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Abstract

Most of previous works and applications of Bayesian factor model have assumed
the normal likelihood regardless of its validity. We propose a Bayesian factor model
for heavy-tailed high-dimensional data based on multivariate Student-t likelihood to
obtain better covariance estimation. We use multiplicative gamma process shrinkage
prior and factor number adaptation scheme proposed in Bhattacharya & Dunson
[Biometrika (2011) 291–306]. Since a naive Gibbs sampler for the proposed model
suffers from slow mixing, we propose a Markov Chain Monte Carlo algorithm where
fast mixing of Hamiltonian Monte Carlo is exploited for some parameters in proposed
model. Simulation results illustrate the gain in performance of covariance estimation
for heavy-tailed high-dimensional data. We also provide a theoretical result that the
posterior of the proposed model is weakly consistent under reasonable conditions. We
conclude the paper with the application of proposed factor model on breast cancer
metastasis prediction given DNA signature data of cancer cell.

Keywords: Bayesian modeling; Covariance estimation; Factor model; Multiplicative gamma
process prior; Multivariate t-distribution
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1 Introduction

Factor model is a highly efficient tool to understand the covariance structure of high-

dimensional data. The covariance structure is captured by representing the p-dimensional

observation as the sum of linear transformation of latent factors (k ≪ p) and an error term.

In the factor model, the covariance matrix Ω has the form of Ω = ΛΛT + Σ, where Λ is a

p×k factor loading and Σ is a p×p diagonal error variance matrix. Due to the parsimony of

representing p× p covariance with only p(k+ 1)-dimensional parameters, the factor model

is widely used for covariance estimation in many applications with high-dimensional data,

e.g. spatial analysis (Lopes et al., 2008) and genomics (Carvalho et al., 2008).

The number of latent factors k is a key element in the factor model. Variations of the fac-

tor model have been proposed for the estimation of the number of factors. Lopes and West

(2004) updated the number of latent factors in the posterior sampling process using re-

versible jump Markov Chain Monte Carlo (Green, 1995). Ando (2009) determined the

number of latent factors by maximizing the marginal likelihood, which is analytically de-

rived with a chosen prior distribution. Bhattacharya and Dunson (2011) proposed multi-

plicative gamma process shrinkage prior, which is a prior for the infinite factor model and

encourages factor loadings with large indices to be close to 0. In the posterior sampling, the

number of factors is adapted by adding or deleting latent factors depending on the spar-

sity of the current factor loading estimate. Such adaptation in Bhattacharya and Dunson

(2011) is desirable in that an additional calculation is not required. Moreover, it is guar-

anteed that the Markov Chain Monte Carlo (MCMC) algorithm using factor adaptation is

ergodic.

For the last few decades, many approaches have been made to obtain sparse estimator

under the high-dimensional setting. Variations of factor model have been proposed in a
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similar vein. West (2003) and Carvalho et al. (2008) used the spike-and-slab prior on factor

loadings, which is a mixture of a point mass at 0 and a continuous density. Although the

point mass mixture prior is intuitive and does induce sparse estimates, it has a critical

disadvantage of slow mixing and convergence. Later, due to the advantage in posterior

computation over point mass mixture prior, factor models using global-local shrinkage

prior (Polson and Scott, 2010) have been suggested. For example, the aforementioned

infinite factor model of Bhattacharya and Dunson (2011) assigned multiplicative gamma

process shrinkage prior on factor loadings, and Ferrari and Dunson (2020) proposed a factor

regression model using Dirichlet-Laplace shrinkage prior (Bhattacharya et al., 2015) on

factor loadings.

Most of the factor models aforementioned are based on the normality assumption which,

however, is ill-suited when outliers are present. Ando (2009) proposed a factor model with

matrix-variate t distribution to obtain robust estimate. Zhang et al. (2014) proposed a

robust version of the factor model utilizing the fact that a multivariate t distribution can

be represented as a scale mixture of normal distributions. To the best of our knowledge,

however, no approach has been proposed for both robustness against outliers and sparsity

of the estimate.

This work proposes a robust sparse Bayesian infinite factor model, which estimates co-

variance robustly under heavy tail distribution. Specifically, it is an extension of the sparse

Bayesian infinite factor model (Bhattacharya and Dunson, 2011), utilizing the multivariate

t likelihood instead of normal likelihood. Under the heavy tail distribution, the proposed

model has improved performance of covariance estimation over the normal-likelihood fac-

tor model of Bhattacharya and Dunson (2011). Also, we show that under the assumption

of known degrees of freedom of t-distribution, the posterior is consistent under the weak
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topology. Despite the optimal value of t degrees of freedom is not given in the real data

analysis, simulation results indicate that the proposed model outperforms the normal-

likelihood factor model by choosing a sufficiently small number as the degrees of freedom

of t distribution.

In Sect. 2 the sparse Bayesian infinite factor model of Bhattacharya and Dunson (2011)

is introduced. In Sect. 3 we propose robust factor model with Student’s t-likelihood. The

posterior computation algorithm and theoretical properties are also presented. In Sect. 4

performance of the proposed model is demonstrated through simulation studies. In Sect. 5

the proposed model is applied to prediction of breast carcinoma metastasis using microarray

data of cancer tissue. The discussion is given in Sect. 6.

2 Sparse Bayesian Infinite Factor Models

The sparse Bayesian infinite factor model (Bhattacharya and Dunson, 2011) is a Bayesian

factor model specialized for high-dimensional covariance estimation. The joint distribution

of observation yi ∈ R
p and latent factor ηi ∈ R

k is as follows:





yi

ηi





∣

∣

∣
Λ,Σ

iid
∼ Np+k









0

0



 ,





ΛΛT + Σ Λ

ΛT Id







 , i = 1, 2, . . . , n.

The model is differentiated from the preceding Bayesian factor models in mainly two points:

its expanded parameterization on factor loading Λ and the adaptation on the number of

factors k.

Choosing the number of the latent factor k is an important issue. The model addresses

this issue by first allowing the parameter space ΘΛ to contain all possible numbers of

latent factor and by dynamically truncating the insignificant latent factors in posterior
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computation. The parameter space of factor loading Λ and error covariance Σ are as

follows:

ΘΛ =

{

Λ = (λjh), j = 1, . . . , p, h = 1, . . . ,∞, max
1≤j≤p

∞
∑

h=1

λ2
jh < ∞

}

,

ΘΣ =

{

Σ ∈ R
p×p : Σjj > 0 ∀j = 1, . . . , p, Σij = 0 ∀1 ≤ i 6= j ≤ p

}

,

where Σij is the (i, j)th element of matrix Σ. Note that the condition

max
1≤j≤p

∞
∑

h=1

λ2
jh < ∞

is a necessary and sufficient condition for all the entries of ΛΛT to be finite so that the

resulting covariance matrix Ω = ΛΛT + Σ is defined.

For prior ΠΛ on factor loadings with infinitely many latent factors, the multiplicative

gamma process prior is proposed. It is a global-local shrinkage prior (Polson and Scott,

2010) having entry-wise and column-wise variance components as local and global variance

components, respectively. Also, choosing a2 ≥ 1, it is designed so that the strong shrinkage

is imposed for the factors with large column index. The full prior specification of sparse

Bayesian infinite factor models is as follows:

λjh|φjh, τh ∼ N (0, φ−1
jh τ

−1
h ), φjh ∼ Ga(κ/2, κ/2), τh =

h
∏

l=1

δl,

δ1 ∼ Ga(a1, 1), δl ∼ Ga(a2, 1), l ≥ 2, a1 ∼ Ga(2, 1), a2 ∼ Ga(2, 1)

Σ = diag(σ−2
1 , . . . , σ−2

p ), σ−2
j ∼ Ga(aσ, bσ), j = 1, . . . , p.

(1)

The number of factors k is determined adaptively by adding or removing latent factor

within MCMC iterations, inspecting current factor loading estimate Λ̂(t). At the tth iter-

ation of MCMC, the chain goes through adaptation step with decreasing probability p(t),
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say p(t) = 1/ exp(1 + 0.0005t). In adaptation step, if there are columns of the current

value Λ(t) whose entries are all close to zero under prespecified threshold, the columns are

removed, otherwise new columns are generated from the prior distribution and are added to

the current factor loadings. Also corresponding columns of latent factor matrix η, variance

components φjh, δh for deleted (added) column of factor loadings are also deleted (added)

accordingly. The adaptation procedure is to keep only the effective latent factors whose

factor loadings take up a large part of current posterior sample of the covariance.

This adaptive method has a significant advantage of computation, compared to other

methods which needed additional MCMC step (Lopes and West, 2004) or comparison of

other model selection criteria (Ando, 2009). As justification for their adaptation scheme,

Bhattacharya and Dunson (2011) showed that, with the prior specified as Eq. 1, the prior

probability of approximated covariance ΩH = ΛT
HΛH + Σ being arbitrarily close to Ω =

ΛΛT +Σ converges to 1 at exponential rate as H goes to ∞, where ΛH is a truncated factor

loading of Λ with first H columns. Furthermore, the adaptation procedure satisfies the

diminishing adaptation condition in Roberts and Rosenthal (2007). Thus the convergence

of the MCMC algorithm is guaranteed.

3 Robust Sparse Bayesian Infinite Factor Models

3.1 Model

The sparse Bayesian infinite factor model is a factor model based on the normal likelihood.

Even though the model has proven its success in high-dimensional covariance estimation,

the model may not be the best option when there are outliers in the data or the error

distribution has heavy tail. We extend the model by replacing the normal distribution
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with t-distribution which has heavier tail and propose robust sparse Bayesian infinite factor

model.

A multivariate t distribution has a polynomial tail instead of exponential one. The

probability density function of multivariate t distribution is as follows:

f(y|ν, µ,Ω) =
Γ(ν+p

2
)

Γ(ν
2
)(νπ)p/2 det(Ω)1/2

[

1 +
(y − µ)TΩ−1(y − µ)

ν

]− ν+p
2

,

where Γ(x) is a gamma function and det(A) is the determinant of a square matrix A.

When extending normal likelihood to the t likelihood, we use an equivalent representation

of multivariate t distribution as a scale mixture of normal distributions.




yi

ηi





∣

∣

∣
Λ,Σ, ν

ind
∼ tp+k



ν,





0

0



 ,





ΛΛT + Σ Λ

ΛT Id







 , i = 1, 2, . . . , n.

⇐⇒





yi

ηi





∣

∣

∣
γi,Λ,Σ

ind
∼ Np+k









0

0



 ,
1

γi





ΛΛT + Σ Λ

ΛT Id







 , i = 1, 2, . . . , n.

γi|ν
iid
∼ Ga

(ν

2
,
ν

2

)

, i = 1, 2, . . . , n.

(2)

It is desirable to use the representation in Eq. 2 because posterior computation is a straight-

forward Gibbs update, exploiting conjugacy of the normal model with the normal prior dis-

tribution. The directed acyclic graph representation for the proposed model is illustrated

in Fig. 1. The details of the posterior computation of the proposed model are explained in

Sect. 3.2.

For the prior distribution of factor loading Λ and error variance Σ, we follow the prior

ΠΛ and ΠΣ as defined in Eq. 1. As we are dealing with multivariate t-distribution, we have

ν, the degrees of freedom, as an additional parameter. We fix ν at sufficiently small value

in all analyses. From extensive simulation studies, we found that datasets with moderate
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Figure 1: The directed acyclic graph representation for the proposed models

size have only dim information for ν and unspecified ν render slow mixing in the posterior

sampling. Thus, the improved performance can be attained by choosing sufficiently small

value of ν in the presence of outliers. The simulation results under different choices of ν

are demonstrated in Sect. 4.

3.2 Inference

While most of the posterior computation steps of the proposed model are similar to those

in Bhattacharya and Dunson (2011), a Gibbs update step can be modified to incorporate

the auxiliary variable γi which extends the normal likelihood to the multivariate Student-t

likelihood. For the number of latent factors k, we use the same factor adaptation strategy

to adaptively determine k as illustrated in Sect. 2.
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Since all conditionals are tractable distributions, a straightforward Gibbs sampler can be

implemented for posterior computation of the proposed factor model with t likelilhood, as in

the normal-likelihood factor model of Bhattacharya and Dunson (2011). However, in high-

dimensional setting (n ≪ p), we have observed slow mixing of Markov chain when naive

Gibbs sampler is implemented on the proposed model. To cope with the computational

issue arising from more complicated model structure, we made two additional modifications

upon Gibbs sampler; collapsing and Hamiltonian Monte Carlo.

The collapsed Gibbs sampler (Liu, 1994) is a variation of Gibbs sampler which utilizes

the conditional of collapsed version of joint distribution with some parameters are marginal-

ized out of the condition term. Decoupling some dependencies between conditionals, it is

known that the collapsed Gibbs sampler leads to faster mixing than that of the Gibbs

sampler. We apply this collapsing idea on η and γ. This is equivalent to regarding η and

γ as a block of single parameter and updating them at a single step of a Gibbs sampler.

p(γi, ηi|yi, · · · ) = p(ηi|yi, · · · )p(γi|ηi,yi, · · · )

p(ηi|yi, · · · ) ∼ tk

(

ηi : ν + p, (I + ΛΣΛ)−1ΛΣyi,
ν + yT

i yi

ν + p
(I + ΛΣΛ)−1

)

p(γi|ηi,yi, · · · ) ∼ Ga

(

γi :
ν + p+ k

2
,
ν + (yi − Ληi)

TΣ−1(yi − Ληi) + ηTi ηi
2

)

Fundamentally, the Gibbs sampler is a random-walk Metropolis algorithm with full con-

ditional as a proposal distribution. Both methods explore parameter space via random

walk which is highly inefficient for high-dimensional parameter space. Nowadays, in such

a case with high-dimensional parameters, the Hamiltonian Monte Carlo is considered to

be a gold-standard for posterior computation and has proven empirical success in many

applications. The Hamiltonian Monte Carlo uses an auxiliary variable (momentum) and

the information from gradient of the log-posterior to perform better search.
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To deal with the complicated model structure of γ which affects both latent variable

η and observation y, we apply No-U-Turn sampler (Hoffman and Gelman, 2014) for up-

dating η. The No-U-Turn sampler is a variation of the Hamiltonian Monte Carlo which

automatically tunes the path length of Hamiltonian approximation. Though the No-U-Turn

sampler is often used to update all parameters in the model, we applied single No-U-Turn

sampler update per iteration. This is comparable to commonly used Metropolis-within-

Gibbs scheme, which updates some parameter with Metropolis update while updating the

others with Gibbs sampler. Applying No-U-Turn sampler on n× k dimensional η, we aim

to keep both simplicity of overall posterior computation and better mixing of Hamiltonian

Monte Carlo in posterior inference.

For the Metropolis-Hastings updates of a1 and a2, we used Gaussian proposal with

lower bound constraint of a1 > 2 and a2 > 3, respectively. It is a sufficient condition

that induced prior on each entry of covariance Ω has finite second moment. Refer to Sect.

2.2 of Bhattacharya and Dunson (2011) for the detailed explanation. Also Durante (2017)

suggests that choosing a2 moderately higher than a1 facilitates better shrinkage of factor

loadings, which motivates higher lower bound for a2 than a1. The MCMC algorithm for

robust sparse Bayesian infinite factor models given the number of factors k is as follows:

1. Sample λj , the jth row of factor loading Λ, for j = 1, . . . , p from normal distribution:

p(λj | · · · ) ∼ Nk

(

λj : Ψ
j
Λ

(

σ−2
j

n
∑

i=1

γiyijηi

)

,Ψj
Λ

)

,

where Ψj
Λ =

(

σ−2
j

n
∑

i=1

γiηiη
T
i + diag(φjhτh)

)−1

.
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2. Sample σ−2
j , for j = 1, . . . , p from gamma distributions:

p(σ−2
j | · · · ) ∼ Ga

(

σ−2
j : aσ +

n

2
, bσ +

∑n
i=1 γi(yij − λT

j ηi)
2

2

)

.

3. Sample ηi, for i = 1, . . . , n with a single iteration of No-U-Turns-Sampler with step

size ǫ from t distribution:

p(ηi|yi, · · · ) ∼ tk

(

ηi : ν + p, (I + ΛΣΛ)−1ΛΣyi,
ν + yT

i yi

ν + p
(I + ΛΣΛ)−1

)

.

4. Sample γi, for i = 1, . . . , n from gamma distributions:

p(γi|ηi,yi, · · · ) ∼ Ga

(

γi :
ν + p + k

2
,
ν + (yi − Ληi)

TΣ−1(yi − Ληi) + ηTi ηi
2

)

.

5. Sample φjh, for j = 1, . . . , p, h = 1, · · · , k from gamma distributions:

p(φjh| · · · ) ∼ Ga

(

φjh :
κ+ 1

2
,
κ+ τhλ

2
jh

2

)

.

6. Sample δh, for h = 1, . . . , k from gamma distributions:

p(δ1| · · · ) ∼ Ga

(

δ1 : a1 +
pk

2
, 1 +

∑k
ℓ=1

∑p
j=1 τℓφjℓλ

2
jℓ

2

)

,

p(δh| · · · ) ∼ Ga

(

δh : a2 +
p(k − h+ 1)

2
, 1 +

∑k
ℓ=h

∑p
j=1 τℓφjℓλ

2
jℓ

2

)

, h ≥ 2.

7. Sample a1, a2 by Metropolis-Hastings update, using Gaussian proposal with lower

bound constraint of a1 > 2 and a2 > 3.
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3.3 Theoretical Properties

Bhattacharya and Dunson (2011) showed the weak consistency of the posterior density of

their model. In this section, we show that the posterior density of the proposed model is

weakly consistent, given that the degrees of freedom ν of the t-distribution is well-specified.

All proofs for theorems can be found in Appendix.

For the sake of coherence, we follow the notation of Bhattacharya and Dunson (2011).

ΠΛ and ΠΣ are prior distribution on ΘΛ and ΘΣ, respectively. ΘΩ is a space of p×p positive

semi-definite matrices, and an open ray Θν = (2,∞) is a parameter space for the degrees of

freedom ν. Let g : ΘΛ × ΘΣ → ΘΩ be a mapping which maps (Λ,Σ) to covariance matrix

as follows:

g(Λ,Σ) = ΛΛT + Σ.

Let g̃ : Θν ×ΘΛ ×ΘΣ → Θν ×ΘΩ be a mapping such that:

g̃((ν,Λ,Σ)) = (ν, g(Λ,Σ)) = (ν,ΛΛT + Σ).

The parameters of multivariate t likelihood are (ν,Ω). Then full prior distribuion Π on

Θν ×ΘΩ is Π = (Πν ⊗ΠΛ⊗ΠΣ) ◦ g̃
−1 which is induced by Πν , ΠΛ, ΠΣ. If we prespecify the

degrees of freedom ν, say ν = ν̃, then it is equivalent to choosing Πν as a Dirac probability

measure at some point ν̃.

Theorem 3.1. Let

B∞
ε ((ν0,Ω0)) =

{

(ν,Ω) ∈ Θν ×ΘΩ : |ν − ν0| < ε, d∞(Ω,Ω0) < ε
}

,

where d∞(A,B) = max1≤i,j≤p |aij−bij | denotes a max-norm distance for two p×p matrices.

If ν0 > 2 and Ω0 is any p× p covariance matrix, then Π{B∞
ε ((ν0,Ω0))} > 0 for any ε > 0.

12



Theorem 3.2. For fixed ν0 and Ω0, and for any ε > 0, there exists ε∗ > 0, such that

B∞
ε ((ν0,Ω0)) ⊂

{

(ν,Ω) ∈ Θν ×ΘΩ : KL
(

(ν0,Ω0), (ν,Ω)
)

< ε
}

,

where KL((ν0,Ω0), (ν,Ω)) denotes the Kullback-Leibler divergence between two multivariate

Student-t distribution, t(ν0, 0,Ω0) and t(ν, 0,Ω).

Theorem 3.1 states that the support of prior Π is large enough so that arbitrarily small

neighborhood of any (ν0,Ω0) ∈ Θν × Θ has strictly positive prior probability. Along with

Theorem 3.1, Theorem 3.2 ensures that, Kullback-Leibler support condition is satisfied for

any (ν,Ω) for the proposed prior Π. Thus if we prespecify t degrees of freedom correctly,

i.e., if we choose Πν = δν0 for true t degrees of freedom ν0, the weak posterior consistency

holds by Schwartz (1965).

4 Simulation Study

In this section, we illustrate a simulation study of covariance estimation under high-

dimensional data and compare its performance with the normal-likelihood factor model

of Bhattacharya and Dunson (2011). We generated yi, i = 1, . . . , n from heavy-tailed mul-

tivariate t distribution with parameter ν0 and Ω0 = Λ0Λ
T
0 +Σ0. The true covariance of syn-

thetic data is then ν0
ν0−2

Ω0. We let factor loading Λ0 be sparse so that 70–80% of entries of Ω0

are zero. The diagonal terms of error variance matrix Σ0 is generated by the inverse gamma

distribution of shape 1 and rate 1/4. Code for estimating covariance using the proposed

model is available on https://github.com/lee-jaejoon/robust-sparse-bayesian-infinite-factor-models.

The covariance estimation is conducted in two cases: when ν is well-specified and

misspecified. In the well-specified case, the true degrees of freedom ν0 and the prespecified
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degrees of freedom ν in the model were set as ν0 = ν = 3. In misspecified case, the degrees

of freedom was ν = 3, while the true degrees of freedom was ν0 = 7. For each settings of

(p, k), 10 repeated simulations were conducted. We ran 20,000 iterations of Markov Chain

Monte Carlo as described in Sect. 3.2 with 5,000 burn-in steps. Learning rate ǫ for updating

η is set at ǫ = 0.025, 0.015, 0.01 for (p, k) = (200, 10), (500, 15), (1000, 20), respectively. The

adaptation probability in t th iteration p(t) is chosen p(t) = exp(−1.2 − 0.0004t). In the

adaptation step, we deleted the factors 70% of whose loading entries are closer to 0 than

0.01. The proposal variances of Metropolis-Hastings update for a1 and a2 are tuned so that

the acceptance rates be 50–70%. After sampling from the posterior distribution is done,

the covariance estimate is obtained by averaging the posterior samples of covariance. The

estimated covariance is then evaluated with the matrix 1-norm (maximum absolute column

sum), the matrix 2-norm (maximum singular value), the mean squared error (MSE), the

average absolute bias (AAB), and the maximum absolute bias (MAB). The simulation result

for well-specified case and misspecified case are displayed in Table 1 and 2, respectively.

Table 1 shows the simulation results of the well-specified case where both true and

model degrees of freedoms are ν0 = ν = 3 for covariance estimation. The proposed model

performs better than the normal likelihood model in all cases. In (p, k) = (1000, 20), MSE

and AAB of normal likelihood model shows smaller value than that of the proposed t

likelihood model. However, observing that maximum absolute bias of normal likelihood

model is larger, we can presume that the scale of covariance entries is underestimated in

normal likelihood model’s case, which leads to biased estimation. Though the estimation

performance was slightly poor, the normal-likelihood factor model estimated the number

of factors in a stable manner, even with the data from heavy-tailed distribution. Mean

elapsed times for the proposed model are 4.18, 15.51, 46.19 minutes, which are about 1.52,

14



Model Normal likelihood Multivariate t likelihood

(p, k) 1-norm 2-norm MSE AAB MAB 1-norm 2-norm MSE AAB MAB

mean 33.3858 9.1841 0.0098 0.0561 1.0011 30.0996 8.1040 0.0083 0.0530 0.8983

p = 200 min 29.3328 8.1465 0.0077 0.0496 0.9280 28.7672 8.0434 0.0071 0.0486 0.8428

k = 10 median 33.4496 9.0973 0.0099 0.0566 0.9881 29.8370 8.1069 0.0081 0.0526 0.9042

max 36.4696 11.3066 0.0111 0.0593 1.0978 32.1881 8.1538 0.0093 0.0562 0.9511

mean 89.6723 25.3974 0.0116 0.0677 1.0639 78.2845 23.2956 0.0100 0.0656 0.9032

p = 500 min 82.4762 23.7311 0.0101 0.0638 0.9714 74.6951 23.1118 0.0088 0.0609 0.8452

k = 15 median 85.1119 24.2223 0.0118 0.0684 1.0143 78.1479 23.2990 0.0098 0.0649 0.8963

max 107.7094 31.6338 0.0127 0.0715 1.2807 82.4753 23.5229 0.0117 0.0714 0.9890

mean 217.1357 46.8709 0.0142 0.0752 1.6856 205.3249 37.6516 0.0131 0.0755 1.4546

p = 1000 min 198.5997 38.9138 0.0129 0.0715 1.5203 200.2763 37.5020 0.0116 0.0716 1.3352

k = 20 median 217.1729 45.1398 0.0132 0.0735 1.6032 205.5342 37.6245 0.0134 0.0763 1.4816

max 234.4568 57.5753 0.0164 0.0809 1.9884 211.1231 37.8733 0.0141 0.0786 1.5669

Table 1: The simulation result of the covariance estimation when the true degrees of freedom

is ν0 = 3 and the model degrees of freedom is ν = 3
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Model Normal likelihood Multivariate t likelihood

(p, k) 1-norm 2-norm MSE AAB MAB 1-norm 2-norm MSE AAB MAB

mean 36.7584 10.9573 0.0105 0.0573 1.4114 30.9032 8.5313 0.0088 0.0544 1.3421

p = 200 min 30.5850 8.5565 0.0085 0.0511 1.2321 25.9585 7.1489 0.0078 0.0517 1.1556

k = 10 median 35.1613 10.6633 0.0100 0.0561 1.3626 31.4622 8.5725 0.0087 0.0546 1.3700

max 57.0237 17.8385 0.0178 0.0766 1.6724 36.5888 10.1715 0.0104 0.0587 1.4878

mean 91.8864 24.8418 0.0123 0.0709 1.1925 81.9975 24.4893 0.0090 0.0617 1.0973

p = 500 min 81.3002 24.5005 0.0102 0.0647 1.0277 79.2123 24.4243 0.0083 0.0587 0.9954

k = 15 median 90.7399 24.5695 0.0117 0.0699 1.1620 81.3976 24.4942 0.0088 0.0608 1.0718

max 104.1514 25.6546 0.0150 0.0791 1.5117 86.9735 24.5355 0.0100 0.0663 1.2767

mean 196.8423 44.7915 0.0113 0.0655 1.6796 193.8782 39.5985 0.0137 0.0769 1.3940

p = 1000 min 177.2834 39.5988 0.0108 0.0647 1.5423 188.0602 39.3843 0.0130 0.0746 1.3285

k = 20 median 200.2282 43.2991 0.0114 0.0652 1.6653 193.3312 39.4151 0.0133 0.0764 1.3789

max 213.9246 55.1276 0.0118 0.0667 1.9318 200.3391 40.3553 0.0151 0.0809 1.4485

Table 2: The simulation result of the covariance estimation when the true degrees of freedom

is ν0 = 7 and the model degrees of freedom is ν = 3
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1.47, 1.50 times longer than those of the normal model in (p, k) = (200, 10), (500, 15),

(1000, 20), respectively. As we set up sparse true covariance matrix 70 to 80% of whose

entries are zero, we can monitor and compare the covariance estimates of the two model

for those strictly zero covariance entries. For covariance entries whose true values are

zero, 10th and 90th percentile of estimated covariance entries from the proposed model

are (−0.0608, 0.0816), (−0.0873, 0.1010), (−0.0992, 0.1097) on average, while the normal

model showed (−0.0651, 0.0813), (−0.0835, 0.0937), (−0.0950, 0.1003) in (p, k) = (200, 10),

(500, 15), (1000, 20), respectively. This demonstrates that the proposed model and the

normal model have similar shrinkage for the true zero entries.

Table 2 shows the simulation results of the misspecified case where model degrees of

freedom is ν = 3 while true degrees of freedom is ν0 = 7. Even when the degrees of free-

dom is misspecified, we can see that using the proposed model with small enough degrees of

freedom yields better covariance estimation performance than the normal model. Likewise,

we can observe the possible bias in normal likelihood model when (p, k) = (1000, 20) as in

Table 1. Also the proposed model does not lose the capability of estimating the number of

latent factors under misspecification of the degrees of freedom. Mean elapsed times for the

proposed model are 4.43, 17.19, 48.86 minutes, which are about 1.60, 1.59, 1.58 times longer

than those of the normal model in (p, k) = (200, 10), (500, 15), (1000, 20), respectively.

From the proposed model, the 10th and 90th percentile of estimated covariance entries

whose true values are zero are (−0.0612, 0.0892), (−0.0744, 0.0890), (−0.1023, 0.1133) on

average, while the normal model showed (−0.0640, 0.0858), (−0.0882, 0.1023), (−0.0791, 0.0860)

in (p, k) = (200, 10), (500, 15), (1000, 20), respectively. This implies that, even under mis-

specified degrees of freedom, the proposed model still shows similar shrinkage for true zero

entries compared to normal model.
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5 Real Data Analysis : T1T2 Node-Negative Breast

Cancer Application

5.1 Background and Previous Researches

Carcinoma is a type of cancer that develops from epithelial cells. Invasive ductal carcinoma

is a type of breast carcinoma which begins growing in a milk duct and invades adjacent

tissue of the breast. It is the most common type of breast cancer, accounting for 80% of

all breast cancer diagnoses. Cancer cells are developed by accumulations of multiple DNA

mutations that are not repaired by their own repair mechanisms. Gravier et al. (2010)

analyzed the DNA signature of tumor cells from 168 patients with small invasive duc-

tal carcinomas without axillary lymph node involvement (T1T2N0) to predict metastasic

progression in 5 years after diagnosis.

Gene expression of each patient’s tumor cell was obtained by array comparative genomic

hybridization(aCGH). aCGH is a technique to detect the change in chromosomal copy

number. DNAs of tumor cell and normal cell are labelled with green and red fluorescent

protein, respectively. The DNAs are then mixed and undergone hybridization: the process

of single stranded DNA binding to its complementary DNA strand. Next, green-to-red

ratio is measured by fluorescent microscopy, which represents the chromosomal gain or loss

of tumor DNA in the region of interest. The overall procedure of data acquisition through

aCGH is illustrated in Fig. 2.

The training set contained 2,905 predictor variables (log2 transformed) representing ge-

nomic signatures of chromosome 2p22.2, 3p23, and 8q21-24. Among 168 patients, 111 pa-

tients did not have any metastatic event in 5 years after initial diagnosis, while early metas-

tasis of breast carcinoma was reported in other 57 patients. The dataset analysed during the
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Figure 2: The overview of array comparative genomic hybridization (aCGH) procedure

current study is available in the Gene Expression Omnibus (GEO) repository database with

accession number GSE19159, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19159.

In order to predict the progression of metastasis, Gravier et al. (2010) combined the out-

come of multiple classifiers each of which are based on logistic regression.

The latent factor regression is an efficient method under high-dimensional setting of

p ≫ n, where joint covariance structure of continuous dependent variable zi and predictor

variable xi is estimated by performing factor model on yi = (zi,x
T
i )

T . The predictive

distribution for znew can be obtained as follows:

p(znew|xnew,y1, . . . ,yn) =

∫

p(znew|xnew,Ω)p(Ω|y1, . . . ,yn)dΩ,

Under joint normality assumption, the conditional distribution of z given x,Ω isN (xTΩ−1
xxΩxz,Ωzz−

ΩzxΩ
−1
xxΩxz). Here β = Ω−1

xxΩxz can be considered as a regression coefficient in latent fac-

tor regression. There have been a few approaches to analyze high-dimensional microarray

data with latent factor regression (Carvalho et al., 2008; Bhattacharya and Dunson, 2011).
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Bhattacharya and Dunson (2011) implemented their shrinkage prior to induce shrinkage in

regression coefficient estimate. Then the feature selection is performed by sorting predictor

variables by absolute value of estimated regression coefficient.

5.2 Model and Results

Our goal is to predict the progression of metastasis given DNA signature data of cancer

cells (0: no metastasis, 1: metastasis). By investigating Q-Q plot of each variable, we have

observed a heavy-tailed structure of the data. Though the proposed factor model is an

efficient tool to estimate the low-dimensional structure of heavy-tailed high-dimensional

data, we cannot implement the latent factor regression method with the proposed model

because the dependent variable is not continuous but binary.

Instead, we implemented discriminant analysis using the covariance estimate obtained

by the proposed model. We divide the data set into the training set (118 of 168 patients)

and the test set (50 of 168 patients). Covariance estimates for patients with metastasis (36

of 118 patients) and without metastasis (82 of 118 patients) are obtained separately from

the training set. We ran Markov chain Monte Carlo algorithm as in Sect. 3.2 for posterior

computation for 20, 000 iterations with 5, 000 burn-in steps. The degrees of freedom of

t likelihood is set to ν = 5. The step size ǫ for Hamiltonian Monte Carlo update for

ηi, i = 1, . . . , n is set to ǫ = 0.2. The estimated number of factors for patients with

metastasis and without metastasis are 50 and 70 with 95% credible interval (48, 52) and

(65, 71), respectively.

After estimating covariance for patients with metastasis and without metastasis, we
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calculated the log likelihood ratio of observations in test set as follows:

log

(

t(y; ν, µ̂1, Σ̂1)

t(y; ν, µ̂0, Σ̂0)

)

= log







∣

∣

∣
Σ̂1

∣

∣

∣

− 1

2
{

ν + (y − µ̂1)
T Σ̂1(y − µ̂1)

}− ν+p
2

∣

∣

∣
Σ̂0

∣

∣

∣

− 1

2
{

ν + (y − µ̂0)T Σ̂0(y − µ̂0)
}− ν+p

2






,

where µ̂1, µ̂0 are training sample mean of patients with metastasis and without metastasis,

respectively. The covariance estimates of patients with metastasis and without metastasis

obtained by the proposed model are denoted as Σ̂1 and Σ̂0, respectively. If the log likelihood

ratio is greater than a threshold ξ, we classified the observation as a patient with metastasis.

We determined the value of threshold ξ = 0 in our case. Sensitivity is the proportion of true

positives which are correctly identified by classifier, while specificity is the proportion of

true negatives which are correctly identified by classifier. Both are measures of classification

performance widely used in medicine. The test accuracy was 86% which outperforms the

classfier suggested by Gravier et al. (2010). The classfier of Gravier et al. (2010) showed

test accuracy of 78%. Test sensitivity of 66.7% and test specificity of 90.2% are observed,

while Gravier et al. (2010) showed 84% and 66%, respectively.

6 Discussion

In this paper, we have proposed a Bayesian infinite factor model with multiplicative

gamma process shrinkage prior for robust covariance estimation under heavy-tailed high-

dimensional data. Also we have shown the fact that, under well-specified degrees of freedom

of t distribution, the posterior density from the proposed model is weakly consistent.

There are a few research directions which are worthy of further study. Kleijn et al.

(2006) and Ramamoorthi et al. (2015) have studied posterior consistency under model
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misspecification. In the same spirit, theoretical properties of the proposed model un-

der misspecification of the degrees of freedom can be potential avenues of exploration.

Murphy et al. (2020) has introduced the infinite mixture of infinite factor analysers (IM-

IFA) model, which is a Pitman-Yor mixture of the model of Bhattacharya and Dunson

(2011). The same extension of the proposed model from normal likelihood to Student’s

t-likelihood can also be made when some or all of the mixture components are suspected to

follow heavy-tailed distribution. Finally, the proposed model is not completely choice-free,

due to step size parameter ǫ used in No-U-Turn sampler update for η. Hoffman and Gelman

(2014) suggested a method of adaptive setting for the value of ǫ. This, however, is not di-

rectly applicable in our settings, because we are using a single iteration of No-U-Turn

sampler whose target function changes as estimates of the other parameters change. De-

vising a method of tuning ǫ would be an improvement on our work.

Appendix

Proof of Theorem 1

Let ε > 0 be fixed, and let

Bε

(

(ν0,Λ0,Σ0)
)

=
{

(ν,Λ,Σ) : |ν − ν0| < ε, d2(Λ,Λ0) < ε, d∞(Σ,Σ0) < ε
}

.

By Lemma 2 of Bhattacharya and Dunson (2011), there exists ε1 > 0 such that

g̃
(

Bε1

(

(ν0,Λ0,Σ0)
)

)

⊂ B∞
ε

(

g̃
(

(ν0,Λ0,Σ0)
)

)

= B∞
ε

(

(ν0, g(Λ0,Σ0))
)

= B∞
ε

(

(ν0,Ω0)
)

.

Thus, we have

Bε1

(

(ν0,Λ0,Σ0)
)

⊂ g̃−1
(

B∞
ε

(

(ν0,Ω0)
)

)

.
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Denoting the prior distribution as Π = Πν ⊗ΠΩ = (Πν ⊗ ΠΛ ⊗ ΠΣ) ◦ g̃−1, we have

(Πν ⊗ ΠΛ ⊗ ΠΣ)
{

Bε1

(

(ν0,Λ0,Σ0)
)

}

≤ (Πν ⊗ ΠΛ ⊗ ΠΣ)
{

g̃−1
(

B∞
ε

(

(ν0,Ω0)
)

)}

= Π
(

B∞
ε

(

(ν0,Ω0)
)

)

.

Thus, if

Πν

(

{

ν ∈ Θν : |ν − ν0| < ε1
}

)

> 0

ΠΛ

(

{

Λ ∈ ΘΛ : d2(Λ,Λ0) < ε1
}

)

> 0

ΠΣ

(

{

Σ ∈ ΘΣ : d∞(Σ,Σ0) < ε1
}

)

> 0,

we obtain the conclusion.

Since the support of Πν and ΠΣ are Θν and ΘΣ, respectively, the inequalities for ν

and Σ hold. For the inequality of the Λ, we can apply the proof of Proposition 2 of

Bhattacharya and Dunson (2011).

Proof of Theorem 2

Let ν0 > 2,Ω0 ∈ ΘΩ be true parameter. We wish to show that, for any ε > 0, we can

choose ε∗ > 0 such that

KL
(

(ν0,Ω0), (ν,Ω)
)

< ε, for all |ν0 − ν| < ε∗ and d∞(Ω0,Ω) < ε∗. (3)
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Let ε > 0 be given. By the definition of Kullback-Leibler divergence, we have

KL
(

(ν0,Ω0), (ν,Ω)
)

=

∫

log
t(y; ν0,Ω0)

t(y; ν,Ω)
t(y; ν0,Ω0)dy

= E(ν0,Ω0)






log


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
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log
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(4)

By continuity of the functions in the Eq. 4, we can choose ε∗1, ε
∗
2 > 0 that bounds the first

and second terms of Eq. 4 with ε/3, respectively. By the triangle inequality, the third term

of Eq. 4 is

∣

∣

∣

∣

∣
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log
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E log
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E log
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E log
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Denote the first and second terms of Eq. 5 as A and B, respectively. For A, we have

A =
|ν − ν0|

2

∣

∣E log
[

ν + yTΩ−1y
]∣

∣

≤
|ν − ν0|

2
E

[

∣

∣log
[

ν + yTΩ−1y
]∣

∣

]

=
|ν − ν0|

2
E

[

log
[

ν + yTΩ−1y
]

]

≤
|ν − ν0|

2
E

[

ν − 1 + yTΩ−1y
]

.

Using the fact that the expectation of quadratic form of y ∼ t(ν0, 0,Ω0) is E[yTΩ−1y] =

ν0
ν0−2

tr(Ω−1Ω0), we have

A =
|ν − ν0|

2

[

ν − 1 +
ν0

ν0 − 2
tr(Ω−1Ω0)

]

=
|ν − ν0|

2

[

ν − 1 +
ν0

ν0 − 2

p
∑

j=1

λj(Ω
−1Ω0)

]

≤
|ν − ν0|

2

[

|ν − ν0|+ ν0 − 1 +
ν0

ν0 − 2
pλmax(Ω

−1Ω0)
]

.

Let λmax(Ω
−1Ω0) be the largest eigenvalue of Ω−1Ω0. For an eigenvector v ∈ R

p corre-

sponding to λmax(Ω
−1Ω0) and sufficiently large M1 > 0, the following holds:

λmax(Ω
−1Ω0) = ‖λmax(Ω

−1Ω0)v‖2

≤ p1/2‖λmax(Ω
−1Ω0)v‖∞

= p1/2‖Ω−1Ω0v‖∞

≤ p1/2‖Ω−1‖∞‖Ω0‖∞‖v‖∞

≤ p1/2(‖Ω−1 − Ω−1
0 ‖∞ + ‖Ω−1

0 ‖∞)‖Ω0‖∞‖v‖∞

≤ p1/2(‖Ω−1 − Ω−1
0 ‖∞ +M1)M1‖v‖∞

≤ p1/2(‖Ω−1 − Ω−1
0 ‖∞ +M1)M1

= p1/2(‖Ω−1 − Ω−1
0 ‖∞ +M1)M1.
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With this upper bound of λmax(Ω
−1Ω0), we have
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By continuity of matrix inversion, we can choose ε̃ > 0 such that ‖Ω − Ω0‖∞ < ε̃ implies

‖Ω−1 − Ω−1
0 ‖∞ < 1. Plus we can choose ε∗3 ∈ (0, ε̃) small enough so that A is bounded

above by ε/6. So we have
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For B, by Jensen’s inequality, we have
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(6)

For a fixed unit vector ω ∈ R
p, let gω(t) be a function defined on t > 0 as follows:

gω(t) =
ν + yTΩ−1y

ν0 + yTΩ−1
0 y

∣
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∣
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∣

y=tω
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.

Investigating critical points and limits of t > 0, we have the following bound of gω(t),

ωTΩ−1ω

ωTΩ−1
0 ω

∧
ν
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≤ gω(t) ≤

ωTΩ−1ω

ωTΩ−1
0 ω

∨
ν
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Eq. 7 holds for any unit vector ω ∈ R
p. Thus by taking infimum and supremum on lower

and upper bounds, respectively, we have

[(

inf
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ωTΩ−1
0 ω

)

∧
ν

ν0

]

≤ gω(t) ≤

[(

sup
‖ω‖=1

ωTΩ−1ω

ωTΩ−1
0 ω

)

∨
ν

ν0

]

. (8)
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which is obtained by following result,

ωTΩ−1ω

ωTΩ−1
0 ω

=
ωTΩ

−1/2
0 Ω

1/2
0 Ω−1Ω

1/2
0 Ω

−1/2
0 ω

ωTΩ
−1/2
0 Ω

−1/2
0 ω

=
ω̃TΩ

1/2
0 Ω−1Ω

1/2
0 ω̃

ω̃T ω̃
.

Here λmin(Ω
1/2
0 Ω−1Ω

1/2
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0 ) are the smallest and the largest eigenvalues

of Ω
1/2
0 Ω−1Ω

1/2
0 , respectively. By Eq. 8 and Eq. 9, log gω(t) is bounded as follows:
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Note that Eq. 10 holds for any ω ∈ R
p, ‖ω‖2 = 1. For any y ∈ R

p, y can be written as

y = ‖y‖ y
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= tω, t
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. Thus we have the upper bound of the integrand of

Eq. 6 as follows:
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Here we use the following limiting property of eigenvalue as Ω → Ω0 in max-norm sense:

λmin(Ω
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1/2
0 ) → 1, λmax(Ω

1/2
0 Ω−1Ω

1/2
0 ) → 1, ν/ν0 → 1.

So we can choose sufficiently small ε∗4 > 0 such that the following inequalities hold for all

d(Ω,Ω0) < ε∗4,

B ≤
ν0 + p

2
E

∣

∣

∣

∣

log

[

ν + yTΩ−1y

ν0 + yTΩ−1
0 y

]∣

∣

∣

∣

≤
ν0 + p

2
max

{

E

∣

∣

∣

∣

log

[

λmin(Ω
1/2
0 Ω−1Ω

1/2
0 ) ∧

ν

ν0

]∣

∣

∣

∣

,E

∣

∣

∣

∣

log

[

λmax(Ω
1/2
0 Ω−1Ω

1/2
0 ) ∨

ν

ν0

]∣

∣

∣

∣

}

<
ε

6
.

Therefore, letting ε∗ = min{ε∗1, ε
∗
2, ε

∗
3, ε

∗
4}, |ν0 − ν| < ε∗ and d∞(Ω0,Ω) < ε∗ imply the

following.

KL
(

(ν0,Ω0), (ν,Ω)
)

≤

∣

∣

∣

∣

log

(

Γ[(ν0 + p)/2]

Γ(ν0/2)
ν
ν0/2
0

)

− log

(

Γ[(ν + p)/2]

Γ(ν/2)
νν/2

)∣

∣

∣

∣

+

∣

∣

∣

∣

1

2
log (det(Ω))−

1

2
log (det(Ω0))

∣

∣

∣

∣

+

∣

∣

∣

∣

ν + p

2
E log

[

ν + yTΩ−1y
]

−
ν0 + p

2
E log

[

ν + yTΩ−1y
]

∣

∣

∣

∣

+

∣

∣

∣

∣

ν0 + p

2
E log

[

ν + yTΩ−1y
]

−
ν0 + p

2
E log

[

ν0 + yTΩ−1
0 y
]

∣

∣

∣

∣

<
ε

3
+

ε

3
+

ε

6
+

ε

6

= ε

In other words, for any ε > 0, we can choose ε∗ > 0 such that

KL
(

(ν0,Ω0), (ν,Ω)
)

< ε, for all |ν0 − ν| < ε∗ and d∞(Ω0,Ω) < ε∗.
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Thus Eq. 3 is proved and we have

{

(ν,Ω) : |ν0 − ν| < ε∗ and d∞(Ω0,Ω) < ε∗
}

⊂
{

(ν,Ω) : KL
(

(ν0,Ω0), (ν,Ω)
)

< ε
}

.

The proof of Theorem 2 is done.
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