAM,
which is at the limit of the utilized computer systems. By contrast, the matrix-free
methods require approximately 16 MB (for CG) and 78 MB (for MGCG_JAC) of
RAM.

6.2 Application to international trade data

To describe bilateral trade flows between countries gravity models are widely used.
The basic idea is to model the trade flow as a specific function of the economic sizes
and distance between two trading partners and can be extended to further influences
on interaction costs. For more detail on gravity models for bilateral trade we refer to
Head andMayer (2014). Even though the basic idea of gravity models is rather simple,
they can become very complex when it comes to the choice of models or estimation
methods and a variety of approaches exist (cf. Wölwer et al. 2018, for an overview).
Instead of restricting the model to a specific form as in the gravity model, we apply a
spline model in following that allows for a more flexible fit as well as for the direct
incorporation of further covariates. For the presented application the CEPII gravity
database is used which is constructed and explained in detail by Head et al. (2010).
Note that the goal of the presented application is not to compare different modeling
approaches or to analyze the importance of incorporated covariates, but rather to show
the applicability of high-dimensional interaction splinemodels to real world problems.

123

2408 M. Siebenborn, J. Wagner

The traditional gravity model models the trade flow between two countries as a
specific function of their distance as well as their respective gross domestic product
(GDP). Since the CEPII database contains trade information over several years, the
year is also used as covariate in the spline model leading to the P = 4 dimensional
interaction spline model

to,d = s(year , disto,d ,GDPo,GDPd)

where o (origin) and d (destination) denote the respective countries, t denotes their
trade flow and dist their distance. The CEPII data provides 950,892 valid data points
for this set of covariates from which we sample n = 750,000 for fitting the model and
keep the rest for validation. All variables are scaled by a min-max-normalization to
[0, 1].

To fit an adequate spline model to the data we apply the PCG_smooth function
with tolerance = 10−4. For the spline model itself we use the curvature penalty,
m = 15 inner knots and q = 3 in each direction and a smoothing parameter λ = 0.1.
This setup result in a spline model with K = 130,321 coefficients in total. The
PCG-algorithm converged within 4049 iterations and the spline model results in an
R-squared of 0.8458 and an RMSE of 0.0026 indicating for a good fit of the spline
model to the sampled data. Computing the predictions on the test data using the
predict_smooth function shows a mean absolute error (MAE) of 0.0003288 and
an RMSE of 0.00315 out of the sample which shows that the model generalizes well.
The results are also presented in Table 4.

7 Conclusions

In this paper, we presented memory efficient algorithms to solve a large-scale linear
system resulting from penalized spline smoothing with multiple covariates and scat-
tered data. The crucial feature is the matrix-free approach that circumvents building
and storing huge matrices by exploiting their underlying structure and solely relies on
forming matrix-vector products within a conjugate gradient method. This, in contrast
to the existing methods for one and two dimensional data or to methods for gridded
data, allows to handle penalized spline smoothing in several dimensions and with scat-
tered data from a storage point of view. The proposed implementations CG_smooth
and PCG_smooth from the mgss-package can be applied to variety of modeling
approaches without in depth numerical knowledge. As the numerical test cases show,
theCG-method requires an acceptable running time relative to theproblemdimensions,
which increases with the number of covariates. The focus of our presentations was on
algorithmic studies of a preconditioner based on a matrix-free, geometric multigrid
approach within the MGCG_smooth implementation. Using this method is restricted
to special types of penalized spline smoothing models but therefore enables almost
constant iteration numbers for fixed dimensions even under arbitrary grid refinements,
which provides an important building block for algorithmic scalability.

123

Amultigrid preconditioner for tensor product spline… 2409

Ta
bl
e
4

R
es
ul
ts
of

th
e
P
C
G
_
s
m
o
o
t
h
al
go
ri
th
m

fo
r
th
e
tr
ad
e
flo

w
m
od
el
s
w
ith

P
=

4
co
va
ri
at
es

N
um

be
r
of

ite
ra
tio

ns
R
2

R
M
SE

on
tr
ai
ni
ng

se
t

M
A
E
on

te
st
se
t

R
M
SE

on
te
st
se
t

4.
04

9
0.
84

58
0.
00

26
0.
00

03
28

8
0.
00

31
5

123

2410 M. Siebenborn, J. Wagner

Acknowledgements This work has been partly supported by the German Research Foundation (DFG)
within the research training group ALOP (GRK 2126). We also thank the reviewers for fruitful comments
on the initial version that clearly helped to improve readability and quality of the final version.

Funding Information Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Avron H, Toledo S (2011) Randomized algorithms for estimating the trace of an implicit symmetric positive
semi-definite matrix. J ACM 58(2):8

Bellman R (1957) Dynamic programming. Princeton University Press, Princeton
Benoit A, Plateau B, Stewart WJ (2001) Memory efficient iterative methods for stochastic automata net-

works. Technical Report 4259, INRIA
Björck A (1996) Numerical methods for least squares problems. SIAM
Brandt A (1977) Multi-level adaptive solutions to boundary-value problems. Math Comput 31(138):333–

390
Bungartz H-J, Griebel M (2004) Sparse grids. Acta Numer 13:147–269
Currie ID, Durban M, Eilers PH (2006) Generalized linear array models with applications to multidimen-

sional smoothing. J R Stat Soc Ser B (Stat Methodol) 68(2):259–280
de Boor C (1978) A practical guide to splines. Springer, Berlin
Eddelbuettel D (2013) Seamless R and C++ integration with Rcpp. Springer, New York
Eddelbuettel D, François R (2011) Rcpp: seamless R and C++ integration. J Stat Softw 40(8):1–18
Eilers PH, Currie ID, Durbán M (2006) Fast and compact smoothing on large multidimensional grids.

Comput Stat Data Anal 50(1):61–76
Eilers PH, Marx BD (1996) Flexible smoothing with B-splines and penalties. Stat Sci 11:89–121
Eubank RL (1988) Spline smoothing and nonparametric regression. Marcel Dekker Inc
Fahrmeir L, Kneib T, Lang S, Marx B (2013) Regression: models, methods and applications. Springer,

Berlin
Fitzsimons J, Osborne M, Roberts S, Fitzsimons JF (2016) Improved stochastic trace estimation using

mutually unbiased bases. arXiv:1608.00117
Green PJ, Silverman BW (1993) Nonparametric regression and generalized linear models: a roughness

penalty approach. Chapman & Hall
Hackbusch W (1978) On the multi-grid method applied to difference equations. Computing 20(4):291–306
Head K, Mayer T (2014) Gravity equations: workhorse, toolkit, and cookbook. In: Gravity equations:

workhorse, toolkit, and cookbooks, vol 4. Elsevier, pp 131–195
Head K, Mayer T, Ries J (2010) The erosion of colonial trade linkages after independence. J Int Econ

81(1):1–14
Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Natl Bur

Stand 49(6):406–436
Höllig K (2003) Finite element methods with B-splines. SIAM
O’Sullivan F (1986) A statistical perspective on ill-posed inverse problems. Stat Sci 1(4):502–527
Ruppert D, Wand MP, Carroll RJ (2003) Semiparametric regression. Cambridge University Press, Cam-

bridge
Saad Y (2003) Iterative methods for sparse linear systems, 2 ed. SIAM
Siebenborn M, Wagner J (2021) MGSS: a matrix-free multigrid preconditioner for spline smoothing. R

package version 1

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1608.00117

Amultigrid preconditioner for tensor product spline… 2411

Trottenberg U, Oosterlee CW, Schuller A (2000)Multigrid. Academic press
Wagner J, Kauermann G, Münnich R (2021) Matrix-free penalized spline smoothing with multiple covari-

ates. arXiv:2101.06034
Wahba G (1990) Spline models for observational data. SIAM
Wand M, Ormerod J (2008) On semiparametric regression with O’Sullivan penalized splines. Aust N Z J

Stat 50(2):179–198
Wölwer A-L, Breßlein M, Burgard JP (2018) Gravity models in R. Austrian J Stat 47(4):16–35
Zenger C (1991) Sparse grids. Notes on numerical fluid mechanics, p 31

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/2101.06034

	A multigrid preconditioner for tensor product spline smoothing
	Abstract
	1 Introduction
	2 Penalized spline smoothing
	2.1 Tensor product splines
	2.2 Tensor product penalized spline smoothing
	2.3 Curse of dimensionality

	3 Matrix-free conjugate gradient method
	3.1 The conjugate gradient method
	3.2 Matrix structures
	3.3 Matrix operations
	3.3.1 Kronecker products
	3.3.2 Khatri-Rao products

	3.4 Matrix-free CG-method
	3.5 The preconditioned CG-method

	4 A geometric multigrid preconditioner
	4.1 Multigrid-method
	4.2 MGCG algorithm for penalized spline smoothing
	4.2.1 Hierarchy
	4.2.2 Grid transfer
	4.2.3 Smoothing iteration
	4.2.4 Coarse grid solver
	4.2.5 MGCG-method

	5 Some practical remarks
	5.1 Algorithmic remarks
	5.2 Predictions
	5.3 Smoothing parameter selection
	5.4 Interaction models

	6 Numerical results
	6.1 Numerical performance on test data
	6.2 Application to international trade data

	7 Conclusions
	Acknowledgements
	References

