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Abstract

The histogram estimator of a discrete probability mass function often exhibits undesir-
able properties related to zero probability estimation both within the observed range
of counts and outside into the tails of the distribution. To circumvent this, we for-
mulate a novel second-order discrete kernel smoother based on the recently developed
mean-parametrized Conway–Maxwell–Poisson distribution which allows for both over-
and under-dispersion. Two automated bandwidth selection approaches, one based on
a simple minimization of the Kullback–Leibler divergence and another based on a more
computationally demanding cross-validation criterion, are introduced. Both methods
exhibit excellent small- and large-sample performance. Computational results on simu-
lated datasets from a range of target distributions illustrate the flexibility and accuracy
of the proposed method compared to existing smoothed and unsmoothed estimators.
The method is applied to the modelling of somite counts in earthworms, and the num-
ber of development days of insect pests on the Hura tree.

Keywords: mean-parametrized Conway–Maxwell–Poisson distribution, discrete
associated kernel smoothing

1. Introduction

Kernel smoothing for continuous probability densities has been covered extensively
in the literature (see, for example, Rosenblatt, 1956; Parzen, 1962; Deheuvels, 1997;
Silverman, 1986; Botev et al., 2010, among others). In contrast, kernel smoothers for
discrete distributions have not been explored much, perhaps because the histogram is
already a consistent estimator of the underlying probability mass function and exhibits
certain optimality properties across samples (Kokonendji & Kiessé, 2011; Kiessé, 2017).

However, for any given sample of counts, even those with moderately large sam-
ple sizes, there are often two undesirable properties of the empirical distribution for
estimating the underlying discrete distribution:

1. There is a gap within the observed support. For example, in the sample of n = 50
counts in Figure 1 there were no observations with value 14, 17, 18, or between
20 and 34 inclusively, and so on. To estimate the underlying probability at these

Preprint submitted to arXiv August 17, 2021

ar
X

iv
:2

01
0.

03
30

2v
3 

 [
st

at
.M

E
] 

 1
4 

A
ug

 2
02

1



(a) Histogram of a sample of counts (n=50)
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(b) with smoothed (red) and true (blue) pmf
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Figure 1: Histogram of a sample of n = 50 counts from a bimodal Poisson mixture distribution, with
the Conway-Maxwell-Poisson associated kernel smoothed (red) and true (blue) pmfs overlayed.

non-observed values as exactly zero (i.e., P̂ (X = x) = 0 for x = 14, 17, 18, and
P̂ (20 ≤ X ≤ 34) = 0)) does not seem reasonable if the underlying distribution
is smooth. Therefore, some sort of in-filling may be appropriate for any given
sample.

2. Tail probabilities outside the observed support are necessarily assigned zero prob-
ability. For example, in the sample in Figure 1 there were no observations with
value below 6 or above 65. To estimate the underlying tail probabilities as ex-
actly zero (i.e., 0 = P̂ (X ≤ 5) = P̂ (X ≥ 66)) does not seem reasonable if the
underlying distribution has no strict upper or lower bound (apart from 0). Thus,
some sort of smoothing into the tails may also be helpful for any given sample.

Additionally, a reviewer pointed out that another important motivating factor for
discrete kernel smoothing is that many count datasets arise from discretizing an un-
derlying continuous random variable. For example, in Section 5.2 we consider the
developmental period of the spirally whitefly from an egg to adult stages, which could
be measured in hours (or even minutes) but is recorded only as integer days. It is
therefore expected that the resulting count distribution is “smooth” because it is a
discretization of some underlying continuous density.

This note introduces a consistent second-order discrete associated kernel smoother
for estimating probability mass functions (pmfs) using on the recently developed mean-
parametrized Conway–Maxwell–Poisson (CMP) distribution (Huang, 2017). This fam-
ily of discrete distributions behaves similarly to the continuous normal distribution in
that it is characterized by a mean (location) and dispersion (scale) parameter, with
the two parameters being functionally independent, making it a suitable candidate
for a discrete smoother. In particular, CMP kernels are unique amongst discrete dis-
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tributions in that they can be arbitrarily underdispersed, which is key to obtaining
consistency as the sample size increases. Applying the proposed estimator to the sam-
ple from Figure 1, coupled with the automated bandwidth choice prescribed in Section
3, gives the smoothed pmf illustrated by the red curve which offers a markedly im-
proved estimate of the underlying bimodal discrete distribution (blue curve) over the
naive histogram estimator.

A summary of the current literature associated with discrete kernel smoothing is
given in Section 2. In Section 3 we construct a new discrete estimator and outline an au-
tomated bandwidth selection method based on either minimizing the Kullback–Leibler
divergence or via cross-validation. In Section 4 we compare the proposed estimator
with existing first- and second-order discrete kernel smoothers of Kokonendji & Kiessé
(2011) and Kiessé (2017). In particular, it is demonstrated via extensive simulations
that the proposed estimator offers improved small, moderate, and large sample per-
formance compared with existing estimators. The proposed method is then applied
to two datasets in Section 5, the first on the counts of somites in earthworms and the
second counting the number of development days of the spirally whitefly on Hura fruit
trees.

2. Discrete Associated Kernels

The concept of a discrete associated kernel (dak) was introduced in Kokonendji &
Kiessé (2011) as a general method for estimating discrete pmfs, although earlier ad-hoc
methods were described in Marsh & Mukhopadhyay (1999), Kokonendji et al. (2007),
and Kokonendji & Zocchi (2010). This section summarises the current literature on
the class of pmf estimators based on daks.

2.1. Second-order discrete associated kernel estimators

A second-order dak is a family of pmfs {Kxh(·); x ∈ Sx, h ≥ 0} on support Sx ⊆ N
satisfying

lim
h→0

E(Kxh) = x and lim
h→0

var(Kxh) = 0 (1)

for every x ∈ Sx, where Kxh is a random variable with pmf Kxh(·) and h ≥ 0 is a

bandwidth parameter. A second-order dak estimator based on samples X1, . . . , Xn
iid∼ f

is then defined in Kokonendji & Kiessé (2011) as

f̂(x) =
1

n

n∑
i=1

Kxh(Xi) . (2)

Note that unlike continuous kernel density estimators, each kernel here is centred at
the point of probability estimation x rather than at each observation Xi. For the latter
approach, an alternative dak estimator of f(x) is

f̂(x) =
1

n

n∑
i=1

KXih(x), (3)
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where each kernel is centred at the observed values Xi and evaluated at the point of
estimation x. Kokonendji & Kiessé (2011) note that the first formulation is often easier
to work with mathematically. However, the second formulation is often computation-
ally quicker because we need only evaluate each kernel at each unique observation.
Note that if the kernel function is symmetric then both formulations are equivalent.

Second-order daks are preferred because they exhibit consistency. Suppose (1)
holds. Then the main results from Kokonendji & Kiessé (2011) give

lim
n−→∞E{f̂(x)− f(x)}2 = 0 and f̂(x)

a.s.−−→ f(x) for every x ∈ N , (4)

for any sequence h → 0 as n → ∞. In particular, the usual condition limn−→∞{h +
(nh)−1} = 0 for continuous kernel density estimation is not required for these consis-
tency results.

Although condition (1) looks like a simple requirement, it is not at all trivial to
satisfy for discrete distirbutions. Indeed, only two examples have been presented in the
literature, with this paper providing a third and, arguably, only non-trivial family of
discrete kernel functions satisfying this requirement. The first example in the literature
is the naive histogram estimator, which is a dak estimator with Dirac-delta kernel
functions satisfying (1) trivially. The only other second-order dak estimator that has
been proposed in the literature uses the symmetric triangular kernel introduced in
Kokonendji et al. (2007):

Kxh(y) ∝ (a+ 1)h − |y − x|h , for y ∈ Sx, (5)

where h ≥ 0 is the bandwidth, a is a fixed range parameter, and the support of each
kernel is the finite set Sx = {x, x±1, . . . , x±a}. Although the triangular dak estimator
is consistent, it can offer poor finite-sample performance due to a boundary bias to the
left of N because the kernels can assign probability to negative integers when centred at
0 ≤ x < a. Kokonendji & Zocchi (2010) remedy this by using a modified asymmetric
triangular kernel near 0 and the usual symmetric kernel away from 0. However, because
each triangular kernel has a finite support either side of its center, it necessarily assigns
zero probability to values that are beyond ±a outside the observed range, or if there is a
gap in the observed support that spans more than 2a. Thus, the undesirables qualities
of the naive histogram estimator are still present for triangular dak estimators. The
second-order dak estimator based on the CMP distribution in this note does not exhibit
such drawbacks.

2.2. First-order discrete associated kernels

An alternative to second-order daks is first-order daks, such as the Poisson, binomial
and negative-binomial kernels discussed in Kokonendji & Kiessé (2011), which relax
the variance criterion in (1) to the less strict condition,

lim
h−→0

var(Kxh) ∈ V0, (6)
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where V0 is some neighbourhood of 0 not depending on x. While some first-order
dak estimators have been demonstrated (via simulations) to perform better than the
second-order histogram and triangular estimators for small to medium sample sizes
(Kokonendji & Kiessé, 2011), they lose consistency because they do not satisfy (1); see
Kiessé (2017) for further explanation.

Of these, the best performing first-order dak is the binomial, and so we will compare
our proposed estimator to the binomial dak estimator via simulations in Section 4.
In short, the proposed estimator exhibits improved finite-sample performance over
all competing first-order and second-order daks while still retaining consistency for
increasingly large samples, thereby offering the best of both worlds.

3. Conway–Maxwell–Poisson discrete associated kernel smoother

A recent advancement by Huang (2017) showed that the Conway–Maxwell–Poisson
(CMP) distribution, which is a generalization of the Poisson distribution, can be char-
acterized by its mean µ ≥ 0 and dispersion ν ≥ 0, with the two parameters being
functionally independent. The subsequent mean-parametrized CMP distribution has
pmf given by

C(x;µ, ν) =
1

Z(λ(µ, ν), ν)

λ(µ, ν)x

(x!)ν
, for x ∈ N ,

where Z(λ, ν) =
∑∞

x=0 λ
x/(x!)ν is the normalizing constant of the distribution, and

λ(µ, ν) satisfies 0 =
∑n

x=0(x−µ)λx/(x!)ν . It can be shown that ν < 1, ν = 1 and ν > 1
correspond respectively to overdispersion, equidispersion and underdispersion relative
to the Poisson(µ) distribution (see Huang, 2017, Section 2). Moreover, using the same
arguments as in Huang (2021), the family of mean-parametrized CMP distributions
can be shown to be second-order daks for increasingly large ν. Indeed, the CMP
distribution is currently the only known generalization of the Poisson that is a second-
order dak, making it uniquely suitable for consistent discrete kernel smoothing.

Proposition 3.1. The pmfs {C(·;µ, ν)} are second-order daks satisfying

lim
ν→∞

E(C(·;µ, ν)) = µ and lim
ν→∞

var(C(·;µ, ν)) = 0 , for every µ ∈ N .

Given samples X1, . . . , Xn from some discrete distribution f , a CMP dak smoother
with bandwidth h ≥ 0 can then be constructed by placing kernel functions C(x;µ, ν)
with mean µ centered at each observation Xi and dispersion index ν = 1/h so that
h→ 0 implies ν →∞:

f̂cmp(x) =
1

n

n∑
i=1

C(x;Xi, 1/h), for x ∈ N . (7)

By adapting the main results from Kokonendji & Kiessé (2011) to the CMP dak esti-
mator (7), we can show that it is consistent for the underlying pmf f(x):
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Proposition 3.2. Let h be any sequence of bandwidths such that h → 0 as n → ∞.
Then,

lim
n−→∞E{f̂cmp(x)− f(x)}2 = 0 and f̂cmp(x)

a.s.−−→ f(x) for every x ∈ N .

3.1. Bandwidth selection via minimising Kullback–Leibler divergence

As with any kernel smoothing method, bandwidth selection plays a crucial role
in determining finite-sample performance. Here, we consider a simple and computa-
tionally efficient bandwidth selection method that is inspired by a discrete analogue
to Silverman’s rule-of-thumb: optimize for a nominal target discrete distribution but
adapt well (or “fail gracefully”) for departures from the nominal distribution.

For a pure count process, the default target would be the Poisson distribution.
However, the problem of zero probability estimation both within and outside the ob-
served support is more prevalent for overdispersed distributions, making the Negative-
Binomial distribution a reasonable candidate also. To this end, write fpois(x;λ) for the
pmf of Poisson(λ) distribution and fnb(x;µ, r) for the pmf of the Negative-Binomial(µ, r)
distribution with mean µ and variance µ+ µ2/r. Then given a sample X1, ..., Xn from
some distribution f , the best fitting Poisson distribution would be f̂pois with λ = X̄

and for the Negative-Binomial distribution f̂nb with µ = X̄ and r = X̄2/(S2 − X̄)
by the method-of-moments. We then choose the bandwidth hKL that minimizes the
worst-case Kullback–Leibler divergence from f̂pois or f̂nb to the CMP dak estimator,

hKL = arg min
h≥0

[
max

{
KL
(
f̂cmp‖f̂pois

)
, KL

(
f̂cmp‖f̂nb

)}]
,

where KL(P ||Q) =
∑

x P (x) log [P (x)/Q(x)] for discrete distributions P and Q. We
demonstrate in the next section that this simple “minimax”-type bandwidth selection
approach leads to CMP dak estimators that can perform better than the binomial and
triangular dak estimators of Kokonendji et al. (2007) and Kokonendji & Kiessé (2011)
in terms of the integrated squared error (ISE) for different types of target distributions
across small and large sample sizes. This is somewhat surprising, given that the two
competing methods employ cross-validated bandwidths specially designed to minimise
an ISE-type criterion.

3.2. Bandwidth selection via cross-validation of predictive probabilities

Alternatively, when the sample of counts exhibits particularly interesting features
such as severe underdispersion or strong left-skewness, a more computationally inten-
sive bandwidth selector via leave-one-out cross-validation can be constructed as follows:
for each observation j = 1, 2, . . . , n, construct the CMP dak estimator omitting obser-
vation j, i.e.,

f̂ (−j)
cmp (x) =

1

n− 1

∑
i 6=j

C(x,Xi, 1/h) ,
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Figure 2: Six target distributions used in simulations for comparing accuracy of competing estimators

and then evaluate the estimated pmf at the omitted observation, f̂
(−j)
cmp (Xj). The op-

timal cross-validated bandwidth hCV is then defined as the value of h that maximizes

the likelihood
∏n

j=1 f̂
(−j)
cmp (Xj), or equivalently, the log-likelihood

∑n
j=1 log

(
f̂
(−j)
cmp (Xj)

)
.

Note that the cross-validation criterion here is based on predictive probabilities of each
observation and is distinct from L2 cross-validation that is common in kernel esti-
mation literature. Predictive probabilities are arguably more appropriate for discrete
distributions than L2 norms.

As demonstrated next, the cross-validated bandwidth hCV can perform as well as
or even better than the minimum Kullback–Leibler bandwidth hKL (at the cost of
computational speed).

4. Simulation study

Six target distributions displayed in Figure 2, covering a range of unimodal, bi-
modal, trimodal, zero-inflated, equidispersed and overdispersed discrete distributions,
were used to compare the accuracy of the CMP dak estimator (7) against the histogram,
first-order binomial and second-order triangular dak estimators. To fit the CMP dak
estimator we use the compak R package from the authors’ Github, which is built on
Fung et al. (2019)’s mpcmp package for fitting mean-parametrized CMP models, while
the triangular and binomial daks were fit using the Ake R package by Wansouwé et al.
(2015). The histogram estimator was computed using hist in base R. All computations
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estimator
histogram binomial triangular CMP (hKL) CMP (hCV)

Target n mean sd mean sd mean sd mean sd mean sd
f1 20 46.2 19.6 14.2 9.3 15.5 11.3 5.3 4.7 8.6 7.9

50 18.2 7.8 5.9 4.0 6.1 3.9 2.8 2.2 3.7 3.4
100 9.3 4.3 2.5 1.5 3.2 2.4 1.8 1.3 2.3 1.7

f2 20 45.8 18.9 16.4 9.6 17.8 10.8 8.3 7.0 10.8 8.7
50 18.3 7.7 6.4 4.0 8.6 4.3 4.2 3.0 5.2 3.7

100 9.1 3.8 3.1 1.5 5.1 2.0 2.3 1.7 2.8 2.0
f3 20 47.1 14.8 14.4 6.7 15.7 8.0 8.5 4.4 5.7 6.2

50 18.6 5.9 5.9 3.1 6.2 3.3 4.7 2.2 2.7 2.2
100 9.6 3.1 2.9 1.4 3.2 1.7 3.0 1.3 2.6 1.2

f4 20 49.2 12.7 15.2 5.7 16.6 7.2 4.4 2.7 5.0 3.3
50 21.6 5.1 6.9 2.4 7.3 2.9 2.0 1.2 2.4 1.4

100 9.9 2.3 3.1 1.1 3.3 1.4 1.2 0.7 1.5 0.9
f5 20 47.6 14.8 14.7 6.2 16.4 8.3 6.2 3.6 5.7 4.5

50 18.9 5.0 5.7 2.6 6.3 2.6 3.4 1.8 3.0 2.1
100 10.0 3.1 3.3 1.6 3.5 1.8 2.1 1.1 1.7 1.1

f6 20 46.9 12.8 14.9 5.3 15.3 6.6 5.4 3.2 5.0 3.2
50 19.8 5.1 6.3 2.1 6.8 2.7 2.8 1.5 2.8 1.7

100 9.9 2.7 3.1 1.1 3.4 1.4 1.8 0.9 1.7 0.9

Table 1: Mean and standard deviation of the integrated squared error (×10−3) between the estimated
and true pmfs across N = 1000 simulations for each setting. The lowest ISE in each setting is displayed
in bold.

were carried out on a Windows laptop with an Intel i7-5600 CPU at 2.6GHz and 16GB
of RAM.

For each scenario, a sample of n = 20, 50 or 100 observations were generated and
all four estimators were fit to the same dataset. Following Kokonendji & Kiessé (2011),
goodness-of-fit is measured using the ISE between the estimated f̂ and the true f pmfs:

ISE =
∞∑
x=0

(f̂(x)− f(x))2 .

This was repeated over N = 1000 simulations in each setting, and the average ISE
values, along with their standard deviations, are given in Table 1.

We see from Table 1 that for each target distribution and for any sample size, the
CMP dak estimator with either the minimum KL or cross-validated bandwidth always
had the smallest ISE. The difference between the two bandwidth selection methods is
also minimal in most cases, and both provide a marked improvement over the naive
histogram as well as the triangular and binomial estimators. Additional simulations
carried out by the authors for larger samples also demonstrate the consistency of the
proposed estimators for increasing sample sizes.

The average time taken to fit the CMP dak on n = 100 samples from target
distribution f6 was 0.06 seconds when using the KL bandwidth and 3.9 seconds when
using cross-validation. Both of these are an order of magnitude faster than the binomial
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and triangular daks from the Ake package which took on average 17.7 and 22.7 seconds,
respectively.

4.1. Tail probability estimation

We also examine each competing estimator’s ability to smooth into the tails of
the distribution. For each target distribution, consider estimating P (X > x(0.99)), the
probability of observing a value exceeding the top percentile x(0.99), via

P̂ (X > x(0.99)) = 1−
x(0.99)∑
x=0

f̂(x) ,

where f̂ is a pmf estimator. For samples of size n = 100 we expect to observe only one
realization within this range, and for smaller sample sizes we would expect fewer than
one. Hence, P̂ (X > x(0.99)) = 0 typically for the histogram estimator and so some sort
of smoothing is required for such tail probability estimation.

The accuracy of tail probability estimation is assessed via the relative error measure,

r =

∣∣∣∣ log10

P̂ (X > x(0.99))

P (X > x(0.99))

∣∣∣∣ ,
so that r = 0 when P̂ (X > x(0.99)) = P (X > x(0.99)) and r > 0 otherwise. This
measure is symmetric in quantifying the magnitude of over or under estimation of the
tail probability; for example, estimating either 0.1 or 0.001 for a true tail probability
of 0.01 will both be r = 1 order of magnitude off.

Table 2 gives the simulation averages and standard deviations of the relative errors
for the binomial, triangular and CMP dak estimators for the six target distributions.
The column “∞” shows the proportion of estimates for which the relative error di-
verged, and is included for the binomial and triangular estimators because they, much
like the histogram estimator, have finite support that often do not contain the upper
percentile of the underlying target distribution.

We see from Table 2 that the CMP dak estimator consistently outperforms the
binomial and triangular estimators for tail probability estimation, especially after tak-
ing into account the proportion of divergent relative errors. In particular, the CMP
dak offers significantly improved tail estimation for the bimodal and trimodal target
distributions (f4, f5, and f6) for which the upper percentile can be quite separated
from the bulk of the observed data, making tail probabilities particularly difficult to
estimate. Analogous simulations for estimating smaller tail probabilities of 0.5% and
0.1% were carried out by the authors, with the results further demonstrating the im-
proved accuracy of the CMP dak estimator for smoothing into the tails of the target
distribution.
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estimator
binomial triangular CMP (hKL) CMP (hCV)

Target n mean sd ∞ mean sd ∞ mean sd mean sd
f1 20 1.167 0.897 11.4% 1.278 2.964 75.2% 0.383 0.277 0.805 0.926

50 0.670 0.563 5.9% 0.901 2.700 47.1% 0.325 0.214 0.585 0.673
100 0.403 0.348 0.1% 0.371 1.225 25.6% 0.242 0.156 0.360 0.375

f2 20 1.414 1.217 8.0% 2.790 4.900 70.3% 0.420 0.292 0.787 0.771
50 0.744 0.761 3.5% 0.893 2.657 50.5% 0.322 0.226 0.554 0.572

100 0.441 0.380 0.1% 0.592 1.975 26.3% 0.266 0.170 0.387 0.332
f3 20 4.292 3.476 8.2% 1.823 3.753 78.3% 1.515 0.961 0.958 1.144

50 2.130 2.336 3.8% 1.363 3.531 53.6% 1.187 1.085 0.614 0.788
100 0.956 1.391 1.8% 0.526 1.941 31.4% 0.773 1.020 0.373 0.444

f4 20 2.952 2.440 1.9% 1.298 2.914 76.2% 0.428 0.308 0.597 0.586
50 1.480 1.600 1.6% 0.902 2.688 51.1% 0.346 0.231 0.442 0.383

100 0.703 0.873 0.5% 0.375 1.351 28.1% 0.254 0.166 0.318 0.264
f5 20 2.589 2.161 3.9% 1.813 3.716 78.2% 0.824 0.671 0.736 0.834

50 1.287 1.342 2.4% 0.982 2.861 55.5% 0.616 0.591 0.524 0.576
100 0.691 0.784 1.2% 0.545 1.961 34.2% 0.445 0.468 0.363 0.358

f6 20 4.367 3.724 9.4% 1.833 3.798 77.7% 0.814 0.680 0.712 0.858
50 2.307 2.470 1.4% 0.955 2.734 57.7% 0.590 0.574 0.457 0.478

100 0.976 1.447 0.6% 0.381 1.390 32.1% 0.384 0.435 0.332 0.334

Table 2: Mean, standard deviation, and percentage of ∞ of the tail probability relative error over
N = 1000 simulations for each setting. The lowest relative error in each setting is displayed in bold.

5. Applications

5.1. Somite counts in earthworms

Owen (2001) describes a dataset from Pearl & Fuller (1905) on the number of body
segments, known as somites, in common garden earthworms. Figure 3(a) shows the
histogram of the number of somites on each of 487 worms gathered near Ann Arbor,
Michigan, along with the smoothed CMP dak estimate. The strong left-skewness in
the data may be due to size-biased sampling, where longer earthworms are easier to
observe and gather for counting. The gaps in the counts, between 80–88 or 160–162 say,
are surely due to the sampling process and not from any biological or physical reasons,
so the proportion of earthworms with somite counts within those ranges should not be
exactly zero. To this end, the smoothed CMP dak pmf estimates the proportion of
earthworms with somites in these ranges to be P̂ (80 ≤ X ≤ 88) = 0.3% and P̂ (160 ≤
X ≤ 162) = 0.7%. To put these into context, this means that in another sample
of n = 487 earthworms we would expect to see 1.5 earthworms with somite counts
between 80–88 and 3.4 with somite counts between 160–162. For tail probabilities, the
smoothed CMP dak pmf estimates the proportion of earthworms having fewer than
79 somites to be P̂ (X ≤ 78) = 0.1% and more than 164 to be P̂ (X ≥ 165) = 0.2%,
which allows for the possibility of observing an earthworm with fewer or more somites
than in the current sample. Finally, because the CMP kernels are centred around the
observed values (and not at the point of estimation as in Kokonendji & Kiessé, 2011,
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Figure 3: Histograms and smoothed pmf estimators for (a) the number of somites in earthworms; and
(b) the count of development days of insect pests on the hura tree.

and others), the smoothed CMP dak estimator preserves the sample mean of the data.

5.2. Development days of insect pests on Hura trees

Kiessé (2017) describes a dataset on the count of days required for the insect pest
(spirally whitefly, Aleurodicus dispersus Russel) to develop from egg to adult stages
while being hosted on the Hura fruit tree plant (Hura crepitans). A histogram of
n = 51 counts of development days, along with the CMP dak smoothed pmf estimator,
is given in Figure 3(b). We see that the histogram, CMP dak, and the binomial and
triangular estimators presented in Kiessé (2017) all pick up possible bimodality in the
development days. However, here the CMP dak is unique amongst estimators because
it is the only one that fits a non-zero probability outside of the observed range of
25 days to 35 days; explicitly, P̂ (X ≤ 24) = 2.7% and P̂ (X ≥ 36) = 1.3%. Again,
because the CMP kernels are centred around the observed values (and not the target of
estimation) the CMP dak estimator preserves the sample mean of the data, a property
that is not true of other competing dak estimators.

6. Conclusion

A novel discrete kernel smoother has been formulated using mean-parametrized
CMP kernels from Huang (2017). Both the minimal KL and the cross-validated band-
width selection procedures yield improved estimators for a variety of target distribu-
tions. In particular, the ISE measure over the entire support and the accuracy of tail
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probability estimation for the CMP dak estimator are both demonstrated to be better
than existing smoothed and unsmoothed estimators. Further research into improving
the accuracy and computational efficiency of the automatic bandwidth selection for
the CMP dak estimator is warranted. In particular, we are keen to extend Botev et
al. (2010)’s linear diffusion process bandwidth selector to the discrete case. Finally,
the tail behaviour of the CMP dak estimator, and how it relates to the tail index α of
heavy-tailed pmfs P (X > x) ∝ xα, has also been earmarked for future investigation.
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