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Abstract Most often in genetic improvement studies, repeated measurements
are observed on an individual animal, and these repeated measurements are
often skewed. From the practical viewpoint, logarithm transformations of vari-
ables are usually adopted to reduce skewness, and this works satisfactorily in
many cases. In most longitudinal datasets, however, because of the high rate of
missingness, skewness often remains after transformation, the achievement of
joint normality for each component of separately transformed variables, which
are often difficult to interpret, is unrealistic. For this purpose, a more general
form of distributions for considering skewness in the model should be used. In
this paper, we used Bayesian joint modelling of longitudinal and survival data
when data set presents skewness. A skew-normal mixed-effects model for longi-
tudinal measurements and a Cox proportional hazard model for time to event
variable were considered. We performed some simulation studies to investigate
the performance of the proposed method to skewness in random effects, differ-
ent dropout rates and sample sizes. Furthermore, we illustrated the proposed
method using Nigerian indigenous chickens (NIC) dataset. The longitudinal
outcomes of NIC data set were skewed, and presented left censored dropout.
We assumed different model structures for the analysis of this data set and
considered two versions of the deviance information criteria (DIC): namely,
the conditional criteria (given the random effects) and marginal criteria (av-
eraging over the random effects) in selecting the “true” model. These criteria
were computed using the importance sampling method.

Keywords Joint mixed linear model · importance sampling · marginal
deviance · repeated measurements · time-to-event
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1 Introduction

In many longitudinal studies, such as genetic improvement programme (GIP),
subjects (e.g., chicks, piglets etc.) are followed-up repeatedly over a period of
time and response data collected, for example, an animal geneticist might be
interested in how different breeds of animal gain weight over a period of time.
These repeated measurements require follow-up which may be stopped by a
dependent terminal event (such as death and or loss to follow-up) whose prob-
ability of occurrence is non-ignorable. Modelling the repeated measures and
event-time outcomes separately as previously done in Laird and Ware (1982);
Cox (1972) has been questioned in the literature (Ibrahim et al.; 2010) as this
method is inefficient and can introduce bias to effect size estimates for two
correlated outcomes (Hickey et al.; 2016).
Joint modelling of longitudinal and survival data have received more attention
during the past two decades (Ibrahim et al.; 2010; Rizopoulos; 2012; Wulfsohn
and Tsiatis; 1997; Henderson et al.; 2000; Mchunu et al.; 2020; Li and Su;
2017; Chan and Grant; 2016; Zhang and Yuan; 2012) and recently Alsefri
et al. (2020) gave methodological reviews of the joint modelling of longitudi-
nal and time-to-event data. The joint modelling approach has been suggested
as it constructs two sub-models for the longitudinal and the event time data,
linked by a set of subject-specific random effects (Wang et al.; 2002). Although
the validity of normality assumption has been questioned in literature (Ver-
beke and Lesaffre; 1997), and its violation could lead to misleading inferences.
However, several previous studies assumed either /or both the error terms
in the models for the longitudinal response and the measurement errors in
covariates follow normal distributions due to mathematical tractability and
computational convenience.
Longitudinal outcomes such as animal body weight in GIP, CD4 counts in
the HIV research are often skewed in practice. As such, in the joint modelling
of longitudinal and time to event data, the skewness in the data should not
be ignored. Several studies had looked at these issues, for example, Li et al.
(2009) and Huang et al. (2010) proposed robust joint modelling where a stu-
dent’s t distribution in different structures of joint modelling of longitudinal
and survival data was applied. Thus alternative flexible distributions, such as
the multivariate skew-elliptical (SE) distribution, were proposed in Azzalini
and Capitanio (1999); Ma et al. (2004). Huang and Dagne (2011) addressed
the issues by jointly model the response and covariate process using a Bayesian
approach to non-linear mixed effect models with covariate measurement errors
and a skew-normal distribution.
Similarly, Baghfalaki and Ganjali (2015) discussed joint modelling of longitudi-
nal and survival data when skewness exits in the data sets and used the multi-
variate skew-normal distribution approach of Sahu et al. (2003). The authors
considered this method to be more flexible when using Bayesian approach.
However, simultaneous modelling of longitudinal and survival data with skew-
ness when the cause of death is experimentally related has not been given
much attention, especially in the animal genetic improvement programme.



Title Suppressed Due to Excessive Length 3

In this paper, we discussed the robust inference of Bayesian joint modelling
of longitudinal and survival data with skewness. We focused on the scenario
where the cause of death is experimentally related as we obtained in our mo-
tivation example. Also, a skew-normal mixed effect model and a Cox propor-
tional hazard model (as a semiparametric model) with step baseline hazard
in a frailty model structure are considered for the joint modelling. We used
Bayesian approach and JAGS (Plummer et al.; 2003) for implementation of
the models, where two versions of DIC (i.e. the marginal and conditional de-
viance information criteria) was used for model selection.
The choice of the two versions of DIC is motivated by the fact that with
models allowing non-ignorable dropout, when the presence of dropout influ-
ences inference, we must take account of the missing data mechanism. Celeux
et al. (2006) discussed different DIC definitions for missing data models, in the
context of mixtures of distributions and random-effects models. The authors
considered six versions of DICs, among which the conditional DIC (cDIC)
and marginal DIC (mDIC) were studied. The cDIC (given the random effects)
is popular among researchers given its easy computation. At the same time,
the mDIC (integrating out) requires more computational efforts as it has not
been implemented in any statistical software. Recently, efforts have been made
(Ariyo, Quintero, Muñoz, Verbeke and Lesaffre; 2019; Ariyo, Lesaffre, Verbeke
and Quintero; 2019) to compute the mDIC using dedicated R functions. How-
ever, this is not yet popular among the applied Statisticians. We employ a
general Bayesian framework for estimating parameters in an asymmetric joint
linear mixed model and survival time and compare its performance with the
corresponding symmetric model using mDIC. The proposed approach will be
investigated using simulation studies and Nigerian indigenous chickens (NIC)
data set.
The plan of the paper is as follows. In Section 2, we introduced the multivari-
ate skew-normal distribution used in this paper, described some models and
notations and joint models for skew-normal for longitudinal data with dropout
profile. Section 3 includes the Bayesian model selection; here, conditional and
marginal DIC were discussed. In Section 4, simulation studies were conducted
to assess the proposed model. At the same time, we applied the method to
NIC data set and the results presented in Section 5. The concluding remarks
are given in Section 6.

2 Methodology

2.1 Multivariate Skew-Normal Distribution

One of the commonly used multivariate skew-normal distributions, in the
Bayesian context, was introduced by Sahu et al. (2003). An n−dimensional
random vector Y follows an n-variate skew-normal (SN) distribution (Y ∼
SNn,k (µ0,H,∆) ) with location vector µ0 ∈ IRn, scale matrix H (an n × n
positive definite matrix) and n × k skewness matrix ∆, if density function is
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given by

f (y|µ0,H,∆) = 2kφn
(
y|µ0,H + ∆∆T

)
×

Φk

(
∆T

(
H +∆∆T

)−1
(y − µ0)|0,

(
Ik +∆TH−1∆

)−1
)
,

(1)

where φn(y|µ,H) and Φn(y|µ,H) are respectively the density function and
the cumulative distribution functions of the multivariate normal distribution
Nn(µ,H) obtained from y. When µ = 0 and H = In (the n × n identity
matrix), we denote these functions as φn and Φn. If we substitute ∆ = 0,
equation (1) reduces to the usual symmetric multivariate normal distribution

Nn(µ0,H). The mean and covariance matrix are given by E(Y ) = µ0 +
√

2
πδ,

Var(Y ) = H +
(
1− 2

π

)
∆2, where δ = (δ1, . . . , δn)

T
is a skewness parameter

vector (Huang and Dagne; 2011). If δ = 0, the density (1) reduces to the usual
multivariate normal distribution, whereas for positive values of δ we obtain
a positively (right) skewed distribution and for negative values we obtain a
negatively (left) skewed distribution.

2.2 Models and Notation

The linear mixed model has gained tremendous attention for modelling longi-
tudinal data. For a longitudinal model, we denote Yi to be (ni × 1) vector of
responses for the ith subject at times ti1, . . . , tini , where i = 1, 2, . . . , n. We
consider the following linear mixed model

yij = xT1iβ1 + zT1ib1i + εij , i = 1, 2, . . . n, j = 1, 2, . . . , ni, (2)

where components of εi = (εi1, . . . , εini)
T are measurements errors, β1 is a

p−dimensional vector of fixed effects parameters. b1i is a q− dimensional vec-
tor of random effects independent of εi. A standard assumption is that the
random effects b1i and the residual component εi have a normal distribution,
i.e

b1i ∼ Nq(0,G), εi ∼ Nni(0, Ψ)

where G = G(α) and Ψ i = Ψ i(γ), (i = 1, . . . , n), are dispersion matrices,
depending on parameters α and γ respectively. Although model (2) offers
great flexibility for modelling the within-subjects correlation in longitudinal
data, the model is robust for fixed effects as pointed out in Komarek and
Lesaffre (2008) but suffers from lack of robustness against departures from
distributional assumptions for random effects (Arellano-Valle et al.; 2007).
We further assume that εi ∼ SNni (0,Ψ ,∆ε) and b1i ∼ SNq (0,G,∆b). To
seek for differentiability (Arellano-Valle et al.; 2007), we assume Ψi = σ2

εiIni ,
∆εi = δεiIni .

For survival model, let T ∗
i be the true event and Ci be the censoring time

which may be informative or non-informative (see Rizopoulos; 2012, for de-
tails). As was the case in our motivating example, survival of chicken at the
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end of twenty weeks was considered an “event”. However, some chickens died
before the “event”. This is often refer to the left censoring as some chicken
do not survival to the ends of the study. The true event Ti = min(T ∗

i , Ci)
represent the estimated survival time for the ith individual.

Let δ∗i denote a censoring indicator such that;

δ∗i =

{
0 if T ∗

i = Ci Right censoring

1 if T ∗
i > Ci Left censoring .

Therefore, the observed data for the outcome consist of the pairs

{(Ti, δ∗i ) , i = 1, 2, . . . , n} .

We considered a frailty model which is linked to the longitudinal model
through some shared random effects in survival modelling. Let xi and zi be
p2 and q2 - dimensional vectors of covariates respectively. As such, the hazard
function in proposed model is given as:

h (ti|x2i, z2i,b2i) = h0(ti)exp
{
xT2iβ2 + zT2ib2i

}
,

where h0(ti) is the baseline hazard function for the reference subject with all
covariates equal to 0. β2 = (β2i, . . . , β2p2)T is a p2-dimensional vector of time
to event fixed effect parameters and we assume b2i ∼ Nq2(0,D2). Thus, the
density function of survival time for the ith individual is

hδ
∗
i (ti|x2i, z2i,b2i)× exp

{
−H0(ti)exp

{
xT2iβ2 + zT2ib2i

}}
, (3)

where H0(ti) =
∫ t
0
h0(u)du and the covariates are assumed to be time inde-

pendent. The baseline hazard appears in the likelihood (3) and so must be
estimated.

The repeated outcome yi can be partitioned into

yi,obs = {yi(tij) : tij < Ti, j = 1, 2, . . . , ni} ,

which contains all observed measurements for the ith individual before dropout
occurs at Ti and yi,mis = {yi(tij) : tij ≥ Ti, j = 1, 2, . . . , ni} which contains
the measurement of individuals that should have been taken until the end of
the study.

2.3 Joint models for skew-normal longitudinal data with dropout

The skew-normal joint modelling of longitudinal and dropout process, as an
extension of the usual normal joint modelling, leads to the following hierarchi-
cal model (see also Sahu et al.; 2003; Arellano-Valle et al.; 2007; Huang and
Dagne; 2011; Rizopoulos; 2012; Baghfalaki and Ganjali; 2015):Yi|b1i,β1, σ

2
ε , δε ∼ SNni

(
X1iβ1 +Z1ib1i −

√
2
π δε1ni , σ

2
εIni , δεIni

)
b1i ∼ SNq

(
−
√

2
π δb, Σb, ∆b

)
,

(4)
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h (ti|x2i, z2i,b2i) = h0(t)exp

{
xT2iβ2 + zT2ib2i

}
,

b2i ∼ SNq
(
−
√

2
π δb,Σb,∆b,

)
,

where some components of bi are ”shared parameter” that serves to induce a
correlation between both models through their joint dependence on bi. This
implies that both models are conditionally independent given bi may be inter-
preted as reflecting the belief that a common set of underlying characteristics
of the individuals governs both outcomes processes. The main advantages of
this approach is that both models do not have to be of the same type (see also
Rizopoulos; 2012; Fitmaurice et al.; 1995; Bogaerts et al.; 2017, for overview).
The key component behind the dropout/attrition mechanism considered in (4)
is the random effects bi since the survival and longitudinal submodels share
the same bi.
We simplified the model by consider the stochastic representation of the skew-
normal distribution for Markov Chain Monte Carlo (MCMC) approach in the
Bayesian specification (Arellano-Valle et al.; 2007; Baghfalaki and Ganjali;
2015). Therefore, (4) can be written as:{
Yi|b1i,β1, σ

2
ε ,Ui = ui ∼ Nni

(
X1iβ1 + Z1ib1i + δεui −

√
2
π δε1ni , σ

2
ε Ini

)
,

Ui ∼ Nni (0, Ini) I(ui > 0),

where ui is the observed value of Ui before dropout. Analysis of longitudinal
data is often impeded by the presence of missing data which may be due to
subject non-response, loss to follow-up or death of subject. This problem if not
handle with appropriate statistical model may lead to biased estimates and loss
of precision. The missing data can be classified as ignorable and non-ignorable.
The reader should see Rubin (1976) for formal definitions. We considered a
non-ignorable missingness mechanism in this article (see also Rubin; 1976, for
formal definitions).
In Bayesian modelling, the prior distribution for unknown parameters Θ =
(βT1 ,β

T
2 , Σb, ∆b, δε, δb, σ

2
b ,σ

2
ε) should be defined. Variance components are of-

ten modelled with improper prior in hierarchical linear mixed model either
due to lack of prior information or simply for convenience. Hobert and Casella
(1996) observed that the posterior distributions for the hierarchical linear
mixed model are rarely available in a closed form and they proposed proper
but diffuse conditionally conjugate priors to ensure painless calculation of the
Gibbs samplings. We assume that the components of Θ are mutually indepen-
dent and the prior distributions are given as

β1 ∼ Np1 (β01, Σ01) ,β2 ∼ Np2 (β02, Σ02) ,

Σb1q1 (η01, ψ01) , Σb2 ∼ IWq2 (η02, ψ02) ,

σ2
ε ∼ IG (α01, τ01) , σ2

b ∼ IG (α02, τ02) ,

δb ∼ Nq (µb, γb) I {δb > 0} , δε ∼ N
(
µδε, σ

2
δε

)
,

(5)

and these representations are important because they allow easy implementa-
tion in Bayesian software like BUGS. The full conditional distributions re-
quired to implement the Gibbs sampler are straightforward to derive and
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sample from according to the specified equations (5). In case of no previous
information, values for the hyperparameters can be chosen so that the prior
distributions are vague. The integral for all this prior are equal to 1, making
them proper prior and variance at talking to be large to express low previous
information.

3 Bayesian model selection

There exists a wide variety of model selection/assessment measures within the
Bayesian toolbox. To select the “best” model among the competing models, we
used two versions of deviance information criteria (DIC). Spiegelhalter et al.
(2002) introduced and developed the concept of DIC which begin with the def-
inition of Bayesian measures of model complexity. The criterion is based on the
deviance, defined as D(φ) = −2 log p(y|φ) + 2 log h(y), where φ corresponds
to the parameters in focus, p(φ|y) is the likelihood function and h(y) is an
estimator of φ that depends on data only. The effective number of parameters
pD is given as

pD = −2Eφ[log p(y|φ)|y] + 2 log p(y|φ̂),

φ̂ is an estimate of φ which is usually taken as the posterior mean or mode.
The DIC may be viewed as a trade off between model adequacy and com-
plexity. In models with latent variables, as explored by Celeux et al. (2006),
there are several versions of DIC, specifically: the conditional DIC (cDIC) that
incorporates the latent variables in the focus of the analysis and the marginal
DIC (mDIC) which integrates them out. For example, suppose we add an ad-
ditional vector of latent variables µ with density p(µ|φ) to the model p(y|φ).
Then we have

p(y|φ) =

∫
p(y|φ,µ)p(µ|φ)dµ =

∫
p(y,µ|φ)dµ, (6)

where p(y|φ,µ) is the conditional likelihood and p(y|φ) is the integrated
likelihood. The integrated likelihood in equation (6) yields marginalised DIC
(mDIC). It naturally follows that the definition of mDIC from integrated like-
lihood is given as

mDIC = −4Eφ[log p(y|φ)|y] + 2 log p(y|φ̃), (7)

where the estimate φ̂ of φ is set of posterior mode φ̃. As noted by Chan
and Grant (2016), it is clear from equation (7) that the mDIC depends on
the prior only through its effect on the posterior distribution. Latent vari-
ables structure are often chosen so that the conditional likelihood p(y|φ,µ)
is available in closed forms. Therefore, the alternative definition of DIC via
conditional likelihood (cDIC) is given as

cDIC = −4Eφ,µ[log p(y|φ,µ)|y] + 2 log p(y|φ̃, µ̃),
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where (φ̃, µ̃) is the joint maximum a posterior estimate of the pair (µ,φ)
given the data y (see Celeux et al.; 2006). Computational difficulties are the
major challenge of mDIC since the integral in equation (7) is generally in-
tractable, and numerical analysis appears to be the solution. Although its com-
putational difficulties notwithstanding, mDIC has been found to outperform
its conditional counterpart in most specific conditions (Chan and Grant; 2016;
Quintero and Lesaffre; 2017; Ariyo, Quintero, Muñoz, Verbeke and Lesaffre;
2019; Ariyo, Lesaffre, Verbeke and Quintero; 2019). In this work, we compute
the mDIC using importance sampling to integrate out the latent variable µ.
The details are available as supplementary materials to this article.

4 Simulation Study

We conducted a simulation study to illustrate the performance of the proposed
method. This simulation study aims to investigate the impact on parameter
inference when the assumption of normality is inappropriate, and when the
dropout is related to the experiment. Also, we investigated whether the model
selection measures, viz., the conditional/marginal DIC determines the best-
fitting model to the simulated data. In this study, we generated 1000 samples
data from the following joint model

yij = β0+β1kij+β2xi+b1i+b2ikij+εij , i = 1, 2, . . . , 1000, j = 1, 2, . . . , 21. (8)

We set the values of the parameters as: kij = j, xi ∼ Ber(0.5), β0 = 5,

β1 = −2, β2 = −1, εij ∼
(
−
√

2
π δε, σ

2
ε , δε

)
where σε = 2 and δε = 3. Also,

we used a Cox proportional hazard model in a frailty structure with a Weibull
baseline hazard (Vaida and Xu; 2000),

h(t) = h0(t)exp {β01 + β11xi + ρ1b1i + ρ2b2i} . (9)

The observed dropouts were simulated using a time-independent hazard dropout
model in equation (9). In this simulation, we considered three rates of random
dropout which were generated by using different values for β01 = 3,−1 and−2.
The values of β01 were chosen to produce a proportion of missing equal to ap-
proximately 10%, 30% and 50%. The selection of these values is similar to
that of Baghfalaki and Ganjali (2015); Todem et al. (2010) as motivated by
Molenberghs et al. (1997); Diggle and Kenward (1994). The non-ignorable
mechanism was taken to be kij > Ti when ith individual dropout of the study.
Also, bi ∼ N2(0,G) where G to be 2 × 2 matrix with diagonal equal to 1
and off diagonal values were set to be 0.5. To check the effect of sample size,
we chose n = 100 to represent moderate large sample size and n = 500, as
large sample size. In the simulation study, 1000 Monte Carlo data sets were
simulated from equation (8) and (9) to fit the data set using rjags and the
following vague prior specifications

β0 ∼ N(0, 100), β1 ∼ N(0, 100), β2 ∼ N(0, 100), σ2
ε ∼ IG(0.01, 0.02),
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σ2
b ∼ IG(0.01, 0.01), δb ∼ N(0, 100)IG {δb > 0} ,

G ∼ IW (100I2, 2), pk ∼ N(0, 100), k = 1, 2.

All model parameters in the simulation studies were estimated based on three
chains of 70,000 iterations after discarding the first 30,000 iterations. The thin-
ning factor was set at 7 to avoid correlation problems in the generated chains.
When Brooks-Gelman-Rubin (BGR) statistic (Brooks and Gelman; 1998; Gel-
man et al.; 1992) was larger than 1.1, further sampling was performed until
BGR < 1.1. We analysed the simulated data under different model assump-
tion that we represented with alphabet A, B and C. The model assumption
for estimated models are given below:

A : bi ∼ Nq(0, G) and εi ∼ Nni(0, Ψ),

B : bi ∼ SNq
(
−
√

2
π δb, σb, δb

)
and εij ∼ Nni(0, Ψ) and

C : bi ∼ SNq
(
−
√

2
π δb, σb, δb

)
and εij ∼ SNni

(
−
√

2
π δε, σ

2
ε , δε

) . (10)

We compare the performance of the proposed model with other models using
results of relative bias (Rel.Bias) and mean square error (MSE). The Rel.Bias
and MSE of the parameter φ for the considered models were calculated as
defined as

Rel.Bias(φ) =
1

N

N∑
i=1

(
φ̂i
φ
− 1

)
, MSE(φ) =

1

N

N∑
i=1

(φ̂i − φ)2,

where φ̂i is the estimate of φ for the ith samples and N = 1000. To select the
appropriate model among the competing models, we selected the model with
the lowest value of marginal DIC (mDIC) and the conditional DIC (cDIC). We
aimed to see the performance of these two versions of DIC in joint modelling
of longitudinal and survival model.

4.1 Simulation results

Table 2 shows the results of this simulation study when the measurement and
dropout data are generated from a shared normal random-effects model and es-
timated using three different model assumptions, ”A”, ”B”, and ”C” described
in Section 4. The higher dropout rates increase the bias and the MSEs for all
the estimated models. However, we noticed that the differences fluctuate when
the dropout parameter is closed to the true value. Besides, for a moderately
large value of the dropout parameter compared with the true value, the normal
effects give a larger percentage of bias and MSEs when the dropout rate is 50%.

Also, Table 3 shows the simulation results when the data is generated from
a shared skew-normal random-effects model (Model ”B”) and estimated using
the different model assumptions. As expected, higher dropout rates increase
the bias as well as the MSEs for the considered models. The results also show
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that some joint modelling parameters under normal assumption are estimated
with bias. These parameters include the variance of the longitudinal model’s
error term, the variance of random effects, and the coefficients of the survival
model’s random effects. When the normality assumption of the random effects
is violated, the higher percentage bias is observed regardless of the dropout
parameter’s true value. These results suggest that violation of the random ef-
fects distribution assumption yields biased estimates even at the true value of
dropout parameter.

Likewise, Table 4 shows the simulation results when data is generated
from shared skew-normal for random effects and measurement errors (Model
C). As expected, the increase in dropout rates increases bias and MESs as
well. Overall, based on the results in Tables 1-3, we can conclude that skew-
normal distributions for the random effects lead to better inference and failure
to choose the appropriate model introduces bias. Furthermore, the results
(not shown here) showed that increasing the skew-normal scenario’s sample
size is an effective measure in decreasing standard errors, relative bias, and
MSE of the parameters. As the sample size increases, the relative bias and
MSE decrease when the data is estimated with Model ”B” regardless of the
measurement and dropout data are generated from a shared normal random-
effects model.

In joint modelling of longitudinal and survival data, attention should be
paid to the response’s distribution. As such, this approach is useful when longi-
tudinal data includes outliers with the assumption of skew-normal/independent
distribution for responses. Therefore, the skew-normal assumption for random
effects is essential, while such an assumption for random errors may be relaxed.
These simulation studies strongly advocate for the sensitivity analysis in joint
modelling as routine modelling is not appropriate in the dropout context.
Another aim of this paper is to evaluate the performance of the marginal and
conditional DIC to select the ”true” model, the simulation studies were repli-
cated for the three distribution scenarios (”A”, ”B” and ”C”), and the results
are presented in Table 1. The discrepancy was observed among the models
selected by cDIC, as it selected the most complicated model due to the influ-
ence of the latent variables. This agrees with previous studies that cDIC tends
to select complex model (Chan and Grant; 2016; Ariyo, Quintero, Muñoz,
Verbeke and Lesaffre; 2019; Ariyo, Lesaffre, Verbeke and Quintero; 2019). On
the other hand, mDIC seems to perform better, based on the results obtained
above. As such, the blatant use of DIC for a model with latent variables should
be discouraged.
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Table 1: Model ranking using estimated DICs for different model varying as-
sumptions

Model Sample mDIC Rank cDIC Rank
A 200 932.4 6 -164.1 6

1000 947.7 5 -162.0 5
B 200 907.1 2 -170.1 4

1000 902.4 1 -172.4 3
C 200 912.1 4 -194.2 1

1000 909.1 3 -192.1 2

5 Application to Nigerian indigenous chickens(NIC) data set

The proposed Bayesian joint model was illustrated using a longitudinal data
study of 313 chickens progenies produced from mating involving Nigerian in-
digenous chickens (normal-feathered, frizzle-feathered and naked neck) and an
exotic broiler parent stock (Anak Titan). The details for the rationale and
experimental design were reported by Adeleke et al. (2011). Genotypes were
generated in a straight and reciprocal cross to evaluate the growth and sur-
vival performances of progenies produced from the same parent stock (pure
breed) and their counterparts produced from different parents (cross breed).
The chicken’s body weight for each genotype group was measured every week
from hatching up to twenty weeks. As the experiment progressed, some chicken
from each group died and the mortality rate increased with time that is, there
were a substantive number of dropouts in the data set after week 13. Figure 1
presents survival time comparing between the two groups and this figure sug-
gested that pure breed had higher survival probability that the cross breed.
The subject-specific profile of randomly selected individual chickens presented
in Figure 2. This figure shows a sharply increasing degree of missing data due
to mortality.

Non-normal characteristics such as skewness often appear in growth data
and this gives bias estimates if neglected. Such characteristics are more prob-
lematic for mixed-effects models than for fixed-effects models, because both the
within-subjects random effects and random error may jointly contribute to the
skewness of the response in a longitudinal study (see Huang and Dagne; 2011).
In the alternative, variables transformations are often suggested in practice
but they often come with problems as pointed out by Azzalini and Capitanio
(1999); the transformed variables are more difficult to interpret, especially
when each variable is transformed by using a different function; the transfor-
mations are usually on each component separately, and achievement of joint
normality is unrealistic. For this purpose, we used an alternative parametric
class of multivariate distribution.

Figure 3 shows histogram and Q-Q plot of the response variable at ran-
domly selected time points which shows that there is right skewness. In this
model, yij is the jth body weight measured on ith chicken, i = 1, 2, . . . , 313
and j = 0, 2, . . . , 20. The linear mixed effect model with random intercept is
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given as

yij = β0 + β1ageij + β2breedi + b0i + b1iageij + εij , (11)

where breedi is a chickens’ breed indicator (0= pure, 1= cross). The Cox
proportional hazard model, was used for the time to events process and this
given as

h(agei) = h0(agei) exp {β11 + β12breedi + ρ1b1i + ρ2b2i} . (12)

The vector bi = (b1i, b2i)
T is shared between model (11) and (12). We con-

sidered joint models (11)- (12) under three models assumptions, described in
(10), differing in the error and random effects distribution. Prior distributions
for the parameters involved were the same for the three models for comparison
purposes. Fixed effects were given N(0, 1000) independent prior distributions.
For the scale parameter of the error distribution, σ2

ε ∼ IG(0.01, 0.01), so that
distribution mean is equal to 1. The hyperparameters of the prior distribution
of the scale matrix of the random effect distribution are taken to be τb and
Tb = Ib, for the skewness parameter, we assigned independently truncated
normal distributions with mean 0 and variance 100. For the piecewise base-
line hazard function, we considered Γ (1, 1) for each of the piecewise baseline
function (hi, i = 1, 2). Hyperparameters are chosen such that the priors of the
parameters tend to be weakly informative (Lesaffre and Lawson; 2012).

In Bayesian MCMC implementation, we use 70,000 iterations after dis-
carding the first 30,000 iterations to make an inference. To avoid correlation
problems in the generated chains the lag was set to 5. After checking Gelman-
Rubin diagnosis test for convergence, the resulting parameter estimates are
given in Table 5.

Estimates of βs across each model with a different assumption for random
effects and random error are significant. However, the estimates are larger when
the skew-normal distribution is assumed, which means the wrong assumption
leads to bias. In the survival model, ρ1 and ρ2 are significant, which shows
that the two models are dependent, also the skewness parameters are signifi-
cant. This implies that ignoring this parameter for the normal model leads to
overestimating the variance of the error in longitudinal data (see Baghfalaki
and Ganjali; 2015).

Further observed in the simulation studies, there are discrepancies in the
different types of DIC in selection criteria. While mDIC favours model ’B’,
its conditional counterpart chose ’C’ as the appropriate model. Model ’A’
such that purely Gaussian was not selected by any of the criteria. This result
is slightly different from the one obtained by Baghfalaki and Ganjali (2015)
which using cDIC with other criteria selected the model that is purely skewed.
This difference may be a consequence of over-parametrization of the model ’C’
as DIC favours over-fitted models (see also Meng; 2009; Chan; 2016; Quintero
and Lesaffre; 2017)
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6 Discussion

There are several research questions in animal improvement programme that
are best addressed within the framework of a joint model. As such, this paper
discusses Bayesian implementation of a robust alternative to joint modelling
of longitudinal and survival data with skewness. Our focus on the scenario
where the dropout (i.e. death of the animal ) is related to the experiment. The
main focus of the paper is on the right censoring. However, the extension of
the method to other forms of complex longitudinal data involving double-, or
interval-censoring following Sinha et al. (1999) and Yu (2010) is straightfor-
ward. We apply our methodology to a longitudinal data of Nigeria indigenous
chicken data to illustrate how the procedure can be used to evaluate model
assumptions, dropout in response and obtain robust parameter estimates. Be-
sides, we illustrate the proposed method using a set simulation studies, and
the results show a gain in efficiency and accuracy for parameter estimates as
well as the superior performance of the marginal DIC to pick the best-fitting
model, where the typical assumption of normality is unrealistic.
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Fig. 2: The body weight for randomly selected chicken for both pure and cross
breeds colour red indicate those who remain till the end of the study and
colour black for dropout.
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Fig. 3: Histogram and q-q plots of chickens’ body weight at randomly selected
time points.
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Alsefri, M., Sudell, M., Garćıa-Fiñana, M. and Kolamunnage-Dona, R. (2020).
Bayesian joint modelling of longitudinal and time to event data: a method-
ological review, BMC Medical Research Methodology 20: 1–17.

Arellano-Valle, R., Bolfarine, H. and Lacho, V. (2007). Bayesian inference for
skew-normal linear mixed models, Journal of Applied Statistics 34(4): 663–
682.

Ariyo, O., Lesaffre, E., Verbeke, G. and Quintero, A. (2019). Model selection
for Bayesian linear mixed models with longitudinal data: Sensitivity to the
choice of priors, Communications in Statistics - Simulation and Computa-
tion 0(0): 1–25.
URL: https://doi.org/10.1080/03610918.2019.1676439
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