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Abstract 

In this study we propose a sequential test for hypothesis testing on the pmkC  process capability index. 

Furthermore, we propose a sequential sampling plan for lot acceptance based on pmkC . We compare 

the statistical properties of the sequential procedures with the performance of the corresponding non-

sequential methodologies by carrying out an extensive simulation study. The results show that the 

proposed sequential methods make it possible to reach decisions much more quickly, on average, 

than the fixed sample size procedures with the same discriminating power. 
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1. Introduction 

Process capability indices are the tools usually used for assessing processes performance in 

relationship to the design specifications. If we represent the process mean with  , the process 

standard deviation with  , the specification limits with LSL and USL, the half-length of the 

specification interval as   2d USL LSL  , the midpoint of the specification interval as 

  2m USL LSL  , and the target value of the process as T, the capability indices most widely used 

are (Kotz and Lovelace 1998, Polansky and Kirmani 2003, Pearn and Kotz 2006, Montgomery 2009): 

the potential capability index 

 
6 3

p

USL LSL d
C

 


  , (1) 

the actual capability index 

 
 1

2

3 3
pk

d USL LSL d m
C

 

 

    
  , (2) 

the loss-based capability index 

 

   
2 22 26 3

pm
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C
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 (3) 

and the index  

 

 
223

pmk

d m
C

T



 

 


 
, (4) 

which is constructed by combining the indices pkC  and pmC . Note that, for processes with target 

value set to the mid-point of the specification limits (T=m), the index pmkC  can be rewritten as  

 
23 1

pmk

d
C

 







, (5) 

where 
T





 . 

 

In the context of contractual agreements, it is often a requirement to provide evidence that a 

manufacturing process satisfies a minimum level of capability. The decision-making problem of 
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demonstrating whether the process capability exceeds a predetermined capability requirement can be 

approached in terms of hypothesis testing. 

Literature concerning process capability hypothesis testing includes significant amounts of 

interesting research. To name but a few: the pioneering work by Kane (1986); the tests on pkC  

investigated by Pearn and Chen (1999), Perakis and Xekalaki (2003), Pearn and Lin (2004), Chen 

and Hsu (2004) and Lin (2006); the Bayesian approach proposed by Fan and Kao (2006); the 

hypothesis testing studies on pmkC  by Pearn and Lin (2002) and Pearn et al. (2005); the model free 

approach testing procedure proposed by Vännman and Kulachi (2002); the study of the effect of 

pooled and un-pooled variance estimators on hypothesis testing concerning pmC  by Hubele and 

Vännman (2004); the unified analysis of hypothesis testing with process capability indices by Lepore 

and Palumbo (2015); the sequential procedure for testing the equality of two indices pmC  by Hussein 

et al. (2012), and the sequential test proposed by Scagliarini (2018). 

Furthermore, due to their ability to summarize adherence to design specifications in a single 

number, capability indices have also proven to be useful in the framework of lot-by-lot acceptance-

sampling plans. 

Sampling plans provide the producer and consumer with general decision rules for product acceptance 

while meeting their needs for product quality and managing the risks of not adequately reflecting the 

quality conditions of the lot. Acceptance sampling plans basically consist of a required sample size 

for inspection and an acceptance criterion, so that the producer and consumer risks meet 

predetermined standards. 

Sampling plans can be classified by: variables when the quality characteristics are measured on a 

numerical or continuous scale; attributes when characteristics are expressed on a “go, no-go” basis. 

Generally, numerical measurements of quality characteristics provide more information about the 

manufacturing process or lot than do attributes data. Thus, in today’s manufacturing industries where 

the allowable proportion of nonconforming products is very low, often measured in parts per million 

(PPM), variables sampling plans become very attractive since they allow the sample size to be 

significantly reduced. 

The relevance of process capability indices in the context of acceptance variables sampling plans is 

confirmed by numerous studies, including: Arizono et al. (1997); Pearn and Wu (2006a, and 2006b); 

Wu and Pearn (2008); Yen and Chang (2009); Negrin et al. (2009 and 2011); Wu et al. (2012); Lepore 

et al. (2018). 
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In this study, we propose a sequential test for the index pmkC  and a sequential sampling plan for lot 

acceptance based on pmkC . 

We analytically derive the test statistic of the sequential test and describe in detail the testing 

procedure. 

We then compare the statistical properties of the sequential test with those of the most widely used 

non-sequential test by performing an extensive simulation study.  

In analysing the performance of the sequential procedure, several issues should be taken into 

consideration, such as, for example, the behaviour of the stopping sample size required by the test to 

decide in favour of 0H  and 1H . This type of analysis is quite complex. However, it is more intuitive 

and easier to develop if worked out in the framework of a variables sampling plan based on pmkC . In 

such a way we can also propose a sequential sampling plan for variables which uses the index pmkC  

as the benchmark for acceptance of a batch of products. 

The results show that the proposed sequential procedures make it possible to reach decisions which, 

on average, allow the sample size to be reduced when compared with the non-sequential procedures, 

with consequent financial benefits and without any loss in quality. 

The paper is organized as follows. In Section 2, we review the non-sequential test, proposed by 

Pearn and Lin (2002), used for assessing whether a process is capable or not based on the pmkC  

process capability index. In Section 3, we present the general sequential test procedure, proposed by 

Hussein (2005) and Hussein et al. (2012). In Section 4, we analytically obtain the test statistic and 

propose the sequential procedure for hypotheses testing on pmkC . In Section 5, using the results 

obtained in Section 4, we develop a sequential sampling plan based on pmkC . In Section 6, we study 

the performance of the sequential test and the sequential sampling plan through a set of Monte Carlo 

simulations, and compare the proposed methods with the corresponding non-sequential procedures. 

Section 7 contains a discussion of the results. Finally, our concluding remarks are given in Section 8. 

 

2. Hypothesis test for the index Cpmk 

To verify whether a process conforms to specifications using the index pmkC  the hypotheses of 

interest are: 

0 0: pmk pmkH C C  (the process is not capable), 

versus  

1 0: pmk pmkH C C  (the process is capable). 
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Assuming a normally distributed quality characteristic,  2,X N   , Pearn and Lin (2002) 

proposed a statistical test (PL-test) based on the distribution of the estimator: 

 

     
2 2 22 2 2

ˆ min ,

3 3 3
pmk

n n n

d X TUSL X X LSL
C

S X T S X T S X T

 
   

  
      
 

, (6) 

 

where 
1

n

i

i

X X n


  and  
22

1

n

n i

i

S X X n


   are the maximum likelihood estimators of   

and 2 , respectively. 

For the case   2T USL LSL  , the cumulative distribution function of ˆ
pmkC  can be expressed as 

 

  
 
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2
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2

ˆ 20
1

9pmk
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C
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x
   


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        
   
 
 

  (7) 

 

for x>0, where b=d/, G() is the cumulative distribution function of the chi-square distribution 
2

1,n   

and () is the probability density function of the standard normal distribution. 

The decision rule of the test is to find 0C  and reject 0 0: pmk pmkH C C  if 
0

ˆ
pmkC C  and do not reject 

0H  otherwise. 

Given the values of the type-I error probability PL , the capability requirement 0pmkC , the sample 

size n and the parameter , the critical value C0 can be obtained by solving the equation 

 

 
 

   
 0

2

1 3
2

20
09

b n C

PL

b n t
G t t n t n dt

C
    


 
       
   
 
 

 . (8) 

 

It can be noted that equation (8) depends on the additional parameter , which in real applications is 

unknown. The estimation of  introduces additional sampling errors in finding the critical value 0C . 

Therefore, to eliminate the need to estimate , Pearn and Lin (2002) studied the behaviour of 0C  as 

a function of . They found that the condition 0.5   should provide conservative critical values 

(the condition would be 0.5  , however since (8) is an even function of  , the results for positive 
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and negative values are the same). The results for 0C  and the sample size n, for several combinations 

of PL  and 0pmkC , are given by Pearn and Lin (2002) in their Tables 1-5. 

Hence, for 1 0pmk pmkC C , given PL , n and 0C , the power of the PL-test can be written as 

 

 

   

 
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1 0 1

2
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2

20
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ˆPr
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9
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b n C

C C C C C

b n t
G t t n t n dt

C


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

  

 
       
   
 
 


 (9) 

where 2

13 1pmkb d C      . 

 

3. A general sequential method 

Here we describe the general sequential testing procedure proposed by Hussein (2005) and Hussein 

et al. (2012). In Section 4, this general multivariate framework will be specified for sequential 

hypothesis testing on pmkC . 

Let us denote with 1 2, ,..., ,...,kx x x  a sequence of independent observations of the random vector X, 

collected over time, with 
lRX . We assume that these data come from a common multivariate 

distribution with density function  ;f x θ , where the 1d   vector of parameters θ  is unknown. 

We are interested in testing 

  0 :H h θ 0  versus  1 :H h θ 0 , (10) 

 

where   : d qh R Rθ , with q d , is a function with first order derivative matrix denoted by  H θ . 

Let us assume that for dRθ  with q d  the following regularity conditions hold (Hussein et al. 

2012, Scholz 2006): 

C1. The distribution function  ;F x θ  of the random vector X is identifiable over θ , i.e. if ,θ θ  

then  ;F x θ  and  ;F x θ  are different distributions. 

C2. There exists an open subset, 0  , containing the true value of the parameter under 0H , such 

that the partial derivatives 

 ln ;
i

f
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f
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exist, are exchangeable, and are continuous for all lRx , 0θ . 

C3. For each 0θ  and 1,2,3,...,k   the score equation 
 

1

ln ;
0

k

i

f









x θ

θ
 has a unique solution. 

C4. There are functions of x,  1M x  and  2M x , that have finite expectations under any of the 

parameter values, 0θ , such that 

   1ln ;
i

f M






x θ x ,    

2

2ln ;
i j

f M
 




 
x θ x ,    

3

2ln ;
i j k

f M
  



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x θ x , 

for all 0θ , 1 i  ,j k d . 

C5.    ln ; 0iE f   x θ , 1 i d  , 0θ , where  E  denotes that the expectation is 

parameterized by θ. 

C6. The inverse of the Fisher information matrix  1I 
 and its elements 

     2 ln ;ij i jI E f      
 

x θ  exist and are continuous for all 0θ , 1 i , j d . 

C7.    2Var ln ;i j f       
 

x θ  for 1 i , j d . 

 

Let us further assume that: 

C8.    
2

ln ;iE f


 


   x θ , 1,2,...,i d , and for some 0  . 

C9. The function  h θ  is continuously differentiable over 0 , and its first-order derivative matrix 

 H θ  is bounded and of rank q. 

 

Let us now consider a fixed sample design with sample size equal to k and let us consider the Wald’s 

statistic 
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k k kW kh H I H h
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where ˆ
kθ  is a consistent estimator of θ . 

Hussein et al. (2012) in Theorem 1 showed that under 0H , and if conditions C1-C9 hold, there exists 

an independent Wiener process,  jB t , 1,2,...,j q , such that for  
1

1 2
2

     with >0, 
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    2

1

1 q

j

j

U x B x
x 

  , (13) 
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1
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t
t

kt kt kt
W kt h H I H h


   θ θ θ θ θ  (14) 

and  .  denotes the integer part of its argument. 

The statistic kW  can therefore be approximated by a functional of Brownian motions.  

Furthermore, the authors derived the limiting distribution of kW . In detail they showed that (Corollary 

1):  

 Under the conditions of Theorem 1 

  

1/21/2

2

1
1

max sup
qD

k j
k n

j

k
W B t

n 


  
      
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where 
D

  denotes convergence in distribution; 

 When replacing the unknown θ  in the term      1tH I H
θ θ θ  with any almost surely 

convergent estimator, Corollary 1 remains valid. 

 

Therefore, Hussein et al. (2012) defined the following as test statistic  

          
1

* 1ˆ ˆ ˆ ˆ ˆ
t

t

k k k k k kW kh H I H h


 
 

θ θ θ θ θ ,  (16) 

where ˆ
kθ  is the maximum likelihood estimator of θ , and proposed the following S -level sequential 

test truncated at the maximum allowable sample size 0n . 

The sequential test procedure is performed as follows: 

 For 02,3,...,k n  calculate the statistic 

 *(1) *

0k kW k n W ;  (17) 

 Reject the hypothesis 0H  the first time that 
*(1)

kW  exceeds the critical value 
S

w . Given the 

Type I error probability S , the critical value 
S

w  can be obtained in accordance with 

Borodin and Salminen (1996); 

 If 
*(1)

kW  does not exceed 
S

w  by 0n , then stop the sampling and do not reject 0H . 

The maximum sample size 0n  can be decided on the basis of financial, ethical or statistical reasons, 

for example as the smallest one that achieves a desired power level. 
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4. A sequential test for Cpmk 

Let us now consider the hypothesis 

 0 0: pmk pmkH C C , (18) 

versus  

 1 0: pmk pmkH C C  (19) 

and assume that the quality characteristic is normally distributed  2,X N   .  

For 0pmkC  , 0H  is equivalent to 

      2 2

0 0: ln ln 0pmk pmkH C C   (20) 

and the alternative hypothesis is equivalent to 

      2 2

1 0: ln ln 0pmk pmkH C C  . (21) 

 

Let us define the function  h θ  as 

            
2 2 2 2 2

0 0ln ln ln 9 1pmk pmk pmkh C C d C       
 

θ , (22) 

where, in analogy with the PL-test, we assume   as known. In such a way, as far as this issue is 

concerned, the sequential test is comparable with the PL-test. Please note that this assumption will be 

relaxed later in this Section and the effects   on the sequential test will be analysed in Section 7. 

With   assumed to be known, we have 2θ  and   : d qh R Rθ  with d=q=1 (Appendix A 

provides details concerning the satisfaction of conditions C1 to C9). Thus, the first order derivative 

matrix  H θ  can be written as 

 

  
 

 

22

2 2 2 2 2 22

d dh
H

d d

 

     

      
    

θ . (23) 

 

In the case at hand the statistic 
*

kW  is 

        
1

* 2 1ˆ ˆ ˆ ˆt

k k k k kW kh H I H


 
 

θ θ θ θ , (24) 

where 
2ˆ

k kSθ  with  
22

1

k

k i k

i

S X X k


  , the function  ˆ
kh θ  is given by  
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      
2

2 2 2

0
ˆ ln 9 1k k pmkh d S C 

 
    

θ  (25) 

and the partial derivative matrix of  h θ  computed at ˆ
kθ  can be written as 

 

  
 

2

2 2 2 2 2

ˆ

2

k

k

k k k

d S d
H

S S d S d



 

 
 
 

θ . (26) 

 

For normally distributed data with 2θ , the Fisher information matrix is   4

1

2
I


θ ; 

consequently, 
*

kW  can be written as 

 

   

 

 

2
2

2 2 2

0

*

2
2

4

2
2 2 2 2 2

ln 9 1

2

2

k pmk

k

k

k

k k k

k d S C

W

d S d
S

S S d S d

 



 

  
     

 
  

  
  

. (27) 

 

Therefore, given the value of S  and the maximum allowable sample size 0n , the test is performed 

by computing, for k=2,3,…, 0n , the statistic  

 

 

   

 

 

* 1 *

0

2
2

2 2 2

0

0 2
2

4

2
2 2 2 2 2

ln 9 1

2

2

k k

k pmk

k

k

k k k

W k n W

k d S C

k n

d S d
S

S S d S d

 



 



  
   

  
 
  

  
  

. (28) 

 

Let stopn  be the first integer k=2,3,…, 0n  for which 
 * 1

SkW w : 

 We reject 0H  if 
 * 1

SkW w  and stopn  is the stopping sample size of the test; 

 We do not reject 0H  if 
 * 1

kW  does not exceed 
S

w  by 0n  and 0n  is the stopping sample size 

of the test; 

 If 
 * 1

kW  does not exceed 
S

w  for 0
2 k n  , no decision can yet be made in favour of either 

of the two hypotheses and the decision is taken to continue observation. 
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In the case at hand, where q=1, the critical value 
S

w  is obtained from the distribution of  0 1sup .t B t   

Specifically, 
S

w  is such that (Feller, 1970): 

 
   

2 2

2
0

1 2 14
1 exp

2 1 8

k

S

k

k

k w










   
   

 
 

 . (29) 

As an example, for S = 0.02, 0.05, 0.1 and 0.2, the values of 
S

w  are 2.576, 2.241, 1.96 and 1.645 

respectively. 

In real applications, the parameter  T     is unknown and has to be estimated by substituting 

  and   with their estimators, i.e.  ˆ
k kX T S   , and the statistics 

 * 1

kW  should be calculated by 

substituting   with ̂ . We are aware that such an approach introduces a certain amount of variability. 

Therefore, for the sake of completeness, we will analyse the effects of   on the finite sample 

behaviour of the sequential test statistic in Section 7. 

 

5. A sequential sampling plan for variables based on Cpmk 

In order to compare the statistical properties of the sequential test with those of the PL-test, a suitable 

approach is to study the power functions of the tests under equal conditions.  

Note that the sequential test is two sided with composite alternative hypothesis 1 0: pmk pmkH C C , 

while the PL-test is unilateral. Thus, to correctly compare the two tests, cases under 1H  should be 

taken into consideration where 1pmk pmkC C  with 1 0pmk pmkC C . In this manner, the sequential 

bilateral test with Type I error probability S  can be compared with the non-sequential unilateral 

PL-test with Type I error probability equal to / 2PL S  . 

Furthermore, as far as the sequential test is concerned, it is also important to consider: 

 The role of the maximum allowable sample size 0n , since it affects the statistical properties 

of the sequential test both under 
0H  and 

1H ; 

 The behaviour of the stopping sample size stopn  required by the sequential test in order to 

decide in favour of 
0H  and 

1H . 

This complex analysis can be developed by studying the use of the proposed sequential test in the 

framework of a variables sampling plan based on pmkC . In such a way we can also propose a 

Sequential Sampling Plan (S-SP) based on pmkC . 
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Wu and Pearn (2008) used several results from Pearn and Lin (2002) for developing a variables 

sampling plan (WP-SP) based on pmkC . Their approach can be summarised as follows. 

The acceptance sampling plan uses pmkC  as benchmark for lot sentencing. The criterion used for 

measuring the performance of the sampling plan is the operating characteristic (OC) curve which 

quantifies the risks for producers and consumers. In the WP-SP framework, the OC curve plots the 

probability of lot acceptance versus the values of the pmkC  index.  

The acceptable quality level (AQL) and the lot tolerance percent defective (LTPD) are both defined 

in terms of the pmkC  index: AQLC  and LTPDC  respectively.  

The WP-SP is defined by the sample size n and the critical acceptance value 0C , and is such that for 

pmk AQLC C  the producer’s risk is WP SP   and for pmk LTPDC C  the consumer’s risk is WP SP  . Here, the 

producer’s risk WP SP   is the probability of rejecting lots with pmk AQLC C , and the consumer’s risk 

WP SP   is the probability of accepting lots with pmk LTPDC C . In other words, the two points of interest 

on the OC curve are  ,1AQL WP SPC    and  ,LTPD WP SPC  
.  

Based on a sample of size n, a value of ˆ
pmkC  (6) is calculated: if 0

ˆ
pmkC C  the lot is accepted, 

otherwise the lot is rejected. 

This sampling plan is equivalent to a PL-test with sample size n and critical value 0C  for testing 

0 : pmk LTPDH C C  versus 1 : pmk LTPDH C C . With these parameters (n and 0C ), when pmk LTPDC C  the 

first error probability of the PL-test is PL WP SP   , and for pmk AQLC C  the power function of the PL-

test (9) is    0
ˆPr 1PL AQL pmk pmk AQL WP SPC C C C C       . 

Wu and Pearn (2008), assuming   as known and equal to 0.5  , computed and tabulated the critical 

acceptance values 0C  and the sample sizes n of the sampling plan for several values of WP SP   and 

WP SP  , with various benchmarking quality levels  ,AQL LTPDC C =(1.33, 1.00), (1.50, 1.00), (1.50, 

1.33), (1.67, 1.33), (1.67, 1.50), (2.00, 1.67). 

Given the equivalence, explained above, between the PL-test and the sequential test, we are now able 

to propose a sequential sampling plan (S-SP) equivalent and comparable to the WP-SP.  

The S-SP based on the statistic 
 * 1

kW  (28) can be set up with a critical value 
S SP

w 
 with 

2S SP S PL     , and is performed as follows. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

13 
 

Let stopn  be the first integer k=2,3,…, 0n  for which 
 * 1

S SPkW w 
 : 

 We accept the lot (we reject 0 : pmk LTPDH C C ) if 
 * 1

stop S SPnW w 
  and stopn  is the stopping 

sample size of the sampling plan; 

 We reject the lot (we do not reject 0H ) if 
 * 1

kW  does not exceed 
S SP

w 
 by 0n ; 

 If 
 * 1

kW  does not exceed 
S SP

w 
 for 0

2 k n  , no decision can be made on the lot and the 

decision is taken to continue the inspection. 

 

6. The Simulation Study 

To properly compare the properties of the sequential test with those of the PL-test, the performance 

of the proposed sequential method should be evaluated in a worst-case scenario. However, we need 

an initial benchmark since, at this stage of the research, the statistical properties of the sequential 

procedure are unknown. 

To this end, the properties of the sequential test under 0H  and 1H , or equivalently the properties of 

the S-SP, are studied under several scenarios by means of simulation studies (details on how the 

scenarios were constructed are given in Appendix B). Please note that in all the simulations that 

follow, we set 0.5   for the sequential test. In such a way, with regard to this aspect, we use the 

same setting as the PL-test. Hence, on the basis of the results obtained a further simulation study will 

be carried out to identify a value for ξ that can represent the most unfavourable condition for the 

sequential procedure. 

As a first step, we study the performance of the sequential sampling plan in connection with the 

consumer’s risk, or equivalently the performance of the sequential test under 0 : pmk LTPDH C C . 

With this aim, for each combination of LTPDC  (1.00, 1.33, 1.50, 1.67), and S SP   (0.02, 0.05, 0.1) we 

generated, using R (R Core Team 2020), 5104 replicates from a normally distributed process. The 

aim of these simulations was to determine the smallest maximum allowable sample size, ˆ0;
,

S SP S SP

n
  

 

which gives an empirical consumer’s risk ˆ
S SP 

 smaller than the nominal S SP   value: ˆ .S SP S SP    

Or, equivalently, to determine the smallest maximum allowable sample size, ˆ0; S S
n   , which gives an 

empirical type I error probability ˆ
S  smaller than the nominal S  value: ˆ

S S  . The empirical 

consumer’s risk is estimated as the proportion of accepted lots when pmk LTPDC C  (the proportion of 

correctly accepted 0 : pmk LTPDH C C ). 
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In greater detail, in order to obtain ˆ0; S SP S SP

n
  

, we implemented an iterative search algorithm with 

initial value for ˆ0; S SP S SP

n
  

 denoted by startn . The algorithm works as follows: 

1. With startn  as the maximum allowable sample size of the sequential test, the value of ˆ
S SP   

is estimated as the fraction of correctly accepted 0 : pmk LTPDH C C  over 45 10m    simulations; 

2. If  

ˆ
0 0.025S SP S SP

S SP

 


 




  , 

then ˆ0; S SP S SP

n
  

 is set equal to startn  and the search algorithm stops; 

3. Otherwise, if ˆ
S SP S SP   , then 1start startn n  ; if ˆ

S SP S SP   , then 1start startn n   and the 

algorithm starts a further m simulations. 

The simulation results are summarized in Table 1 (rows with white background), where for each 

combination of S SP   and LTPDC , the following quantities are given:  

 ˆ0; S SP S SP

n
  

 the smallest maximum allowable sample size for sequential sampling plan for 

achieving an empirical consumer’s risk ˆ
S SP   smaller than the nominal value S SP   

 ˆ
S SP S SP   ; or equivalently, the smallest maximum allowable sample size for the 

sequential test for achieving an empirical type I error probability ˆ
S  smaller than the nominal 

S  value  ˆ
S S  ;  

 ˆ
S SP   the empirical consumer’s risk. 
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LTPDC  S SP   0.1  
S SP   0.05  

S SP   0.02  

 
ˆ0; S SP S SP

n
  

 

ˆ
S SP   ˆ0; S SP S SP

n
  

 

ˆ
S SP   

ˆ0; S SP S SP

n
  

 

ˆ
S SP   

1.00 

158 0.0995 200 0.0487 331 0.0194 

172 0.0998 242 0.0495 359 0.0193 

1.33 

149 0.0987 198 0.0497 296 0.0199 

161 0.0992 232 0.0499 324 0.0199 

1.50 

153 0.0996 213 0.0492 319 0.0198 

175 0.0993 240 0.0499 320 0.0199 

1.67 

147 0.0995 197 0.0497 258 0.0199 

157 0.0999 219 0.0498 288 0.0197 

Table 1. Simulation results for pmk LTPDC C : ˆ0; S SP S SP

n
  

 and ˆ
S SP 

 (white background for 0.5  ; 

shaded background for 3  ) 

 

The R code for reproducing the simulation study for the case 1.50LTPDC   and 0.05S SP    is 

provided as Supplementary Information (SH0_150.R for 0.5   and SH0_150N3.R for 3  ). 

As a second step we study the statistical properties of the S-SP in connection with the producer’s risk, 

or equivalently the statistical properties of the sequential test under 1H   pmk AQLC C . 

With this aim, for the benchmarking quality levels  ,AQL LTPDC C =(1.33, 1.00), (1.50, 1.00), (1.50, 

1.33), (1.67, 1.33), (1.67, 1.50), (2.00, 1.67) and for producer’s risk S SP WP SP   =(0.01, 0.025, 0.05), 

we looked for the maximum allowable sample size 0n  required by the S-SP that for pmk AQLC C  

allows to achieving the same producer’s risk as the WP-SP. More precisely for each value of S SP  , 

S SP  , AQLC , LTPDC  we used a simulation experiment to determine the smallest maximum allowable 

sample size, ˆ0; 1S S SP
n     , which gives an empirical power of the sequential test ˆ

S  greater than 

1 S SP  , or equivalently to obtain an empirical producer’s risk S SP  . The empirical power ˆ
S  of 
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the sequential test is estimated as the proportion of correctly rejected 0 : pmk LTPDH C C  when 

pmk AQLC C . 

In order to obtain ˆ0; 1S S SP
n      we implemented an iterative search algorithm with an initial value for 

ˆ0; 1S S SP
n      denoted by startn . The algorithm works as follows: 

1. With startn  as the maximum allowable sample size of the sequential test, the empirical power 

of the test ˆ
S  is estimated as the proportion of correctly rejected 0H  over 45 10m    simulations; 

2. If  

 ˆ 1
0 0.025

1

S S SP

S SP

 







 
 


, 

then ˆ0; 1S S SP
n      is set equal to startn  and the search algorithm stops. At the same time the average 

stopping sample size avgn  was empirically assessed as the average of the stopping sample sizes stopn  

required by the sequential test to correctly reject 0H  (to accept the lot when pmk AQLC C ) when the 

maximum allowable sample size is equal to ˆ0; 1S S SP
n     ; 

3. Otherwise, if ˆ 1S S SP    , then 1start startn n  ; if ˆ 1S S SP    , then 1start startn n   and 

the algorithm starts other m simulations. 

The simulation results are summarized in Tables 2-7 (rows with white background). For each 

combination of S SP  , S SP   AQLC  and LTPDC , the following quantities are given: ˆ0; 1S S SP
n      the 

smallest maximum allowable sample size for the sequential test for achieving an empirical power 

ˆ 1S S SP    (or equivalently an empirical producer’s risk ˆ
S SP   smaller than or equal to the nominal 

value S SP  ); avgn  the average of the stopping sample sizes stopn  required for the sequential test with 

maximum allowable sample size ˆ0; 1S S SP
n      for concluding in favour of 

1H ; S.D.( )stopn  the standard 

deviation of the final sample sizes stopn ; ˆ ˆ1S SP S     the estimated producer’s risk. In order to 

allow comparisons, the parameters of the corresponding WP-SP (Wu and Pearn 2008) are also given 

in Tables 2-7. 

The R code for reproducing the simulation study for the case 1.50AQLC  , 1.33LTPDC  , 0.01WP SP    

and 0.01WP SP    is provided as Supplementary Information (PS133_150_002.R for 0.5  , and 

PS133_150_002N3.R for 0.3  ). 
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AQLC  1.33    LTPDC  1.00 

WP SP 

 
WP SP 

 n C0 ˆ0; 1S S SP
n      navg(SD) ˆ

S SP   

0.010 0.010 202 1.1634 
165 87.31(25.52) 0.0097 

209 109.28(32.24) 0.0093 

 0.025 170 1.1497 
139 68.72(22.44) 0.0093 

176 86.56(28.69) 0.0094 

 0.050 144 1.1360 
120 55.10(20.19) 0.0097 

153 69.36(25.60) 0.0094 

0.025 0.010 174 1.1779 
141 79.38(23.08) 0.0243 

176 98.73(29.24) 0.0248 

 0.025 144 1.1642 
117 62.12(24.43) 0.0238 

148 77.56(25.99) 0.0237 

 0.050 120 1.1504 
98 48.49(18.05) 0.0243 

125 61.22(23.08) 0.0239 

0.050 0.010 151 1.1925 
119 71.15(20.52) 0.0498 

152 89.89(26.43) 0.0496 

 0.025 123 1.1792 
98 55.06(18.13) 0.0492 

125 69.35(23.04) 0.0479 

 0.050 102 1.1654 
81 42.40(16.06) 0.0496 

104 53.79(20.34) 0.0478 

Table 2. WP-SP (n and C0) and S-SP simulation results ( ˆ0; 1S S SP
n     , navg and SD) for AQLC  1.33 and 

LTPDC  1.00. (white background for 0.5  ; shaded background for 3  ) 

 

 

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

18 
 

 

AQLC  1.50    LTPDC  1.00 

WP SP 

 
WP SP 

 n C0 ˆ0; 1S S SP
n      navg(SD) ˆ

S SP   

0.010 0.010 98 1.2466 
78 41.04(12.41) 0.0098 

98 50.54(15.50) 0.0091 

 0.025 82 1.2261 
66 32.15(11.17) 0.0089 

83 39.88(13.98) 0.0096 

 0.050 70 1.2057 
56 25.12(10.22) 0.0092 

70 31.17(12.63) 0.0099 

0.025 0.010 85 1.2688 
66 37.01(11.33) 0.0246 

82 45.54(14.23) 0.0248 

 0.025 70 1.2484 
55 28.58(10.25) 0.0243 

68 35.22(12.56) 0.0247 

 0.050 58 1.2279 
46 21.78(9.27) 0.0242 

58 27.44(11.50) 0.0242 

0.050 0.010 74 1.2913 
56 33.07(10.20) 0.0499 

70 40.90(12.80) 0.0491 

 0.025 60 1.2714 
46 25.15(9.28) 0.0464 

57 30.93(11.32) 0.0494 

 0.050 50 1.2511 
38 18.89(8.37) 0.0463 

47 23.34(10.14) 0.0499 

Table 3. WP-SP (n and C0) and S-SP simulation results ( ˆ0; 1S S SP
n     , navg and SD) for AQLC  1.50 and 

LTPDC  1.00 (white background for 0.5  ; shaded background for 3  ). 
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AQLC  1.50    LTPDC  1.33 

WP SP 

 
WP SP 

 n C0 ˆ0; 1S S SP
n      navg(SD) ˆ

S SP   

0.010 0.010 1039 1.4147 
925 493.71(136.34) 0.0098 

1116 597.40(167.28) 0.0098 

 0.025 877 1.4075 
790 394.41(122.54) 0.0099 

963 480.48(149.80) 0.0098 

 0.050 749 1.4003 
678 318.17(109.64) 0.0096 

819 386.17(133.97) 0.0099 

0.025 0.010 887 1.4220 
782 447.67(123.85) 0.0235 

957 544.40(152.62) 0.0249 

 0.025 738 1.4149 
658 354.10(109.53) 0.0249 

805 431.19(134.42) 0.0248 

 0.050 621 1.4076 
561 283.34(97.74) 0.0248 

688 346.79(120.44) 0.0245 

0.050 0.010 765 1.4295 
675 408.00(111.02) 0.0494 

819 493.67(135.81) 0.0498 

 0.025 627 1.4224 
563 319.47(98.01) 0.0469 

678 386.57(118.41) 0.0498 

 0.050 520 1.4152 
472 253.30(86.21) 0.0485 

571 306.21(105.58) 0.0494 

Table 4. WP-SP (n and C0) and S-SP simulation results ( ˆ0; 1S S SP
n     , navg and SD) for AQLC  1.50 and 

LTPDC  1.33 (white background for 0.5  ; shaded background for 3  ). 
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AQLC  1.67    LTPDC  1.33 

WP SP 

 
WP SP 

 n C0 ˆ0; 1S S SP
n      navg(SD) ˆ

S SP   

0.010 0.010 286 1.4988 
250 133.04(37.91) 0.0092 

301 159.36(46.00) 0.0097 

 0.025 240 1.4846 
212 105.33(33.76) 0.0095 

254 125.99(40.76) 0.0097 

 0.050 204 1.4704 
182 84.51(30.15) 0.0092 

221 101.70(36.42) 0.0099 

0.025 0.010 245 1.5137 
212 120.18(34.38) 0.0240 

253 143.61(41.25) 0.0249 

 0.025 203 1.4995 
177 94.40(30.32) 0.0241 

214 113.43(36.79) 0.0244 

 0.050 170 1.4852 
151 75.25(27.11) 0.0235 

180 89.77(32.33) 0.0244 

0.050 0.010 213 1.5287 
183 109.31(30.92) 0.0493 

218 130.51(37.20) 0.0495 

 0.025 174 1.5149 
149 84.32(26.91) 0.0486 

179 101.01(32.35) 0.0499 

 0.050 143 1.5006 
122 64.95(23.23) 0.0498 

150 79.22(28.63) 0.0494 

Table 5. WP-SP (n and C0) and S-SP simulation results ( ˆ0; 1S S SP
n     , navg and SD) for AQLC  1.67 and 

LTPDC  1.33 (white background for 0.5  ; shaded background for 3  ). 
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AQLC  1.67    LTPDC  1.50 

WP SP 

 
WP SP 

 n C0 ˆ0; 1S S SP
n      navg(SD) ˆ

S SP   

0.010 0.010 1253 1.5847 
1160 615.52(170.65) 0.0080 

1359 726.96(203.51) 0.0090 

 0.025 1058 1.5775 
975 489.08(151.33) 0.0094 

1158 581.11(180.28) 0.0094 

 0.050 904 1.5703 
842 394.67(135.05) 0.0097 

1004 471.38(161.65) 0.0097 

0.025 0.010 1068 1.5921 
966 552.49(152.79) 0.0231 

1161 662.10(184.15) 0.0234 

 0.025 890 1.5849 
813 438.64(135.03) 0.0249 

970 523.44(162.42) 0.0248 

 0.050 749 1.5776 
690 349.80(119.41) 0.0247 

827 417.75(143.83) 0.0249 

0.050 0.010 922 1.5995 
840 507.27(137.42) 0.0471 

993 598.93(164.08) 0.0491 

 0.025 756 15924 
686 393.65(119.22) 0.0498 

820 467.16(143.15) 0.0493 

 0.050 627 1.5852 
574 310.70(105.14) 0.0489 

690 370.31(125.80) 0.0497 

Table 6. WP-SP (n and C0) and S-SP simulation results ( ˆ0; 1S S SP
n     , navg and SD) for AQLC  1.67 and 

LTPDC  1.50 (white background for 0.5  ; shaded background for 3  ). 
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AQLC  2.00    LTPDC  1.67 

WP SP 

 
WP SP 

 n C0 ˆ0; 1S S SP
n      navg(SD) ˆ

S SP   

0.010 0.010 426 1.8341 
388 206.69(58.18) 0.0097 

453 241.81(68.06) 0.0084 

 0.025 359 1.8203 
331 165.06(51.71) 0.0097 

388 192.88(61.02) 0.0095 

 
0.050 305 

1.8065 
287 133.58(46.66) 0.0099 

333 154.68(54.50) 0.0096 

0.025 0.010 365 1.8485 
331 188.48(52.83) 0.0247 

383 218.14(61.57) 0.0239 

 0.025 303 1.8347 
276 148.07(46.71) 0.0243 

323 172.43(64.72) 0.0236 

 0.050 254 1.8207 
233 117.29(41.25) 0.0246 

275 137.70(48.47) 0.0247 

0.050 0.010 316 1.8630 
281 169.82(46.92) 0.0493 

331 198.42(55.42) 0.0489 

 0.025 258 1.8495 
233 148.07(41.33) 0.0497 

274 155.14(48.74) 0.0491 

 0.050 213 1.8356 
195 104.19(36.37) 0.0497 

228 121.36(42.71) 0.0497 

Table 7: WP-SP (n and C0) and S-SP simulation results ( ˆ0; 1S S SP
n     , navg and SD) for AQLC  2.00 and 

LTPDC  1.67 (white background for 0.5  ; shaded background for 3  ). 
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7 Discussion 

Before drawing any conclusions, it is important to deal with the relevant issue introduced in the 

previous Section. For the purposes of comparison with the PL-test, the results for the sequential test 

(Tables 1-7 rows with white background) were obtained by assuming   as being known and equal 

to 0.5. 

However, in real-world applications,   is unknown. Furthermore, for the PL-test and the WP-SP by 

setting 0.5   conservative sample size and critical values were obtained, whereas the effect of   

on the statistical properties of the sequential test is unknown. 

Therefore, in order to evaluate the impact of   on the sequential test, or equivalently on the 

sequential sampling plan, and identify a value of   that can reasonably represent the worst-case 

scenario, we conducted further simulation studies. 

For each combination of 
S , 0pmkC  LTPDC , we considered values of   ranging from 0 to 5 

 0, 0.5, 1.0, 2.0, 3.0, 5.0  , and we simulated 104 observations from processes with 0pmk pmkC C  (for 

example if 0 1.67pmkC   we considered 1.67(0.05)2.12pmkC  . 

The aim of these simulations was to evaluate the empirical power ˆ
S  of the sequential test estimated 

as the proportion of rejected H0. As an example, Figure 1 plots ˆ
S  for the case 0 1.67pmkC   and 

0.02S   versus the values of 1.67(0.05)2.12pmkC  .  

The curves are plotted for each value of  , with the addition of the bold curve for 0.5   and a 

dashed red curve for 3  . 

 

 

Figure 1. Empirical power functions for the case 0.02S   and 0 1.67pmkC   for   from 0 to 5 
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For completeness, in Figures 2-4 we reported the results for all the cases examined where for clearness 

purpose, we limit the curves plotted to  0.5,3.0,4.0,5.0  . 

 

Figure 2. Empirical power functions for the case 0.02S   and  0 1.00,1.33,1.50,1.67pmkC   for 

0.5,3.0,4.0,5.0    

 

 

 

Figure 3. Empirical power functions for the case 0.05S   and  0 1.00,1.33,1.50,1.67pmkC   for 

 0.5,3.0,4.0,5.0   
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Figure 4. Empirical power functions for the case 0.1S   and  0 1.00,1.33,1.50,1.67pmkC   for 

 0.5,3.0,4.0,5.0   

 

By examining the results, it can be noted that the empirical power functions ˆ
S  decrease as 

increases and that the changes for 3   are negligible. Hence, considering also that in literature (Wu 

and Pearn, 2008, Lepore et al. 2017) the range usually considered to study the effects of   is 

0 3   and that these values cover a wide range of real situations, the value 3   can reasonably 

represent a pessimistic situation for the sequential procedures. 

Thus, to study the performance of the sequential sampling plan in connection with the consumer’s 

risk, or equivalently the performance of the sequential test under 0 : pmk LTPDH C C  in the worst-case 

scenario, we repeated with 3   the simulation experiment described in Section 6. In such a way, 

for each combination of 
S SP 

 and 
LTPDC , we obtain the values of ˆ0; S SP S SP

n
  

 and ˆ
S SP 

. The simulation 

results are summarized in Table 1 (rows with shaded background). Similarly, to study the statistical 

properties of the S-SP in connection with the producer’s risk, or equivalently the statistical properties 

of the sequential test under 
1H   pmk AQLC C , in the worst-case scenario, we repeated with 3   the 

simulation experiment described di Section 6. The results concerning the values ˆ0; 1S S SP
n     , avgn  

and ˆ
S SP   are reported in Tables 2-7 (rows with shaded background).  

Therefore, by examining Tables 2-7 it is possible to quantify the changes occurred in the performance 

of the sequential test, moving from a situation with 0.5   to a situation with 3   and the following 
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discussion will be made by comparing the outcomes in the worst-case scenario of the sequential 

procedures with the performance of the PL test. 

The results indicate that, when the capability requirements AQLC  and LTPDC  are high ( 1.33LTPDC  ), 

the S-SP allows, on average, a considerable reduction in sample size compared to the WP-SP. 

As an example, for LTPDC =1.33 and AQLC =1.50 with producer’s risk WP SP  =0.01 and consumer’s 

risk WP SP  =0.01, the WP sampling plan requires a sample size of n=1039 with a critical value 

C0=1.4147 (Table 4). The S-SP: 

 When pmk AQLC C =1.50, with a maximum allowable sample size equal to ˆ0; 1S S SP
n     =1116, 

the estimated producer’s risk is equal to ˆ
S SP  =0.0098 with avgn 597 (Table 4); 

 When pmk LTPDC C =1.33 (Table 1), the smallest maximum allowable sample size required by 

the sequential test to ensure an estimated consumer’s risk ˆ
S SP   smaller than the nominal value 

S SP   is ˆ0; S SP S SP

n
  

=324. 

Therefore, in this case the S-SP: for high-quality lots ( pmk AQLC C ) allows, on average, a 42.54% 

reduction in sample size compared to the WP-SP ( avgn 597); for low-quality lots ( pmk LTPDC C ) 

allows a 68.82% reduction in sample size compared to the WP-SP, since it rejects the lot using a 

sample size not greater than ˆ0; S SP S SP

n
  

=324.  

For LTPDC =1.67 and AQLC =2.00 with WP SP  =0.025 and WP SP  =0.05, the WP sampling plan has a 

sample size n=254 with a critical value C0=1.8207 (Table 7). The S-SP: 

 When pmk AQLC C =2.00, with a maximum allowable sample size equal to ˆ0; 1S S SP
n     =275, 

has an estimated producer’s risk equal to ˆ
S SP  =0.0247 with avgn 137.70 (Table 7); 

 When pmk LTPDC C =1.67 (Table 1), the smallest maximum allowable sample size required by 

the sequential test to ensure an estimated consumer’s risk ˆ
S SP   smaller than the nominal 

value S SP   is ˆ0; S SP S SP

n
  

=157 (Table 1). 

In this case, the S-SP: for high-quality lots ( pmk AQLC C ) allows, on average, a 45.7% reduction in 

sample size compared to the WP-SP ( avgn 138); for low-quality lots ( pmk LTPDC C ) allows a 38.2% 

reduction in sample size compared to the WP-SP, since it rejects the lot using a sample size not greater 

than ˆ0; S SP S SP

n
  

=157.  
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However, for the sake of completeness, it is important to note that the sequential sampling plan, in 

order to ensure that the empirical consumer’s risk does not exceed the nominal level S SP  , requires 

at a minimum the sequential inspection of a number of units not less than the values given in Table 1 

(rows with shaded background).  

By comparing the values of ˆ0; S SP S SP

n
  

, given in Table 1, with the sample sizes of an equivalent 

WP-SP, we find that the sequential sampling plan can have lower performance than the WP-SP when 

the capability requirements are low ( 1.33LTPDC  ). 

As an example, for LTPDC =1.00 and AQLC =1.33 with WP SP  =0.025 and WP SP  =0.025, the WP 

sampling plan has a sample size n=144 with a critical value C0=1.1642 (Table 2). 

The SSP: 

 When pmk AQLC C =1.33, with a maximum allowable sample size equal to ˆ0; 1S S SP
n     =148, 

has an estimated producer’s risk equal to ˆ
S SP  =0.0237 with avgn 77.56 (Table 2); 

 When pmk LTPDC C =1.00, the smallest maximum allowable sample size required by the 

sequential test to ensure an estimated consumer’s risk ˆ
S SP   smaller than the nominal value 

S SP   is ˆ0; S SP S SP

n
  

=242 (Table 1). 

In this case ˆ0; S SP S SP

n
  

=242 is larger than ˆ0; 1S S SP
n     =148; consequently, to ensure that the both the 

risks ˆ
S SP   and ˆ

S SP   do not exceed their nominal values, S SP   and S SP   respectively, it is necessary 

to set up the sequential sampling plan using, as maximum sample size, the largest between 

ˆ0; S SP S SP

n
  

 and ˆ0; 1S S SP
n     . Therefore, this is a scenario in which the S-SP requires a maximum 

sample size (242) larger than the sample size (144) required by WP-SP. In particular, the S-SP 

provides lower performance than the WP-SP for low-quality lots pmk LTPDC C . 

In examining the results, we can state that the sequential sampling plan provides lower performance 

than the WP-SP only for low capability requirements ( 1.33LTPDC  ) and limited to the case 

1.33LTPDC   and AQLC =1.67 with:  

 WP SP  =0.01 for which the S-SP requires a sample size at least equal to ˆ0; S SP S SP

n
  

=324 

(Table 1), while the parameters of the WP-SP are n=286 and C0=1.4988 for WP SP  =0.01, 

n=245 and C0=1.5137 for WP SP  =0.025 and n=213 and C0=1.587 for WP SP  =0.05, 

respectively (Table 5); 
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 WP SP  =0.025 for which the S-SP requires a sample size at least equal to ˆ0; S SP S SP

n
  

=232 

(Table 1) while the parameters of the WP-SP are n=203 and C0=1.4995 WP SP  =0.025 (Table 

5) and n=174 and C0=1.5149 for WP SP  =0.050 (Table 5);  

 WP SP  =0.05 for which the S-SP requires a sample size at least equal to ˆ0; S SP S SP

n
  

=161 

(Table 1) while the parameters of the WP-SP are n=143 and C0=1.5006 for WP SP  =0.050 

(Table 5). 

 

8. Concluding Remarks 

In this article, we propose a sequential test for the process capability index pmkC . The study of the 

statistical properties of the proposed test is complex task as it is necessary to consider several aspects 

jointly. For this reason, a sequential sampling plan is also proposed, which makes it possible to study 

the performance of the sequential procedures and compare them with the corresponding non-

sequential methodologies in a more intuitive manner. 

More precisely, we studied the statistical properties of the sequential test and the sequential 

sampling plan with an extensive simulation study with regard to the type I error (the consumer’s risk 

of the sampling plan), the average of the sample sizes for correctly deciding, for 0H  and 1H , and the 

maximum allowable sample size required to achieve a predetermined power level (the producer’s risk 

of the sampling plan). 

We compared the performance of the sequential procedures with that of the PL-test and WP-SP. 

The results showed that, for high quality requirements such as 1.33LTPDC  , the S-SP allows, on 

average, a considerable reduction in sampling size compared to the WP-SP (or equivalently the 

sequential test for 0 1.33pmkC   allows, on average, smaller stopping sample sizes compared to the fixed 

sample size tests, while maintaining the desired  -level and power). 

In summary, the proposed sequential procedures have several interesting features: they may offer a 

substantial decrease in sample size compared to the non-sequential methods, while type I and II error 

probabilities are correctly maintained at their desired values.  

We consider these results to be valuable, because in a highly competitive context where both cost 

and quality are relevant, the availability of statistical methods which make it possible to reduce 

sampling size can be directly translated into resource and cost savings. 
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Appendix A: Conditions C1-C9 

Conditions C1-C7 are the usual requirements (Serfling 1980) for the existence of maximum 

likelihood estimators. Bhattacharya et al. (2016) showed that these condition are met for X normally 

distributed. 

 

Condition C8 holds.  

Proof.  

Let us consider the general case where we have  
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respectively. 

We have to demonstrate that  
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and 
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for some 0  . 

Without loss of any generality let 2   and examine firstly 
 

2
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Then, 
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that for 2 0   is   . This proves (30). 

Let us consider now 
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Developing the fourth power in (33) we obtain 
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Since, for symmetric distributions  
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for any integer k, the (32) becomes  
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that for 2 0   is   . This proves (31) and consequently condition C8 holds. 

 

Condition C9 holds 

Proof. 

Let us consider the function  h θ  which in our case is defined as 
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with 2θ  scalar.  

The (partial) derivative of  h θ  is  
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and the subset 0  is 2

0 0θ . Then, we have 
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Therefore, the (partial) derivative is a continuous function as requested. 

Furthermore, 

 
 

2

2 2 2 2 22

d d
H

d d

 

    

 
 
 

θ  

is of rank q=1. These results satisfy condition C9. 

 

Appendix B: Scenario Details 

In the sequential test, or equivalently in the S-SP, for each value of 0pmkC  and 1pmkC , in order to obtain 

scenarios perfectly comparable with those of the PL-test (or the WP-SP), we set 0.5  .  

Therefore, the values of the process standard deviations, under 0H  and 1H , are obtained as  
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respectively.  
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Without loss of any generality, we considered processes with d=1 and 0  . Therefore, we generated 

observations from normal distributions with 0   and standard deviations 0  and 1  under 0H  and 

1H  respectively.  

 

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

33 
 

References 

Arizono I, Kanagawa A, Ohta H, Watakabe K, Tateishi K (1997). Variable sampling plans for normal 

distribution indexed by Taguchi’s loss function. Nav. Res. Logist. 44 (6): 591-603. 

https://doi.org/10.1002/(SICI)1520-6750(199709)44:6<591::AID-NAV5>3.0.CO;2-Z 

 

Bhattacharya R., Lin L., Patrangenaru V. A Course in Mathematical Statistics and Large Sample 

Theory. Springer-Verlag: New York 2016. 

 

Borodin AB, Salminen P (1996) Handbook of Brownian Motion-Facts and Formulae. Birkhäuser 

Verlag, Basel. 

 

Chen SM, Hsu YS (2004) Uniformly most powerful test for process capability index Cpk. Qual 

Technol Quant Manag 1(2): 257-269. https://doi.org/10.1080/16843703.2004.11673077 

 

Fan S, Kao C (2006) Development of confidence interval and hypothesis testing for Taguchi 

capability index using a Bayesian approach. Int J Oper Res, 3(1): 56-75. 

 

Feller W (1970) An Introduction to probability theory and its Applications Vol II. John Wiley & Son, 

New York. 

 

Kane VE (1986) Process capability indices. J Qual Technol 18(1): 41-52. 

https://doi.org/10.1080/00224065.1986.11978984 

 

Kotz S, Lovelace CR (1998) Introduction to Process Capability Indices: Theory and Practice. Arnold, 

London. 

 

Hubele NF, Vännman K (2004) The Effect of Pooled and Un-pooled Variance Estimators on Cpm 

When Using Subsamples. J Qual Technol 36(2): 207-222. 

https://doi.org/10.1080/00224065.2004.11980266 

 

Hussein A (2005) Sequential Comparison of Two Treatments Using Weighted Wald-Type Statistics. 

Commun Stat Theory Methods 34(7): 1631-1641. 

 

Hussein A, Ahmed SE, Bhatti S (2012) Sequential testing of process capability indices, J Stat Comput 

Simul 82(2): 279-282. https://doi.org/10.1080/00949655.2011.638925 

 

Lepore A, Palumbo B, (2015) New Insights into the Decisional Use of Process Capability Indices via 

Hypothesis Testing. Qual Reliab Eng Int 31(8): 1725-1741. https://doi.org/10.1002/qre.1713 

 

Lepore A, Palumbo B, Castagliola P (2018) A note on decision making method for product 

acceptance based on process capability indices Cpk and Cpmk. Eur. J. Oper. Res. 267(1): 393-398. 

https://doi.org/10.1016/j.ejor.2017.12.032 

 

Lin GH (2006) A hypothesis testing procedure on assessing process performance. J Stat Manag Syst 

9(2): 319-339. https://doi.org/10.1080/09720510.2006.10701209 

 

Montgomery D (2009) Introduction to Statistical Quality Control (6th ed). John Wiley & Sons, 

Hoboken. 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

34 
 

Negrin I, Parmet Y, Schechtman E (2009). Developing a sampling plan based on Cpk. Qual Eng 21(3): 

306–318. https://doi.org/10.1080/08982110902873597 

 

Negrin, I., Parmet, Y., Schechtman, E., 2011. Developing a sampling plan based on Cpk-unknown 

variance. Qual Reliab Eng Int 27 (1): 3-14. https://doi.org/10.1002/qre.1094 

 

Pearn WL, Chen KS (1999) Making decision in assessing process capability index Cpk. Qual Reliab 

Eng Int 15(4): 321-326. https://doi.org/10.1002/(SICI)1099-1638(199907/08)15:4<321::AID-

QRE258>3.0.CO;2-5 

 

Pearn WL, Kotz S (2006) Encyclopedia and Handbook of Process Capability Indices: A 

Comprehensive Exposition of Quality Control Measures. World Scientific, Singapore. 

 

Pearn WL, Lin PC (2002) Computer program for calculating the p-value in testing process capability 

index Cpmk. Qual Reliab Eng Int 18(4): 333-342. https://doi.org/10.1002/qre.465 

 

Pearn WL, Lin PC (2004) Testing process performance based on capability index Cpk with critical 

values. Comput Ind Eng 47(4): 351-369. https://doi.org/10.1016/j.cie.2003.03.001 

 

Pearn WL, Shu MH, Hsu BM (2005) Monitoring manufacturing quality for multiple Li-BPIC 

processes based on capability index Cpmk. Int J Prod Res. 43(12): 2493-2512. 

https://doi.org/10.1080/00207540500045741 

 

Pearn WL, Wu CW (2006a). Critical acceptance values and sample sizes of a variables sampling plan 

for very low fraction of defectives. Omega 34 (1): 90-101. 

https://doi.org/10.1016/j.omega.2004.08.001 

 

Pearn WL, Wu CW (2006b). Variables sampling plans with PPM fraction of defectives and process 

loss consideration. J Oper Res Soc. 57 (4): 450-459. https://doi.org/10.1057/palgrave.jors.2602013 

 

Perakis M, Xekalaki E (2003) On a comparison of the efficacy of various approximations of the 

critical values for tests on the process capability indices CPL, CPU, Cpk. Commun Stat Simul C 32(4): 

1249-1264. https://doi.org/10.1081/SAC-120023888 

 

Polansky AM, Kirmani SNUA (2003) Quantifying the capability of industrial processes. In Khattree 

B, Rao CR (eds.) Handbook of Statistics 22. Elsevier Science, Amsterdam, chapter 17. 

 

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 

 

Scagliarini M (2018) A sequential hypothesis testing procedure for the process capability index Cpk  

Qual Reliab Eng Int 34(5): 701-806. https://doi.org/10.1002/qre.2290 

 

Scholz FW (2006) Maximum Likelihood Estimation. In Kotz S, Read CB, Balakrishnan N, Vidakovic 

B, Johnson LN (eds) Encyclopedia of Statistical Sciences, 2nd edn. Wiley, Hoboken, pp.4629 4639. 

 

Serfling RJ. Approximation Theorems of Mathematical Statistics. John Wiley & Sons: New York, 

1980. 

 

Vännman K, Kulahci M (2008) A model-free approach to eliminate autocorrelation when testing for 

process capability. Qual Reliab Eng Int 24(2): 213-228. https://doi.org/10.1002/qre.887 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

35 
 

 

Wu CW, Aslam M, Jon CH (2012) Variables sampling inspection scheme for resubmitted lots based 

on the process capability index Cpk. Eur. J. Oper 217(3): 560-566. 

https://doi.org/10.1016/j.ejor.2011.09.042 

 

Wu CW, Pearn WL (2008) A variables sampling plan based on Cpmk for product acceptance 

determination. Eur. J. Oper. 184 (2): 549–560. https://doi.org/10.1016/j.ejor.2006.11.032 

 

Yen CH, Chang CH (2009). Designing variables sampling plans with process loss consideration. 

Commun. Stat. Simul. Comput. 38(8): 1579–1591. https://doi.org/10.1080/03610910903046809 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 


