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Abstract Large-scale sparse precision matrix estimation has attracted wide interest from the statistics
community. The convex partial correlation selection method (CONCORD) developed by Khare et al.
(2015) has recently been credited with some theoretical properties for estimating sparse precision ma-
trices. The CONCORD obtains its solution by a coordinate descent algorithm (CONCORD-CD) based
on the convexity of the objective function. However, since a coordinate-wise update in CONCORD-
CD is inherently serial, a scale-up is nontrivial. In this paper, we propose a novel parallelization of
CONCORD-CD, namely, CONCORD-PCD. CONCORD-PCD partitions the off-diagonal elements into
several groups and updates each group simultaneously without harming the computational convergence
of CONCORD-CD. We guarantee this by employing the notion of edge coloring in graph theory. Specifi-
cally, we establish a nontrivial correspondence between scheduling the updates of the off-diagonal elements
in CONCORD-CD and coloring the edges of a complete graph. It turns out that CONCORD-PCD simul-
tanoeusly updates off-diagonal elements in which the associated edges are colorable with the same color.
As a result, the number of steps required for updating off-diagonal elements reduces from p(p− 1)/2 to
p− 1 (for even p) or p (for odd p), where p denotes the number of variables. We prove that the number
of such steps is irreducible In addition, CONCORD-PCD is tailored to single-instruction multiple-data
(SIMD) parallelism. A numerical study shows that the SIMD-parallelized PCD algorithm implemented
in graphics processing units (GPUs) boosts the CONCORD-CD algorithm multiple times. The method
is available in the R package pcdconcord.

Keywords CONCORD · edge coloring · parallel coordinate descent · graphical model · GPU-parallel
computation

1 Introduction

The estimation of a precision matrix, the inverse of a covariance matrix, is essential for many down-
stream data analyses and has wide application in social science, economics, and physics, among oth-
ers. Directly estimating the true precision matrix under some sparsity conditions is a popular choice
where the number of variables (p) is relatively large compared to the sample size (n). Examples include
likelihood-based (Yuan and Lin, 2007; Friedman et al., 2008; Witten et al., 2011; Mazumder and Hastie,
2012), regression-based (Meinshausen and Bühlmann, 2006; Peng et al., 2009; Sun and Zhang, 2013;
Khare et al., 2015) and constrained ℓ1-minimization approaches (Cai et al., 2011, 2016; Pang et al.,
2014). The CONvex partial CORrelation selection methoD (CONCORD) proposed by Khare et al. (2015)
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is a variant of a regression approach called SPACE (Peng et al., 2009). It has good theoretical proper-
ties: the objective function is convex and the estimator is statistically consistent (provided that the true
counterpart is sparse) while satisfying the symmetry requirement.

Scalability of CONCORD and any other precision matrix estimation methods is a key challenge for
application. Roughly speaking, they require at least O(np2) or O(p3) of float-point operations (“flops”).
As p increases, the computation time increases dramatically. For example, a coordinate descent algorithm
for the CONCORD (CONCORD-CD) proposed in Khare et al. (2015) requires 3440.95 (sec) for n = 2000
and p = 5000 in our numerical study. Detailed settings are introduced in Section 5. Applications to high-
dimensional data, such as gene regulatory analysis and portfolio optimization, face this computational
challenge.

This study aims to fill this scalability gap by proposing a novel parallelization of the CONCORD-CD
algorithm, namely, CONCORD-PCD algorithm. A high-level motivation of the algorithm is as follows.
Recall that the CONCORD-CD runs consecutive updates, because the cyclic coordinate descent algorithm
minimizes a target objective function with respect to one coordinate direction at each update while the
other coordinates are fixed. Thus, each update requires the result of the previous update, which is
essential to guarantee convergence. As a result, the CD algorithm for CONCORD (i.e., CONCORD-CD)
consumes p(p+1)/2 serial updates per iteration to update the entire precision matrix. We observe that a
careful reordering of the elements to be updated allows some consecutive updates to run simultaneously
even as convergence guarantee is preserved. This is because every elements corresponding to the carefully
chosen set of consecutive updates are independent in a sense that an update for each element does not
require the results of the updates for the other elements in the given set.

We systematize such observation by the lens of the edge coloring, a well-known concept in graph
theory. Edge coloring is an assignment of colors to the edges of a graph in a way that any pair of
edges sharing at least one vertices has different colors. Specifically, we build a conceptual bridge between
updating an element of the off-diagonal elements in CONCORD-CD and coloring the associate edges of
a complete graph. Then, we prove that a set of the off-digonal elements can be updated simultaneously
in parallel if the associated edges are colorable with the same color. This theorem enables us to employ
the so-called circle method, a scheduling principle to color a complete graph with the minimal number
of colors (i.e., parallel steps). Consequently, the consecutive steps required to update all the off-diagonal
elements reduce to p − 1 (p) when p is even (odd), where each step runs a simultaneous update of p/2
((p− 1)/2) elements. After then, the entire diagonal elements can be updated by one additional step.

We also provide the details to implement the CONCORD-PCD algorithm tailed for graphics process-
ing unit (GPU) devices, which is also available in R Package pcdconcord at http://sites.google.com/view/seunghwan-lee.
GPU devices receive growing attention in statistical computing since GPU has many light-weight cores
that can enormously reduce computation time when the given operations are adequate for single-
instruction multiple-data (SIMD) parallelism. SIMD parallelism refers to a processing method where
multiple processing units perform the same operation on multiple data points. A typical example of
SIMD is summing two vectors where the sum of each element is conducted by one sub-processing unit.
We note that the CONCORD-PCD algorithm is well-suited for SIMD parallelism. Our numerical re-
sults show that the GPU-parallelized CONCORD-PCD algorithm boosts the original CONCORD-CD
algorithm implemented in the CPU multiple times.

Parallelization of coordinate descent algorithms have been considered in the literature. Richtárik and Takáč
(2016) and Bradley et al. (2011) proposed parallelized coordinate descent algorithms for regularized con-
vex loss functions. In particular, Richtárik and Takáč (2016) randomly partitioned the coordinates and
distributed the partitioned subprograms. Bradley et al. (2011) updated the iterative solution by the
direction of the average of increments on each axis. It is worth noting that both studies required an
appropriate learning rate (a constant multiplied by the descent direction) to guarantee convergence to
the optima. In practice, the optimal learning rate is unknown and is set sufficiently small, which results in
a large number of iterations for convergence. In contrast, our algorithm does not involve selection of the
learning rate to guarantee convergence. The literature of sparse precision matrix estimation has consid-
ered the parallelization of the likelihood-based and constrained ℓ1-minimization approaches (Hsieh et al.,
2013; Hsieh, 2014; Wang et al., 2013). To the best of our knowledge, it has devoted much less attention
to the regression-based approach, including CONCORD.

The remainder of this paper is organized as follows. In Section 2, we briefly review the CONCORD-
CD algorithm as well as key concepts in graph theory, focusing on the edge coloring. In Section 3, we
provide the details of the CONCORD-PCD algorithm. In Section 4, we prove the convergence of the
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CONCORD-PCD algorithm by leveraging edge coloring. In Section 5, we demonstrate the computational
gain of the CONCORD-PCD algorithm with extensive numerical studies. Finally, we conclude the paper
in Section 6.

2 Preliminaries

2.1 CONCORD: the objective function and coordinate descent algorithm

CONCORD (Khare et al., 2015) is a regression-based pseudo-likelihood method for sparse precision
matrix estimation. The CONCORD estimator is given by a minimizer of the following convex objective
function:

L(Ω;λ) = −

p
∑

i=1

n logωii +
1

2

p
∑

i=1

n
∑

k=1

(

ωiiXki +
∑

j 6=i

ωijXkj

)2

+ λ
∑

i<j

|ωij |, (1)

where Ω = (wij)1≤i,j≤p is a precision matrix term, X = (Xki)1≤k≤n,1≤i≤p is the given data matrix
(assumed to be centered columnwise), and λ > 0. The consistency of the solution was proved when the
true counterpart is sparse.

The CONCORD-CD algorithm proposed in the paper cyclically minimizes (1) with respect to each
element. We briefly review the algorithm for completeness. With a slight abuse of notation, let (ω̂ij) be
the current update of the algorithm. First, the p diagonal elements are updated by

ω̂new
ii ←

−
∑

j 6=i ω̂ijTij +
√

(
∑

j 6=i ω̂ijTij

)2
+ 4nTii

2Tii

. (2)

Second, the p(p− 1)/2 off-diagonal elements are updated by

ω̂new
ij ←

Softλ(−
∑

j′ 6=j ω̂ij′Tjj′ −
∑

i′ 6=i ω̂i′jTii′)

Tii + Tjj

, (3)

where Tij is (i, j)th element of XTX, Softτ (x) = sign(x)(|x| − τ)+, and (x)+ = max(0, x).
Note that each element is updated consecutively; that is, once an element is updated, it is used as

input in the right-hand sides of (2) and (3). Thus, the CONCORD-CD algorithm appears to be inherently
serial. In Section 3, we propose partitioning of the updating equations for the off-diagonal updates (3)
such that each partitioned group of updating equations can run simultaneously in parallel. In Section 4,
we prove that the convergence guarantee is preserved. Our claim will leverage the edge coloring described
below.

2.2 Undirected graph and edge coloring

We briefly review key concepts of the edge coloring in graph theory. See Nakano et al. (1995) and
Formanowicz and Tanaś (2012) for comprehensive reviews.

A (simple undirected) graph G is defined by an ordered pair of sets of nodes and edges, namely,
G = G(V,E). V is a set of nodes (also called vertices), typically representing variables, say, V = {1, . . . , p}.
E is a set of edges that are unordered pairs of nodes, E ⊆ {{i, j} | (i, j) ∈ V ×V, i 6= j}. For simplification,
we denote an edge by ij ∈ E with a slight abuse of notation. We say that the pair i, j ∈ V is connected
if ij ∈ E. One example of a graph is a complete graph with p vertices, say, Kp, in which every pair of
nodes is connected. In other words, there are p(p− 1)/2 of edges in Kp.

Edge coloring is defined as an assignment of colors to the edges of a graph such that any pair of
adjacent edges (edges sharing at least one vertices) is colored with different colors. Coloring all edges
with mutually distinct colors, say, 1, . . . ,K, whereK is a number of edges in G(V,E), is a typical example
of edge coloring. The central interest is to minimize the number of colors, K. The following theorem,
a special case of Baranyai’s Theorem, mathematically establishes optimal edge coloring for complete
graphs.

Theorem 1 (Baranyai’s Theorem) Suppose that Kp is an undirected complete graph with p vertices.
the minimum number of colors that can edge-color Kp is p− 1 (if p is even) or p (if p is odd).
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For example, Table 1 compares two edge-colorings for K6; the left graph represents a trivial edge coloring
with mutually distinct colors, while the right graph is an example of Theorem 1 with a minimal number
of colors.

Note that our usage of graph is unrelated to Gaussian graphical models, where the presence of an
edge implies nonzero partial correlation in a true precision matrix.

Coloring scheme with mutually distinct colors with minimal number of colors

Graph with coloring (e.g. Kp

with p = 6)

# of colors p(p − 1)/2 = 15 p − 1 = 5

# of edge(s) for each color 1 p/2 = 3

Collections of edges of the
same colors

{12}, {13}, {14}, {15}, {16},
{23}, {24}, {25}, {26}, {34},
{35}, {36}, {45}, {46}, {56}

{16, 25, 34}, {15, 23, 46},
{14, 26, 35}, {13, 24, 56}, {12, 36, 45}

Table 1 An intuitive explanation of edge coloring.

3 Parallel Coordinate Descent algorithm for CONCORD (CONCORD-PCD)

In this Section, we construct the proposed algorithm and explain implementation details. We begin with
a motivational example. Suppose p = 6, and let Ω̂ = (ω̂ij) be the current iterate of the CONCORD-CD
algorithm. From (3), the elements used to calculate ω̂new

16 , ω̂new
25 , and ω̂new

34 can be displayed as below:

ω̂new
16 ←

















ω̂11 ω̂12 ω̂13 ω̂14 ω̂15

ω̂12 × ω̂26

ω̂13 × ω̂36

ω̂14 × ω̂46

ω̂15 × ω̂56

ω̂26 ω̂36 ω̂46 ω̂56 ω̂66

















ω̂new
25 ←

















ω̂12 ω̂15 ×
ω̂12 ω̂22 ω̂23 ω̂24 ω̂26

ω̂23 × ω̂35

ω̂24 × ω̂45

ω̂15 ω̂35 ω̂45 ω̂55 ω̂56

× ω̂26 ω̂56

















ω̂new
34 ←

















ω̂13 ω̂14 ×
ω̂23 ω̂24 ×

ω̂13 ω̂23 ω̂33 ω̂35 ω̂36

ω̂14 ω̂24 ω̂44 ω̂45 ω̂46

× ω̂35 ω̂45

× ω̂36 ω̂46

















We note that the updates of the three elements considered do not use each other; otherwise, they
would have appeared at the locations indicated as “×”. To understand the implication, suppose that ω16,
ω25, and ω34 are scheduled to be consecutively updated in the CONCORD-CD algorithm. The algorithm
runs the three updates serially with a single processing unit. However, by the independency observed
above, the actual computation of the three updates can run simultaneously on multiple processing units
sharing memory storing {ω̂ij}\{ω̂16, ω̂25, ω̂34}. Thus, under a parallel computing environment, the three
serial steps of updates can be replaced with one parallel step. We would like to mention that the associated
edges 16, 25, and 34 are colored with the same color in the right part of Table 1. In fact, we can show that
any collection of ω̂ij , with the associated edges assigned the same color, can be updated simultaneously
if they are consecutively updated in the CONCORD-CD algorithm. In this example, p(p− 1)/2 = 15 of
serial steps of updates can be replaced with p− 1 = 5 steps with the aid of multiple processing units.

The following subsections generalize the motivation. In Section 3.1, we propose an analogy between
the edge coloring of Kp and the scheduling of off-diagonal updates in the CONCORD-CD algorithm.
In Section 3.2, we employ the circle method, a particular scheme for edge-coloring Kp, to explain the
proposed parallelization of the CONCORD-CD algorithm. We hereafter refer to the proposed algorithm
as CONCORD-PCD. In Section 3.3, we describe the complete algorithm and provide the implementation
details. The theoretical guarantees are deferred to Section 4.
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3.1 Analogy between edge coloring and update ordering

We now assosiate vertex r of the complete graph κp with the r-th variable and then edge ij with ωij of
the given data. We propose the following analogy:

(A) Associate the edge-coloring of edge ij by color k
with the update of ω̂ij as in (3) at the k-th step.

For example, coloring all edges with colors 1 through p(p− 1)/2 is a trivial edge-coloring of Kp. By (A),
this coloring scheme is associated with the original CONCORD-CD algorithm: all the coordinate descent
updates of the off-diagonal elements run serially. On the other hand, coloring multiple edges ij with
the same k-th color means that the associated ωij ’s are simultaneously updated given the same current
iterate. In Section 4, we will show the well-definedness of (A), i.e., any set of edges colorable with the
same color can be updated simultaneously.

3.2 The circle method of edge-coloring Kp

The circle method is used to assign colors to the edges of Kp with minimal number of colors. See
Dinitz et al. (2006) for a comprehensive review. By (A), application of the circle method implies that
p/2 elements can be updated simultaneously, and (p − 1) stpes (i.e., colors) are required to update
all off-diagonal elements if p is even. Where p is odd, (p − 1)/2 off-diagonal elements can be updated
simultaneously with p steps.

Here, we provide a sketch of the circle method. Its implementation details in Algorithm 1. We define
a variable peven as peven = p if p is even and peven = p+ 1 if p is odd to handle the differences between
the two situations. The circle method of CONCORD-PCD consists of following steps:

(i) Clockwisely rotate the round-robin table with the (1, 1) element is fixed, which results in peven − 1
distinct tables:

1 2 3 · · · peven/2 →
1 peven 2 · · · peven/2− 1

→ · · · →
1 3 4 · · · peven/2 + 1

peven peven − 1 peven − 2 · · · peven/2 + 1 peven − 1 peven − 2 peven − 3 · · · peven/2 2 peven peven − 1 · · · peven/2 + 2

(ii) Define target sets: We call a pair of two indices in the same column as a matching pair. We de-
fine the k-th target set, Ik, as the collection of all matching pairs in the k-th table in (i), k =
1, . . . , peven−1. For example, the k-th target set in the first table in (i) is Ik = {{1, peven}, {2, peven−
1}, . . . , {peven/2, peven/2 + 1}}.

(iii) Discard a pair containing the (p+ 1) index in Ik, k = 1, . . . , peven − 1 if p is odd.
(iv) Color Ik (the edges associated with Ik) by the k-th color, k = 1, . . . , peven−1. In other words, update

the off-diagonal elements associated to Ik simultaneously at the k-th parallel step.

Consequently, we update the off-diagonal elements of Ω̂ in peven − 1 steps. Note that the pair in
(iii) is implicitly discarded in the implemented circle method, because we can skip the pair containing
the (p + 1)-th index when updating the off-diagonal elements. This circle method applies regardless of
whether p is even or odd since the numbers of pairs and iterations are (p/2, p− 1) where p is even and
((p + 1)/2 − 1, (p + 1) − 1) = ((p − 1)/2, p) where p is odd, in which case a pair is discarded and the
number of pairs to be simultaneously updated is computed by peven/2 (i.e., peven/2− 1).

3.3 A complete algorithm and implementation details

A complete CONCORD-PCD algorithm is described in Algorithm 1. The inner loop of the complete
CONCORD-PCD algorithm consists of two parallel update procedures for off-diagonal elements and
diagonal elements. As described in the previous section, the parallel update of off-diagonal elements
involves peven − 1 steps of updating peven/2 elements in parallel. In addition, the parallel update of
diagonal elements involves one step since all p diagonal elements can be updated simultaneously with
the given off-diagonal elements. Thus, the complete algorithm runs peven steps per one outer iteration.
The algorithm converges to a global minima, which is proved in Theorem 2 in Section 4.

To further accelerate CONCORD-PCD, we also apply the cyclic reduction technique for pairwise
comparison to calculate |Ω̂(k) − Ω̂|∞, where |A|∞ = maxi,j |Aij | is the maximum absolute value of
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matrix A. Let θ̂ = (θ̂1, . . . , θ̂m) = vech(Ω̂), which is a half-vectorization for the parameter estimate Ω̂,

and d = (dj)1≤j≤m = θ̂new− θ̂old. We further let z = ⌈log2(m)⌉, where ⌈x⌉ is the smallest integer greater
than or equal to x. Consider a calculation of ‖d‖∞, where ‖d‖∞ = maxj |dj | is the L∞-norm for vector
d. The pairwise comparison in the proposed algorithm is conducted as follows:

– Initialization: for q = z − 1,
dj ← max(|dj |, |dj+2q |) if j + 2q ≤ m and dj ← dj if j + 2q > m for j = 1, . . . , 2q,

– Cyclic reduction: for q = z − 2, . . . , 0,
dj ← max(|dj |, |dj+2q |) for j = 1, . . . , 2q.

After the cyclic reduction step for q = 0, the first element d1 of d becomes equal to ‖d‖∞. With
GPU-parallel computation, we can simultaneously compare 2q pairs for each step in the cyclic reduction,
and then the computational cost can be reduced as O(log2(m)) if 2z−1 CUDA cores are available.

Algorithm 1 Parallel coordinate descent algorithm for CONCORD (CONCORD-PCD)

Require: Data matrix X of size n by p, Ω̂(0) = (ω̂
(0)
ij ), λ, and δtol

1: t← 0, Ω̂ ← Ω(0), T ← XTX, peven ← p ⊲ initialization
2: if p is odd then

3: peven ← p+ 1
4: end if

5: (j1, . . . , jpeven )← (1, . . . , peven) ⊲ initialization of index set
6: repeat

7: t← t+ 1
8: for k = 1, 2, . . . , peven − 1 do ⊲ updating off-diagonal elements
9: Define a target set I = {(r, s) | r = jq, s = jpeven−q+1, q = 1, 2, . . . , peven/2}
10: Update, for all (r, s) ∈ I such that r, s 6= p+ 1, ⊲ computed in parallel

ω̂rs ←
Softλ(−

∑

u 6=s ω̂ruTsu −
∑

u 6=r ω̂usTru)

Trr + Tss

11: tmp ← jpeven , (j3, . . . , jpeven )← (j2, . . . , jpeven−1), j2 ← tmp
12: end for

13: for k = 1, 2, . . . , p do ⊲ updating diagonal elements in parallel
14:

ω̂ii ←
−

∑

j 6=i ω̂ijTij +
√

(
∑

j 6=i ω̂ijTij

)2
+ 4nTii

2Tii

15: end for

16: δ ← |Ω̂(t) − Ω̂|∞ ⊲ computed by cyclic reduction

17: Ω̂(t) ← Ω̂
18: until δ < δtol

4 Properties

In this Section, we prove computational properties of CONCORD-PCD algorithm.
Recall the motivating example in Section 3 in which ω̂16, ω̂25 and ω̂34 are simultaneously update-

able in the sense that their updates do not require each other’s current iterates. The following lemma
characterizes a sufficient condition for independent updates.

Lemma 1 Suppose that two edges {i, j} and {k, l} of Kp are colorable by the same color. Then, the
updates of ω̂ij and ω̂kl by the CONCORD-CD algorithm does not contain each other.

Proof For an edge {i, j}, we define U({i, j}) as the family of coordinates needed to update ωij by (3).

From the two summation operations in the right-hand side of (3), we have U({i, j}) = Ũ(i, j) ∪ Ũ(j, i),
where Ũ(i, j) is defined as

Ũ(i, j) := {(i, i′) : i′ 6= j, 1 ≤ i′ ≤ p}, for 1 ≤ i, j ≤ p and i 6= j.

By the definition of edge coloring, if two edges are colorable by the same color, then they do not share
vertices, i.e., i, j, k, l are distinct integers. Observe that k 6= i and l 6= i imply (k, l) /∈ U(i, j) and
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(l, k) /∈ U(i, j). Similarly, by k 6= j and l 6= j, we have (k, l) /∈ U(j, i) and (l, k) /∈ U(j, i). Combining
these leads to (k, l) /∈ U({i, j}) and (l, k) /∈ U({i, j}). Hence, ωkl is not used for updating ωij . In contrast,
we can verify that ωij is not used for the update of ωkl by interchanging the role of subscripts.

Lemma 2 Suppose that any collection of edges of Kp, say, {i1j1, . . . , iqjq}, is colorable with the same

color. Then, the associated elements in Ω̂, that is, ω̂i1j1 through ω̂iqjq ,are simultaneously updatable by
the CONCORD-PCD algorithm.

Lemma 2 straightforward from Lemma 1. The Lemmas provides a characterization for the motivating
example as well as Table 1: the sufficient condition for the simultaneous updatability of ω̂16, ω̂25 and ω̂34

is from the observation that the edges 16, 25, and 34 are colorable with the same color.
Using Lemma 2, we can show the global convergence property of the proposed algorithm.

Theorem 2 Algorithm 1 converges to the minimizer of (1).

Proof Wewill show that the updates of Algorithm 1 are essentially the serial reordering of the CONCORD-
CD algorithm. To fix the idea, assume that p is even (extending to odd p is straightforward). We further
fix one outer loop at line 7 of Algorithm 1. For the inner parallel step k, k = 1, . . . , p−1, let I be the tar-
get set defined at line 9, which coincides the k-th target set Ik in Section 3.2. Let J = {(1, 1), . . . , (p, p)}
denote the indices for the main diagonal. Then, the update order of the indices of Ω given the algorithm
is

U1 : I1 → I2 → · · · → Ip−1 → J,

where the elements associated with each set is calculated simultaneously. Now, consider a serialized
update of U1, say U2, which inherits the order in U1, and the elements in each Ik and J are arbitrarily
ordered. We can apply Lemma 2 to inductively verify that U1 and U2 produce exactly the same updated
Ω̂. Now recall that I1, . . . , Ip−1, and J in U1 are a disjoint union for all coordinates {(i, j) : 1 ≤ i, j ≤ p}.
The serialized update scheme U2 then satisfies the conditions of Theorem 5.1 in Tseng (2001), which
guarantees that convergence to the global minima. Thus, iterating U1 also converges to the global minima,
which completes the proof.

The construction of U1 in the proof can easily be extended to arbitrary edge coloring of Kp. Specif-
ically, given an edge coloring of Kp with colors 1, 2, . . . , C, one can mimic the proof to organize a par-
allelizable update order of CONCORD-CD algorithm with C steps for the off-diagonal elements plus 1
step for the diagonal elements. One would naturally want to know how much we can reduce the number
C while preserving convergence, considering that the fewer the steps we need to follow, the more we
can maximize the utility of parallel processing units. We note that the number of parallel steps for the
off-diagonal update in Algorithm 1 is minimal. This is due to the construction of our edge coloring with
p − 1 (for even p) or p (for odd p) colors, which is guaranteed as the minimal possible number of edge
colors by Theorem 1.

5 Numerical Study

To illustrate the computational advantage of the proposed parallelization implemented on a GPU, we
compare the computation time of the CONCORD-CD algorithm of Khare et al. (2015) and the proposed
CONCORD-PCD algorithm. We developed an R package pcdconcord where the CONCORD-PCD algo-
rithm is implemented with a dynamic library using CUDA C, which is available at https://sites.google.com/view/seunghwan-lee/software.
We refer to CONCORD-PCD as “PCD-GPU” in the comparison to emphasize that the proposed algo-
rithm is running on GPUs. Next, the CONCORD-CD algorithm is available in R package gconcord and
implemented with a dynamic library using C with BLAS (basic linear algebra subroutine) (Lawson et al.,
1979). We describe the CONCORD-CD implemented in gconcord as “CD-BLAS”. In addition to two
main algorithms (CD-BLAS and PCD-GPU), we also implemented a CONCORD-CD without BLAS,
“CD-NAIVE”, and CONCORD-PCD without computation on GPUs, “PCD-CPU”, to study the gain
from GPU parallelization. We remark that the single precision (32-bit floating point representation)
is more efficient than the double precision (64-bit floating point representation) for the computations
on GPUs. However, the R platform only supports the double precision. To maximize the efficiency of
the GPU in the R environment, we first convert the double-precision data in the host (CPU) memory
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to single-precision data in the device (GPU) memory. It is worth noting that Python is favorable for
CONCORD-PCD since it supports both single and double precision for CUDA C. Thus, Python can
fully utilize the computation capacity of GPUs with single precision. The computation time is measured
in seconds on a workstation (Intel Xeon(R) W-2175 CPU (2.50GHz) and 128 GB RAM with NVIDIA
GeForce GTX 1080 Ti). Note that the CONCORD-CD and CONCORD-PCD algorithms should pro-
duce the same estimates after convergence since the only difference between the two algorithms is the
updating order of the matrix elements. In practice, small differences might be observed due to numerical
errors when the convergence tolerance δtol is not sufficiently small.

We used simulated data for the comparison. To be specific, we generate 10 data sets from a mul-
tivariate normal distribution Np(0, Ω

−1) by varying the sample size (n = 500, 1000, 2000) and number
of variables (p = 500, 1000, 2500, 5000). Because the true precision matrix affects the number of iter-
ations for convergence of the estimator, we also consider AR(2) and scale-free network structures for
a true precision matrix, Ω, from the literature for sparse precision matrix estimation (Yuan and Lin,
2007; Peng et al., 2009). Let ΩAR and ΩSC , be precision matrices for the AR(2) and scale-free networks,
respectively. For the AR(2) network, the precision matrix ΩAR = (ωAR

ij )1≤i,j≤p is defined by

ωAR
ij = ωAR

ji =







0.45 for i = 1, 2, . . . , p− 1, j = i+ 1
0.4 for i = 1, 2, . . . , p− 2, j = i+ 2
0 otherwise

For scale-free network, the precision matrix ΩSC = (ωSC
ij )1≤i,j≤p is defined by the following steps:

(i) Generate a scale-free network G = G(V,E) according to Barabási and Albert model (Barabási and Albert,
1999), where the degree distribution P (k) of G follows the power-law distribution P (k) ∝ k−α. We
set α = 2.3 following Peng et al. (2009), which is close to the estimate from the real-world network
(Newman, 2003);
(ii) Generate a random matrix Ω̃ = (ω̃ij) by
ω̃ij = ω̃ji ∼ Unif

(

[−1,−0.5]∪ [0.5, 1]
)

for {i, j} ∈ E, ω̃ii = 1 for i = 1, 2, . . . , p;

(iii) Scaling off-diagonal elements: ω̃ij ← ω̃ij/
(

1.25
∑

j 6=i ω̃ij

)

;

(iv) Symmetrization: ΩSC ← (Ω̃ + Ω̃T )/2.

To avoid nonzero elements of ΩSC with small magnitude, we set ωSC
ij ← 0.1 · sign(ωSC

ij ) if |ωSC
ij | < 0.1

for (i, j) ∈ E.

In addition, we consider λ = 0.1 and λ = 0.3 for the tuning parameter to evaluate the performance
at different sparsity levels of the estimate. Note that we did not search the optimal tuning parameter for
CONCORD since our numerical studies aim at evaluating computational gains. We set tolerance level
as δtol = 10−5 for the convergence criteria.

Tables 2 and 3 report the averaged elapsed times for computing CD-BLAS, CD-NAIVE, PCD-CPU,
and PCD-GPU for the AR(2) and Scale-free networks, respectively. We also summarize the averages of
the number of iterations and estimated edges of the CD and PCD algorithms in the same tables to verify
that the proposed and original algorithms achieve the same solution.

From Tables 2 and 3, we first observe that PCD-GPU is always faster than PCD-CPU for all cases
we considered. The GPU-parallel computation is efficient to the CONCORD-PCD algorithm and plays
a key role. In addition, the efficiency of the GPU-parallelization increases with the number of variables.
For example, PCD-GPU is 3.08–3.95 times faster than PCD-CPU for p = 500, but PCD-GPU is 9.93–
10.62 times faster than PCD-CPU for p = 5000. Such an increase in efficiency seems natural, since the
CONCORD-PCD simultaneously updates peven/2 elements.

Next, we see that PCD-CPU is slightly slower than CD-NAIVE. This is due to the fact that the PCD-
CPU has an additional procedure for reordering the elements to be updated (line 9 in Algorithm 1). Since
the computation time for CD-NAIVE and PCD-CPU is similar, we can conclude that PCD-GPU is more
efficient than CD-NAIVE as well.

Finally, we compare PCD-GPU and CD-BLAS in the original implementation of CONCORD-CD
(gconcord), where PCD-GPU was more efficient than CD-BLAS for all cases except (n, p) = (500, 5000).
Specifically, PCD-GPU is 1.41 and 6.63 times faster than CD-BLAS for the worst and the best cases,
respectively. The efficiency gain grows with an increase in both n and p. For (n, p) = (500, 5000), CD-
BLAS is only 1.03–1.19 times faster than PCD-GPU.
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Note that the efficiency of CD-BLAS depends largely on the efficiency of BLAS (implemented by
FORTRAN), as is evident from a comparison between CD-BLAS and CD-NAIVE. For a more precise
comparison, we replicate Tables 2 and 3 in Figures 1 and 2, respectively. The figures suggest that CD-
BLAS is more sensitive to the sample size compared to PCD-GPU. In the AR(2) network, for example,
the computation time per iteration is measured as 0.4886 for (n, p) = (500, 1000) and 0.8486 for (n, p) =
(2000, 1000) with CD-BLAS, but as 0.1817 for (n, p) = (500, 1000) and 0.1831 for (n, p) = (2000, 1000)
with PCD-GPU. This is because the incremental computational burden associated with the sample size
is less for each GPU compared to the CPU because a GPU device has many CUDA cores. For example,
the GPU device NVIDIA GeForce GTX 1080 Ti used in the numerical studies has 3584 CUDA cores.

In addition, we compared the computation times of the graphical Lasso (GLASSO), which is a pop-
ular method in the likelihood approach (Friedman et al., 2008), and the constrained ℓ1-minimization for
the inverse of matrix estimation (CLIME), which is the constrained ℓ1-minimization approach (Cai et al.,
2011), with ours. For the GLASSO, we used the R package glasso that boosts the original algorithm of
Friedman et al. (2008) by adopting block diagonal screening rule (Witten et al., 2011). For the CLIME,
the original algorithm becomes inefficient when p is large. We apply the FASTCLIME algorithm im-
plemented in R package fastclime Pang et al. (2014), which is more efficient and uses the parametric
simplex method to obtain the whole solution path of the CLIME. Since solving the problem of the
FASTCLIME is still expensive when p is large, we focus on the cases of n = 500, 1000, p = 500, 1000
and λ = 0.3 for the CONCORD. We choose the tuning parameter λs of the GLASSO and the CLIME
by searching values that obtain similar sparsity level to that of the CONCORD with λ = 0.3, because
the estimators of the GLASSO and CLIME are different to that of the CONCORD. Table 4 reports
the averages of the computation times and the number of estimated edges. We found that the proposed
PCD-GPU was fastest for AR(2) and the second-best for the scale-free network. For the scale-free net-
work, the efficiency of the proposed PCD-GPU was comparable to that of the GLASSO because the
differences in the computation times only lie between 0.24 and 1.01. It has been numerically shown that
the CONCORD has better performance than the GLASSO for identifying the non-zero elements of the
precision matrix in Khare et al. (2015).

To summarize, we conclude from the our numerical studies that the proposed CONCORD-PCD is
adequate for GPU-parallel computation, and more efficient than CONCORD-CD when either the number
of variables or the sample size is large. It is also noteworthy that we implemented the PCD algorithm
with GPUs by using cuBLAS libary (PCD-GPU-cuBLAS), but we found that the PCD-GPU-cuBLAS
was less efficient than the PCD-GPU implemented by our own CUDA kernel functions. Therefore, we
have omitted the PCD-GPU-cuBLAS results.

6 Concluding remarks

In this paper, we proposed the parallel coordinate descent algorithm for CONCORD, which simultane-
ously updates peven/2 elements, which is p/2 for an even p and (p− 1)/2 for an odd p. We also showed,
by applying the theoretical results to edge coloring, that peven/2 is the maximum number of simul-
taneously updatable off-diagonal elements in the CONCORD-CD algorithm. Comprehensive numerical
studies show that the proposed CONCORD-PCD algorithm is adequate for GPU-parallel computation,
and more efficient than the original CONCORD-CD algorithm, for large datasets.

We conclude the paper with discussion about possible extensions. Our idea of parallelized coordinate
descent can be applied to modeling gene regulatory networks from heterogeneous data through joint
estimation of sparse precision matrices (Danaher et al., 2014). For example, let us consider the following

objective function, which estimates two precision matrices, Ω1 = (ω
(1)
ij ) and Ω2 = (ω

(2)
ij ), under the

constraint that both matrices are sparse and only slightly different from each other:

Ljoint(Ω1, Ω2;λ1, λ2) =
2

∑

m=1

{

−

p
∑

i=1

n logω
(m)
ii +

1

2

p
∑

i=1

n
∑

k=1

(

ω
(m)
ii Xm

ki +
∑

j 6=i

ω
(m)
ij Xm

kj

)2}

+λ1

2
∑

m=1

∑

i<j

|ω
(m)
ij |+ λ2

∑

i≤j

|ω
(1)
ij − ω

(2)
ij |,

where Xm
ki is the (k, i)th element of the observed dataset from mth population (m = 1, 2). Consider

a block coordinate descent algorithm that minimizes along (ω
(1)
ij , ω

(2)
ij ) for each update, in which the
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Table 2 Average computation time (in seconds), number of iterations, and number of estimated edges for the AR(2)
network. Numbers within parentheses denote standard errors.

λ n p
Computation time (sec.) Iteration |Ê|

CD-BLAS CD-NAIVE PCD-CPU PCD-GPU CD PCD CD PCD

0.1

500

500
3.22 3.18 3.31 0.89 26.40 26.10 1976.70 1976.70
(0.02) (0.02) (0.02) (0.01) (0.16) (0.18) (9.52) (9.52)

1000
13.09 26.28 28.66 4.87 26.90 26.80 5078.90 5078.90
(0.09) (0.17) (0.18) (0.04) (0.18) (0.20) (14.19) (14.19)

2500
86.01 451.03 513.18 56.72 27.30 27.10 20327.30 20327.50
(0.83) (4.30) (3.28) (0.38) (0.26) (0.18) (45.87) (45.90)

5000
378.04 3646.43 4149.79 404.75 27.70 27.30 64307.20 64307.40
(2.94) (19.49) (51.93) (2.29) (0.15) (0.15) (69.26) (69.13)

1000

500
2.07 3.16 3.29 0.88 25.70 25.50 1407.20 1407.20
(0.01) (0.02) (0.02) (0.01) (0.15) (0.17) (5.05) (5.05)

1000
25.90 25.84 28.27 4.76 26.20 26.10 2825.20 2825.20
(0.14) (0.13) (0.22) (0.03) (0.13) (0.18) (4.50) (4.50)

2500
167.90 428.93 490.24 54.91 26.20 26.20 7216.80 7216.80
(1.60) (3.38) (4.18) (0.28) (0.13) (0.13) (6.92) (6.92)

5000
694.62 3419.50 3862.95 385.66 26.20 26.00 14806.20 14806.20
(3.87) (17.43) (17.96) (0.05) (0.13) (0.00) (14.28) (14.28)

2000

500
2.12 3.19 3.36 0.85 25.00 25.10 1393.10 1393.10
(0.00) (0.00) (0.01) (0.00) (0.00) (0.10) (3.74) (3.74)

1000
21.81 25.76 27.88 4.65 25.70 25.40 2803.10 2803.10
(0.39) (0.16) (0.26) (0.03) (0.15) (0.16) (4.70) (4.70)

2500
342.84 433.35 495.12 54.54 25.90 25.90 7006.90 7006.90
(1.26) (1.65) (1.93) (0.21) (0.10) (0.10) (9.79) (9.79)

5000
1389.95 3440.95 3929.09 386.23 26.00 26.00 14009.30 14009.40
(6.07) (13.14) (11.22) (0.12) (0.00) (0.00) (9.38) (9.35)

0.3

500

500
1.69 1.70 1.73 0.50 13.90 13.40 859.50 859.50
(0.06) (0.05) (0.06) (0.02) (0.46) (0.52) (5.00) (5.00)

1000
7.00 14.19 14.80 2.55 14.40 13.70 1722.20 1722.20
(0.13) (0.26) (0.45) (0.07) (0.27) (0.40) (5.87) (5.87)

2500
45.52 240.36 267.74 29.61 14.50 14.10 4297.80 4297.80
(0.72) (3.57) (3.37) (0.38) (0.22) (0.18) (7.12) (7.12)

5000
210.20 1937.84 2289.35 215.59 14.80 14.50 8624.10 8624.10
(4.05) (38.32) (23.56) (2.47) (0.29) (0.17) (17.08) (17.08)

1000

500
1.06 1.59 1.62 0.46 12.40 12.10 853.60 853.60
(0.02) (0.03) (0.03) (0.01) (0.22) (0.23) (4.66) (4.66)

1000
12.06 12.31 13.05 2.22 12.20 11.80 1698.00 1698.00
(0.13) (0.13) (0.15) (0.02) (0.13) (0.13) (5.80) (5.80)

2500
78.69 203.18 225.83 25.51 12.50 12.10 4268.10 4268.10
(1.56) (3.53) (4.36) (0.48) (0.22) (0.23) (11.70) (11.70)

5000
350.79 1718.20 1901.72 182.99 13.00 12.30 8521.50 8521.50
(7.29) (35.40) (39.33) (3.18) (0.30) (0.21) (11.65) (11.65)

2000

500
1.12 1.64 1.62 0.45 11.80 11.00 854.20 854.20
(0.01) (0.02) (0.00) (0.01) (0.13) (0.00) (3.14) (3.14)

1000
10.81 12.22 12.76 2.11 11.60 11.10 1717.00 1717.00
(0.21) (0.16) (0.11) (0.02) (0.16) (0.10) (4.96) (4.96)

2500
159.15 204.24 216.04 24.00 12.00 11.30 4291.10 4291.10
(0.09) (0.27) (1.86) (0.32) (0.00) (0.15) (5.94) (5.94)

5000
637.67 1597.47 1796.61 171.11 12.10 11.50 8578.20 8578.30
(5.89) (15.28) (32.73) (2.46) (0.10) (0.17) (14.48) (14.51)

update formula has a closed-form expression similar to one in Yu et al. (2018). One can show that if two

edge indices ij and i′j′ are disjoint, then the update formula for (ω̂
(1)
ij , ω̂

(2)
ij ) does not involve (ω̂

(1)
i′j′ , ω̂

(2)
i′j′).

Thus, one can develop a parallelization for this algorithm as presented in this paper.

Acknowledgements This research was supported by the National Research Foundation of Korea (NRF-2018R1C1B6001108),
Inha University Research Grant, and Sookmyung Women’s University Research Grant (No. 1-2003-2004).
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Table 3 Average computation time (in seconds), number of iterations, and number of estimated edges for the scale-free
network. Numbers within parentheses denote standard errors.

λ n p
Computation time (sec.) Iteration |Ê|

CD-BLAS CD-NAIVE PCD-CPU PCD-GPU CD PCD CD PCD

0.1

500

500
1.33 1.35 1.53 0.46 11.30 12.20 2348.30 2348.30
(0.02) (0.02) (0.04) (0.01) (0.15) (0.29) (13.88) (13.88)

1000
5.64 11.41 13.18 2.34 11.90 12.60 8090.90 8090.90
(0.15) (0.30) (0.28) (0.05) (0.31) (0.27) (22.41) (22.41)

2500
43.59 228.30 269.74 30.84 14.20 14.60 42601.50 42601.50
(1.59) (8.18) (9.14) (1.05) (0.51) (0.50) (34.34) (34.34)

5000
193.67 1872.72 2345.42 230.10 14.10 15.50 144508.00 144507.70
(3.84) (37.21) (39.78) (3.98) (0.28) (0.27) (58.82) (58.88)

1000

500
0.96 1.44 1.61 0.48 11.60 12.50 598.20 598.20
(0.02) (0.03) (0.03) (0.01) (0.27) (0.27) (5.46) (5.46)

1000
10.76 11.00 12.49 2.19 11.20 11.70 1340.00 1340.00
(0.28) (0.27) (0.22) (0.04) (0.29) (0.21) (4.94) (4.94)

2500
92.85 235.54 269.49 29.01 13.90 13.70 4471.70 4471.70
(2.22) (5.80) (3.32) (0.32) (0.31) (0.15) (18.16) (18.16)

5000
369.05 1829.25 2121.88 209.48 13.80 14.10 12557.50 12557.60
(7.76) (38.16) (58.87) (6.02) (0.29) (0.41) (21.90) (21.94)

2000

500
1.09 1.60 1.77 0.49 11.90 12.80 506.50 506.50
(0.01) (0.02) (0.02) (0.01) (0.18) (0.20) (0.50) (0.50)

1000
10.62 11.97 12.90 2.18 11.70 11.60 1011.00 1011.00
(0.25) (0.20) (0.32) (0.05) (0.21) (0.31) (1.02) (1.02)

2500
187.80 239.21 257.65 28.62 14.50 13.50 2517.50 2517.50
(5.47) (6.88) (4.20) (0.47) (0.43) (0.22) (1.56) (1.56)

5000
680.01 1705.53 2078.65 209.39 13.10 14.10 5045.90 5045.90
(9.11) (23.24) (26.84) (2.66) (0.18) (0.18) (2.74) (2.74)

0.3

500

500
1.03 1.06 1.14 0.37 8.80 9.00 364.70 364.70
(0.02) (0.02) (0.02) (0.00) (0.13) (0.15) (1.69) (1.69)

1000
4.43 9.06 10.14 1.80 9.40 9.60 713.30 713.30
(0.08) (0.16) (0.22) (0.04) (0.16) (0.22) (2.13) (2.13)

2500
34.08 176.28 208.13 22.30 10.50 10.50 1755.40 1755.40
(0.78) (3.97) (3.55) (0.46) (0.27) (0.22) (5.31) (5.31)

5000
138.34 1343.89 1568.08 157.45 10.40 10.60 3569.40 3569.40
(2.87) (27.90) (43.39) (4.52) (0.22) (0.31) (6.12) (6.12)

1000

500
0.77 1.15 1.23 0.37 9.00 9.30 367.80 367.80
(0.00) (0.00) (0.02) (0.00) (0.00) (0.15) (1.50) (1.50)

1000
8.65 8.94 9.75 1.71 9.00 9.00 715.00 715.00
(0.15) (0.14) (0.16) (0.03) (0.15) (0.15) (2.09) (2.09)

2500
68.93 176.52 198.19 21.84 10.50 10.30 1758.80 1758.80
(1.09) (2.82) (3.00) (0.32) (0.17) (0.15) (2.63) (2.63)

5000
267.18 1323.10 1530.87 150.17 9.90 10.10 3582.60 3582.60
(2.69) (13.37) (15.77) (1.48) (0.10) (0.10) (3.96) (3.96)

2000

500
0.87 1.26 1.33 0.38 9.00 9.10 367.30 367.30
(0.00) (0.00) (0.01) (0.00) (0.00) (0.10) (1.24) (1.24)

1000
8.21 9.53 10.43 1.75 9.10 9.20 712.70 712.70
(0.07) (0.09) (0.14) (0.02) (0.10) (0.13) (1.73) (1.73)

2500
134.24 173.16 199.99 22.10 10.40 10.40 1760.00 1760.00
(2.07) (2.64) (3.10) (0.34) (0.16) (0.16) (3.50) (3.50)

5000
513.17 1294.45 1482.85 148.71 9.90 10.00 3585.10 3585.10
(5.14) (13.08) (1.64) (0.00) (0.10) (0.00) (4.13) (4.13)
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Table 4 Average computation time in seconds (Comp. Time), and number of estimated edges (|Ê|) for the AR(2) and
scale-free networks for PCD-CPU, PCD-GPU, GLASSO and FASTCLIME. Numbers within parentheses denote standard
errors.

Network p Model
n = 500 n = 1000

λ |Ê| Comp. Time λ |Ê| Comp. Time

AR(2)

500

PCD-CPU 0.3
859.5 1.73

0.3
1722.2 14.80

(5.00) (0.06) (5.87) (0.45)

PCD-GPU 0.3
859.5 0.50

0.3
1722.2 2.55

(5.00) (0.02) (5.87) (0.07)

GLASSO 0.383
860.4 0.97

0.386
1711.4 7.57

(3.50) (0.00) (6.36) (0.02)

FASTCLIME 0.311
867.3 26.91

0.312
1701.2 198.88

(3.48) (0.16) (7.04) (0.61)

1000

PCD-CPU 0.3
853.6 1.62

0.3
1698.0 13.05

(4.66) (0.03) (5.80) (0.15)

PCD-GPU 0.3
853.6 0.46

0.3
1698.0 2.22

(4.66) (0.01) (5.80) (0.02)

GLASSO 0.384
861.5 1.03

0.388
1699.6 7.85

(3.54) (0.00) (5.16) (0.03)

FASTCLIME 0.311
854.0 27.25

0.315
1698.4 199.42

(5.06) (0.11) (5.35) (0.51)

Scale-free

500

PCD-CPU 0.3
364.7 1.14

0.3
713.3 10.14

(1.69) (0.02) (2.13) (0.22)

PCD-GPU 0.3
364.7 0.37

0.3
713.3 1.80

(1.69) (0.00) (2.13) (0.04)

GLASSO 0.241
365.5 0.13

0.249
719.6 0.79

(2.23) (0.00) (1.86) (0.00)

FASTCLIME 0.236
364.7 27.29

0.237
717.8 192.89

(1.56) (0.07) (1.81) (0.18)

1000

PCD-CPU 0.3
367.8 1.23

0.3
715.0 9.75

(1.50) (0.02) (2.09) (0.16)

PCD-GPU 0.3
367.8 0.37

0.3
715.0 1.71

(1.50) (0.00) (2.09) (0.03)

GLASSO 0.244
368.5 0.19

0.249
707.6 1.01

(1.67) (0.00) (2.50) (0.00)

FASTCLIME 0.235
366.6 27.48

0.237
712.6 184.79

(1.71) (0.11) (2.08) (1.32)
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(b) PCD-GPU, λ = 0.1 .
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Fig. 1 Average computation time per iteration for the AR(2) network. The vertical lines denote 95% confidence intervals
of the mean computation time per iteration.
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Fig. 2 Average computation time per iteration for the scale-free network. The vertical lines denote 95% confidence intervals
of the mean computation time per iteration.
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