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Abstract

By the asymptotic oracle property, non-convex penalties represented by minimax
concave penalty (MCP) and smoothly clipped absolute deviation (SCAD) have at-
tracted much attentions in high-dimensional data analysis, and have been widely used
in signal processing, image restoration, matrix estimation, etc. However, in view of
their non-convex and non-smooth characteristics, they are computationally challeng-
ing. Almost all existing algorithms converge locally, and the proper selection of initial
values is crucial. Therefore, in actual operation, they often combine a warm-starting
technique to meet the rigid requirement that the initial value must be sufficiently
close to the optimal solution of the corresponding problem. In this paper, based on
the DC (difference of convex functions) property of MCP and SCAD penalties, we
aim to design a global two-stage algorithm for the high-dimensional least squares
linear regression problems. A key idea for making the proposed algorithm to be effi-
cient is to use the primal dual active set with continuation (PDASC) method, which
is equivalent to the semi-smooth Newton (SSN) method, to solve the corresponding
sub-problems. Theoretically, we not only prove the global convergence of the pro-
posed algorithm, but also verify that the generated iterative sequence converges to a
d-stationary point. In terms of computational performance, the abundant research
of simulation and real data show that the algorithm in this paper is superior to the
latest SSN method and the classic coordinate descent (CD) algorithm for solving
non-convex penalized high-dimensional linear regression problems.
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1 Introduction

In this paper, we mainly consider the following high-dimensional linear regression model:

y = Xβ∗ + ε, (1.1)

where y ∈ Rn is the response vector, X ∈ Rn×p is the design matrix, ε ∈ Rn is the noise

vector, and β∗ is the underlying regression coefficient. In the high-dimensional settings, the

number of predictors p is usually larger or much larger than the number of observations n.

At this time, we usually assume that β∗ is sparse, that is, only a small part of its elements

are non-zero. If this idea is expressed in the parameter estimation models, it is natural to

add the constraint ‖β‖0 ≤ s, where ‖β‖0 denotes the number of non-zero elements in β, and

s > 0 is a tuning parameter which controls the sparsity level. However, the non-convexity

and discontinuity of the `0 pseudo-norm make it NP-hard to solve the corresponding prob-

lems Natarajan (1995). Especially in the high-dimensional settings, it is very challenging

to design a feasible algorithm that can achieve accurate solutions. Therefore, various sur-

rogates of the `0 pseudo-norm have been proposed in the existing literature and have been

widely studied in statistics, optimization, computational mathematics, machine learning

and other fields.

The first type of surrogate functions is mainly the well-known `1 norm Chen, Donoho,

and Saunders (Chen et al.); Fan et al. (2014); Tibshirani (1996), and its corresponding

Lagrangian form of least squares linear regression model is the following convex but non-

smooth minimization problem:

min
β∈Rp

{1

2
‖Xβ − y‖2 + λ‖β‖1

}
, (1.2)

where ‖β‖1 =
∑p

i=1 |βi| denotes the `1 norm of the vector β, λ > 0 is a regularization

parameter. In view of the good characteristics of the above model, it has received exten-

sive attention in different application fields. Theoretically, under certain conditions on the

design matrix X and the sparsity level of the underlying regression coefficient β∗, the min-
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imizers of (1.2) have attractive statistical properties Candes and Tao (2005); Meinshausen

and Buhlmann (2006); Zhao and Yu (2006). Numerically, the convexity of (1.2) has led

to many fast and effective algorithms, such as least angle regression (LARS)Efron et al.

(2004), alternating direction method of multipliers (ADMM) Boyd et al. (2011), coordinate

descent(CD) method Wu and Lange (2008) and semi-smooth Newton (SSN) method (or

equivalent primal dual active set (PDAS) algorithm) Hintermüller et al. (2002); Li et al.

(2018) etc. It is worth emphasizing that the PDAS algorithm in Fan et al. (2014) not only

has the local superlinear convergence which can be obtained by reformulating it in the SSN

framework, but also has the locally one step convergence under certain conditions. In addi-

tion, the continuation technique on the regularization parameter globalizes the convergence

of the algorithm. In this paper, we will apply it to solve internal sub-problems, and one

can see Section 3.2 for details.

Although the convexity of `1 penalty makes the corresponding problem computation-

ally attractive, there still exists bias in its estimator. Therefore, scholars proposed the

second type of surrogate functions for `0 pseudo-norm, which mainly contains some non-

convex penalties, such as the minimax concave penalty (MCP) Zhang (2010a), the smoothly

clipped absolute deviation (SCAD) penalty Fan and Li (2001), capped `1 Zhang (2010b)

and bridge Frank and Friedman (1993); Fu (1998) etc. Numerous studies have shown that,

compared with a convex relaxation with the `1 norm, a proper non-convex penalty method

can achieve a sparse estimation with fewer measurements, and is more robust against noises

Chartrand (2007); Chen and Gu (2014). Therefore, non-convex penalties have been widely

used in various sparse learning problems Breheny and Huang (2011); Chartrand (2007);

Chen and Gu (2014); Gong et al. (2013); Huang et al. (2021); Li et al. (2017); Mazumder

et al. (2011).

In this paper, we mainly focus on the least squares regression model with MCP or
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SCAD penalty, i.e.,

min
β∈Rp

{1

2
‖Xβ − y‖2 +

p∑
i=1

ρ(βi;λ, τ)
}
, (1.3)

where ρ(·;λ, τ) is the MCP or SCAD penalty, which are respectively defined by

ρmcp(t;λ, τ) := λ

∫ |t|
0

max
(

0, 1− s

λτ

)
ds =

 λ2τ
2
, |t| > λτ,

λ(|t| − t2

2λτ
), |t| ≤ λτ, τ > 1,

(1.4)

ρscad(t;λ, τ) := λ

∫ |t|
0

min
(

1,
max(0, λτ − s)

λ(τ − 1)

)
ds =


λ2(τ+1)

2
, |t| > λτ,

λτ |t|− 1
2
(t2+λ2)

τ−1 , λ < |t| ≤ λτ, τ > 2.

λ|t|, |t| ≤ λ,

(1.5)

Here τ is a given parameter which controls the concavity of the corresponding penalty.

When proposing MCP and SCAD penalties, their authors established that the regression

models with MCP and SCAD penalties have the so-called oracle property, that is, in an

asymptotic sense, they perform as well as if the analyst had known in advance which

coefficients were zero and which were nonzero.

However, non-convex and non-smooth characteristics of the objective function make

the numerical calculation of model (1.3) very challenging. There are several typical al-

gorithms in the existing literature, and here is a simple summary in chronological order.

Firstly, the authors of Fan and Li (2001); Hunter and Li (2005) proposed a local quadratic

approximation (LQA) algorithm and its slightly perturbed version. They suggested itera-

tively, locally approximating the penalty function by a quadratic function, and then using

a modified Newton-Raphson algorithm to solve the corresponding problem. However, the

behavior of deleting small coefficients or choosing the size of perturbation will cause nu-

merical instability. To overcome this difficulty, Zou and Li Zou and Li (2008) proposed a

new unified algorithm based on the local linear approximation (LLA), and calculated the

resulting LASSO problem by LARS algorithm. However, LLA used the path-tracing LARS

algorithm to update the regression coefficients, so it is inherently inefficient to some extent.
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Then, the coordinate descent (CD) type algorithms were designed for the least squares

regression models penalized by MCP and SCAD Breheny and Huang (2011); Mazumder

et al. (2011). The numerical results showed that the performance of this algorithm is bet-

ter than that of LLA. However, the CD-type algorithm requires many iterations in the

pursuit of high accuracy, because its convergence rate is sub-linear or linear locally Li and

Pong (2018). In addition, it has been proved that each non-convex surrogate function of `0

pseudo-norm can be expressed as the difference of two convex functions Ahn et al. (2017);

Le Thi et al. (2015). Therefore, based on the DC (difference of convex functions) property

of the non-convex functions, Li et al. Li et al. (2017) proposed a DC proximal Newton

(DCPN) method for the general nonlinear problems with non-convex penalty. They firstly

used multistage convex relaxation to transform the original optimization into sequences of

LASSO regularized nonlinear regressions. Then, in each stage, they used the second order

Taylor expansion to approximate the nonlinear loss functions, and adopted the Proximity

Newton method in Lee et al. (2014) to solve the convex sub-problem. Under the conditions

of locally restricted strong convexity and Hessian smoothness, they proved their algorithm

is locally quadratic convergent within each stage of convex relaxation. Recently, Shi et al.

Shi et al. (2018) and Huang et al. Huang et al. (2021) respectively proposed SSN and PDAS

algorithms for the model (1.3), and their convergence rates are all locally super-linear.

After in-depth study of the relevant literature, we can find that above-mentioned al-

gorithms are all locally convergent, so they generally combine various warm-starting tech-

niques in actual operations. This inspires us to design an effective calculation method with

global convergence to weaken the rigid requirement that the initial value must be sufficiently

close to the optimal solution. Here we will design a global two-stage algorithm based on

the DC expression of MCP and SCAD penalties. From Ahn et al. (2017); Le Thi et al.

(2015); Tang et al. (2020), we know that MCP and SCAD penalties can be reformulated
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as:

p∑
i=1

ρmcp(βi;λ, τ) = λ‖β‖1 − qmcp(β), τ > 1, (1.6)

p∑
i=1

ρscad(βi;λ, τ) = λ‖β‖1 − qscad(β), τ > 2, (1.7)

where qmcp(β) =
∑p

i=1 qmcp(βi;λ, τ), qscad(β) =
∑p

i=1 qscad(βi;λ, τ), and

qmcp(t;λ, τ) =

 λ|t| − λ2τ
2
, |t| > λτ

t2

2τ
, |t| ≤ λτ

, qscad(t;λ, τ) =


λ|t| − λ2(τ+1)

2
, |t| > λτ

(|t|−λ)2
2(τ−1) , λ < |t| ≤ λτ

0, |t| ≤ λ

.

The functions qmcp(β) and qscad(β) are continuously differentiable with

∂qmcp(β)

∂βi
=

 λ sign(βi), |βi| > λτ

βi
τ
, |βi| ≤ λτ

,
∂qscad(β)

∂βi
=


λ sign(βi), |βi| > λτ
sign(βi)(|βi|−λ)

τ−1 , λ < |βi| ≤ λτ

0, |βi| ≤ λ

.

Therefore, the original model (1.3) can be rewritten as follows,

min
β∈Rp

{
f(β) :=

1

2
‖Xβ − y‖2 + λ‖β‖1 − q(β)

}
, (1.8)

where q : Rp → R is qmcp or qscad, which is a convex smooth function. Together with

the motivation from global and super-linear proximal majorization-minimization (PMM)

algorithm in Tang et al. (2020), which is proposed for nonconvex square-root-loss regression

problems, we are thus inspired to adopt the PMM framework for solving the least squares

model (1.8). A key idea for making the proposed algorithm to be efficient is to use the

PDASC algorithm for solving the corresponding sub-problems. Specifically, in the first

stage, by directly removing the second term −q(β) and adding a proximal term σ
2
‖β‖2, we

will use the PDASC method in Fan et al. (2014) to solve the obtained convex sub-problem,

which can get an initial point of the second stage. Then in the second stage, we linearize

the second term −q(β) with respect to the current iteration βk and add an appropriate

proximal term σ
2
‖β − βk‖2, then directly use the PDASC method to iteratively solve the

resulting problem.
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The remainder of this paper is organized as follows. In Section 2, we present some

preliminaries for our subsequent developments. In Section 3, we describe the two-stage

algorithm detaily. We establish the algorithm’s convergence in Section 4. In Section 5, we

report numerical experiments to show the efficiency of the algorithm, and do performance

comparisons with the latest SSN method and the classic CD algorithm. Finally, we conclude

our paper in Section 6.

2 Preliminaries

We denote the set of all proper lower semicontinuous convex functions on Rp as L(Rp). For

a given f ∈ L(Rp), The proximal mapping of f is defined as

Proxf (x) := arg min
y∈Rp

{
f(y) +

1

2
‖y − x‖2

}
, ∀x ∈ Rp.

Then, from Micchelli et al. (2011), we have

z ∈ ∂f(y)⇔ y = Proxf (y + z). (2.1)

The proximal operator of ‖ ·‖1 is given by the pointwise soft-thresholding operator Donoho

and Johnstone (1995):

Proxλ‖·‖1(x) = Sλ(x), (2.2)

where

y = Sλ(x)⇔ yi = max{|xi| − λ, 0}sign(xi). (2.3)

The subdifferential of any f ∈ L(Rp) is a set-value mapping defined by

∂f(x) := {z ∈ Rp : f(y) ≥ f(x) + 〈z, y − x〉, ∀y ∈ Rp}.

The subdifferential of f = ‖x‖1 is the pointwise set-value sign function Sign(x) Donoho

and Johnstone (1995), i.e.,

z ∈ Sign(x)⇔ zi


= 1, xi > 0

∈ [−1, 1], xi = 0

= −1, xi < 0

. (2.4)
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The classical Fermat’s rule for proper lower semicontinuous convex functions Rockafellar

(2015) asserts

0 ∈ ∂f(x∗)⇔ x∗is a global minimizer of f, (2.5)

where 0 denotes a column vector whose elements are all 0. If the function f is locally

Lipschitz continuous near x∗ and directionally differentiable at x∗, then 0 ∈ ∂f(x∗) is

equivalent to the directional-stationarity (d-stationarity) of x∗, that is

f ′(x∗;h) := limδ→0
f(x∗ + δh)− f(x∗)

δ
≥ 0,∀h ∈ Rp.

In this paper, we will prove that the iterative sequence of the proposed algorithm converges

to a d-stationarity point of problem (1.8).

3 Algorithm

In this section, we will propose a two-stage proximal majorization-minimization (PMM)

algorithm for model (1.3), and the internal sub-problem with `1 penalty will be approx-

imately solved by the primal dual active set with continuation (PDASC) method in Fan

et al. (2014).

3.1 PMM algorithm

The PMM algorithm contains two stages, where the first stage provides a good initial

point for the second stage. Another key idea to make PMM algorithm effective is to use

the PDASC algorithm for solving the corresponding subproblems. Specifically, in the first

stage, we get a nonsmooth convex subproblem with `1 penalty by directly removing the

concave term −q(β) and adding a proximal term σ
2
‖β‖2. Then we use PDASC method

to approximately solve the obtained subproblem so that the corresponding KKT residual

satisfies a prescribed termination criterion. Next, the solution obtained in the first stage is

used as the initial value of the second stage. In the second stage, we linearize the concave
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term −q(β) with respect to the current iteration βk and add an appropriate proximal term

σ
2
‖β − βk‖2. Then we also use PDASC to solve the corresponding convex sub-problem so

that the error vector satisfies a preset accuracy condition. In this way, the second stage

is looped and the penalty parameter σ is updated iteratively until the iteration sequence

satisfies the termination condition given in advance.

Given σ > 0, β̃ ∈ Rp and ṽ ∈ Rp, we consider the following minimization problem in

each iteration:

min
β∈Rp

J(β;σ, β̃, ṽ) :=
1

2
‖Xβ − y‖2 + λ‖β‖1 − q(β̃)− 〈ṽ, β − β̃〉+

σ

2
‖β − β̃‖2. (3.1)

Obviously, the above model is a convex problem with `1 penalty, which can be effectively

solved by PDASC method. Next, we summarize the iterative framework of PMM algorithm

in Algorithm 3.1.

PMM algorithm

Step 1. Take σ1 > 0, σ2,0 > 0. Compute

β0 = arg min
β∈Rp

{J(β;σ1,0,0)} (3.2)

by PDASC method such that the corresponding KKT residual satisfies a prescribed

termination criterion. For k = 0, 1, 2, . . ., do the following operations iteratively.

Step 2. Compute

βk+1 = arg min
β∈Rp

{J(β;σ2,k, βk,∇q(βk)) + 〈δk, β − βk〉}

by PDASC method such that the error vector δk satisfies

‖δk‖ ≤ σ2,k

4
‖βk+1 − βk‖. (3.3)

Step 3. Check the prescribed stopping condition, if stop, denote the last iteration by

β̂. Else, update σ2,k+1 = γσ2,k with γ ∈ (0, 1) and set k := k + 1.
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Remark 3.1. It should be pointed out that, we do not need to calculate the dual problem of

the corresponding subproblem. Because the sub-problem here is essentially a convex problem

with `1 penalty, which can be directly and effectively solved by the PDASC method. This

part is different from Tang et al. (2020).

Remark 3.2. Through the verification of many experiments and the communication with

the authors in Tang et al. (2020), we found that if we use PDASC to solve min
β∈Rp
{J(β;σ2,k, βk,∇q(βk))}

in the second stage so that the corresponding KKT residual satisfies a prescribed accuracy,

such as 1e− 6, then the condition (3.3) is automatically contented. Therefore, in our sub-

sequent numerical experiments, the termination conditions of all sub-problems are set as

the corresponding KKT residuals are sufficiently small. And the inequality (3.3) is mainly

used for theoretical analysis.

3.2 The PDASC method for sub-problems

From Fan et al. (2014), we can see that the design idea of PDASC method is inspired by

the first order optimality system of (3.1), which can be seen in the following Lemma 3.1.

Lemma 3.1. β∗ ∈ Rp is a global minimizer of (3.1) if and only if there exists a d∗ ∈ Rp

such that the following KKT system holds:

(X>X + σI)β∗ + d∗ = X>y + ṽ + σβ̃, (3.4)

β∗ = Sλ

(
β∗ + d∗

)
. (3.5)

Proof. By (2.5), we can have

β∗ ∈ Rp is a minimizer of (3.1)⇔ 0 ∈ ∂J(β∗;σ, β̃, ṽ).

Obviously, ∂J(β∗;σ, β̃, ṽ) = (X>X+σI)β∗−X>y− ṽ−σβ̃+λ∂‖ ·‖1(β∗). Therefore, there

exists d∗ ∈ λ∂‖ · ‖1(β∗) such that

(X>X + σI)β∗ + d∗ = X>y + ṽ + σβ̃. (3.6)
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In addition, (2.1) and (2.2) imply

d∗ ∈ λ∂‖ · ‖1(β∗)⇔ β∗ = Proxλ‖·‖1(β
∗ + d∗) = Sλ(β

∗ + d∗).

Based on Lemma 3.1, we can directly apply the PDASC method to solve problem (3.1),

which is exhibited in Algorithm 3.2.

PDASC method with (σ, β̃, ṽ) ∈ R++ × Rp × Rp

Step 0. Given λ0 ≥ ‖X>y‖∞, the active set A(λ0) = ∅, β(λ0) = 0, d(λ0) = X>y,

µ ∈ (0, 1), Kmax ∈ N. For j = 0, 1, . . ., do the following operations iteratively.

Step 1. Let λj = µλj−1, A0 = A(λj−1), (β0, d0) = (β(λj−1), d(λj−1)). For k =

1, 2, . . . , Kmax, do the following operations iteratively.

Step 1.1. Compute the active and inactive sets Ak and Ik:

A+
k = {i ∈ [p] : βk−1i + dk−1i > λ},

A−k = {i ∈ [p] : βk−1i + dk−1i < −λ}, (3.7)

Ak = A+
k ∪ A

−
k , Ik = Ack.

Step 1.2. Check stopping criterion Ak = Ak−1.

Step 1.3. Update the primal and dual variables βk and dk respectively by

βkIk = 0Ik , dkAk = λ[1A+
k

;−1A−k
],

βkAk = (X>AkXAk + σIAk)
−1(X>Aky + ṽAk + σβ̃Ak − dkAk), (3.8)

dkIk = X>Iky + ṽIk + σβ̃Ik −X>IkXAkβ
k
Ak .

Step 2. Set k̃ = min(Kmax, k), A(λj) = {i ∈ [p] : β k̃i + dk̃i > λ} ∪ {i ∈ [p] : β k̃i + dk̃i < −λ}

and (β(λj), d(λj)) = (β k̃, dk̃).
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Step 3. Check stop condition, if stop, employ the high-dimensional Bayesian information

criterion (HBIC) to choose the optimal regularization parameter λ̂ and denote

the corresponding β(λ̂) by β̂. Else, j := j + 1.

Remark 3.3. For the step 10 in Algorithm 3.2, the high-dimensional Bayesian information

criterion (HBIC) Wang et al. (2013) chooses the optimal λ̂ by

λ̂ = arg min
λ∈[λmin,λmax]

{
HBIC(λ) := log

( 1

n
‖Xβ(λ)− y‖2

)
+
log(log(n))log(p)

n
‖β(λ)‖0

}
,

where λmin and λmax will be specified in numerical tests.

4 Convergence analysis

We firstly describe the convergence result of the algorithm in our first stage. Since J(β;σ1,0,0)

is bounded below, we can get the following result from (Hofmann and Hohage, 2011, Propo-

sition 4.19) and (Tang et al., 2020, Theorem 4.2).

Theorem 4.1. Let J̄(σ1) := min
β∈Rp
{J(β;σ1,0,0)}. Then we have

lim
σ1→0

J̄(σ1) = min
β∈Rp

{1

2
‖Xβ − y‖2 + λ‖β‖1

}
.

Proof. For any σ1 > 0 and β ∈ Rp, we have

J̄(σ1) ≤ 1

2
‖Xβ − y‖2 + λ‖β‖1 +

σ1

2
‖β‖2.

Therefore, limσ1→0 J̄(σ1) ≤ 1
2
‖Xβ − y‖2 + λ‖β‖1. Combining with the arbitrariness of β,

we can get

lim
σ1→0

J̄(σ1) ≤ min
β∈Rp

{1

2
‖Xβ − y‖2 + λ‖β‖1

}
.

In addition, since σ1

2
‖β‖2 ≥ 0 for any β ∈ Rp, so

J̄(σ1) ≥ min
β∈Rp

{1

2
‖Xβ − y‖2 + λ‖β‖1

}
,
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and then

lim
σ1→0

J̄(σ1) ≥ min
β∈Rp

{1

2
‖Xβ − y‖2 + λ‖β‖1

}
.

Hence, we can get the desired result.

Then, we will analyze the convergence of PMM algorithm. Denote

Jk(β) := J(β;σ2,k, βk,∇q(βk)).

At the k-th iteration of stage II, we have that

βk+1 = arg min
β∈Rp

{Jk(β) + 〈δk, β − βk〉} (4.9)

such that condition (3.3) is satisfied. The following lemma shows the descent property of

the function Jk.

Lemma 4.1. Let βk+1 be an approximate solution of the subproblem in the k-th iteration

such that (3.3) holds. Then we have

Jk(β
k) ≥ Jk(β

k+1)− σ2,k

4
‖βk+1 − βk‖2.

Proof. From the convexity of function Jk, we have Jk(β
k) − Jk(βk+1) ≥ 〈∂Jk(βk+1), βk −

βk+1〉. In addition, we can get −δk ∈ ∂Jk(βk+1) from (4.9). Therefore, we obtain

Jk(β
k)− Jk(βk+1) ≥ 〈δk, βk+1 − βk〉 ≥ −‖δk‖ · ‖βk+1 − βk‖.

Combining with condition (3.3), it is easy to get the desired result

Jk(β
k) ≥ Jk(β

k+1)− σ2,k

4
‖βk+1 − βk‖2.

Next we recall the equivalent expression of a d-stationary point of (1.8) in the following

lemma, which is similar to that in Cui et al. (2018); Pang et al. (2017); Tang et al. (2020).
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Lemma 4.2. The vector β̄ ∈ Rp is a d-stationary point of (1.8) if and only if there exist

σ > 0 such that

β̄ ∈ arg min
β∈Rp

{J(β;σ, β̄,∇q(β̄))}.

Proof. The proof is similar to (Tang et al., 2020, Lemma 4.2), so it is omitted here.

Now we present the main result of this section on the subsequential convergence of {βk}

to a d-stationary point of (1.8).

Theorem 4.2. Assume {σ2,k} is a convergent sequence. Let {βk} be the sequence generated

by the PMM algorithm. The following two statements hold.

1. The function sequence {f(βk)} is convergent, and limk→∞ ‖βk+1 − βk‖ = 0.

2. Every accumulation point of the sequence {βk}, if exists, is a d-stationary point of (1.8).

Proof. 1. We can easily get f(βk) = Jk(β
k). Then from Lemma 4.1, we have

f(βk) = Jk(β
k) ≥ Jk(β

k+1)− σ2,k

4
‖βk+1 − βk‖2

=
1

2
‖Xβk+1 − y‖2 + λ‖βk+1‖1 − q(βk)− 〈∇q(βk), βk+1 − βk〉+

σ2,k

4
‖βk+1 − βk‖2

= f(βk+1) +
σ2,k

4
‖βk+1 − βk‖2 + q(βk+1)− q(βk)− 〈∇q(βk), βk+1 − βk〉

≥ f(βk+1) +
σ2,k

4
‖βk+1 − βk‖2.

The last inequality is derived from the convexity of q. Therefore the sequence {f(βk)} is

non-increasing. Since f(β) is bounded below, the sequence {f(βk)} converges, and then

the sequence {‖βk+1 − βk‖} converges to zero.

2. Let β∞ be the limit of a convergent subsequence {βk}k∈K0 . We can easily prove that

{βk+1}k∈K0 also converges to β∞. From the definition of βk+1, we can get

Jk(β) + 〈δk, β − βk〉 ≥ Jk(β
k+1) + 〈δk, βk+1 − βk〉, ∀β ∈ Rp.

Further,

Jk(β) ≥ Jk(β
k+1) + 〈δk, βk+1 − β〉 ≥ Jk(β

k+1)− ‖δk‖ · ‖βk+1 − β‖, ∀β ∈ Rp.
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Letting k(∈ K0)→∞, we obtain that J∞(β) ≥ J∞(β∞),∀β ∈ Rp. Equivalently,

J(β;σ2,∞, β∞,∇q(β∞)) ≥ J(β∞;σ2,∞, β∞,∇q(β∞)),∀β ∈ Rp,

where σ2,∞ = limk→∞ σ
2,k ≥ 0. Then, we can conclude

β∞ ∈ arg min
β∈Rp

{J(β;σ2,∞, β∞,∇q(β∞))}.

From Lemma 4.2, we can easily obtain the desired result.

5 Numerical Experiments

In this section, we will use multiple sets of simulated and real examples to illustrate the

performance of the proposed PMM algorithm for non-convex penalized high-dimension lin-

ear regression problems. The specific layout is that we first use some examples to illustrate

the behavior of PMM algorithm, and then highlight the effectiveness and comparability

through numerical comparison with the latest SSN method in Shi et al. (2018) and the

classic CD algorithm in Breheny and Huang (2011). All the experiments are performed

with Microsoft Windows 10 and MATLAB R2019a, and run on a PC with an Intel Core

i7-9700 CPU at 3.00 GHz and 16 GB of memory.

5.1 Experiments setting

In the simulation experiments, we generate the n × p matrix X whose rows are drawn

independently from N (0,Σ) with Σij = κ|i−j|, 1 ≤ i, j ≤ p, where κ is the correlation

coefficient of matrix X. In order to generate the target regression coefficient β∗ ∈ Rp,

we randomly select a subset of {1, · · · , p} to form the active set A∗ with |A∗| = K < n.

Let R = m2/m1, where m2 = ‖β∗A∗‖max and m1 = ‖β∗A∗‖min = 1. Then the K nonzero

coefficients in β∗ are uniformly distributed in [m1,m2]. The response variable is generated

by y = Xβ∗ + ε where ε ∈ Rn is the additive Gaussian noise and generated independently

from N (0, σ2
1In).
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To select the optimal regularization parameter, we set λmax = ‖X>b‖∞ and λmin =

10−10λmax. Then an equal-distributed partition on log-scale is employed to divide the

interval [λmin, λmax] into N = 100 subintervals. For the parameter τ , unless otherwise

specified, we set τ = 2.7 and τ = 3.7 for the MCP and SCAD penalties, respectively. Due

to the locally one step convergence of the PDAS method for `1 regularized least squares

problems, we set Kmax = 1. And we use the following two relative KKT residuals R1
kkt and

R2
kkt to measure the accuracy of the approximate optimal solutions in different stages,

R1
kkt :=

∥∥∥β − Proxλ‖·‖1

(
β −X>(Xβ − y)

)∥∥∥
1 + ‖β‖+ ‖X>(Xβ − y)‖

, (5.10)

R2
kkt :=

∥∥∥β − Proxλ‖·‖1−q(·)

(
β −X>(Xβ − y)

)∥∥∥
1 + ‖β‖+ ‖X>(Xβ − y)‖

, (5.11)

where the closed form of Proxλ‖·‖1−q(·) can refer to Gong et al. (2013). Then the PDASC

method for solving the internal subproblems is terminated if R1
kkt < 1e− 6, and the PMM

algorithm will be terminated if R2
kkt < 1e− 6. In addition, we fix some low-impact param-

eters, such as σ1 = σ2,0 = γ = 0.1. The values of other parameters will be given in the

context of specific issues.

In addition, for the purpose of highlighting the efficiency and accuracy of PMM algo-

rithm in the subsequent simulation comparison, we compare it with the latest SSN method

and the classic CD algorithm from the perspective of the following four indicators based

on 100 independent experiments:

• The average CPU time (Time, in seconds);

• The average `2 relative error: RE :=
∑100
m=1

(
‖β̂(m)−β∗‖2
‖β∗‖2

)
100

;

• The average estimated model size: MS :=
∑100
m=1 |Â(m)|

100
;

• The proportion of correct models: CM :=
∑100
m=1 δ{Â(m)=A∗}

100
,

where β̂ and Â are the estimated regression coefficient and active set, respectively. |A|
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indicates the length of set A, and δ{Â(m) = A∗} =

 1, Â(m) = A∗

0, Â(m) 6= A∗
. Clearly, the smaller

Time, the faster calculation speed. And the smaller RE, the closer MS approaches to K,

the closer CM approaches to 100%, the higher the solution quality.

5.2 The behavior of PMM algorithm

In this part, we analyze the computational behavior of the PMM algorithm based on 100

independent experiments and consider the problem setting with n = 300, p = 1000, K = 10,

σ1 = 0.1, R = 100. Here we only give the results related to the MCP penalty, since SCAD

penalty will produce a similar phenomenon.

Firstly, we utilize a box plot to investigate the performance of variable selection and

parameter estimation for the PMM algorithm. To achieve the goal, we generate a coefficient

matrixX with κ = 0.2 and a fixed true regression parameter β∗, whose 10 non-zero elements

are β∗30 = 6, β∗198 = −11, β∗269 = −10, β∗395 = 25, β∗442 = −8, β∗495 = 100, β∗637 = −9,

β∗766 = −10, β∗777 = 5, β∗865 = 1. In view of the large p, we only describe the estimation

effect of non-zero elements in β∗ on the left side of Figure 1. Obviously, for each non-zero

element, the estimated results fluctuate very little in 100 independent experiments, which

fully illustrates the effectiveness and stability of the PMM algorithm. In addition, the

private experiment shows that the positions which should be zero are all 0. Therefore,

we conclude that the PMM algorithm can simultaneously realize variable selection and

parameter estimation.

Next, we examine the calculation speed of PMM algorithm from the perspective of

the number of iterations. Based on 100 independent experiments, we show the average

number of iterations with different sparsity levels on the right side of Fig. 1. In view of

the stop condition ‖β(λj)‖0 ≥ n/log(p) in step 10 of PDASC method, here we consider

K = 5 : 5 : 40, which means that the sparsity level K varies from 5 to 40 by step 5. In

addition, we also take the correlation into consideration and set κ = [0.3; 0.5; 0.7]. It can
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be seen that for the three correlation coefficients, the average number of iterations of the

PMM algorithm does not exceed 4. This phenomena fully illustrates that the calculation

speed of the PMM algorithm is very fast.
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Figure 1: The behavior of PMM algorithm for MCP penalized linear regression problems based

on 100 independent experiments

5.3 Comparison with SSN algorithm

In this part, we compare the PMM algorithm with the latest SSN algorithm for solving non-

convex penalized high-dimensional linear regression problems based on 100 independent

experiments. We set p = 2000 with n = bp
5
c and K = b n

2log(p)
c, where bxc denotes the

integer part of x for x ≥ 0. Here, we set σ1 = 0.1 and consider three levels of correlation,

i.e., κ = [0.3; 0.5; 0.7]. It can be observed from the MATLAB package of SSN algorithm

that the authors in Shi et al. (2018) lead into a key parameter “Weight” which represents

the step size in the programming process. After testing, we find that the effectiveness of

SSN algorithm is heavily dependent on this parameter. Here we only consider two values of

0.5 and 0.9. In addition, for the sake of fairness, we use the same continuation method for

the regularization parameter in SSN algorithm, unify the maximum number of iterations

to 1, and other parameters are consistent with their original papers. Simulation results are
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summarized in Table 1.

Table 1: Simulation results of SSN and PMM algorithms

κ Weight Penalty Method Time MS CM RE

0.3

0.5

MCP
SSN 0.04 26.01 99% 1.00e-4

PMM 0.07 26.00 100% 1.48e-4

SCAD
SSN 0.05 26.00 100% 1.00e-4

PMM 0.07 26.00 100% 1.48e-4

0.9

MCP
SSN 0.05 26.40 78% 2.00e-4

PMM 0.08 26.00 100% 1.48e-4

SCAD
SSN 0.06 26.76 54% 1.73e-4

PMM 0.07 26.00 100% 1.48e-4

0.5

0.5

MCP
SSN 0.04 25.95 98% 5.00e-4

PMM 0.08 26.00 100% 1.41e-4

SCAD
SSN 0.05 25.96 99% 4.00e-4

PMM 0.07 26.00 100% 1.41e-4

0.9

MCP
SSN 0.06 26.33 80% 2.00e-4

PMM 0.08 26.00 100% 1.41e-4

SCAD
SSN 0.06 26.62 65% 1.60e-4

PMM 0.07 26.00 100% 1.41e-4

0.7

0.5

MCP
SSN 0.03 23.94 68% 6.60e-2

PMM 0.09 26.00 100% 1.46e-4

SCAD
SSN 0.05 25.40 93% 1.50e-2

PMM 0.09 26.00 100% 1.46e-4

0.9

MCP
SSN 0.04 24.96 60% 2.76e-2

PMM 0.09 26.00 100% 1.46e-4

SCAD
SSN 0.06 26.42 67% 1.61e-4

PMM 0.09 26.00 100% 1.46e-4

From the information in Table 1, we can see that the calculation speed of SSN algo-

rithm is very fast, which thanks to its local super-linear convergence. However, since its

performance is heavily dependent on the selection of the step size, the results under the

fixed step sizes 0.5 and 0.9 are incomparable with PMM algorithm at present. Therefore,
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in view of the fact that the SSN algorithm need to carefully adjust the step size under dif-

ferent problem settings, we will only compare the algorithm in this paper with the classic

CD algorithm detailly in the subsequent numerical experiments.

5.4 Comparison with CD algorithm

In this section, we compare our PMM algorithm with the CD algorithm in Breheny and

Huang (2011) for solving (1.3) which is summarized in Algorithm 5.4. To be fair, we

here use the same continuation method for regularization parameter λ and the same stop

condition R2
kkt < 1e − 6 at step 8. In addition, we also set Kmax = 1 to improve the

calculation speed of the CD algorithm.

CD algorithm

Step 0. Given λ, β0 = 0, r0 = y − Xβ0, Kmax ∈ N. For k = 0, 1, . . . , Kmax, do the

following operations iteratively.

Step 1. For i = 1, 2, . . . , p, do the following operations iteratively.

Step 1.1. Calculate zki = X>i r
k+βki , where Xi is the ith column of X and rk = y−Xβk

is the current residual value.

Step 1.2. Update βk+1
i = Proxλ‖·‖1−q(·)(z

k
i ).

Step 1.3. Update rk+1 = rk − (βk+1
i − βki )Xi.

Step 2. Check stop condition, if stop, denote the last iteration by β̂. Else, k := k + 1.

5.4.1 Efficiency and accuracy

In this part, we compare the efficiency and accuracy of the PMM algorithm and the CD

algorithm based on 100 independent experiments. We set p = 2000 and 5000 with n = bp
5
c
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and K = b n
2log(p)

c. We consider three levels of correlation (κ = [0.3; 0.5; 0.7]) and two levels

of noises (σ1 = [0.1; 1]). Simulation results are summarized in Table 2.

From the results of MS, CM and RE in Table 2, it can be concluded that for each

combination of (p, κ, σ1), the PMM algorithm can always achieve variable selection and

parameter estimation very accurately. In addition, the PMM algorithm has better speed

performance than CD algorithm for both MCP and SCAD, and PMM is about 2 ∼ 9 times

faster than CD. In particular, for given penalty and method, the CPU time increases with

the increase of p, and decreases with the increase of σ1, but does not change much for

different κ. In addition, it can be found that larger p can improve the accuracy of both CD

and PMM, while larger σ1 has the opposite effect. Overall, the simulation results in Table

2 illustrate that PMM outperforms CD in terms of CPU time while producing solutions of

comparable quality.

5.4.2 Influence of model parameters

We now consider the effects of each of the model parameters (n, p,K, κ, σ1, τ) on the per-

formance of PMM and CD algorithms. Here we only give the results related to the MCP

penalty, since SCAD penalty will produce a similar phenomenon. Based on 10 independent

replications, we compare the performance of the considered methods in terms of average

positive discovery rate (APDR), average false discovery rate (AFDR) and average combined

discovery rate (ACDR)Luo and Chen (2014) defined as follows:

APDR =
1

10

∑ |Â
⋂
A∗|

|A∗|
, AFDR =

1

10

∑ |Â
⋂
A∗c|
|Â|

, ACDR = APDR+(1−AFDR),

where A∗ denotes the true active set and A∗c denotes the complement of A∗. Results of

APDR, AFDR and ACDR over 10 independent replications are given in Fig. 2-4, respec-

tively. The parameters for solvers are set as follows.

• Influence of the sample size n: We set p = 1000, K = 10, τ = 2.7, κ = 0.2, σ1 = 0.1,

and take n = 20 to 200 with a step size 20.
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• Influence of the dimension p: We set n = 200, K = 50, τ = 2.7, κ = 0.2, σ1 = 0.1,

and take p = 500 to 1000 with a step size 100.

• Influence of the sparsity level K: We set n = 200, p = 1000, τ = 2.7, κ = 0.2,

σ1 = 0.1, and take K = 10 to 50 with a step size 10.

• Influence of the correlation level κ: We set n = 200, p = 1000, K = 40, τ = 2.7,

σ1 = 0.1, and take κ = 0.1 to 0.7 with a step size 0.1.

• Influence of the noise level σ1: We set n = 200, p = 1000, K = 10, τ = 2.7, κ = 0.2,

and take σ1 ∈ {0.1, 0.5, 1.0, 1.5, 2.0, 2.5}.

• Influence of the concavity parameter τ : We set n = 200, p = 1000, K = 10, κ = 0.2,

σ1 = 0.1, and take τ ∈ {1.1, 2.7, 5, 10}.
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Figure 2: Numerical results of the influence of the model parameters on APDR

From the definitions of APDR, AFDR and ACDR, we can conclude that the closer

APDR approaches to 1, the closer AFDR approaches to 0, and the closer ACDR approaches

to 2, the higher the solution quality. From Fig 2-4, we can see that for the change interval of
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Figure 3: Numerical results of the influence of the model parameters on AFDR
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Figure 4: Numerical results of the influence of the model parameters on ACDR

different parameters, PMM can always achieve more expected results. Therefore, compared

with CD, PMM is more robust to the considered parameters for solving the MCP penalized

least squares problems.
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5.4.3 Numerical comparison with real data

In this subsection, we test CD and PMM algorithms with the test instances (X, y) obtained

from large-scale regression problems in the LIBSVM data sets, which is available at https:

//www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets. These data sets are collected

from UCI, StatLib, Delve, 10-K Corpus, GWF01a. For computational efficiency, zero

columns in X are removed. As suggested in Huang et al. (2010), in addition to the data sets

log1p.E2006.train and E2006.train, we expand the original features of the remaining

data sets by using polynomial basis functions over those features. For example, the last digit

in abalone7 indicates that an order 7 polynomial is used to generate the basis functions.

This naming convention is also used in the rest of the expanded data sets. These test

instances are quite difficult in terms of the problem dimensions and the largest eigenvalue

of XX>, which is denoted as λmax(XX
>), one can refer to the first three columns of

Table 3. It is worth noting that for these difficult real data, we appropriately reduce the

accuracy requirements in the termination conditions. In addition to setting R2
kkt < 5e− 2

for space ga9 and R2
kkt < 8e − 3 for bodyfat7, we set R2

kkt < 5e − 3 as the termination

condition for all other data.

Table 3 reports the detailed numerical results for CD and PMM in solving large-scale

regression problems. In the table, “NNZ” denotes the number of nonzeros in the estimated

solution, and other symbols are the same as the previous simulation experiment. From

the results in Table 3, we can see that PMM can solve all the instances to the desired

accuracy despite the huge dimensions and the possibly badly conditioned data sets. More

specifically, PMM is able to solve the instance log1p.E2006.train with approximately 4.3

million features to accuracy R2
kkt = 9.98e−6 in 95 seconds. But CD only meets the accuracy

requirement for E2006.train. In addition, for solving these data sets, CD needs much more

time than PMM. For example, for the instance cpusmall7, we can see that PMM is at

least 144 times faster than CD. The superior numerical performance of PMM indicates that
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it is a robust, high-performance solver for MCP/SCAD penalized high-dimensional linear

regression problems.

6 Conclusion

Based on the DC property of MCP and SCAD penalties, we developed a global two-stage

algorithm for the MCP/SCAD penalized linear regression problems in high-dimensional

settings. A key idea for making the proposed algorithm to be efficient is to use the PDASC

algorithm to solve the corresponding sub-problems. We established the global convergence

of the proposed algorithm and verified the iterative sequence converges to a d-stationary

point of the considered problems. Finally, a large number of inspiring numerical experi-

ments have once again verified the effectiveness of the proposed algorithm.

Since each non-convex penalty can be expressed as the difference of two convex func-

tions, the research in this paper can be directly extended to other non-convex penalized

high-dimensional linear regression problems. In addition, extending the algorithm in this

paper to the regression problems with other loss functions is also a very interesting and

promising research direction.
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Table 2: Simulation results of CD and PMM algorithms

p κ σ1 Penalty Method Time MS CM RE

2000

0.3

0.1

MCP
CD 0.69 26.00 100% 1.48e-4

PMM 0.08 26.00 100% 1.48e-4

SCAD
CD 0.70 26.00 100% 1.48e-4

PMM 0.08 26.00 100% 1.48e-4

1

MCP
CD 0.52 26.00 100% 1.50e-3

PMM 0.07 26.00 100% 1.50e-3

SCAD
CD 0.52 26.01 99% 1.50e-3

PMM 0.08 26.00 100% 1.50e-3

0.5

0.1

MCP
CD 0.70 26.00 100% 1.41e-4

PMM 0.08 26.00 100% 1.41e-4

SCAD
CD 0.71 26.00 100% 1.41e-4

PMM 0.08 26.00 100% 1.41e-4

1

MCP
CD 0.53 26.00 100% 1.40e-3

PMM 0.07 26.00 100% 1.40e-3

SCAD
CD 0.54 26.00 100% 1.40e-3

PMM 0.08 26.00 100% 1.40e-3

0.7

0.1

MCP
CD 0.70 26.00 100% 1.46e-4

PMM 0.10 26.00 100% 1.46e-4

SCAD
CD 0.71 26.00 100% 1.46e-4

PMM 0.10 26.00 100% 1.46e-4

1

MCP
CD 0.53 26.05 97% 1.60e-3

PMM 0.08 26.00 100% 1.50e-3

SCAD
CD 0.53 26.10 94% 1.60e-3

PMM 0.07 26.00 100% 1.50e-3

5000

0.3

0.1

MCP
CD 2.84 58.00 100% 9.29e-5

PMM 1.07 58.00 100% 9.29e-5

SCAD
CD 2.85 58.00 100% 9.29e-5

PMM 1.05 58.00 100% 9.29e-5

1

MCP
CD 2.25 58.00 100% 9.29e-4

PMM 1.04 58.00 100% 9.29e-4

SCAD
CD 2.48 58.00 100% 9.00e-4

PMM 1.03 58.00 100% 9.29e-4

0.5

0.1

MCP
CD 2.85 58.00 100% 9.34e-5

PMM 1.06 58.00 100% 9.34e-5

SCAD
CD 2.85 58.00 100% 9.34e-5

PMM 1.03 58.00 100% 9.34e-5

1

MCP
CD 2.45 58.00 100% 9.34e-4

PMM 1.10 58.00 100% 9.34e-4

SCAD
CD 2.49 58.00 100% 9.00e-4

PMM 1.14 58.00 100% 9.34e-4

0.7

0.1

MCP
CD 2.87 58.00 100% 9.77e-5

PMM 1.31 58.00 100% 9.77e-5

SCAD
CD 2.87 58.00 100% 9.77e-5

PMM 1.29 58.00 100% 9.77e-5

1

MCP
CD 2.41 58.03 99% 9.96e-4

PMM 1.37 58.00 100% 9.77e-4

SCAD
CD 2.28 58.03 99% 1.00e-3

PMM 1.40 58.00 100% 9.77e-4

30



Table 3: Real results of CD and PMM algorithms

Data name n,p λmax(XX>) Penalty NNZ Method R2
kkt Time

log1p.E2006.train 16087,4265669 5.86e+7

MCP 6
CD 3.91e-2 4.08e+3

PMM 9.98e-6 9.39e+1

SCAD 6
CD 5.36e-2 4.15e+3

PMM 9.97e-6 9.52e+1

E2006.train 16087,150348 1.91e+5

MCP 6
CD 2.50e-3 7.30e+1

PMM 4.90e-3 4.33e+1

SCAD 6
CD 2.50e-3 7.33e+1

PMM 4.00e-3 3.68e+1

abalone7 4177,6435 5.21e+5

MCP 7
CD 9.66e-1 1.58e+1

PMM 2.86e-4 1.51e+0

SCAD 7
CD 9.64e-1 1.65e+1

PMM 2.77e-4 1.61e+0

bodyfat7 252,116280 5.29e+4

MCP 9
CD 5.57e-2 1.18e+1

PMM 6.60e-3 2.30e+0

SCAD 1
CD 7.63e-2 1.18e+1

PMM 7.70e-3 2.23e+0

cpusmall7 8192,50388 8.01e+7

MCP 1103
CD 1.00e+0 2.97e+2

PMM 4.10e-3 2.05e+0

SCAD 1105
CD 1.00e+0 3.78e+2

PMM 7.30e-4 4.57e+0

housing7 506,77520 3.28e+5

MCP 44
CD 2.64e-2 1.48e+1

PMM 1.70e-3 2.38e-1

SCAD 46
CD 3.62e-2 1.41e+1

PMM 8.74e-4 1.68e-1

mg9 1385,5005 4.78e+3

MCP 9
CD 6.31e-1 2.29e+0

PMM 4.60e-3 1.56e+0

SCAD 9
CD 6.55e-1 2.21e+0

PMM 4.50e-3 1.96e+0

mpg7 392,3432 1.28e+4

MCP 26
CD 4.92e-2 8.24e-1

PMM 2.50e-3 3.65e-2

SCAD 27
CD 6.75e-2 7.69e-1

PMM 2.30e-3 3.75e-2

pyrim5 74,169911 1.22e+6

MCP 326
CD 5.81e-2 1.07e+1

PMM 4.92e-4 5.60e-2

SCAD 327
CD 7.96e-2 9.94e+0

PMM 2.48e-4 5.37e-2

space ga9 3107,5005 4.01e+3

MCP 8
CD 1.89e-1 6.23e+0

PMM 4.60e-2 1.99e+0

SCAD 9
CD 2.59e-1 6.26e+0

PMM 4.50e-2 2.24e+0

triazines4 186,557845 2.08e+7

MCP 983
CD 4.29e-2 9.61e+1

PMM 7.39e-4 6.31e+1

SCAD 983
CD 5.87e-2 9.48e+1

PMM 1.86e-4 6.67e+1
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