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Abstract The sparse precision matrix plays an essential role in the Gaussian graphical model since a zero
off-diagonal element indicates conditional independence of the corresponding two variables given others.
In the Gaussian graphical model, many methods have been proposed and their theoretical properties are
given as well. Among these, the sparse precision matrix estimation via scaled lasso (SPMESL) has an
attractive feature to which the penalty level is automatically set to achieve the optimal convergence rate
under the sparsity and invertibility conditions. Conversely, other methods need to be used in searching
for the optimal tuning parameter. Despite such an advantage, the SPMESL has not been widely used due
to its expensive computational cost. In this paper, we develop a GPU-parallel coordinate descent (CD)
algorithm for the SPMESL and numerically show that the the proposed algorithm is much faster than
the least angle regression (LARS) tailored to the SPMESL. Several comprehensive numerical studies are
conducted to investigate the scalability of the proposed algorithm and the estimation performance of the
SPMESL. The results show that the SPMESL has the lowest false discovery rate for all cases and the
best performance in the case where the level of the sparsity of the columns is high.

Keywords Gaussian graphical model · graphics processing unit · parallel computation · tuning-free

1 Introduction

The covariance matrix and its inverse are of main interest in multivariate analysis to model dependencies
between variables. Traditionally, these two parameters have been estimated by the sample covariance
matrix and its inverse based on the maximum likelihood (ML) estimation. Although these ML estimators
are often asymptotically unbiased and simple to calculate, there are some weaknesses when the number
of variables is greater than that of samples. This circumstance is also known as high-dimensional low-
sample size (HDLSS) data. For HDLSS data, it is known that the sample covariance matrix becomes
inefficient (Yao et al. 2015). In addition, the inverse of the sample covariance matrix is undefined since
the sample covariance matrix is singular for HDLSS data. For the covariance matrix, many methods
have been proposed under some structural conditions such as bandable structure and sparse structure
to improve the estimation efficiency (Bickel and Levina 2008a,b; Rothman et al. 2009; Wu et al. 2009;
Cai et al. 2010; Cai and Liu 2011a; Cai and Zhou 2012).

To obtain an estimator of the precision matrix (i.e., inverse covariance matrix) for HDLSS data, var-
ious approaches have been developed by adopting the sparsity assumption that there are many zero ele-
ments in the matrix. The existing methods can be categorized into four approaches: covariance estimation-
induced approach, ML-based approach, regression approach, and constrained ℓ1-minimization approach.
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The covariance estimation-induced approach considers an indirect estimation using the inversion of
the well-conditioned shrinkage covariance matrix estimators and applies multiple testing procedures
to identify nonzero elements of the precision matrix (GeneNet, Schäfer and Strimmer (2005)). The ML-
based approach directly estimates the precision matrix by maximizing the penalized likelihood function
(Yuan and Lin 2007; Friedman et al. 2008; Witten et al. 2011; Mazumder et al. 2012). The regression
approach considers the linear regression model and uses the fact that the nonzero regression coefficients
correspond to the nonzero off-diagonal elements of the precision matrix (Meinshausen and Bühlmann
2006; Peng et al. 2009; Yuan 2010; Sun and Zhang 2013; Ren et al. 2015; Khare et al. 2015; Ali et al.
2017). The constrained ℓ1-minimization (CLIME) approach (Cai et al. 2011b) obtains the sparse pre-
cision matrix by solving the linear programming problem with the constraints on the proximity to the
precision matrix where the objective function is the sum of absolute values of the design variables. The
adaptive CLIME (Cai et al. 2016) improves the CLIME and attains the optimal rate of convergence.

Among the existing methods, sparse precision matrix estimation via the scaled Lasso (SPMESL) pro-
posed by Sun and Zhang (2013) is a tuning-free procedure. Conversely, other existing methods require
searching the optimal tuning parameter, GeneNet (Schäfer and Strimmer 2005) and the neighborhood
selection (Meinshausen and Bühlmann 2006) require choosing the level of the false discovery rate; other
penalized methods require choosing the optimal penalty level. In addition, SPMESL supports the consis-
tency of the precision matrix estimation under the sparsity and invertibility conditions that are weaker
than the irrepresentable condition (van de Geer and Bühlmann 2009; Sun and Zhang 2013). However,
it has not been widely used for the sparse precision matrix estimation due to the inefficiency of the
implemented algorithm of the SPMESL using the least angle regression (LARS) algorithm (Efron et al.
2004). Even though the LARS algorithm efficiently provides a whole solution path of the Lasso problem
(Tibshirani 1996), its computational cost is expensive and the SPMESL needs to solve p independent
Lasso problems as the subproblems of the SPMESL. Thus, the scalability of the SPMESL is still chal-
lenging.

In this paper, we found the possibility to improve the computational efficiency of the SPMESL
with the empirical observation that the SPMESL does not need a whole solution path of the Lasso
problem based on the tuning-free characteristic of the SPMESL (see details in Section 3). Motivated
by this empirical observation, we propose a more efficient algorithm based on the coordinate descent
(CD) algorithm and the warm start strategy for the scaled Lasso and the SPMESL as applied to the
standard lasso problem in Wu and Lange (2008). Moreover, we develop the row-wise updating parallel CD
algorithm using graphics processing units (GPUs) adequate for the SPMESL. To efficiently implement the
proposed parallel CD algorithm, we consider the active response matrix that consists of columns of active
response variables that corresponds to the error variance estimate not converged at the current iteration.
We will show the efficiency of the proposed algorithms using comprehensive numerical studies. In this
paper, we also provide the numerical comparisons of the estimation performance of the SPMESL with
three different penalty levels, which are theoretically suggested in previous literature (Sun and Zhang
2012, 2013) but there is no comparison result of them in terms of the estimation performance.

The remainder of the paper is organized as follows. Section 2 introduces the SPMESL and its original
algorithm. We explain the proposed CD algorithm and GPU-parallel CD algorithm in Section 3. Section
4 provides a comprehensive numerical study, including the comparisons of computation times and esti-
mation performances with other existing methods. We provide a summary of the paper and discussion
in Section 5.

2 Sparse Precision Matrix Estimation via Scaled Lasso

In this section, we briefly introduce the scaled Lasso, the SPMESL, and their algorithms.

2.1 Scaled Lasso

The scaled Lasso proposed by Sun and Zhang (2012) is a variant of a penalized regression model with
the Lasso penalty. To be specific, let y ∈ R

n, X ∈ R
n×p, β ∈ R

p, and σ > 0. Consider a linear regression
model y = Xβ + ǫ, where ǫ ∼ N(0, σ2In) and In is the n-dimensional identity matrix. The scaled Lasso
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considers the minimization of the following objective function Lλ0
(β, σ):

Lλ0
(β, σ) =

‖y −Xβ‖22
2nσ

+
σ

2
+ λ0‖β‖1, (1)

where λ0 is a given tuning parameter and ‖x‖1 =
∑p

j=1 |xj | for x ∈ R
p. Thus, the scaled Lasso simulta-

neously obtains the estimate β̂ of the regression coefficient β and the estimate σ̂ of the error standard
deviation σ. It is proved that the objective function Lλ0

is jointly convex in (β, σ) and is strictly convex

for σ in Sun and Zhang (2012). From the convexity of the objective function, the solution (β̂, σ̂) of the
scaled Lasso problem can be obtained by the block CD algorithm as follows:

(Step 1) With a fixed σ̂, consider the minimization of σ̂Lλ0
(β, σ̂):

σ̂Lλ0
(β, σ̂) =

‖y−Xβ‖22
2n

+ σ̂λ0‖β‖1 +
σ̂2

2
.

The minimizer β̂ of σ̂Lλ0
(β, σ̂) can be obtained by solving the following standard lasso problem with

λ = σ̂λ0:

min
β

‖y−Xβ‖22
2n

+ λ‖β‖1. (2)

(Step 2) With a fixed β̂, the minimizer σ̂ of Lλ0
(β̂, σ) is easily obtained by

σ̂ =
‖y −Xβ̂‖2√

n
.

(Step 3) Repeat Steps 1 and 2 until convergence occurs.

In the original paper of the scaled Lasso, the standard lasso problem is solved by the LARS algorithm
(Efron et al. 2004), which provides a whole solution path of the standard Lasso problem. During the

block CD algorithm, the minimizer β̂(σ̂(r)) of σ̂(r)Lλ0
(β, σ̂(r)) in Step 1 at the r-th iteration is obtained

from the solution path of the standard Lasso problem with λ = σ̂(r)λ0.
In addition to the joint estimation of β and σ, the scaled Lasso has attractive features as described

in Sun and Zhang (2012). First, the scaled Lasso guarantees the consistency of β̂ and σ̂ under two

conditions: the penalty level condition λ0 > A
√
2n−1 log p for A > 1 and the compatibility condition,

which implies the oracle inequalities for the prediction and estimation (van de Geer and Bühlmann 2009).

Second, the scaled Lasso estimates are scale-equivariant in y in the sense that β̂(X, αy) = αβ̂(X,y) and

σ̂(X, αy) = |α|σ̂(X,y). Finally, the authors suggest using the universal penalty level λU
0 =

√
2n−1 log p

for λ0 based on their numerical and real-data examples. We can consider the scaled Lasso with the
universal penalty level as a tuning-free procedure. Note that the universal penalty level does not satisfy
the theoretical requirement λ0 > A

√
2n−1 log p for the consistency of σ̂. The authors of the scaled Lasso

provide several conditions that can weaken the required condition for λ0, in order to justify using a
penalty level smaller than A

√
2n−1 log p for A > 1 (Sun and Zhang 2012).

2.2 Sparse precision matrix estimation via scaled Lasso

LetΣ = (σjk)1≤j,k≤p andΩ = Σ−1 = (ωjk)1≤j,k≤p be a covariance matrix and a corresponding precision
matrix, respectively. Suppose that x(i) = (Xi1, . . . , Xip) for i = 1, 2, . . . , n are independently drawn from
the multivariate normal distribution with mean 0 and covariance matrix Σ. Let X ∈ R

n×p be a data
matrix and xk = (X1k, . . . , Xnk)

T be the kth column of X. Consider following linear regression models
for k = 1, . . . , p:

Xik =
∑

l 6=k

βlkXil + ǫik, (3)

where ǫiks are independent and identically distributed random variables drawn from the normal distribu-
tion with mean 0 and variance σ2

k. As applied in the regression approach for the sparse precision matrix
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estimation, the elements of the precision matrix can be represented into the regression coefficient and
the error variance by using the following relationships:

ωjk = −βjk

σ2
k

, ωkk =
1

σ2
k

for 1 ≤ j 6= k ≤ p. (4)

As the scaled Lasso simultaneously estimates the regression coefficients (βjk) and the error standard
deviation σk as described in Section 2.1, we can use the scaled Lasso to estimate the precision matrix.
Thus, the SPMESL considers solving the scaled Lasso problems column-wise and defines the SPMESL
estimator that combines the estimates from the p scaled Lasso problems.

To be specific, let B = (bjk)1≤j,k≤p be a matrix of the regression coefficients such that bjk = βjk for
j 6= k and bjj = −1 for j = 1, . . . , p. Denote b(j) = (bj1, . . . , bjp) and bk = (b1k, . . . , bpk)

T as the jth
row and the kth column of a matrix B, respectively. We further let S = (sjk) be the sample covariance
matrix. Subsequently, the precision matrix can be represented with B and D = diag(σ−2

1 , . . . , σ−2
p ) as

follows:
Ω = −BD = (−σ−2

1 b1, . . . ,−σ−2
p bp).

To obtain the estimate of Ω, the SPMESL solves the following p independent scaled Lasso problems
first: for k = 1, . . . , p,

(b̂k, σ̂k) = argmin
βk∈Rp:βkk=−1,σk>0

‖Xk −
∑

j 6=k βjkXj‖22
2nσk

+
σk

2
+ λ0

∑

j 6=k

|βjk|. (5)

Note that the SPMESL in Sun and Zhang (2013) originally considers λ0

∑
j 6=k

√
sjj |βjk| instead of

λ0

∑
j 6=k |βjk| to penalize the coefficients on the same scale. In this paper, we assume that the columns of

the data matrix X are centered and scaled to XT
kXk = n for k = 1, . . . , p. Thus, sjj = 1 for j = 1, . . . , p.

This assumption does not affect the estimation performance of the precision matrix as the scaled Lasso
has the scale-equivariant property in the response variable as explained in the previous section. We
can easily recover the estimate Ω̂

o
= (ω̂o

jk)1≤j,k≤p from the data in the original scale by the following
Proposition 1:

Proposition 1 Let X ∈ R
n×p and X̃ = XC be a data matrix and the scaled data matrix with C =

diag(s
−1/2
11 , . . . , s

−1/2
pp ), where sjj > 0 for j = 1, . . . , p. Denote Ω̂

o
as the estimate of the precision

matrix by applying the scaled Lasso in (5) with the penalty term λ0

∑
j 6=k

√
sjj |βjk| column by column

with X. Similarly, denote Ω̂
C
= (ω̂C

jk)1≤j,k≤p as the estimate by the scaled Lasso in (5) with X̃. Then,

Ω̂
o
= CΩ̂

C
C.

Proof By the definition of X̃, the kth column of X̃ is X̃k = Xk/
√
skk. Let B̂C = (b̂Cjk)1≤j,k≤p and

(σ̂k,C)1≤k≤p be the solutions of the p scaled Lasso problem in (5) with X̃. We further let B̂o = (b̂ojk)1≤j,k≤p

and (σ̂k,o)1≤k≤p be the solutions of the following scaled Lasso problems: for k = 1, . . . , p,

(b̂o
k, σ̂k,o) = argmin

βk∈Rp:βkk=−1,σk>0

‖Xk −
∑

j 6=k βjkXj‖22
2nσk

+
σk

2
+ λ0

∑

j 6=k

√
sjj |βjk|. (6)

By substituting X̃ with XC in (5) and the reparameterization with β̃jk = βjk/
√
sjj for j 6= k, the kth

scaled Lasso problem becomes

(b̂C
k , σ̂k,C) = argmin

β̃k∈Rp:β̃kk=−1,σk>0

‖Xk/
√
skk −

∑
j 6=k β̃jkXj‖22

2nσk
+

σk

2
+ λ0

∑

j 6=k

√
sjj |β̃jk|. (7)

From the forms of the problems (6) and (7), the relationship b̂o
k =

√
skkb̂

C
k and σ̂k,o =

√
skkσ̂k,C

hold by the scale equivariant property of the scaled Lasso. In addition, by the reparameterization, b̂ojk =√
skk/sjj b̂

C
jk for 1 ≤ j, k ≤ p. Combining the above relationships, the (j, k)th element ω̂o

jk of the precision

matrix estimate Ω̂
o
is represented as

ω̂o
jk = −b̂ojkσ̂−2

k,o = −(sjjskk)−1/2b̂Cjkσ̂
−2
k,C = (sjjskk)

−1/2ω̂C
jk.

Hence, Ω̂
o
= CΩ̂

C
C.
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Note that the result Ω̂
o
= CΩ̂

C
C in Proposition 1 is consistent with the property of (Var(Az))−1 =

A−TVar(z)−1A−1 for a p-dimensional random vector z and a nonsingular matrix A ∈ R
p×p.

After solving p independent scaled Lasso problems, the estimate Ω̂1 = −B̂D̂ = (ω̂jk,1)1≤j,k≤p of

the precision matrix is obtained. However, the estimate Ω̂1 is not symmetric in general. To find the
symmetric estimate of the precision matrix using the current estimate Ω̂1, the SPMESL considers solving
the following linear programming problem as in Yuan (2010):

Ω̂ = argmin
M:MT=M

‖M− Ω̂1‖1. (8)

Remark that the authors of the SPMESL consider the above linear programming problem for the sym-
metrization step in Sun and Zhang (2013), but they applied the following symmetrization step in the
implemented R package scalreg:

ω̂jk = ω̂kj = ω̂jk,1I(|ω̂jk,1| ≤ |ω̂kj,1|) + ω̂kj,1I(|ω̂jk,1| > |ω̂kj,1|), (9)

which is applied in the CLIME and the theoretical properties are developed on this symmetrization
(Cai et al. 2011b). In addition, for the high-dimensional data, the symmetrization applied in the CLIME
is favorable as its computational cost is cheap and it is easily parallelizable. For these reasons, we apply
the symmetrization step (9) in the proposed algorithm.

As stated in the previous section, the scaled Lasso guarantees the consistency of the regression
coefficients and the error variance under the compatibility condition. Thus, the SPMESL also guarantees
column-wise consistency of Ω̂1 under the compatibility conditions, which is independently defined in each
column of Ω̂1, as the SPMESL applies the scaled Lasso column wise. To derive the overall consistency
of Ω̂, the authors of the SPMESL considers the capped ℓ1 sparsity and the invertibility conditions as
follows.

(i) Capped ℓ1 sparsity condition: For a certain ǫ0, λ∗
0 not depending on j and an index set Tj ⊂

{1, 2, . . . , p} \ {j}, the capped ℓ1 sparsity of the jth column with tj > 0 is defined as

|Tj |+
∑

k 6=j,k/∈Sj

|ωkj |
√
σkk

(1− ǫ0)
√
ωjjλ∗

0

≤ aj .

(ii) Invertibility condition: Let W = diag(σ11, . . . , σpp) and R = W−1/2ΣW−1/2. Further, let Tj ⊆ Qj ⊆
{1, 2, . . . , p} \ {j}. The invertibility condition is defined as

inf
j

{
uTR−j,−ju

‖uQj
‖22

: u ∈ R
p,uQj

6= 0, 1 ≤ j ≤ p

}
≥ c∗

with a fixed constant c∗ > 0. Note that the invertibility condition holds if the spectral norm of
R−1 = D1/2ΩD1/2 is bounded (i.e., ‖R−1‖2 ≤ c−1

∗ ).

With some modifications on the capped ℓ1 sparsity and the invertibility conditions, the authors of
the SPMESL derive several conditions on λ∗

0 that guarantees the estimation consistency of the precision
matrix under the spectral norm. Among them, for practical usage, we consider two conditions on a
penalty level λ0 ≥ λ∗

0 as follows:

– Union bound for p applications of the scaled Lasso (Theorem 2 in Sun and Zhang (2013)):

λ0 = A
√

4n−1 log p for A > 1. (10)

– Probabilistic error bound (Theorem 13 in Sun and Zhang (2013)):

λ0 = ALn(k/p) for 1 < A ≤
√
2, (11)

where k is a real solution of k = L4
1(k/p) + 2L2

1(k/p), Ln(t) = n−1/2Φ−1(1 − t), and Φ−1(t) is the
standard normal quantile function.
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Note that a real solution of the equation k − L4
1(k/p) + 2L2

1(k/p) = 0 can easily be found by applying
the bisection method. For instance, we demonstrate two real solutions for p = 100, 1000 in Figure 1 with
the values of k − L4

1(k/p) + 2L2
1(k/p). For p = 1000 and n = 100, λub =

√
4n−1 log p ≈ 0.5257 and

λpb =
√
2Ln(k/p) ≈ 0.2810 with k = 23.4748 while λuniv =

√
2n−1 log(p− 1) ≈ 0.3717, where λub is

the penalty level derived by the union bound, λpb is the penalty level derived by the probabilistic error
bound, and λuniv is the universal penalty level used in the scaled lasso. In the paper of Sun and Zhang
(2013), the penalty level derived by the probabilistic error bound is suggested for the SPMESL. However,
there are no comparison results for the three penalty levels λuniv , λub, and λpb. We conduct a comparison
of performances for identifying the nonzero elements of Ω by the three penalty levels above in Section 4
to provide a guideline for the penalty level λ0.
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Fig. 1 Plots of k−L4
1(k/p)+2L2

1(k/p) for p = 100, 1000. Vertical red lines denote the solutions of k−L4
1(k/p)+2L2

1(k/p) = 0

obtained by the bisection method.

3 Efficient Coordinate Descent Algorithm for SPMESL and its GPU-parallelization

The original algorithm for the scaled Lasso and the SPMESL adopt the LARS algorithm, which provides
the whole solution path of the Lasso regression problem, and its implemented R package scalreg is
available in the Comprehensive R Archive Network (CRAN) repository. As mentioned in the Introduction,
we empirically observed that the block CD algorithms for the scaled Lasso and the SPMESL do not need
a whole solution path of the standard Lasso problem in their sub-problems, where the sub-problem
denotes the minimization problem in Step 1 of the scaled Lasso problem. To describe our empirical
observation, we consider an example with a linear regression model yi = xT

i β + ǫi and ǫi ∼ N(0, σ2)
for i = 1, 2, . . . , 250, where the true parameter β = (βT

2 ,β
T
−1,β

T
0 )

T ∈ R
500, β2 = (2, . . . , 2)T ∈ R

5,
β−1 = (−1, . . . ,−1)T ∈ R

5, β0 = (0, . . . , 0)T ∈ R
490, and σ = 3, 5. We set the initial value of (β, σ) as

(0500×1, 1). As shown in Figure 2, the numbers of iterations for the convergence of σ̂ are less than 10

when the true parameter σ = 3, 5 and λ0 =
√
2n−1 log p. This implies that we do not need to obtain the

whole solution paths of p lasso problems with respect to all λ values.
Thus, the calculation of the whole solution path by the LARS algorithm is inefficient for the scaled

Lasso and the SPMESL. In addition, the scaled Lasso and the SPMESL iteratively solve the lasso
problem with the penalty λr = σ̂(r)λ0 in their inner iteration, where λr denotes the penalty level at the
rth iteration. As σ̂(r) converges to the minimizer of (1), the difference between λr and λr−1 decreases as
the iteration proceeds. This denotes that the Lasso estimate in the current iteration is not far from that
in the next iteration. From this observation, the warm start strategy, which denotes that the solution
in the previous iteration is used as an initial value of the next iteration, is favorable and can efficiently
accelerate the algorithm for the Lasso regression problem in the inner iteration.

To fully utilize the warm start strategy, we consider the coordinate descent (CD) algorithm for the
Lasso regression problem in the inner iteration. This is because it is known that the CD algorithm with

6
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Fig. 2 Plots of the estimates of σ̂ for σ = 3, 5 along with the number of iterations.

the warm start strategy is efficient for the Lasso regression problem and has an advantage for memory
consumption (Wu and Lange 2008). In addition, the SPMESL needs solving p independent scaled Lasso
problems to obtain the estimate of the precision matrix. We develop the GPU-parallel CD algorithm for
the SPMESL, which updates p coordinates simultaneously with GPUs. In the following subsections, we
introduce the CD algorithm for the subproblem of the scaled Lasso and GPU-parallel CD algorithm for
the SPMESL in detail.

3.1 CD Algorithm for subproblem of the scaled Lasso

In this subsection, we focus on the following subproblem of the scaled Lasso with a given λ0:

β̂
(r)

= argmin
β

1

2n
‖y −Xβ‖22 + λ(r−1)‖β‖1, (12)

where y ∈ R
n is a response vector, X ∈ R

n×p is a design matrix, λ(r−1) = σ̂(r−1)λ0, and σ̂(r−1) =
‖y−Xβ̂(r−1)‖2/

√
n is the iterative solution for σ at the (r−1)th iteration. For the notational simplicity,

we use β̂ to denote the rth iterative solution β̂
(r)

, and β̂
[cur]

and β̂
[next]

denote the current and the next
iterative solution in the CD algorithm, respectively. To apply the warm start strategy, we set the initial

value β̂
[cur]

for β̂ to β̂
(r−1)

. In this paper, we consider the cyclic CD algorithm with an ascending order
(i.e., coordinate-wise update from the smallest index to the largest index). Subsequently, for j = 1, . . . , p,

the CD algorithm updates β̂
[next]
j by following equations:

ej = y −
∑

l<j

Xlβ̂
[next]
l −

∑

l>j

Xlβ̂
[cur]
l , aj = xT

j ej/n+ β̂
[cur]
j , β̂

[next]
j = Softλ(aj),

where Softλ(aj) = sign(aj)(|aj | − λ)+ is the soft-thresholding operator and (x)+ = max(x, 0). The
CD algorithm repeats the cyclic updates until the convergence occurs, where the common convergence

criterion is the L∞-norm of the difference between β̂
[cur]

and β̂
[next]

(i.e., ‖β̂[next]− β̂
[cur]‖∞). The whole

CD algorithm with warm start strategy for the scaled Lasso is summarized in Algorithm 1.

3.2 CD Algorithm for SPMESL

As described in Section 2.2, the SPMESL estimates the precision matrix by solving the p scaled Lasso
problems, where each column of the observed data matrix is considered as the response variable and the
other columns are considered as the exploratory variables. To be specific, let (x(i))T = (Xi1, Xi2, . . . , Xip)

T ∼
N(0,Ω−1) be the ith random sample and Ω = Σ−1 be the precision matrix. Furthermore, let xk =

7



Algorithm 1 CD algorithm with warm start strategy for the scaled Lasso

Input: y, X, λ0, σ̂(0) = 1, β̂
(0)

= 0, convergence tolerance δ.

1: repeat r = 0, 1, 2 . . .

2: λ← σ̂(r)λ0 ⊲ Initialization of lasso subproblem

3: β̂
[cur] ← β̂

(r)
, β̂

[next] ← β̂
[cur]

⊲ Warm start strategy

4: repeat m = 0, 1, 2, . . .

5: β̂
[cur] ← β̂

[next]

6: for j = 1, · · · , p do

7: ej = y −
∑

l<j Xlβ̂
[next] −

∑
l>j Xlβ̂

[cur]

8: aj = XT
j ej/n+ β̂

[cur]
j

9: β̂
[next]
j = Softλ(aj )

10: end for

11: until ‖β̂[next] − β̂
[cur]‖∞, < δ ⊲ End of lasso subproblem

12: β̂
(r+1) ← β̂

[next]

13: σ̂(r+1) =
‖y −Xβ̂

(r+1)‖2√
n

14: until |σ̂(r+1) − σ̂(r)| < δ

Output: β̂ ← β̂
(r+1)

, σ̂ ← σ̂(r+1)

(X1k, . . . , Xnk)
T be the kth column vector of the observed data matrix X = (x1, . . . ,xp) ∈ R

n×p. The
CD algorithm with the warm start strategy for the SPMESL independently applies the CD algorithm in
Section 3.1 to the subproblem (5) for k = 1, 2, . . . , p. The main procedures in the CD algorithm for the
SPMESL are summarized in the following two steps:

– Updating β̂−k for 1 ≤ k ≤ p: Applying the CD algorithm with the warm-start strategy for the
following lasso subproblem: for k = 1, 2, . . . , p,

β̂−k = argmin
β−k : βkk=0

‖xk −X β−k‖22
2n

+ σ̂jλ0‖β−k‖1, (13)

where β−k = (β1,k, . . . , βk−1,k, 0, βk+1,k, . . . , βp,k)
T ∈ R

p.

– Updating σ̂k for 1 ≤ k ≤ p: For given λ0 and β̂−ks, σ̂ks are obtained by the equation

σ̂k =
‖xk −X β̂−k‖2√

n
, (14)

where β̂−k = (β̂1,k, . . . , β̂k−1,k, 0, β̂k+1,k, . . . , β̂p,k)
T is the solution to the problem (13).

The CD algorithm for the SPMESL independently repeats the updating β̂−k and σ̂k until convergence

occurs for k = 1, 2, . . . , p. After solving the p scaled Lasso problems, the final estimate Ω̂ of the precision
matrix by the SPMESL is obtained by the symmetrization (9). The whole CD algorithm with warm start
strategy for the SPMESL is summarized in Algorithm 2.

3.3 Parallel CD algorithm for SPMESL using GPU

As we described in Section 3.2, the CD algorithm for the SPMESL solves p independent scaled Lasso
problems. From this independence structure, p elements in B = (βjk) can be updated in parallel, where
(p− 1) elements can simultaneously be updated in practice since βkk = 0 is fixed. In addition, the com-
putation of σ̂ is independent as well in the sense that the update equation for σ̂k only needs information

8



Algorithm 2 CD algorithm with warm start strategy for the SPMESL

Input: X, λ0, σ̂(0) = 1, B = (β̂
(0)
ij ) = (β̂

(0)
−1, . . . , β̂

(0)
−p) = 0, convergence tolerance δ.

1: for k = 1, . . . , p do

2: (β̂
−k, σ̂k) ← Apply Algorithm 1 with (xk,X−k = (x1, . . . ,xk−1,xk+1, . . . ,xp), λ0)

3: end for

4: for j = 1, . . . , p do ⊲ Calculation of initial estimate of Ω

5: ω̂jj = σ̂−2
j

6: for k = 1, . . . , p do

7: if k 6= j then

8: ω̂jk = −β̂jkω̂kk

9: end if

10: end for

11: end for

12: for j = 1, . . . , p− 1 do ⊲ Symmetrization of Ω

13: for k = j + 1, . . . , p do

14: if |ω̂jk| > |ω̂kj | then
15: ω̂jk ← ω̂kj

16: else

17: ω̂kj ← ω̂jk

18: end if

19: end for

20: end for

Output: Ω̂ = (ω̂jk)

of β̂−k. To describe the proposed parallel CD algorithm, we consider the following joint minimization
problem, which combines p scaled Lasso problems:

(B̂, σ̂) = argmin
{β−k,σk}

p

k=1

p∑

k=1

{‖xk −Xβ−k‖22
2nσk

+
σk

2
+ λ0‖β−k‖1

}
, (15)

where B = (β−1, . . . ,β−p) and β−k = (β1,k, . . . , βk−1,k, 0, βk+1,k, . . . , βp,k)
T . As the updating equation

(14) for σ̂k is simple and easily parallelizable, we focus on the update for B̂ in this subsection. For the

given iterative solution σ̂
(r) = (σ̂

(r)
1 , . . . , σ̂

(r)
p ), the subproblem for updating B̂(r+1) can be represented

as follows:

B̂(r+1) = argmin
β−1

,...,β−p

p∑

k=1

g(β−k; σ̂
(r)
k , λ0) =

p∑

k=1

{‖xk −Xβ−k‖22
2n

+ λk‖β−k‖1
}

= argmin
B:bkk=0,1≤k≤p

f(B; σ̂(r), λ0) =
1

2n

∥∥X−XB
∥∥2
F
+

p∑

k=1

λk‖β−k‖1,
(16)

where ‖A‖F = tr(ATA) =
(∑

i,j a
2
ij

)1/2
is the Frobenius norm of a matrix A and λj = σ̂

(k)
j λ0. For

the notational simplicity, hereafter, we denote f(B; σ̂(r), λ0) and B̂(r+1) as f(B) and B̂, respectively. As
f(B) is the sum of the smooth function of B (the square of the Frobenius norm) and non-smooth convex
functions, f(B) satisfies the conditions of Theorem 4.1 in Tseng (2001). Thus, the iterative sequence

{B̂(r)} in the CD algorithm with cyclic rule converges to the stationary point of f(B), where B̂(r)

denotes the iterative solution of the CD algorithm at the rth iteration, and each iteration is counted
when one cycle is finished (i.e., β12, . . . , βp−1,p have been updated.).

To develop the parallel CD (PCD) algorithm, we consider a row-wise update for B̂, which is one of
the possible orderings in the cyclic rule. The main idea of the parallel CD algorithm is that the p Lasso
subproblems are independent in the sense that βj,k does not need information (βj,l) for l 6= k. To be

specific, let β̂
(j),[cur]

= (β̂
[cur]
j,1 , . . . , β̂

[cur]
j,j−1, 0, β̂

[cur]
j,j+1, . . . , β̂

[cur]
j,p ) and β̂

(j),[next]
be the jth row of the current

9



and next iterative solutions of B̂, respectively. The following Proposition 2 shows that the row of B̂ can
be updated in parallel.

Proposition 2 Let E = (e1, . . . , ep) be a current residual matrix defined with ek = xk −Xβ̂
[cur]

−k , and

let B̂[cur] and B̂[next] be the current and next iterative solution for the coefficient of the joint Lasso sub-

problem, respectively. Suppose we update the rows of B̂[next] from the first row to the last row. Then, each

row β̂
(j),[next]

of B̂[next] for j = 1, . . . , p can simultaneously be updated by following updating equations:

aj = (ajk)
p
k=1 = xT

j E/n+β̂
(j),[cur]

, ajj ← 0, β̂
(j),[next]

= Sλ1,...,λp
(aj), E← E+xj(β̂

(j),[cur]−β̂(j),[next]
),

where Sλ1,...,λp
(x) = (Softλj

(xj))1≤j≤p, Softλ(x) = sign(x)(|x| − λ)+, and (x)+ = max(x, 0).

Proof As described in Section 3.1, the CD algorithm updates each element β̂
[next]
j,k in β̂

(j),[next]
by

ek = xk −
∑

l<k

xlβ̂
[next]

−l −
∑

l>k

xlβ̂
[cur]

−l , ajk = xT
j ek/n+ β̂

[cur]
j,k , β̂

[next]
j,k = Softλ(ajk).

Consider updating the first row of B̂(next) by the CD algorithm. Then, for k = 2, . . . , p, the above

updating equations becomes

ek = xk −
p∑

l=2

xlβ̂
[cur]
−l , a1k = xT

1 ek/n+ β̂
[cur]
1,k , β̂

[next]
1,k = Softλ(a1k).

The update for β̂
[next]
1,k only needs information on the current residual vector ek and β̂

[cur]
1,k . Hence, the

updates of β̂
[next]
1,k and β̂

[next]
1,l for k 6= l are independent in the sense that β̂

[next]
1,k does not depend on

β̂
[next]
1,k , and vice versa. Combining these equations for j = 2, . . . , p, we can represent (p − 1) updating

equations with the following vector form:

(0, β̂
[next]
12 , . . . , β̂

[next]
1p ) = (0, Softλ2

(a12), . . . , Softλp
(a1p)),

where λj = σ̂jλ0 and aT1 = (0, eT2 x1/n, . . . , e
T
p x1/n) + (0, β̂

[cur]
1,2 , . . . , β̂

[cur]
1,p ) = xT

1 E/n + β̂
(1),[cur] −

(xT
1 e1/n)i1, where β̂

[cur]
1,1 = 0 and ij is the jth row of p-dimensional identity matrix. After updating

β̂
(1),[next]

, the current residual matrix is also updated by E← E+X1(β̂
(1),[cur] − β̂

(1),[next]
). Then, the

updated ek becomes xk−x1β̂
[next]
1,k −∑p

l=2 xlβ̂
[cur]
l,k . Using these equations, we can express a general form

of updating equations as

aj = (ajk)
p
k=1 = xT

j E/n+β̂
(j),[cur]

, ajj ← 0, β̂
(j),[next]

= Sλ1,...,λp
(aj), E← E+xj(β̂

(j),[cur]−β̂(j),[next]
),

where, for computational simplicity, we calculate aj by xT
j E/n+ β̂

(j),[cur]
and then set ajj = 0. Applying

this sequence of updating equations from the first row (j = 1) to the last row (j = p) of B̂[next] is

equivalent to the cyclic CD algorithm for the joint Lasso subproblem.

In Proposition 2, the row-wise updating equations consist of basic linear algebra operations such as
matrix-matrix multiplication and element-wise soft-thresholding, which are adequate for parallel com-
putation using GPUs. To fully utilize the GPUs, we use the cuBLAS library for linear algebra operations
and develop CUDA kernel functions for the element-wise soft-thresholding, parallel update for σ̂ , and
symmetrization of Ω̂. We refer this CD algorithm to the parallel CD (PCD) algorithm in the sense of that

p elements in each row of B̂ are simultaneously updated if p GPUs (i.e., p CUDA cores) are available.

Note that β̂jj for j = 1, . . . , p are fixed with 0 in the PCD algorithm, which is handled explicitly in the
implementation. The whole PCD algorithm with warm start strategy for the SPMESL is summarized
in Algorithm 3. In Algorithm 3, we use a convergence criterion ‖B(r+1) − B(r)‖∞ < δ to check the

convergence of B(r), which is different to the convergence criterion ‖β(r+1)
−j − β

(r)
−j‖∞ < δ in the CD

algorithm. To ensure that the CD and the PCD algorithm provide the same solution, we show that the
PCD algorithm obtains a solution that is sufficiently close to the solution of the CD algorithm if two
algorithms use the same initial values in the following Theorem 1:
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Theorem 1 For a given vector (σ̂1, . . . , σ̂p), a tuning parameter λ0, and a convergence tolerance δ > 0,

let β
(r)
−k and b

(r)
k be iterative solutions at the rth iteration by the CD algorithm with a convergence criterion

‖β(r+1)
−k − β

(r)
−k‖∞ < δ and the PCD algorithm with a convergence criterion ‖B(r+1) − B(r)‖∞ < δ,

respectively. Let β̂−j and b̂j be the solutions of the CD and the PCD that satisfy the given convergence

criteria. Suppose that the CD and the PCD algorithms use the same initial point (β̂
(0)

−k = b̂
(0)
k , 1 ≤ j ≤ p).

Then, ‖b̂k − β̂−k‖∞ is also bounded by δ.

Proof As the function g(β−k; σ̂k, λ0) is convex with respect to β−k, it is easy to show that the coordinate-

wise minimization of g(β−k; σ̂k, λ0) satisfies the conditions (B1)–(B3) and (C1) in Tseng (2001). To see

this, let η = (η1, . . . , ηp−1)
T = (β1k, . . . , βk−1,k, βk+1,k, . . . , βpk)

T , τ = (τ1, . . . , τp−1)
T , and τm = λm

for 1 ≤ m ≤ k − 1 and τm = λm+1 for k ≤ m ≤ p − 1. We further let f0(η) = 1
2n‖xj − X−jη‖22

and fm(ηm) = τm|ηm| for 1 ≤ m ≤ p − 1, where X−j = (x1, . . . ,xj−1,xj+1, . . . ,xp). Then, we can

represent g(β−k; σ̂k, λ0) as f(η) = f0(η) +
∑p−1

m=1 fm(ηm). With this representation, it is trivial that f0

is continuous on domf0 (B1) and f0, f1, . . . , fp−1 are lower semi-continuous (B3). As f0, f1, . . . , fp−1 are

convex functions, the function ηm 7→ f(η1, . . . , ηp−1) for each m ∈ {1, . . . , p − 1} and (ηl)l 6=m is also

convex and hemivariate (B2). The function f0 also satisfies that domf0 is open and f0 tends to ∞ at

every boundary point of domf0 because the domain of f0(η) is R
p−1 and f0(η) is the sum of squares of

errors. Thus, by Theorem 5.1 in Tseng (2001), the cyclic CD algorithm guarantees that β
(r)
−k converges

to a stationary point of g(β−k; σ̂k, λ0). As the same updating order (1 → 2 → · · · → p) and equation

are applied with the same initial values in the proposed CD and PCD algorithms, the sequence {b(r)
k }

by the PCD is equivalent to the sequence {β(r)
−k}. That is, β

(r)
−k = b

(r)
k for r ≥ 0. Let KCD and KPCD

be the iteration numbers that satisfies the convergence criteria of the CD and the PCD, respectively.

As ‖β(r)
−k − β

(r−1)
−k ‖∞ = ‖b(r)

k − b
(r−1)
k ‖∞ ≤ ‖B(r) − B(r−1)‖∞, it is satisfied that KPCD ≥ KCD. As

the p-dimensional Euclidean space with L∞-norm is Banach space, the convergent sequence {β(r)
−k} and

{b(r)
k } is a Cauchy sequence. Thus, from the definition of the Cauchy sequence, for a given δ > 0, there

exists K such that ‖β(u)
−k − β

(v)
−k‖∞ < δ for u, v ≥ K. Take K = KCD, u = KCD, and v = KPCD. Then,

β
(KCD)
−k = β̂−k and β

(KPCD)
−k = b̂k. Hence, the L∞-norm of the difference of β̂−k and b̂k is bounded by

δ.

For convergence of σj , we also use the same convergence criterion |σ(r)
j − σ

(r−1)
j | < δ as in the CD

algorithm. To reduce the computational costs in the PCD algorithm, at each iteration, we remove some

columns of B in the problem if the corresponding σj satisfies the convergence criterion |σ(r)
j −σ

(r−1)
j | < δ.

This additional procedure needs the rearrangement of the coefficient matrixB. In the implementation, we
use an index vector and a convergence flag vector to implement the additional rearrangement procedure
efficiently. Thus, the PCD algorithm requires more computational costs than the CD algorithm for the
SPMESL as the CD algorithm runs consequently for j = 1, . . . , p and does not need the rearrangement
procedure. In the next section, however, we numerically show that the PCD algorithm becomes more
efficient compared to the CD algorithm when either the number of variables or the sample size increases,
although the PCD has more computational costs.

4 Numerical Study

4.1 Data construction and simulation settings

In this section, we numerically investigate the computational efficiency of the proposed CD and PCD
algorithms and the estimation performance of the SPMESL with comparisons to other existing methods.
To proceed the comparison on various circumstances, we first consider four network structures for the
precision matrix defined as follows:
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Algorithm 3 Parallel CD algorithm with warm start strategy for the SPMESL

Input: X, λ0, σ̂(0) = 1, B(0) = (β̂
(0)
ij ) = (β̂

(0)
−1, . . . , β̂

(0)
−p) = 0, convergence tolerance δ.

1: Set nc = p, I = (1, . . . , p), and F = (1, . . . , 1)

2: repeat r = 0, 1, 2 . . .

3: λ← (σ̂
(r)
I1

λ0, . . . , σ̂
(r)
Inc

λ0) ⊲ Initialization of joint lasso subproblem

4: B̂[cur] ← B̂(r), B̂[next] ← B̂[cur] ⊲ Warm start strategy

5: E = (xI1 , . . . ,xInc
) −XB̂[cur]

6: repeat m = 0, 1, 2, . . .

7: B̂[cur] ← B̂[next]

8: for j = 1, · · · , p do

9: a = xT
j E/n+ β̂

(j),[cur]

10: aj ← 0

11: β̂
(j),[next]

= Sλ1,...,λp
(a)

12: E = E+ xi(β̂
(j),[cur] − β̂

(j),[next]
)

13: end for

14: until ‖B̂[next] − B̂[cur]‖∞, < δ ⊲ End of joint lasso subproblem

15: B̂(r+1) ← B̂[next]

16: Update σ̂
(r+1)
Ij

=
‖xIj −Xβ̂

(r+1)
−Ij

‖2
√
n

in parallel

17: Calculate Fj = I(|σ̂(r+1)
j − σ̂

(r)
j | ≥ δ) in parallel

18: Set l = 0

19: for j = 1, · · · , nc do

20: if Fj = 1 then

l← l+ 1, Il ← j

end if

21: end for

22: Set nc = l, B̂[next] ← (β̂
[next]
−I1

, . . . , β̂
[next]
−Inc

)

23: until nc = 0

24: Calculate ω̂jj = σ̂−2
j and ω̂jk = −β̂jkσ̂

−2
k

in parallel ⊲ Initial estimate for Ω

25: Update ω̂jk in parallel ⊲ Symmetrization

if |ω̂jk| > |ω̂kj | then
ω̂jk ← ω̂kj

else

ω̂kj ← ω̂jk

end if

Output: Ω̂ = (ω̂jk)

– AR(1): AR(1) network is also known as a chain graph. We define a precision matrix Ω for AR(1) as

Ω = (ωij)1≤i,j≤p =





1 if i = j
0.48 if |i− j| = 1
0 otherwise

– AR(4): In AR(4) network, each node is connected to neighborhood nodes whose distance is less than
or equal to 4, where the distance of two nodes i and j is defined as d(i, j) = |i − j|. The precision
matrix Ω corresponding to AR(4) network is defined as

Ω = (ωij)1≤i,j≤p =

{
0.6|i−j| if |i− j| ≤ 4
0 otherwise
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– Scale-free: Degrees of nodes follow the power-law distribution having a form P (k) ∝ k−α, where
P (k) is a fraction of nodes having k connections and α is a preferential attachment parameter. We
set α = 2.3, which is used in Peng et al. (2009), and we generate a scale-free network structure by
using the Barabási and Albert (BA) model (Barabási and Albert 1999). With the generated network
structure G = (V,E), we define a precision matrix corresponding to G = (V,E) by following the steps
applied in (Peng et al. 2009):

(i) Ω̃ = (ω̃ij)1≤i,j≤p =





1 if i = j
U if (i, j) ∈ E
0 otherwise

, U ∼ U([−1,−0.5] ∪ [0.5, 1]).

(ii) Ω = (ωij)1≤i,j≤p =
ω̃ij

1.5
∑

k 6=i
|ω̃ik|

(iii) Ω = (Ω +ΩT )
/
2

(iv) ωii = 1 for i = 1, 2, . . . , p

– Hub: Following (Peng et al. 2009), for p = 100, a hub network consists of 10 hub nodes whose degrees
are around 15 and 90 non-hub nodes whose degrees lie between 1 and 3. Edges in the hub network
are randomly selected with the above conditions. With the given network structure G = (V,E), we
generate a precision matrix by the procedure described in the scale-free network generation.

To avoid nonzero elements having considerably small magnitudes (i.e., the absolute value of element),
we generate (p/100) subnetworks, each of which consists of 100 nodes, and set nonzero elements having
magnitudes less than 0.1 to 0.1 (i.e., sign(ωij)/10) for the scale-free and hub networks. For example,
we generate five subnetworks having 100 nodes when p = 500 for the scale-free and hub networks. We
depict the generated four network structures in Figure 3 for p = 500. Among four networks, AR(1) and
AR(4) networks correspond the circumstances that the variables are measured in a specific order, and the
hub and scale-free networks are frequently observed in real-world problems such as the gene regulatory
networks and functional brain networks.

For comparison of the computational efficiency, we consider the number of variables p = 1000, and
sample size n = 250, 500. To provide a benchmark of the computational efficiency, we also consider
the well-known existing methods such as the CLIME (Cai et al. 2011b), graphical lasso (GLASSO)
(Friedman et al. 2008), and convex partial correlation estimation method (CONCORD) (Khare et al.
2015). As the computation times of the algorithms are affected by the level of sparsity on the esti-

mate of the precision matrix, we set λ0 =
√

4n−1 log p for LARS-CPU (SPMESL-LARS) and CD-CPU
(SPMESL-CD). Further, we search the tuning parameters for other methods to obtain the level of spar-
sity similar to the one obtained by the SPMESL. For example, for AR(1) and AR(4) networks with
p = 1000, the averages of the estimated edges of all methods are around 1000, which is 0.2% of the
total possible edges. With the chosen penalty levels, the computation time for each method is measured
in CPU time (seconds) by using a workstation (Intel(R) Xeon(R) W-2175 CPU (base: 2.50 GHz, max-
turbo: 4.30 GHz) and 128 GB RAM) with NVIDIA GeForce GTX 1080 Ti. We measure the average
computation times and standard errors over 10 datasets.

For comparison of the estimation performance, we consider evaluating the estimation performance
of the SPMESL with λpb =

√
2Ln(k/p), λuniv =

√
2n−1 log(p− 1), and λub =

√
4n−1 log p as there are

three different suggestions for λ0 without a comparison of the estimation performance, where k is a real
solution of k = L4

1(k/p)+2L2
1(k/p), Ln(t) = n−1/2Φ−1(1−t), and Φ−1(t) is the standard normal quantile

function. Here, we denote the SPMESL with λpb, λuniv , λub as SPMESL-P, SPMESL-2, SPMESL-4, re-
spectively. As described in the computational efficiency comparison, we apply the three existing methods
(CLIME, GLASSO, CONCORD) to provide a benchmark of the estimation performance. Hereafter, we
referred these three methods to the tuning-search methods. To measure the estimation performance, we
consider five performance measures– sensitivity (SEN), specificity (SPE), false discovery rate (FDR),
miss-classification error rate (MISR), and Matthew’s correlation coefficients (MCC)–for identifying the

true edges and the Frobenius norm of Ω0 − Ω̂ for estimation error, where Ω0 and Ω̂ denote the true
precision matrix and the estimate of the precision matrix, respectively. The five performance measures
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(a) AR(1) (b) AR(4)

(c) SF (d) Hub

Fig. 3 Four network structures of precision matrix: (a) AR(1), (b) AR(4), (c) Scale-free (SF), and (d) Hub-network (Hub).

Nodes in black denote nodes whose degrees are more than 9.

for identification of the true edges are defined as follows:

SEN ≡ TP

(TP + FN)
, SPE ≡ TN

(TN + FP)
,FDR ≡ FP

(TP + FP)
,

MISR ≡ (FP + FN)

p(p− 1)/2
, MCC(Ω̂, Ω0) ≡ TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

where TP =
∑

j<k I(ω̂jk 6= 0, ω0
jk 6= 0), FP =

∑
j<k I(ω̂jk 6= 0, ω0

jk = 0), TN =
∑

j<k I(ω̂jk = 0, ω0
jk =

0), and FN =
∑

j<k I(ω̂jk = 0, ω0
jk 6= 0),

In the comparison of the estimation performance, we set the number of variables and sample size as 500
and 250, respectively. We generate samples X1,X2, . . . ,Xn ∼ N(0,Σ), where Σ = Ω−1 and Ω is from
a given network structure. Unlike the comparison of computational efficiency, we need to choose criteria
for the selection of the optimal tuning parameter of the CLIME, GLASSO, and CONCORD. For a fair
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comparison, we adopt the Bayesian information criterion (BIC), which is widely used in model selection,
and search the optimal tuning parameter over an equally spaced grid (0.10, 0.12, . . . , 0.88, 0.90). We
generate 50 datasets, each of which we search the optimal tuning parameters for the CLIME, GLASSO,
and CONCORD and apply λpb, λuniv , λub for the SPMESL.

In this numerical study, we implement R package cdscalreg for the CD algorithm with a warm start
strategy for the scaled Lasso and SPMESL, which is available at https://sites.google.com/view/seunghwan-lee/software.
For the other methods in this study, we use R packages fastclime for FASTCLIME, glasso for GLASSO,
gconcord for CONCORD, scalreg for the original algorithm for SPMESL. Note that consider FAST-
CLIME (Pang et al. 2014) for the CLIME, which obtains the CLIME estimator efficiently and provides
a solution path of the CLIME applying the parametric simplex method. It is also worth noting that
the GPUs we used are more efficient for conducting operations with single-precision values than double-
precision values, but the R programming language only supports the double-precision that makes the
efficiency of the GPU-parallel computation decrease. Although this PCD implementation could decrease
its computational efficiency, we develop an R function for the PCD algorithm to provide an efficient and
convenient tool for R users. If readers want to utilize GPU-parallel computation maximally, PyCUDA
(Klöckner et al. 2012) is one of the convenient and favorable ways to implement CUDA GPU-parallel
computation.

4.2 Comparison results for computational efficiency

Table 1 reports the average computation times and standard errors over 10 datasets. From Table 1,
we numerically verify that the proposed algorithm based on the CD with warm-start strategy is more
efficient than the original algorithm based on the LARS, where the proposed algorithm (CD-CPU) is
110.2 and 466.3 times faster than LARS-CPU for the worst case (AR(1), n = 250) and the best case
(AR(4), n = 500), respectively. For comparison of efficiency with other methods, overall, the CD-CPU
is faster than FASTCLIME and slower than GLASSO and CONCORD. GLASSO is the most efficient
algorithm in our numerical study. Its efficiency is from the sub-procedure that reduces the computational
cost by the pre-identification procedure for nonzero block diagonals of the estimate that rearranges the
order of variables for a given tuning parameter described in Witten et al. (2011). The CONCORD is
faster than the CD-CPU in general because the CD algorithm for the CONCORD is applied to minimize
its objective function directly. However, the CD algorithm in the CD-CPU is repeatedly applied to solve
the lasso subproblems. Even though the GLASSO and CONCORD are faster than the CD-CPU, the
GLASSO and CONCORD are tuning-search methods while the CD-CPU is not. Thus, the CD-CPU
becomes the most efficient when the GLASSO and CONCORD need to evaluate more than five tuning
parameters. For the efficiency of the PCD-GPU, we can see that the PCD-GPU is faster than CD-CPU
for all cases except for the case of (Hub, n = 250). In addition, Table 1 also shows that the efficiency of
the PCD-GPU increases as the sample size increases. For example, all computation times of CD-CPU
significantly increase when the sample size increases from 250 to 500. However, there is no significant
difference on the computation times of PCD-GPU between the sample sizes 250 and 500. This might
show that the GPU device has idle processing units when n = 250. Note that the estimator of the
SPMESL can be obtained by solving p scaled Lasso problems independently on multi CPU cores instead
of on GPUs. However, the cost per core of CPU is more expensive than that of GPU. Moreover, the
average computation times of the parallel computation of the CD-CPU with 16 CPU cores with the R
package doParallel (PCD-MPI in Table 1) are around 20 seconds, which are worse than CD-CPU. This
inefficiency might be from the communication cost and the number of CPU cores not enough for large p.

To verify the efficiency of PCD-GPU compared to CD-CPU, we conduct additional numerical studies
for CD-CPU and PCD-GPU with p = 500, 1000, 2000, 5000 and n = 250, 500, 1000. Table 2 reports the
average computation times and standard errors measured in CPU time (seconds) for CD-CPU and PCD-
GPU. As shown in Table 2, PCD-GPU becomes more efficient than CD-CPU when either the number
of variables or the sample size increases. For example, CD-CPU is 1.05∼1.94 times faster than PCD-
GPU only for the Hub-network cases of (p, n) = (500, 250), (500, 500), (1000, 250); however, PCD-GPU
outperforms CD-CPU for all the other cases and 4.71∼11.65 times faster than CD-CPU when p = 5000. In
Table 2, we also find an advantage of the GPU-parallel computation. Originally, the parallel computation
in PCD-GPU applied to reduce the computational cost depends on the number of variables. However,
the additional numerical studies support that the parallel computation in PCD-GPU also reduces the
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computation times when the number of samples increases for a fixed p. This advantage is from the
efficiency of the GPU-parallel computation for the matrix-matrix and matrix-vector multiplications.
Thus, the additional numerical studies show that PCD-GPU is favorable for the cases where either p or
n is sufficiently large.

Table 1 The averages of the computation times (sec.) over 10 datasets. Numbers in the parentheses denote the standard

errors.

Network p n scalreg CD-CPU PCD-GPU PCD-MPI FASTCLIME GLASSO CONCORD

AR(1) 1000

250
937.7358 8.5027 4.4356 18.8599 241.0991 0.7091 6.4348

(4.4662) (0.0519) (0.0749) (0.7913) (4.0303) (0.0081) (0.1541)

500
4345.7155 13.9459 4.2743 21.4523 227.3807 1.2521 12.4249

(3.9313) (0.0335) (0.0397) (0.8523) (2.2561) (0.1210) (0.0830)

AR(4) 1000

250
803.3684 5.9992 1.7896 19.2027 233.5897 0.8030 3.4643

(0.9841) (0.0158) (0.0274) (1.0094) (1.9512) (0.0460) (0.0410)

500
4043.0187 8.6698 2.2892 20.0631 259.5524 8.9721 7.5435

(4.4534) (0.0220) (0.0317) (0.8708) (2.0104) (0.2280) (0.2210)

Scale-Free 1000

250
790.8713 5.1367 3.0949 18.8765 238.7474 0.6852 3.5295

(0.6122) (0.0376) (0.0545) (1.3815) (1.7989) (0.0010) (0.0481)

500
3819.9712 9.1574 3.0781 19.2749 246.0107 0.7945 7.0473

(8.2088) (0.0190) (0.0255) (0.7189) (1.2268) (0.0014) (0.0775)

Hub 1000

250
787.6731 4.7785 7.3326 18.8566 245.2853 0.7512 6.1875

(0.8286) (0.0247) (0.1355) (1.3197) (1.6676) (0.0099) (0.1024)

500
3769.7531 9.2215 7.7584 18.7167 250.2303 2.2454 12.7924

(23.6487) (0.0458) (0.1942) (0.5727) (2.0064) (0.1917) (0.2707)

Table 2 The averages of the computation times (sec.) over 10 datasets. Numbers in the parentheses denote the standard

errors.

Network n
p = 500 p = 1000 p = 2000 p = 5000

CD PCD CD PCD CD PCD CD PCD

AR(1)

250
2.2800 1.9528 8.7067 4.4149 38.1056 12.0651 297.7769 60.1581

(0.0224) (0.0414) (0.0268) (0.0765) (0.0841) (0.1121) (0.2836) (0.9851)

500
3.4519 1.7117 13.8964 4.2744 59.2341 12.8309 436.7230 64.4670

(0.0134) (0.0330) (0.0419) (0.0445) (0.0736) (0.1152) (2.7395) (0.7545)

1000
5.8935 1.7364 23.5556 4.9784 99.7887 15.8946 700.8538 85.5756

(0.0265) (0.0217) (0.0636) (0.0561) (0.1460) (0.1447) (1.0246) (0.6645)

AR(4)

250
1.4538 0.8794 6.1486 1.7679 27.9208 4.9945 232.7940 20.9527

(0.0077) (0.0258) (0.0265) (0.0271) (0.0666) (0.2905) (0.2484) (0.3062)

500
2.1363 0.9950 8.5920 2.2517 37.8047 6.2053 305.4613 26.2313

(0.0116) (0.0177) (0.0254) (0.0372) (0.0777) (0.2523) (0.3319) (0.6105)

1000
6.1868 1.5552 21.5172 4.1366 80.3323 12.1282 499.1462 57.1606

(0.0312) (0.0155) (0.1308) (0.0284) (0.3212) (0.0558) (2.8728) (0.7015)

Scale-Free

250
1.2493 1.1620 4.9605 2.9021 22.1757 6.8921 186.5103 35.0760

(0.0067) (0.0328) (0.0227) (0.0426) (0.0362) (0.0762) (0.2680) (0.6203)

500
2.1820 1.1572 8.7524 2.9931 38.4489 8.3851 300.9288 44.9643

(0.0094) (0.0109) (0.0196) (0.0276) (0.0646) (0.1162) (0.6319) (0.5134)

1000
3.7781 1.2210 15.0969 3.6376 65.1003 11.1231 479.8427 63.4638

(0.0074) (0.0122) (0.0141) (0.0298) (0.1194) (0.0762) (1.4722) (0.9511)

Hub

250
1.2021 2.3266 4.5724 6.9508 19.9179 11.6372 168.9348 35.8963

(0.0075) (0.0434) (0.0207) (0.1257) (0.0456) (0.2135) (0.2214) (0.6634)

500
2.2632 2.3915 8.9738 7.6092 38.4337 15.7290 300.2697 53.2606

(0.0078) (0.0335) (0.0220) (0.1866) (0.0630) (0.3070) (0.4684) (0.4222)

1000
3.9263 2.6366 15.6040 9.6065 66.8115 21.4761 492.7247 77.6366

(0.0108) (0.0342) (0.0279) (0.1127) (0.1204) (0.1523) (1.1698) (0.4552)
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4.3 Comparison results for estimation performance

Tables 3 and 4 report the averages of the number of estimated edges (|Ê|) and the six performance
measures over 50 data sets for AR(1), AR(4), Scale-free, and Hub networks. From the results in Tables
3 and 4, we can find several interesting features. First, focusing on comparing SPMESL-P, SPMESL-
2, and SPMESL-4, the SPMESL-P obtains the smallest estimation error in Frobenius norm, and the
SPMESL-4 has the largest estimation error for all network structures. The estimation error of SPMESL-
2 is located near the middle of an interval defined by the estimation errors of the SPMESL-P and
SPMESL-4. However, for the performance in the identification of the true edges, the SPMESL-4 has the
smallest SEN and FDR for all network structures, and the SPMESL-2 obtains the lowest MISR and the
highest MCC for Scale-free and Hub networks while the SPMESL-P has the highest MISR and the lowest
MCC for all network structures. For AR(1) and AR(4) network structures, the MISR and the MCC of
the SPMESL-2 are worse than those of the SPMESL-4, but the differences of the SPMESL-2 and the
SPMESL-4 are small. For example, the difference in the MCC of the SPMESL-2 and the SPMESL-4 are
0.0195 and 0.0095 in an original scale for AR(1) and AR(4), respectively.

Second, by comparing the SPMESL and the tuning-search methods (CLIME, GLASSO, CONCORD),
the SPMESL-2 and SPMESL-4 obtain considerably small FDRs compared to the tuning-search methods.
For example, the FDRs by the tuning-search methods are over 27% for all cases, but the FDRs by the
SPMESL-2 and the SPMESL-4 are less than 6.2%. The SPMESL-P has the lowest MCC and the highest
FDR for Scale-free and Hub networks and obtains the second-lowest MCC and the second-highest FDR
for AR(4) networks, where only the GLASSO is worse than the SPMESL-P in terms of the MCC and
FDR. For AR(1) network, the SPMESL with all penalty levels are better than the tuning-search methods
for identifying the true edges, and the estimation errors of the SPMESL-P and SPMESL-2 are less than
those of the tuning-search methods.

Finally, we compare the estimation performance of the tuning-search methods. For the estimation
error in the Frobenius norm, the CONCORD outperforms CLIME and GLASSO for all cases, where the
CONCORD obtains similar estimation errors to the SPMESL-P for AR(4), Scale-free, and Hub networks.
However, for the identification of the true edges, the CLIME obtains slightly better performance than
the CONCORD for all networks except the AR(1) network. For the AR(1) network, the CONCORD
outperforms CLIME and GLASSO for estimation error and identification of the true edges. In our
numerical study, the CONCORD is favorable among the three tuning-search methods we consider. Note
that we adopt the BIC for three tuning-search methods for a fair comparison, but the comparison results
might be changed if we apply other model selection criteria.

From the results of the estimation performance comparison, we recommend the SPMESL with the
universal penalty level λuniv if the target problem can accept the FDR level around 5%; the uniform-
bound penalty level is only preferred when the problem only accepts the small FDR less than 1%.
Note that we do not recommend using the probabilistic bound λpb as the SPMESL-P has the highest
FDR among three penalty levels for the SPMESL, which are over 50% for Scale-free and Hub networks,
although the SPMESL-P obtains the lowest estimation error in Frobenius norm.

5 Conclusion

In this paper, we proposed an efficient coordinate descent algorithm with the warm start strategy for
sparse precision matrix estimation using the scaled lasso motivated by the empirical observation that
the iterative solution for the diagonal elements of the precision matrix needs only a few iterations. In
addition, we also develop the parallel coordinate descent algorithm (PCD) for the SPMESL by represent-
ing p Lasso subproblems as the unified minimization problem. In the PCD algorithm, we use a different
convergence criterion ‖B(k+1) − B(k)‖∞ < δ to check the convergence of the PCD algorithm for the
unified minimization problem. We show that the difference in the iterative solutions of the CD and PCD
caused by the difference of the convergence criteria is also bounded by the convergence tolerance δ.

Our numerical study shows that the proposed CD algorithm is much faster than the original algorithm
of the SPMESL, which adopts the LARS algorithm to solve the Lasso subproblems. Moreover, the PCD
algorithm with GPU-parallel computation becomes more efficient than the CD algorithm when either the
number of variables or the sample size increases. For the optimal tuning parameter for the SPMESL, there
are three suggestions without the comparison of the estimation performance. In the additional simulation,
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Table 3 For AR(1) and AR(4) networks with p = 500 and n = 250, the averages of the number of estimated edges, the five

performance measures and the Frobenius norms of difference of the estimate and true precision matrix over 50 datasets.

Numbers in the parentheses denote the standard errors.

Network Method |Ê| SEN SPE FDR MISR MCC ‖Ω̂ −Ω‖F

CLIME
897.80 100.00 99.68 44.33 0.32 74.48 9.17

(5.20) (0.00) (0.00) (0.31) (0.00) (0.21) (0.02)

GLASSO
2134.48 100.00 98.68 76.57 1.31 48.07 12.74

(14.52) (0.00) (0.01) (0.16) (0.01) (0.17) (0.02)

CONCORD
722.16 100.00 99.82 30.84 0.18 83.08 4.96

AR(1) (2.93) (0.00) (0.00) (0.29) (0.00) (0.17) (0.01)

(|E| = 499)
SPMESL-P

649.28 100.00 99.88 23.12 0.12 87.62 3.65

(1.68) (0.00) (0.00) (0.20) (0.00) (0.11) (0.01)

SPMESL-2
524.74 100.00 99.98 4.90 0.02 97.51 4.55

(0.77) (0.00) (0.00) (0.14) (0.00) (0.07) (0.01)

SPMESL-4
504.40 100.00 100.00 1.07 0.00 99.46 6.39

(0.36) (0.00) (0.00) (0.07) (0.00) (0.04) (0.01)

CLIME
908.58 32.55 99.79 28.70 1.29 47.65 22.35

(2.66) (0.08) (0.00) (0.15) (0.00) (0.08) (0.01)

GLASSO
988.96 28.86 99.66 41.66 1.47 40.36 23.17

(10.79) (0.07) (0.01) (0.52) (0.01) (0.17) (0.01)

CONCORD
979.40 33.03 99.74 32.86 1.33 46.52 18.46

AR(4) (3.33) (0.08) (0.00) (0.19) (0.00) (0.10) (0.01)

(|E| = 1990)
SPMESL-P

1206.32 36.31 99.61 40.09 1.40 45.99 18.40

(2.97) (0.07) (0.00) (0.16) (0.00) (0.09) (0.01)

SPMESL-2
545.30 25.71 99.97 6.18 1.21 48.77 20.57

(0.94) (0.02) (0.00) (0.15) (0.00) (0.05) (0.01)

SPMESL-4
499.00 25.05 100.00 0.11 1.20 49.72 22.72

(0.17) (0.01) (0.00) (0.02) (0.00) (0.01) (0.01)

Table 4 For Scale-Free and Hub networks with p = 500 and n = 250, the averages of the number of estimated edges,

the five performance measures and the Frobenius norms of differences of the estimate and true precision matrix over 50

datasets. Numbers in the parentheses denote the standard errors.

Network Method |Ê| SEN SPE FDR MISR MCC ‖Ω̂ −Ω‖F

CLIME
643.08 91.38 99.85 29.63 0.19 80.10 8.33

(2.19) (0.16) (0.00) (0.24) (0.00) (0.17) (0.01)

GLASSO
810.52 92.84 99.72 43.08 0.31 72.53 7.79

(7.21) (0.19) (0.01) (0.52) (0.01) (0.31) (0.02)

CONCORD
682.36 93.04 99.82 32.39 0.21 79.20 5.33

Scale-Free (4.00) (0.17) (0.00) (0.40) (0.00) (0.23) (0.01)

(|E| = 495)
SPMESL-P

1022.56 94.60 99.55 54.18 0.47 65.66 5.15

(3.66) (0.14) (0.00) (0.17) (0.00) (0.14) (0.01)

SPMESL-2
457.88 87.94 99.98 4.92 0.07 91.40 6.57

(1.06) (0.15) (0.00) (0.16) (0.00) (0.11) (0.01)

SPMESL-4
348.34 70.33 100.00 0.06 0.12 83.79 8.83

(0.85) (0.17) (0.00) (0.02) (0.00) (0.10) (0.01)

CLIME
644.02 84.36 99.86 27.80 0.21 77.93 8.43

(2.31) (0.23) (0.00) (0.21) (0.00) (0.17) (0.01)

GLASSO
881.76 87.44 99.68 45.03 0.38 69.10 7.89

(10.37) (0.27) (0.01) (0.59) (0.01) (0.31) (0.02)

CONCORD
731.22 89.03 99.81 32.73 0.24 77.24 5.55

Hub (5.43) (0.19) (0.00) (0.51) (0.00) (0.27) (0.01)

(|E| = 551)
SPMESL-P

1094.14 91.32 99.52 53.99 0.51 64.62 5.37

(3.33) (0.14) (0.00) (0.14) (0.00) (0.12) (0.01)

SPMESL-2
474.36 81.22 99.98 5.64 0.10 87.49 6.78

(1.55) (0.22) (0.00) (0.15) (0.00) (0.13) (0.01)

SPMESL-4
319.72 57.96 100.00 0.11 0.19 76.02 8.90

(1.20) (0.21) (0.00) (0.02) (0.00) (0.14) (0.01)

we numerically investigate the estimation performance of the SPMESL with the three penalty levels and
the other three tuning-search methods. From the comparison results, the SPMESL with the uniform
bound level and the universal penalty level outperform the three tuning-search methods. Specifically,
the probabilistic bound level λpb =

√
2Ln(k/p) provides the estimate that has the smallest estimation
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error in terms of the Frobenius norm; the uniform bound level λub =
√
4n−1 log(p) provides the estimate

that has the smallest FDR less than 1%; and the universal penalty level λuniv =
√
2n−1 log(p− 1)

obtains either the best or second-best in terms of MCC and FDR. Overall, we recommend the SPMESL
with the universal penalty level and apply the CD algorithm if p is less than or equal to 1000 and the
PCD algorithm when the target problem has more than 1000 variables and GPU-parallel computation
is available.
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