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Abstract

We describe a numerical scheme for evaluating the posterior moments of Bayesian
linear regression models with partial pooling of the coefficients. The principal
analytical tool of the evaluation is a change of basis from coefficient space to the
space of singular vectors of the matrix of predictors. After this change of basis and
an analytical integration, we reduce the problem of finding moments of a density over
k +m dimensions, to finding moments of an m-dimensional density, where k is the
number of coefficients and k+m is the dimension of the posterior. Moments can then
be computed using, for example, MCMC, the trapezoid rule, or adaptive Gaussian
quadrature. An evaluation of the SVD of the matrix of predictors is the dominant
computational cost and is performed once during the precomputation stage. We
demonstrate numerical results of the algorithm. The scheme described in this paper
generalizes naturally to multilevel and multi-group hierarchical regression models
where normal-normal parameters appear.

1 Introduction

Linear regression is a ubiquitous tool for statistical modeling in a range of appli-
cations including social sciences, epidemiology, biochemistry, and environmental sci-
ences ([Gelman et al., 2013, Gelman and Hill, 2007, Greenland, 2000, Merlo et al., 2005,
Bardini et al., 2017]).

A common bottleneck for applied statistical modeling workflow is the computational
cost of model evaluation. Since posterior distributions in statistical models are often
high dimensional and computationally intractable, various techniques have been used to
approximate posterior moments. Standard approaches often involve a variety of techniques
including Markov chain Monte Carlo (MCMC) or using a suitable approximation of the
posterior.

In this paper, we describe an approach for reducing the computational costs for a
particular class of regression models — those that contain parameters θ ∈ Rk such that
θ has a normal prior and normal likelihood. These models represent only a subset of
regression models that appear in applications. We focus our attention in this paper on
normal-normal models because they have well known analytical properties and are more
computationally tractable than the vast majority of multilevel models. A broader class
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of models, including logistic regression, contain distributions that are less amenable to
the techniques of this paper and will require other analytical and computational tools.
Mathematically, marginalization of normal-normal parameters is well-known and has been
applied to the posterior by, for example, [Lindley and Smith, 1972]. Our contribution is
to provide a stable, accurate, and fast algorithm for marginalization.

The primary numerical tool used in the algorithm is the singular value decomposition
(SVD) of the data matrix. As a mathematical and statistical tool, SVD has been known
since at least 1936 (see [Eckart and Young, 1936]). Use of the SVD as a practical and
efficient numerical algorithm only started gaining popularity much later, with the first
widely used scheme introduced in [Golub and Kahan, 1965]. Due in large part to advances
in computing power, use of the SVD as a tool in applied mathematics, statistics, and
data science has been gaining significant popularity in recent years, however efficient
evaluation of SVDs and related matrix decompositions is still an active area of research
(see [Hastie et al. 2015], [Halko et al., 2011], [Shamir et al., 2016]).

Similar schemes to ours are used in the software packages lme4 ([Bates et al., 2015])
and INLA ([Rue et al., 2017]). There are several differences between the problems they
address and their computational techniques, and those that we shall discuss here. While
lme4 finds maximum likelihood and restricted maximum likelihood estimates, our goal
is to find posterior moments. The software package INLA uses Laplace approximation
on the posterior for a general choice of likelihood functions, whereas our algorithm is
focused on fast and accurate solutions for only a particular class of densities: those with
normal-normal parameters.

The approach presented in this paper analytically marginalizes the normal-normal
parameters of a model using a change of variables. After marginalization, posterior
moments can be computed using standard techniques on the lower-dimensional density.
In particular, for a model that contains k + m total variables, k of which are normal-
normal, our scheme converts the problem of evaluating expectations of a density in k+m
dimensions to finding expectations of an m-dimensional density. After marginalization, we
evaluate the m-dimensional posterior density in O(k) operations. Without the change of
variables, standard evaluation of marginal densities that relies on determinant evaluation
requires at least O(k3) operations.

We illustrate our scheme on the problem of evaluating the marginal expectations of
the unnormalized density

q(σ1, σ2, β) = σ
−(k+1)
1 σ−n2 exp

(
−γ log2(σ1)−

σ22
2
− ‖Xβ − y‖

2

2σ22
− ‖β‖

2

2σ21

)
, (1)

where γ > 0 is a constant, σ1, σ2 > 0, and β ∈ Rk. We assume that X is a fixed n× k
matrix, y ∈ Rn is fixed, and the normalizing constant of (1) is unknown. For fixed
n, k ∈ N, the algorithm is nearly identical when X is an n × k matrix to when X is a
k × n matrix. In the case where k � n, see [Kwon et al., 2011] for a similar approach.
Using the standard notation of Bayesian models, density q is the unnormalized posterior
of the model

σ1 ∼ lognormal(0,
√
γ)

σ2 ∼ normal+(0, 1)

β ∼ normal(0, σ1)

y ∼ normal(Xβ, σ2).

(2)
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In Appendix A, we include Stan code that can be used to sample from density (1).
Statistical model (2) is a standard model of Bayesian statistics and appears when

seeking to model an outcome, y, as a linear combination of related predictors, the columns
of X. In [Gelman and Hill, 2007], these models are described in detail and are used in
the estimation of the distribution of radon levels in houses in Minnesota.

Density (1) is also closely related to posterior densities that appear in genome-
wide association studies (GWAS; see [Zhu and Stephens, 2017], [Meuwissen, et al., 2001],
[Azevedo et al., 2015]) which can be used to identify genomic regions containing genes
linked with a specific trait, such as height. Using the notation of (1), each row of matrix
X corresponds to a person, each column of X represents a genomic location, entries
of X indicate genotypes, and y corresponds to the trait. Due to technical advances in
genome sequencing over the last ten years, it is now feasible to collect large amounts of
sequencing data. GWAS models can contain data on up to millions of people and often
between hundreds and thousands of genome locations (see [Linner et al., 2019]). As a
result, efficient computational tools are required for model evaluation.

The number of operations required by the scheme of this paper scales like O(nk2)
with a small constant. The key analytical tool is a change of variables of β such that the
terms,

− 1

2σ22
‖Xβ − y‖2 − 1

2σ21
‖β‖2, (3)

in (1) are converted to a diagonal quadratic form in Rk. After that change of variables,
expectations over q are analytically converted from integrals over Rk+2 to integrals over
R

2. The remaining 2-dimensional integrals can be computed to high accuracy using
classical numerical techniques including, for example, adaptive Gaussian quadrature or
even the 2-dimensional trapezoid rule.

The schemes used to evaluate the expectations of (1) generalize naturally to evaluation
of expectations of multilevel and multigroup posterior distributions including, for example,
the two-group posterior of the form,

q(σ1, σ2, σ3, µ, β) = exp

− 1

2σ21
‖Xβ − y‖2 − 1

2σ22

k1∑
i=1

(µ− βi)2 −
1

2σ23

k1+k2∑
i=k1+1

β2i

 ,

(4)

where X is a n × k matrix, y ∈ Rn, k1 and k2 are non-negative integers satisfying
k1 + k2 = k, and the vector t ∈ Rm.

For models where m is large, MCMC can be used to evaluate the m-dimensional
expectations, with, for example, Stan [Carpenter et al., 2017]. The m-dimensional distri-
bution has two qualities that make it preferable to its high-dimensional counterpart. First,
it requires only O(k) operations to evaluate the integrand, and second, the geometry of
the m dimensional marginal distribution will allow for more efficient sampling.

The structure of this paper is as follows. In the following section we describe
the analytic integration that transforms (1) from a k + 2-dimensional problem to a
2-dimensional problem. Section 3 includes formulas that will allow for the evaluation
of posterior moments using the 2-dimensional density. In Sections 4 and 5 we provide
formulas for evaluating covariances of (1). In Section 6, we discuss the numerical results
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of the implementation of the algorithm. Conclusions and generalizations of the algorithm
of this paper are presented in Section 7. Appendix A provides Stan code that can be
used to sample from (1), and Appendix B includes proofs of the formulas of this paper.

2 Analytic Integration of β

In this section, we describe how we analytically marginalize the normal-normal parameter
β of density (1). We include proofs of all formulas in Appendix B.

We start by in marginalizing β using a change of variables that converts the quadratic
forms in (1) into diagonal quadratic forms. The resulting integral in the new variable,
z, is Gaussian, and the coefficients of zi and z2i are available analytically. The change
of variables is given by the right orthogonal matrix of the singular value decomposition
(SVD) of X. That is, we set

z = V tβ (5)

where the SVD of X is

X = UDV t. (6)

We define λi to be the ith element of the diagonal of D. The elements of diagonal need
not be sorted. After this change of variables, we obtain the following identity for the last
two terms of (1). A proof can be found in Lemma B.5 in Appendix B.

Formula 2.1.

− 1

2σ22
‖Xβ − y‖2 − 1

2σ21
‖β‖2 = a0 +

k∑
i=1

a2,i

(
zi −

a1,i
2a2,i

)2

+
a21,i
4a2,i

(7)

where

a2,i =
λ2i
2σ22

+
1

2σ21
, (8)

a1,i =
wi
σ22
, (9)

and

a0 = − y
ty

2σ22
(10)

where

w = V tXty. (11)

After performing the change of variables z = V tβ and using (7), we now have an
expression for density (1) in a form that allows us to use the well-known properties of
a Gaussian with diagonal covariance. The following identity uses these properties and
provides a formula for analytically reducing expectations of (1) from integrals over k + 2
dimensions to integrals over 2 dimensions. After the formula is applied, we have a new
density, q̃, over only 2 dimensions. See Theorem B.6 in Appendix B for a proof.
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Formula 2.2. For all σ1, σ2 > 0 we have∫
Rk

q(σ1, σ2, β)dβ = q̃(σ1, σ2) (12)

where q̃(σ1, σ2) is defined by the formula

q̃(σ1, σ2) = σ
−(k+1)
1 σ−n2 exp

(
−γ log2(σ1)−

σ22
2

+ a0 +
k∑
i=1

a21,i
4a2,i

)
k∏
i=1

1√
2a2,i

(13)

where a2,i is defined in (8), a1,i is defined in (9), a0 is defined in (10), and γ is a constant.

Remark 2.1. Certain Bayesian models might contain correlated priors on β that will
result in posteriors such as (28) of Section 4. For such models, we perform the change
of variables that uses the fact that two diagonal forms over β can be simultaneously
diagonalized.

We include in Figure 1 a plot of the density of q as a function of σ1 and β1 for fixed
σ2 and randomly chosen X and y. Figure 2 shows a plot of q as a function of σ2 and β
for fixed σ1. Figure 3 provides an illustration of q̃, obtained after the change of variables
and marginalization described in this section.

3 Evaluation of Posterior Means

Now that we have reduced the k+ 2-dimensional density q to the 2-dimensional density q̃,
it remains to recover the posterior moments of q using q̃. We first observe that moments
of σ1 and σ2 with respect to q are equivalent to moments of σ1 and σ2 over q̃. That is,

Eq(σ1) = Eq̃(σ1) (14)

and

Eq(σ2) = Eq̃(σ2). (15)

As for moments of β, we use (13) and standard properties of Gaussians to obtain the
following formula.

Formula 3.1. For all σ1, σ2 > 0,∫
Rk

ziq(σ1, σ2, β)dβ =
a1,i
2a2,i

q̃(t) (16)

where q is defined in (1), q̃ is defined in (13), a2,i is defined in (8), and a1,i is defined in
(9).

As an immediate consequence of (16), we are able to evaluate the posterior expectation
of z as an expectation of a 2-dimensional density:

Eq(zi) = Eq̃(
a1,i
2a2,i

). (17)
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Figure 1: Density of q (see (1)) with respect to σ1 and β1, where
γ = 8, n = 100, k = 10, and data were randomly generated.
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Figure 2: Density of q (see (1)) with respect to σ2 and β1, for the
same parameters as Figure 1.

We then transform those expectations back to expectations over the desired basis, β using
the matrix V computed in (6). Specifically, using linearity of expectation and (17), we
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Figure 3: Density of q̃ (see (13)) using the same q as Figure 1, where n = 100, k = 10,
and data were randomly generated.

know

Eq((β1, . . . , βk)
t) = Eq(V V

t(β1, . . . , βk)
t)

= VEq(V
t(β1, . . . , βk)

t)

= VEq((z1, . . . , zk)
t)

= VEq̃

((
a1,1
2a2,1

, . . . ,
a1,k
2a2,k

)t)
.

(18)

4 Covariance of β

In addition to facilitating the rapid evaluation of posterior means, the change of variables
described in Section 2 is also useful for the evaluation of higher moments.

Equation (7) shows that after the change of variables from β to z, the resulting density
is a Gaussian in z with a diagonal covariance matrix. Additionally, for each zi, using
equation (7) and standard properties of Gaussians, we have the following identity.

Formula 4.1. For all σ1, σ2 > 0, we have∫
Rk

(zi − µzi)2q(σ1, σ2, β)dβ = (2a2,i)
−1q̃(σ1, σ2) (19)
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where µzi is the expectation of zi, q̃ is defined in (13), and a2,i is defined in (8).

The second moments of the posterior of β are obtained as a linear transformation of
the posterior variances of z. In particular, denoting the expectation of β by µβ and the
expectation of z by µz, we have

E((β − µβ)(β − µβ)t) = V V t
E((β − µβ)(β − µβ)t)V V t

= VE(V t(β − µβ)(β − µβ)tV )V t

= VE((z − µz)(z − µz)t)V t.

(20)

We observe that due to the independence of all zi,

E((z − µz)(z − µz)t) (21)

is diagonal and we can therefore evaluate the k × k posterior covariance matrix of β by
evaluating var(zi) for i = 1, ..., k and then applying two orthogonal matrices. Specifically,
combining Formula 4.1 and (20), we obtain

cov(β) = VEq̃

((
(2a2,1)

−1, ..., (2a2,k)
−1)t)V t. (22)

5 Variance of σ1 and σ2

Higher moments of σ1 and σ2 with respect to q can be evaluated directly as higher
moments of σ1 and σ2 with respect to q̃. That is, for all j ∈ {2, 3, ..., }, we have

Eq((σ1 − µσ1)j) = Eq̃((σ1 − µσ1)j) (23)

and

Eq((σ2 − µσ2)j) = Eq̃((σ2 − µσ2)j). (24)

In particular, for j = 2, we obtain

varq(σ1) = varq̃(σ1) (25)

and

varq(σ2) = varq̃(σ2). (26)

Algorithm 1: Evaluation of posterior expectations of normal-normal models

1 Compute SVD of matrix X
2 Compute w (see (11))
3 Compute V t

1 (see (9))
4 Construct evaluator for density q̃ of (13)
5 Evaluate first and second moments with respect to q̃: Eq̃(σ1),Eq̃(σ2),Eq̃(

a1,i
2a2,i

)

6 Compute E(β) via formula (18)
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6 Numerical Experiments

Algorithm 1 was implemented in Fortran. We used the GFortran compiler on a 2.6 GHz
6-Core Intel Core i7 MacBook Pro. All examples were run in double precision arithmetic.
The matrix X and vector y were randomly generated as follows. Each entry of X was
generated with an independent Gaussian with mean 0 and variance 1. The vector y
was created by first randomly generating a vector β ∈ Rk, each entry of which is an
independent Gaussian with mean 0 and variance 1. The vector y was set to the value of
Xβ + ε where ε ∈ Rn contains standard normal iid entries. We generated y this way in
order to ensure that the E(βi) were not all small in magnitude. We set γ of (1) to 8.

In Table 2 and Figure 5, we compare the performance of Algorithm 1 to two alternative
schemes for computing posterior expectations — one in which we analytically marginalize
via equation (12) and then integrate the 2-dimensional density via MCMC using Stan. In
the other, we use Stan’s MCMC sampling on the full k + 2 dimensional posterior. When
using MCMC with Stan, we took 10,000 posterior draws. In Table 2 and Figure 5 we
denote Algorithm 1 by “SVD-Trap”. The algorithm that uses Stan on the marginal 2-
dimensional density is labeled “SVD-MCMC”, and “MCMC” corresponds to the algorithm
that uses only MCMC sampling in Stan.

In the appendix, we include Stan code to sample from the marginal density q̃ of (13).

Remark 6.1. In the numerical integration stage of algorithm 1, we use the trapezoid
rule with 200 nodes in each direction. Because the integrand is smooth and vanishes near
the boundary, convergence of the integral is super-algebraic when using the trapezoid rule
(see [Stoer and Bulirsch, 1992]). A rectangular grid with 200 points in each direction is
satisfactory for obtaining approximately double precision accuracy. In problems with
large numbers of non-normal-normal parameters, MCMC algorithms such as Hamiltonian
Monte Carlo or other methods can be used.

In Tables 1 and 2, n and k represent the size of the n× k random matrix X.
The column labeled “max error” provides the maximum absolute error of the ex-

pectations of σ1, σ2, and βi for i ∈ {1, 2, . . . , n}. The true solution was evaluated using
trapezoid rule with 500 nodes in each direction in extended precision.

In Table 1, “Precompute time (s)” denotes the time in seconds of all computations
until numerical integration. These times are dominated by the cost of SVD (36). The
total time of the numerical integration in addition to the matrix-vector product (18) is
given in “integrate time (s).” The final column of Table 1, “total time (s)”, provides the
total time of precomputation and integration.

7 Generalizations and Conclusions

In this paper, we present a numerical scheme for the evaluation of the expectations of a
particular class of distributions that appear in Bayesian statistics; posterior dsitributions
of linear regression problems with normal-normal parameters.

The scheme presented generalizes naturally to several classes of distributions that
appear frequently in Bayesian statistics. We list several examples of posteriors whose
expectations can be evaluated using this method.

9



n k max error precompute time (s) integrate time (s) total (s)

50 5 0.22× 10−13 0.01 0.01 0.02
100 10 0.26× 10−13 0.02 0.01 0.03
500 20 0.30× 10−13 0.04 0.01 0.05
1000 50 0.34× 10−13 0.09 0.03 0.12
5000 100 0.37× 10−13 0.29 0.05 0.34
10000 500 0.26× 10−13 14 0.3 14.2
10000 1000 0.39× 10−13 54 0.6 54.5

Table 1: Scaling of computation times for evaluation of expectations of q (see (1)) using
Algorithm 1

100 101 102 103

10−1

100

101

102

k

ti
m

e
(s

)

Timings for n = 10, 000

Figure 4: Scaling of computation times for evaluation of posterior expectations of q (see
(1)) using Algorithm 1 as a function of k with n = 10, 000.

SVD-Trap SVD-MCMC MCMC

n k time (s) error time (s) error time (s) error

100 100 0.16 0.9× 10−14 11 0.4× 10−4 16 0.1× 10−1

200 100 0.16 0.9× 10−14 11 0.3× 10−2 24 0.8× 10−2

500 100 0.23 0.9× 10−13 12 0.2× 10−2 40 0.8× 10−2

1000 100 0.25 0.2× 10−13 12 0.6× 10−3 88 0.7× 10−2

5000 100 0.30 0.4× 10−13 14 0.2× 10−3 617 0.3× 10−2

10000 100 0.65 0.2× 10−13 13 0.4× 10−3 2552 0.2× 10−2

Table 2: Scaling of computation times for evaluation of expectations of q (see (1)) using
three different algorithms: i) SVD-Trap: Algorithm 1 of this paper, ii) SVD-MCMC:
marginalization with MCMC integration of q̃ using Stan, and iii) MCMC: full MCMC
integration of q using Stan.

10



102 103 104
10−1
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101
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m

e
(s

)

Timings for k = 100

SVD-Trap
SVD-MCMC

MCMC

Figure 5: Scaling of computation times for evaluation of posterior expectations of q (see
(1)) as a function of sample size n with k = 100. The three algorithms comapred are
i) SVD-Trap: Algorithm 1 of this paper, ii) SVD-MCMC: marginalization with MCMC
integration of q̃ using Stan, and iii) MCMC: full MCMC integration of q using Stan.

1. The choice of priors for σ1, and σ2 in this document were log normal and half-normal.
This choice did not substantially impact the algorithm and can be generalized. Adaptive
Gaussian quadrature can be used for the numerical integration step of the algorithm for
a more general choice of prior on σ1 and σ2.

2. Multilevel regression problems with more than two levels.

3. Regression problems with multiple groups such as the two-group model with posterior

exp

− 1

2σ21
‖Xβ − y‖2 − 1

2σ22

k1∑
i=1

(µ1 − βi)2 −
1

2σ23

k1+k2∑
i=k1+1

β2i

 (27)

where X is a n× k matrix, y ∈ Rn, and k1 and k2 are non-negative integers satisfying
k1 + k2 = k.

3. Regression problems with correlated priors on β:

exp

(
− 1

2σ22
‖X1β − y‖2 −

1

2σ21
‖X2β‖

)
(28)

For regression problems with large numbers of non-normal-normal parameters, marginal
expectations can be computed using, for example, MCMC in Stan. For such problems,
the algorithm of this paper would convert an MCMC evaluation from k +m dimensions
to m dimensions, where k is the number of normal-normal parameters.
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A Code

The following Stan code allows for sampling from the distribution corresponding to the
probability density function proportional to (1).

data {

int n;

int k;

vector[n] y;

matrix[n,k] X;

}

parameters {

real<lower=0> sigma1;

real<lower=0> sigma2;

vector<offset=0, multiplier=sigma1>[k] beta;

}

model {

y ~ normal(X*beta, sigma2);

beta ~ normal(0, sigma1);

sigma1 ~ lognormal(0, 0.25);

sigma2 ~ normal(0, 1);

}

The following Stan program samples from the marginal density q̃ (see (13)). The data
input yty corresponds to yty of (10), lam is the vector of singular values of X, and w is
the vector w in equation (11). We include R code for computing yty, lam, and w after
the following Stan code.

functions {

real q_tilde_lpdf(real sig1, real sig2, vector w, vector lam, real yty,

int k, int n) {

vector[min(n,k)] a2 = lam^2/(sig2^2) + 1/(sig1^2);

real sol = sum(w^2 ./a2)/2/sig2^4 - sum(log(a2))/2 -yty/(2*sig2^2);

sol += -min(n,k)*log(sig1) - n*log(sig2);

return sol;

}

}

data {

int n;

int k;

vector[min(n,k)] w;

vector[min(n,k)] lam;

real yty;

matrix[min(n,k),k] V;

12



}

parameters {

real<lower=0> sigma1;

real<lower=0> sigma2;

}

model {

sigma1 ~ q_tilde(sigma2, w, lam, yty, k, n);

sigma1 ~ lognormal(0, 0.25);

sigma2 ~ normal(0, 1);

}

generated quantities {

vector[k] beta;

{

vector[min(n,k)] zvar = 1 ./(2*(lam^2 ./(2*sigma2^2) + 1/(2*sigma1^2)));

vector[min(n,k)] zmu = w./sigma2^2 .* zvar;

vector[min(n,k)] z = to_vector(normal_rng(zmu, sqrt(zvar)));

beta = V * z;

}

}

The following is a sample of code from R that can be used for the precomputation stage
of Algorithm 1.

udv <- svd(X)

V <- udv$v

lam <- as.vector(udv$d)

w <- t(V) %*% t(X) %*% y

w <- as.vector(w)

yty <- t(y) %*% y

yty <- yty[1]

B Proofs

In this appendix, we include proofs of the formulas provided in this paper. For increased
readability, this appendix is self-contained.

B.1 Mathematical Preliminaries and Notation

In this section, we introduce notation and elementary mathematical identities that will
be used throughout the remainder of this section.

We define C ∈ R by the equation

C =

∫
σ1∈R+

∫
σ2∈R+

∫
β∈Rk

q(σ1, σ2, β)dβdσ2dσ1, (29)

and define E(σ1), E(σ2), and E(βi) by the formulas

E(σ1) =
1

C

∫
σ1∈R+

∫
σ2∈R+

∫
β∈Rk

σ1q(σ1, σ2, β)dβdσ2dσ1, (30)

13



E(σ2) =
1

C

∫
σ1∈R+

∫
σ2∈R+

∫
β∈Rk

σ2q(σ1, σ2, β)dβdσ2dσ1, (31)

and

E(βi) =
1

C

∫
σ1∈R+

∫
σ2∈R+

∫
β∈Rk

βiq(σ1, σ2, β)dβdσ2dσ1 (32)

for i ∈ {1, 2, . . . , k}.
We provide algorithms for the evaluation of (29), (30), (31), and (32).
We will be denoting by 1 the vector of ones

1 = (1, 1, . . . , 1)t. (33)

We denote the ith component of a vector v by vi.
The following two well-known identities give the normalizing constant and expectation

of a Gaussian distribution.

Lemma B.1. For all σ1, σ2 > 0 we have

√
2πσ =

∫
R

e
−(β−µ)2

2σ2 dβ (34)

Lemma B.2. For all µ in R and σ > 0, we have

µ
√

2πσ =

∫
R

βe
−(β−µ)2

2σ2 dβ (35)

B.2 Analytic Integration of β

We denote the singular value decomposition of X by

X = UDV t (36)

where U is an orthogonal n× k matrix, V is an orthogonal k× k matrix, and D is a k× k
diagonal matrix. We define z ∈ Rk by the formula

z = V tβ. (37)

The following lemma, which will be used in the proof of Lemma B.5, gives an expression
for the second to last term of the exponent in (1) after a change of variables.

Lemma B.3. For all β ∈ Rk, and y ∈ Rn,

− 1

2σ22
‖Xβ − y‖2 = − y

ty

2σ22
+

k∑
i=1

− λ2i
2σ22

z2i +
wi
σ22
zi (38)

where

w = V tXty, (39)

z is defined in (37), and λi is the ith entry on the diagonal of D (see (36)).
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Proof. Clearly,

‖Xβ − y‖2 = βtXtXβ − 2ytXβ + yty. (40)

Substituting (36) and (37) into (40), we obtain

‖Xβ − y‖2 = βt(UDV t)t(UDV t)β − 2ytXV V tβ + yty

= (βtV )D2(V tβ)− 2yt(V tXt)tz + yty.
(41)

where z is defined in (37). Substituting (39) and (37) into (41), we have

‖Xβ − y‖2 = ztD2z − 2wtz + yty (42)

Equation (38) follows immediately from (42). �

The following lemma provides an equation for the last term of the exponent in (1).
The identity will be used in Lemma B.5.

Lemma B.4. For all σ1 > 0,

−‖β‖
2

2σ21
=

k∑
i=1

− z2i
2σ21

(43)

where β ∈ Rk, z is defined in (37), and V is defined in (36).

Proof. Clearly,

‖β‖2

2σ21
=

1

2σ21
(V z)t(V z) =

ztz

2σ21
(44)

where V is defined in (36). Equation (43) follows immediately from (44). �

The following formula combines Lemma B.3 and Lemma B.4 to convert the final two
terms of (1) into a Gaussian in k dimensions.

Lemma B.5.

−‖Xβ − y‖
2

2σ22
− ‖β‖

2

2σ21
= a0 +

k∑
i=1

a2,i(zi −
a1,i
2a2,i

)2 +
a21,i
4a2,i

(45)

where

a2,i =
λ2i
2σ22

+
1

2σ21
, (46)

a1,i =
wi
σ22

(47)

and

a0 = − y
ty

2σ22
(48)

where z is defined in (37), w is defined in (39) and V is defined in (36).
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Proof. By combining Lemma B.3 and Lemma B.4, we have

− 1

2σ22
‖Xβ − y‖2 − 1

2σ21
‖β‖2 = a0 +

k∑
i=1

(
a1,izi − a2,iz2i

)
. (49)

We obtain equation (45) by completing the square in equation (49). �

The following theorem is the principal analytical apparatus of this note. It provides a
formula for the k-dimensional integrals that appear in (29), (30), and (31).

Theorem B.6. For all σ1, σ2 > 0∫
Rk

q(σ1, σ2, β)dβ = q̃(σ1, σ2) (50)

where q̃(σ1, σ2) is defined by the formula

q̃(σ1, σ2) = σ
−(k+1)
1 σ−n2 exp

(
− log2(σ1)−

σ22
2

+ a0 +
k∑
i=1

a21,i
4a2,i

)
√

2π
k

k∏
i=1

1√
2a2,i

(51)

where a2,i is defined in (46), a1,i is defined in (47) and a0 is defined in (48).

Proof. Using (1), clearly∫
Rk

q(σ1, σ2, β)dβ = σ
−(k+1)
1

∫
Rk

exp

(
− log2(σ1)−

σ22
2
− 1

2σ22
‖Xβ − y‖2 − 1

2σ21
‖β‖2

)
dβ

(52)

Performing the change of variables (37) and substituting (45) into (52), we have∫
Rk

q(σ1, σ2, β)dβ =

exp

(
− log2(σ1)−

σ2

2
+ a0 +

k∑
i=1

a21,i
4a2,i

)∫
Rk

exp

(
k∑
i=1

a2,i(zi −
a1,i
2a2,i

)2

)
dz

(53)

Since the integrand on the right side of (53) is a Gaussian in zi, equation (50) follows
from applying Lemma B.1 to (53). �

The following theorem provides a formula for the expectation of z (see (37)). We use
this formula, in combination with an orthogonal transformation, to obtain the expectation
of β.

Theorem B.7. For all σ1 > 0 and σ2 ∈ R,∫
Rk

(V tx)iq(σ1, σ2, β)dβ =
a1,i
2a2,i

q̃(t) (54)

where q is defined in (1), q̃ is defined in (51), a2,i is defined in (46), a1,i is defined in
(47), a0 is defined in (48).
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Proof. Combining (53) and (37), we have∫
Rk

(V tβ)iq(σ1, σ2, β)dβ =

exp

(
− log2(σ1)−

σ22
2

+ a0 +

k∑
i=1

a21,i
4a2,i

)∫
Rk

zi exp

(
k∑
i=1

a2,i(zi −
a1,i
2a2,i

)2

)
dz.

(55)

Applying Lemma B.2 to (55), we obtain (54). �
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