arXiv:1910.00943v7 [stat.ML] 30 Nov 2021

Models under which random forests perform badly;
consequences for applications

José A. Ferreira JOSE.FERREIRA@RIVM.NL
Department of Statistics, Informatics and Modelling

National Institute for Public Health and the Environment (RIVM)

Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands

Abstract

We give examples of data-generating models under which Breiman’s random forest may
be extremely slow to converge to the optimal predictor or even fail to be consistent. The
evidence provided for these properties is based on mostly intuitive arguments, similar to
those used earlier with simpler examples, and on numerical experiments. Although one can
always choose models under which random forests perform very badly, we show that simple
methods based on statistics of ‘variable use’ and ‘variable importance’ can often be used
to construct a much better predictor based on a ‘many-armed’ random forest obtained by
forcing initial splits on variables which the default version of the algorithm tends to ignore.
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1. Introduction

Breiman’s random forest (Breiman, 2001) is a feasible and flexible algorithm for construct-
ing nonparametric statistical predictors. Nowadays it is acknowledged to be easy to use
and to perform very well in general, even in problems involving many predictor variables
(see the survey by Biau and Scornet (2016) or the introduction to Scornet et al. (2015))—so
well, indeed, that several authors have posed and studied the question of its consistency
(see Biau et al. (2008), Wager (2014), Scornet et al. (2015), and the references provided
by these authors). ‘Universally consistent’ nonparametric statistical predictors have been
known for a long time (Nadaraya (1964), Watson (1964), Stone (1977), Devroye and Wag-
ner (1980), Devroye et al. (1996), Gyorfi et al. (2002)), but their computer implementations
tend to be slow, especially when dealing with many variables (e.g. Devroye et al. (1996),
p. 62). In view of their accuracy and of the high speed of their implementations, random
forests would become even more attractive if they were shown to be consistent under gen-
eral data-generating mechanisms. In particular, consistency, in addition to accuracy, is
indispensable in applications of statistical prediction to the estimation of ‘causal effects’
based on observational data (pp. 120-1, 167-9 and subsection 4.1 of Ferreira (2015)). The
simplest and clearest general consistency result on Breiman’s random forest seems to be
theorem 1 of Scornet et al. (2015), which in essence states that if the ‘response’ follows an
additive regression model (e.g. a linear regression model) then random forests are consistent
in mean-square if the number of terminal nodes (‘leaves’) of the constituent trees increases
to infinity at a slower rate than the size of the subsamples on which they are grown and
if those subsamples, rather than being bootstrap samples, are drawn without replacement



from the full sample.! This is encouraging, but the counterexample in proposition 8 of Biau
et al. (2008) shows that one particular version of random forest is not consistent in complete
generality. Moreover, the arguments around figure 5 of Kim and Loh (2001) and figure 1 of
Biau et al. (2008) and those in subsection 2.2 of Zhu et al. (2015) show that random forests
can perform badly, and suggest that they may be inconsistent in some of their versions,
under certain so-called ‘checkerboard-type’ models.

The main purpose of this note is to exhibit two classes of models for which random
forests may be extremely slow to converge to the optimal predictor or even be inconsistent.
One such class generalizes the checkerboard-type just mentioned; the other is much more
general. In both classes, if the response variable Y is a nonconstant function of each of
X1,X9,...,X4 (d > 2) but is independent of each of X; and X9, then Breiman’s random
forest typically fails to use both variables to the full even when (Xi, X») is the strongest
predictor of Y. This is a consequence of the ‘one-dimensional greed’ of random forest: each
split in a tree is based on the variable that ‘best explains’ Y out of a randomly drawn
subset of predictor variables; but if Y is independent of each of X; and X5 and repeated
conditioning on some of X3, ..., X, continues to provide information on Y (typically the
case when (X3s,...,Xy) has a positive density on an open rectangle) then the algorithm
will tend to split at a variable other than X; and X5 and most trees tend to make little
use of (X7, X2); cf. subsection 2.2 of Zhu et al. (2015). Although this argument applies
only to random forests with tree splits done on one among two or more randomly selected
variables, i.e. to those in which the parameter usually referred to as mtry (e.g. in the R
package randomForest of Liaw and Wiener (2002)) is > 2, the algorithm typically requires
many splits before X7 and X, get to be used together in a tree, which can only hinder
convergence, even if convergence is to the optimal predictor.

The argument alone is not sufficient to prove the lack of consistency of random forests
even in the case where mtry > 2, because if a forest is sufficiently large and the trees
in it grow sufficiently tall—say until each of their terminal nodes contains fewer than a
fixed number of distinct observations—then X; and X are likely to be picked at a ‘late’
stage during the construction of some of the trees, and one cannot deny that even very
late splits on those two variables may compensate for their having been ignored earlier. In
fact, it is easy to see (and must be well known, the observation having been used earlier
by Ishwaran and Kogalur (2010)) that if X, Xs,..., Xy are all binary then a tree predictor
grown until each of its terminal nodes contains only observations with the same data on
(X1, X9,...,Xy) (which implies that at certain splits all the predictor variables must be
tried) is consistent, and so is a random forest of trees grown in that way; and the same is
true, of course, if each of X1, Xo,..., X4 takes a finite number of values. Accordingly, our
examples are not meant for situations in which (X1, Xs,..., X)) has finite range, because
as soon as the observations in a node all have the same data on (X3, ..., Xy) the next two
splits along that node will involve X; and Xs and eventually the partition corresponding

1. Duroux and Scornet (2018) show that the number of terminal nodes and the size of the subsamples can
have a substantial effect on the finite-sample performance of random forests, and that if the size of the
subsamples is about 1 —e ™! of that of the full sample then random forests with trees based on subsamples
perform very similarly to Breiman’s random forests with trees based on bootstrap samples. Wager (2014)
presents results of wider scope concerning other variants of random forests under conditions which to us
seem more restrictive or more difficult to verify.



to the resulting tree will be equivalent to a partition which would have started with splits
on X and Xs. It is evident, moreover, that if the X;s have finite range then the partitions
generated by such trees are asymptotically equivalent to those obtained by splitting the
data without recourse to a criterion involving data on the (X;,Y)s—i.e. they amount to
partitions with the so-called ‘X-property’, and the corresponding trees amount to ‘parti-
tioning estimates’ for which more general consistency results are available (section 20.1 of
Devroye et al. (1996), section 4.1 of Gyorfi et al. (2002)).

Rather, the examples given in section 2 are meant for situations in which the random
forest algorithm is properly greedy in one-dimension, i.e. uses data on (X;,Y’) for some j
to create a split; they do not apply to the variant proposed and shown to be consistent in
section 20.14 of Devroye et al. (1996) and in section 6 of Biau et al. (2008), whose rules for
splitting are based on data on (X1, Xa,..., X4, Y). The arguments we are able to provide
in favour of a very slow rate of convergence are intuitive, but they are easily seen to be
supported by simple numerical experiments, as illustrated in section 3.

Although the properties we identify imply that random forests can perform very badly
compared to the optimal predictor, it is not at all our intention to put random forests in a
bad light (which would be difficult to do in view of their good record in applications and
of the scarcity of methods of comparable scope and success). In fact, our second purpose
is to show that simple methods based on statistics of ‘variable importance’ and ‘variable
use’ can help to determine whether the bad performance of a random forest is due to the
presence of predictor variables such as the X; and X, just mentioned and to construct a
‘many-armed’ version of random forest that performs much better; this too is explained in
section 2 and illustrated by simulation in section 3. Section 4 offers some perspective on
our results and considers open questions.

2. The examples; consequences for applications

The following is a textbook example, often attributed to S.N. Bernstein (e.g. Burrill (1972),
p. 241), of three dependent random variables that are pairwise independent: Let B, Bs
and Bs be independent Bernoulli random variables of parameter 1/2 and set

Xo = 1{31232}, Xl = 1{31233}, XQ = 1{32233}.
Then Xj is a function of X; and Xy, namely Xo = 1y, —x,1 = dx, X5
P(X; =), X = 2p) = ; =P(X; = 2))P(Xp = z)  (j # k),

but
P(Xo = 20, X1 = 21, X2 = 22) # P(Xo = 20)P(X1 = 21)P(X2 = 22) = §

for xg, z1, 22 € {0,1}, so Xy, X7 and Xo are pairwise independent but not independent.
Now put

Y = 6X1,X2f(X37 - ,Xd,6> + (1 — 6X1,X2)9(X3; - ,Xd,C) + h(Xg, - ,Xd,n), (1)

where €, ¢, n are random variables and (X3, ..., Xy) is a random vector, all four independent
and also independent of (Xy, X1, X2), and f, g and h are real-valued functions. Writing



X = (X1, X9, X), X' = (X3,...,X4), and, for real numbers x1, z9, ..., 24, X = (21,22,X),
"= (x3,...,24), we have

P(Y < y|X = x) = 02y 2,P(f (X', )+ (X", 1) < y)+ (100 2,)P(9(x, Q) +M(X, 1) < ). (2)

Evidently, the best predictor of Y based on all the variables except €, ( and 7 is provided
by the function x — P(Y < y|X = x), e.g. in the form of E(Y|X = x) or med(Y|X = x)
when Y is numeric proper. On the other hand, for j = 1,2

P(Y <91, = 25, X = x) = JP(f(,€) + h,m) < 9) + 5P(9(<, Q) + () < )

by the independence of Xy and X;. Similarly, for j = 1,2
1 1
P(Y < ylXj = ;) = 5P(f(X, ) + h(X,m) < y) + SP(9(X', ) + (X', ) < y)

by the independence of Xo, X; and X'. In particular, Y is independent of X1, and indepen-
dent of it also conditionally on X’; and likewise Y is independent of X5, and independent of it
also conditionally on X'. Since in general P(Y < y|X; = z;) and P(Y < y|X; = z;, X' =x')
provide predictors of Y that are worse than those provided by P(Y < y|X = x), which are
optimal, any predictor that misses out on one of X; and X, will be suboptimal.

Now each split of each tree involved in a random forest is determined by selecting, among
a random subset of mtry predictors, the variable that ‘best explains’ Y, unconditionally or
conditionally on some of the predictors. If mtry > 2 then, since Y is independent of each
of X7 and X separately, unconditionally as well as conditionally on some of X3,..., Xy,
unless one of X; and X5 has been selected at an earlier split the random forest algorithm
will tend to select none of them again but instead one of Xj,..., X;. Consequently, a
large proportion of the trees grown by the algorithm should involve only predictor variables
among X3,..., Xy in a large proportion of their terminal nodes, and the resulting forest is
worse than a ‘two-armed’ forest of trees grown upon a first split based on (X7, X2). When
mtry = 1 it is more likely that one of X; and X5 be selected at a split, but if d is “’large’
then the probability that both X; and X5 be involved in a terminal node must be < 1 even
for very large n, so even for very large n there should be a non-negligible proportion of the
trees that involve only predictor variables among X3, ..., X4 in a non-negligible proportion
of their terminal nodes, and again the resulting forest should perform worse than a two-
armed forest and hence worse than the optimum predictor.

Our second class of models features the same type of relations between Y, (X1, X2)

and (Xs,...,Xy) but is much more general. Consider a random vector (Xg, X1, X2) with
probability density function
f(wo,z1,22) = fo(wo) f1(z1) fa(w2) {1 — @(z0, 21, 72)} (3)

for densities fo, f1 and fo and some function ¢ not identically equal to zero and such
that ¢ < 1 and [ fo(xo)f1(21) f2(x2) (20, 21, 22)dz; = 0 for all j, so that g;x(xj,xx) =
Jg f(xo,x1,22)dx; = fi(x;) fe(zr) for j, k,1 all different and again Xo, X; and X, are pair-
wise independent without being independent.? For instance, one may take Xy, X; and X»

2. This example must be well known, but we do not recall a textbook where we may have seen it before.



symmetric (fo, f1 and fs even) and p(zg, x1,z2) = H?:o xj(1+x§)*1/2; by transforming the

Xjs by X ; = T;(Xj), say, one obtains Xy, X1 and X, with arbitrary marginal distributions
that remain pairwise independent without being independent. Notice that in principle it is
easy to simulate (Xo, X1, X2) by the ‘rejection method’.

Assuming that Xg, X; and X5 dependent but pairwise independent have been defined,
one can then set X" = (X|, X5) := (X1, X») and

Xy =H (X)), (4)

where £ is a standard uniform variable independent of all the other variables mentioned so far
and H(z;z1,22) = P(Xp < ac]X” = (21,22)), H Y (u;21,29) = min {z : H(x;21,22) > u}
(0 < u < 1), to get a vector (X,,X) = (X, X, X,) with the same joint distribution as
(X0, X1, X5) in which the first coordinate is a function of the other two and of £. Finally,

Y = U(HEX), X e), (5)

where X’ is independent of X", ¢ is independent of all the other variables, and ¥ is some
function, defines a model in which Y is dependent on X" but independent of each of its
coordinates, and for which a random forest predictor based on data on (X/, X”) may be
very slow to converge to the optimum and perhaps even be inconsistent.

Evidently, this example may be generalized to more than three variables (e.g. by adding
several independent versions of the right-hand side of (5)), leading to a model in which the
response is dependent on a finite set of random variables but independent of each of them.

Finally, we can generalize (3) by replacing each of X; and Xs above by random vectors
X; and X5 taking values in R4 and R% such that Xy, X1 and X9 are dependent but
pairwise independent, which yields a Y dependent on the corresponding X = (Xlll, Xg) but
independent of each of X/ll and Xg In this case, for a tree-based algorithm to approximate
the optimal predictor it must pick ‘sufficiently many’ variables in Xlll and Xg during the
construction of its trees, and that may be quite difficult if max{d;,ds} is large and the
independent covariates X provide some information on Y.

For a simple, concrete example let ¢4 denote the standard normal density on R? and 1,4
a d-vector of 1s, and let Xy, X1 and X5 have density

f(zo0,%x1,%X2) = ¢1(w0) P, (X1) P, (X2) (1 X1 1o X2 1 ) :

Zo
Ve tag /el + (x1-14)? V3 + (x2 - 1g,)?

x1 € RY, x5 € R%, ¢, ¢, o constants. Then all the marginal distributions are standard
normal, X is independent of X; and independent of X3 but dependent on (X1, Xs), and we
can define X; and Y by the corresponding versions of (4) and (5) with X" = (X, X3) and
a dz-vector X’ independent of all the other variables. In the resulting model the optimal
predictor conditional on X; and on X' is a function of the latter vector alone, and so is the
optimal predictor conditional on Xy and on X', while the optimal predictor is a function of
(X1,X3,X’). Thus, depending on the sample size, on dy, d2 and d3, and on how ¥(-,x’, ")
varies with x’, an ordinary tree predictor will tend to use X; and Xy insufficiently and
belatedly; in contrast, ‘many-armed’ tree predictors and associated random forests made
up of an initial partition of the range of X; and Xy with trees grown atop will typically
perform much better and may have a chance of approaching the optimal predictor.



2.1 A possible remedy

Now it is clear that in a random forest the coordinates of X; and X5 in our last model
always have a chance of showing their worth, and the extent to which they are worthy
predictors should become apparent in variable importance statistics irrespectively of their
frequency of occurrence in the trees. If X1 and Xo include strong predictors then one can
check how frequently they are used in the trees by looking at appropriate statistics such
as the proportion of trees making use of them, the average number of terminal nodes per
tree in which they are involved, etc.; if such wvariable usage statistics show that certain
predictors are less frequently used than one might expect given their importance, then their
use probably needs to be enforced at an earlier stage.> Expressed with this latitude, the
truth of these statements seems evident to us; but, of course, in any given problem the
extent to which one will be able to identify vectors like X; and Xy as important predictors
worth splitting on beforehand depends on the other elements involved—sample size, di, do
and ds3, etc. Thus, in a given problem and with a given sample size one may or may not be
able to recognize the importance of such variables; but if their importance is found to be
substantial then one may as well check the corresponding usage statistics. Evidently, the
combined use of variable importance and variable usage statistics is not useful only with
data that follow exactly a model of the type considered here; it is plausible that in real-life
problems—for instance in genetics, where haplotypes rather than genotypes can predict
phenotypes—there will be sets of variables that are approximately analogous to X; and X
and admit of similar remedies.

It is easy to use our examples to simulate data and illustrate how badly random forests
can perform compared to the optimal predictor, even with very large sample sizes; the
last model especially can present problems to random forests because it undermines what
normally is their strength, namely the possibility of finding advantageous partitions of the
range of the predictor variables by trying univariate splits at a time.* As said earlier,
however, the illustrations provided in this paper are not meant to show random forests at
their worst; they are mostly based on simulation from a simple version of (1) which is hardly
unfavourable to random forest and yet shows a clear gap between it and the best predictor.

3. Numerical illustration

We consider the following special case of (1):

Y = (5X17X2f(X3, - ,Xd,e) + {1 — 6X1,X2}g(X3, - 7Xd7<) +n, (6)

3. As far as we know, the implementations of random forests currently available provide no ‘ready-made’
information on variable usage, but some partial information can sometimes be extracted from them, as
illustrated in section 3. We emphasize that measures of variable importance quantify the improvement in
accuracy that results from using the various predictor variables, but they provide no information about
how often a variable is used in relation to its importance.

4. We do not want to suggest that other algorithms perform better on such data; the more classic Nadaraya-
Watson or nearest-neighbour algorithms, for example, will generally not perform better unless di, d2 and
dsz are ‘small’. A simple R script for simulating data from the last model and comparing the performance
of random forests on it with that of the optimal predictor, as well as scripts that reproduce the results
of section 3, may be obtained from the author.



with d = 10, f(Xg, e, Xg, 6) = a3 X3+ +agXi+te, g(Xg, o, Xy, C) = B3 X3+ -+ BaXg+
¢, a:= (az,...,a1) = (1,2,...,8)/8, B := (5s3,...,510) = 3a/4, €, ¢ and n independent
standard normal random variables, (X7, X2) as in section 2 and independent of (e, {,7), and
(X3,..., X10) normally distributed with covariance matrix ¥ = (2_‘j_k|)j7k:17“,10, mean vec-
tor equal to diag(X), and independent of all the other variables.

By the result of Scornet et al. (2015) we might expect random forests constructed with
data (X1,...,X10,Y) such that dx, x, = 1 to be consistent for the first branch of the model,
namely f(X3,...,Xqg,€), and random forests constructed with data such that dx, x, = 0 to
be consistent for the second branch, g(Xs, ..., X4, (). Thus we might expect the two-armed
random forest predictor that consists of two random forests, one for predicting the response
of new data satisfying dx, x, = 1 and the other for predicting the response of new data
satisfying dx, x, = 0, to converge in mean-square to the right-hand side of (6) without
the error terms as the size n of the data set used to construct it increases to infinity; in
particular, we might expect its law given X = x € R to converge to the corresponding
right-hand side of (2) as n — oo, and the mean-square error of the predictor to approach
Var(e+mn) = Var(¢ +n) = 2. The random forest predictor, on the other hand, may decrease
its mean-square error as n increases but we do not expect it to attain the minimal value.

Figure 1 summarizes the results of two simulations, one based on training and test sam-
ples of size n = 10,000, the other on training and test samples of size n = 100, 000; the
random forests were constructed with the R package randomForest of Liaw and Wiener
(2002) using 1000 trees and the default settings. The scatter-plots indicate the agreement
between the response of the test set and the corresponding prediction, and the estimates of
mean-square error (mse), mean absolute error (mae) and proportion of explained variance
quantify the accuracy of the predictions. The top left plot of figure 1 shows the results
obtained with the random forest when n = 10, 000; the algorithm, which of course ignores
the model generating the data, performs remarkably well. The top right plot ranks the
predictor variables according to their relative importance: by our specifications of o and
B and of the distribution of (X3,...,Xi0), the rank of X; for j > 3 is equal to j, and
the higher the rank, the higher the importance; the algorithm ranks the variables correctly
except, as we shall see below, for X; and X5.° The bottom panel summarizes the results
obtained with the random forest and with the supposedly consistent two-armed random
forest when n = 100, 000; while the two-armed random forest appears to have practically
attained the optimum, the random forest does not seem to improve upon a mean-square
error of about 2.5.

The first panel of figure 2 summarizes the results obtained separately with the two ran-
dom forests making up the two-armed random forest based on the training data set of size
100,000. Both random forests appear to be close to reaching the optimum value of 2 for
the mean-square error when n = 100,000. Note that the optimal predictor of Y based on
(X3,...,X50) in the sense of mean-square error is v - (X3, ..., Xj0) with v = (e + 3)/2. If
the trees in the random forest would make little use of X1 and X» one might expect the

5. We use Breiman’s measure of variable importance as implemented in the randomForest package with
scale=TRUE; variable importance is then not really an estimate of the percent worsening of the mean
square error that results from a random permutation of the data on a variable but a scaled version of
it. As is well known, variable importance must be regarded as a relative measure which quantifies how
much more important each variable is relative to the others.



random forest predictor to be close to it. This is confirmed by the bottom panel of figure
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set of size 10,000. Lower panel: scatter-plots and statistics summarizing the per-
formance of the two-armed random forest (left) and of the random forest based

on a data set of size 100,000.



Table 1: Estimates based on test sets of size n of the mean-square error of two versions of random
forest (RF) and of the two-armed random forest constructed with training sets of size n.

n RF with mtry =3 RF withmtry =1 Two-armed RF
10,000 2.52 2.81 2.13
100,000 2.45 2.79 2.06
200,000 2.45 2.75 2.06
500,000 2.45 2.75 2.06

Table 1 shows some estimates of the mean-square error of random forests with the
default value of mtry and with mtry = 1 and of the two-armed random forest. Although
at two decimal places the two-armed random forest does not seem to get closer to the
theoretical optimum with the larger values of n, that must be due to the number of trees
not being increased beyond 1000 (consistency requiring of course an infinite number of
trees). On the other hand, with the larger values of n the performance of the random
forests remains almost uniformly away from the optimum. Interestingly, with mtry = 1 the
random forest ranks X; and Xs as the most important variables already when n > 100, 000
(when n = 10,000 they come very close to each other in third and sixth places), but its
performance is worse than with the default value of mtry = 3. With the latter, X; and X,
appear slightly above X3 when n > 200,000. As shown later, the correct estimation of the
importance of X; and X5 places them between X7 and Xg, not at the top as the choice of
mtry = 1 suggests. In any case, even if the importance of ‘hidden predictors’ such as X;
and X5 is not always detectable with the standard choice of mtry (depending on the sample
size and on the relative strength of the predictors) it is clear that they have good chances
of being detected with mtry = 1, unless perhaps the number of trees is small compared to
the number of variables.

3.1 Statistics of variable importance and variable usage

The gap between the mean-square error of the random forest and that of the optimal pre-
dictor can be very large provided the two branches of model (6) are very different. For
example, when 3 = —a and « is as above, random forests based on samples of sizes as
large as 100,000 and 200,000 have mean-square errors of about 20, while the corresponding
two-armed random forest has a mean-square error of about 2.07. In this case the importance
of each of X7 and X5 is about two to three times as great as that of the other variables,
but this does not mean that X; and X5 are used a lot more in the trees when 3 = —a than
when 3 = 3a/4 because variable importance does not account for the number of times a
variable has been used to define a terminal node; rather, it is more a reflection of the fact
that distinguishing the two branches of model (6) is so necessary that whenever splits on
X1 and X5 occur they dramatically improve the accuracy within the descendent terminal
nodes. In fact, we observe that the probability of there occurring a split on X7 or Xs is
about 0.05 during most of the construction of a tree under both versions of the model (it
is much lower at the beginning of the construction, especially when 3 = 3a/4); this is
clear from the first panel of figure 3, which shows the proportion of splits on X; or X» as
a function of the order of the node split during the construction of the trees.
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expected to perform similarly to the random forest predictor; right, scatter-plot
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predictions of the random forest with those of the optimal predictor of Y based
on (Xg, . ,Xlo).
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It would be interesting to check how often X; and Xs, together or on their own, are
involved in the terminal nodes of a tree, that is, how many cells of the associated partition
represent a restriction on the domain of X7, Xs or (X1, X2). We are unable to obtain such
information from the output of the randomForest function of Liaw and Wiener (2002), but
we can use the R package rpart of Therneau and Atkinson (2019) to compute the number of
terminal nodes involving X; and X5 together and on their own in a tree grown as the trees
in a random forest except that all the 10 predictor variables (and not just a random subset
of three) are tried for a split at each node; since the performance of the random forest in our
examples remains practically the same if the 10 variables are tried at each split, this should
yield reliable information about how often trees in a forest with the default value of mtry
use X1 and Xo. The box plots of figure 3 summarize the distributions of the proportion
of terminal nodes in trees involving X; and Xs, on their own and together, obtained from
1000 trees constructed with bootstrap samples drawn from samples of size 10,000 simulated
according to the two versions of model (6) we are considering. Typically, fewer than 15% of
the terminal nodes in a tree use one of the two variables, and fewer than 10% use both; the
only essential difference between the two models is that when 3 = —a there are a few more
trees with a higher percentage of terminal nodes involving both X; and Xs. It may also
be interesting to look at the numbers of observations contained in the terminal nodes that
involve both X; and Xy: on average, fewer than 4% of the data in the first case (8 = 3a/4)
and fewer than 7% in the second take advantage of the values on (X1, X5); in contrast, the
two-armed random forest predictor, which appears to approach the minimum mean-square
error, uses the values on (X7, X2) to predict every response.

Together with the arguments given in section 2, the observations made in this section
suggest that monitoring variable importance in conjunction with the proportion of terminal
nodes involving each variable in a tree is a means of diagnosing the presence of variables
such as X; and X5. Such a procedure certainly works in the case 3 = —a of the present
model because of the great discrepancy between the frequency with which X; and X, are
used and their importance; in a case like 3 = 3a/4 the measure of variable importance
provided by random forest may be misleading (depending on the sample size) and hide the
potentiality of X; and X with the default value of mtry, but not with mtry = 1.

3.2 The variable importance of X; and X,

We finish this analysis by determining variable importance in the two-armed random forest
more correctly. In order to do this we note in the first place that the importance of X; in
a predictor II based on (X7, ..., X ) may, for example, be defined as the number

E [L (Y,H(Xl, X ,Xd)>] —e(IN)
e(II) ’

where e(Tl) := E[L(Y,TI(X1,..., Xq))], L is a loss function (typically L(s,t) = (s —t)?),
and X; has the same distribution as X; but is independent of the other X;s (if II depends
on a training data set the expectations are conditional on that set).% Secondly, I;(II) can

I;(1) = 100 x

6. This is just one of the possible definitions of the importance of a variable; for a recent overview of other
definitions and methods of estimating variable importance see Loh and Zhou (2021).
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Figure 3: First panel: Proportion of splits on X; or X5 as a function of the nodes already

split or terminated in 1000 trees grown from a simulated sample of size 10,000
from model (6) with 3 = 3a/4 (left) and 8 = —a:: As trees are built, new nodes
are appended to them (or else existing nodes are terminated because they cannot
be split any further); these operations, labelled from one to the number of nodes
in the largest tree, are represented by the horizontal axis. At the time of the k-th
operation one calculates the proportion of trees split on X; or on X5 among all
trees split at that operation, and this is represented on the vertical axis. Second
panel: Proportion of times that X; and X5 together or on their own are used in
the terminal nodes (‘leaves’) of 1000 trees constructed from bootstrap samples
of a simulated sample of size 10,000 from model (6) with 8 = 3a/4 (left) and
B = —a. The trees are constructed as in the random forests (nodes being split
as long as they contain five or more distinct observations) except that all the 10
predictor variables are tried for a split at each node (while in the forests only
three randomly chosen variables are tried).

12



be estimated from data, say by estimating e(IT) with a large test set and averaging many
(say 1000) estimates of E[L(Y,TI(X1,...,Xj,...,X4))] computed with perturbed versions
of the test set obtained by randomly permuting in it the data on the j-th predictor variable.”
Finally, note that I;(II) depends on IT and not just on (Xi,..., Xg), so a suboptimal II need
not make the best possible use of the predictor variables and may unduly deflate or inflate
their importance. The optimal predictor, on the other hand, makes the best possible use of
every variable and therefore I;(II) with II as the optimal predictor provides a more faithful
measure of variable importance, and so does an estimator of it obtained from a consistent
predictor when the estimator and the consistent predictor are based on large samples.

Of course, in real-life problems one ignores the optimal predictor and is often unsure
about the consistency of the predictor in hand, so one can seldom be completely sure of
estimating the correct variable importance, which here we take to be represented by I;(II)
with II as the optimal predictor. But in our case we know that the optimal predictor under
model (6) is IT*(X1,..., Xq) = 0x, x, (3 X3+ -+ g Xag)+{1—0x, x, (B3 X3+ -+ BaXa).
Since the two-armed random forest is so close to the optimal predictor, we trust the variable
importance estimated from it much more than we do the variable importance estimated from
a random forest. Figure 4 shows estimates of the I;(II*)s, computed as indicated in the
first paragraph of this subsection (so that variable importance really represents a percent
worsening of the predictor’s accuracy that results from random permutations of the data
on a variable), from two-armed random forests constructed with training data sets of size
10,000 simulated according to (6) in the two cases we have been considering. While in the
case 3 = —a the essential aspect of the ranking coincides with the one proposed by random
forest (except that X7 and X5 are now recognized as even more important than the rest),
in the case 3 = 3a/4 the new ranking shows that X; and Xy are much more important
than the random forest had suggested with the default value of mtry (cf. the top right
plot of figure 1) and less important than it had suggested with mtry = 1. Accordingly, the
benefit of recognizing the importance of X; and X5 is not that great in the latter case and
enormous in the former.

4. Discussion

We have seen that there are data-generating models which neutralize a powerful strategy
of Breiman’s random forest, namely the one by one identification of the more predictive
variables. Although it is unlikely that real data follow such models closely, examples from
genetics in which haplotypes rather than genotypes predict phenotypes suggest that some
data may follow them approximately. We have seen that ‘many-armed’ random forests
can be much better than random forests at predicting responses from such models, so
it is not implausible that many-armed random forests like the one used in section 3 will
perform better than random forests on some real data sets. Although our exposition has
concentrated on the prediction of a numerical variable, these observations apply as well to
the prediction of nominal variables (i.e. to ‘classification problems’).

The general approach to constructing a many-armed random forest consists of identifying

7. This is not the same as the method used in Breiman’s random forest, which for economy computes such
estimates per tree and then averages them, but in our experience the two methods generally provide a
similar ranking of importance.
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Figure 4: Variable importance according to the two-armed random forest constructed with
a sample of size 10,000. Importance is estimated as the average percent increases
in the mean-square error of the predictions on a test set of size 10,000 that result
from perturbing the same test set by 1000 random permutations of the data on
each predictor variable at a time. The ranking of the variables on the left should
be compared with that shown in figure 1.

‘hidden predictor variables’, such as the X7 and X5 in the first example of section 2, or more
generally the coordinates of X; and X» in the last example, creating an initial partition on
those variables, and constructing a random forest within each member of that partition. As
a means of identifying possible hidden predictors we propose looking at the usual measures
of variable importance in conjunction with measures of wvariable usage which keep track
of how frequently variables are used in trees, the motivation for this being that a strong
predictor variable that ‘needs help’ from other variables in order to be included in trees
may appear as important and yet be used very little, without this becoming visible from
variable importance alone. Although its success depends on the relative strength of the
hidden predictors, on the number of variables, on the sample size and on many other
things, in applications there is certainly no harm in monitoring variable usage in addition
to variable importance. There must be ways of combining the two types of measure other
than those we have used in our illustrations of section 3, and better ways should become
apparent if statistics of variable usage be made available in implementations of random
forest; as far as we know, current implementations do not provide ‘ready-made’ statistics
of variable usage, but we think that they could easily do so without substantial changes in
their code and functionality.

In our illustrations of section 3 the hidden predictors are binary and the initial four-
part partition on them is essentially given. When the hidden variables are many and/or
take a large number of values the procedure is necessarily more complicated and there are
various ways of specifying the initial partition, not all of them being equally feasible nor
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leading to equally accurate results. For example, one might think of creating partitions of
‘k-cells’ whenever there are k potential hidden predictors and choosing the one yielding more
accurate predictions on a training data set (as in the variant of tree and forest predictors
proposed in section 20.14 of Devroye et al. (1996) and in section 6 of Biau et al. (2008),
already mentioned in our introduction). Or one might take the much simpler and faster
approach of splitting each of the potential hidden predictors at their medians or quartiles and
using the resulting partition of k-cells. Finding ways of performing feasible and favourable
initial partitions constitutes a research project in itself and has not even been attempted
here. As far as we know, the implementations of random forest currently available do not
permit the creation of initial partitions based on a list of variables provided by the user;
our results suggest that possibilities for doing this may sometimes be useful.
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