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Abstract
Movement behaviour data are compositional in nature, therefore the logratio meth-
odology has been demonstrated appropriate for their statistical analysis. Composi-
tional data can be mapped into the ordinary real space through new sets of variables 
(orthonormal logratio coordinates) representing balances between the original com-
positional parts. Geometric rotation between orthonormal logratio coordinates sys-
tems can be used to extract relevant information from any of them. We exploit this 
idea to introduce the concept of pivoting balances, which facilitates the construc-
tion and use of interpretable balances according to the purpose of the data analy-
sis. Moreover, graphical representation through ternary diagrams has been ordinar-
ily used to explore time-use compositions consisting of, or being amalgamated into, 
three parts. Data dimension reduction techniques can however serve well for visu-
alisation and facilitate understanding in the case of larger compositions. We here 
develop suitable pivoting balance coordinates that in combination with an adapted 
formulation of compositional partial least squares regression biplots enable mean-
ingful visualisation of more complex time-use patterns and their relationships with 
an outcome variable. The use and features of the proposed method are illustrated in 
a study examining the association between movement behaviours and adiposity from 
a sample of Czech school-aged girls. The results suggest that an adequate strategy 
for obesity prevention in this group would be to focus on achieving a positive bal-
ance of vigorous physical activity in combination with sleep against the other daily 
behaviours.
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1  Introduction

Daily movement behaviour data are mostly examined in terms of their association 
with human health and wellbeing. They are usually reported as amounts of time 
spent in various activities during a certain time period of observation. When 24-h 
data are available, the partition is generally made in terms of sleep, sedentary behav-
iour (SB), and physical activity (PA) of different intensities: light (LPA), moder-
ate (MPA) and vigorous (VPA). We denote the corresponding vector of variables 
as MB = (Sleep, SB, LPA, MPA, VPA). Time-use data are compositional in nature 
because they consist of co-dependent positive parts or fractions of a whole period 
of observation carrying relative information. This implies that the interest lies, not 
on the absolute values of the compositional parts, but on the ratios between them. 
As a consequence, the particular scale in which the time-use composition is meas-
ured (typically either hours/day, minutes/day or similar, or directly in percentages 
or proportions) is actually irrelevant. The logratio approach provides a consistent 
statistical methodology for the analysis of compositional data (Aitchison 1986; Paw-
lowsky-Glahn et al. 2015).

There has been an increasing awareness of the suitability of compositional meth-
ods to conduct statistical analysis in public health research. The basic concepts of 
compositional descriptive statistics, visualisation, and linear regression models 
based on orthonormal logratio (olr) coordinates (often referred to as isometric logra-
tio (ilr) coordinates) in the context of time-use data were demonstrated in Chastin 
et al. (2015). Further studies followed applying those concepts and presenting other 
techniques within the logratio framework in the area (Dumuid et al. 2017a, 2017; 
Štefelová et al. 2018; McGregor et al. 2020; Pelclová et al. 2020). In relation to the 
work presented here, standard partial least squares (PLS) regression has been used 
to deal with the multicollinearity problem in raw 24-h movement behaviour data 
when investigating their relationship with a health parameter (e.g. Aadland et  al. 
(2018)). This certainly allows to circumvent the technical issue; however, as with 
ordinary regression analysis omitting one category of time use for the same purpose, 
it still ignores the relative nature of time-use data entirely and focuses on the abso-
lute information. This for example implies the assumption that potential benefits of 
increasing VPA are the same regardless of the initial condition of the individual. 
Within the compositional framework, time-use data are instead conceptualised as 
carriers of relative information where that and the interplay with the other time-use 
categories matter. Hence, PLS regression in this context, as it is equally the case 
for ordinary regression analysis and its robust alternatives (Štefelová et  al. 2018), 
should be applied in logratio coordinates to account for these features (Hinkle and 
Rayens 1995; Gallo 2010; Kalivodová et  al. 2015; Wang et  al. 2010; Chen et  al. 
2021; Štefelová et al. 2021).

As for the graphical representation of time-use compositions, ternary diagrams 
are commonly used as a counterpart of scatterplots for ordinary data (Chastin 
et al. 2015). A ternary diagram is an equilateral triangle that allows to visualise 
3-part compositions. In the context of the current work, the vertices represent the 
three time-use behaviours and the observed compositions are displayed by points. 
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Those lying close to a vertex have higher percentages in the behaviour that is 
represented by that vertex, whereas points lying around the centre of the triangle 
have similar percentages in all three behaviours. Thus, the compositions are plot-
ted at distances from the edges corresponding to their values in the respective 
compositional parts. However, similarly to the ordinary scatterplot, its practical 
usefulness is limited as the number of compositional parts increases, since only 
3-part subsets (subcompositions) can be displayed at once. Thus, if we consider 
a 5-part MB composition, 10 ternary diagrams would be needed to visualise all 
possible combinations of 3-part subcompositions. Moreover, ternary diagrams 
display the original compositional data as standard (positive-constrained) obser-
vations, which could lead to biased conclusions in relation to the data structure 
and variability, specifically concerning groupings in the data and presence of 
outlying observations (Filzmoser et  al. 2018), as the difference observed with 
the naked eye may not precisely correspond to the actual dissimilarity between 
observations. The reason is that compositions obey a particular geometry so-
called Aitchison geometry (Pawlowsky-Glahn and Egozcue 2001; Billheimer 
et al. 2001) which, unlike the commonly assumed Euclidean real space geometry, 
accounts for their scale invariance and relative nature. The Aitchison geometry 
has Euclidean vector space structure and then enables to express compositional 
data in coordinates with respect to an orthonormal basis. Accordingly, it is pos-
sible to transfer the statistical processing of the data into the ordinary Euclidean 
real space while preserving the distances and angles of the original data. Such 
olr coordinate representation can thus be used for a visually reliable graphical 
representation (Pawlowsky-Glahn et al. 2015). Then, and even more in the case 
of larger compositions, data dimensionality reduction techniques such as compo-
sitional variants of principal components analysis (PCA) or PLS regression (with 
this latter considering the relationship with an outcome variable) can be used to 
obtain a more insightful visualisation of compositions through a biplot display 
based on their logratio coordinates.

Moreover, it is common in compositional data analysis to express the input data 
in a so-called balance coordinate system (another form of olr coordinates) (Egozcue 
and Pawlosky-Glahn 2005; Egozcue and Pawlowsky-Glahn 2019; Martín-Fernández 
2019). Balance coordinates represent contrasts between two groups of parts of the 
composition and their particular expression depends on the orthonormal basis used 
as reference (one amongst infinitely many possible). Importantly, this can be tai-
lored to some extent so that the collection of balances associated to it includes some 
contrast(s) which have a practical interpretation (see the sequential binary partition 
procedure described in Sect. 2). However, not all balances of interest in a study can 
be generally obtained from just one such a coordinate system. Consequently, often, 
several of the balances generated from a single orthogonal basis are meaningless 
for the practitioner, with this issue being more likely as the size of the composi-
tion at hand increases. This might have discouraged a wider adoption of balance 
coordinates within time-use epidemiology where, with just a few exceptions (see 
e.g. McGregor et al. (2020)), the so-called pivot coordinates approach (Fišerová and 
Hron 2011; Filzmoser et  al. 2018) has been mostly applied so far (Dumuid et  al. 
2017; Štefelová et  al. 2018; Dumuid et  al. 2020). This later formally considers 
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orthogonal rotations between olr coordinate systems so that the dominance of one 
behaviour relative to the others is sequentially isolated for statistical assessment.

The issues discussed above and the combination of the ideas around balance and 
pivot coordinates lead to the introduction here of the concept of pivoting balances 
and its implementation to facilitate a synthetic and meaningful graphical display of 
compositions and their relationships with outcome variables. This work thus enables 
the combination of balance-like coordinates into a same modelling and visualisa-
tion task, here PLS regression and biplot, including those that cannot be obtained 
from a single balance coordinate system. In particular, this is implemented with the 
objective of providing improved visualisation of complex time-use patterns in rela-
tion to adiposity. The method relies on the flexibility of the concept of pivot coordi-
nates, which has been also exploited recently to define orthonormal pairwise logra-
tio representations (Hron et al. 2021) and to implement weighted statistical analysis 
schemes (Hron et  al. 2021). Firstly, we discuss compositional balances as a way 
to construct interpretable logratio coordinate representations of time-use compo-
sitions, considering the ordinal character of the wake-time components. Next, the 
basic ideas behind PLS regression and the associated biplot display are developed, 
including their extension to the compositional case based on the novel concept of 
pivoting balances. Finally, the proposed method is applied to examine the associa-
tion between 24-h movement behaviours patterns and adiposity from a sample of 
Czech school-aged girls, particularly assessing how the distribution of time between 
behaviours relates to healthier conditions.

2 � Balance coordinates for compositional data

Compositional data are essentially characterised by the scale invariance property 
(Pawlowsky-Glahn et al. 2015; Filzmoser and Hron 2019). This means that multi-
plying a composition by a positive constant does not alter the relative information 
conveyed by the (log)ratios between its parts. Scale invariance implies that composi-
tional data are formally defined on a sample space consisting of equivalence classes 
of proportional vectors (Barcelól Vidal and Martín-Fernández 2016). This clashes 
with the direct application of ordinary statistical methods which assume data on an 
absolute scale obeying the standard Euclidean geometry of the real space. How-
ever, it has been shown that ordinary methods can still be applied after mapping of 
compositions into the real Euclidean space through e.g. olr coordinates (Egozcue 
et al. 2003; Egozcue and Pawlowsky-Glahn 2019; Martín-Fernández 2019). These 
olr coordinates are obtained with respect to an orthonormal basis in the Aitchison 
geometry of compositional data and facilitate transferring the statistical results back 
to the original sample space by inverse mapping (Egozcue et al. 2003).

Given a D-part composition x = (x1,… , xD)
⊤ , a procedure known as sequen-

tial binary partition (SBP) can be applied to construct D − 1 (the actual degrees 
of freedom of a D-part composition) customised olr coordinates called (compo-
sitional) balances consisting of a real vector b = (b1,… , bD−1)

⊤ (Egozcue and 
Pawlosky-Glahn 2005). In the first step of the SBP process, the entire collection 
of compositional parts is split into two disjoint subsets, with each subset being 
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summarised by the geometric mean of its components and going into the numera-
tor and denominator respectively of a normalised logratio. This defines the first 
balance b1 . The resulting subsets are sequentially further split in the same way 
until only one-part subsets remain, leading to the subsequent balances b2,… , bD−1.

The general formula for a balance coordinate is as follows:

where x+
ji
 and x−

ji
 refers to the parts selected for the numerator and denominator, 

respectively, in the jth balance while rj and sj stands for the respective number of 
parts in each subset; the vector gj represents rows of a (D − 1,D)-matrix of logcon-
trast coefficients G with elements

It holds that GG⊤ = ID−1 , where ID−1 is the (D − 1)-dimensional identity matrix.
Balance coordinates are then usually interpreted, as their name indicates, in 

terms of a balance (contrast) between two subsets of components. The use of bal-
ances is particularly advantageous to define interpretable contrasts between parts 
of the composition according to the scientific questions of interest and based on 
domain-specific knowledge (e.g. active versus non-active behaviours (McGregor 
et al. 2020)).

Note that different partitions lead to different systems of balances but, as for 
any olr coordinate representation, they are orthogonal rotations of each other that 
simply represent the information in the composition in a different way (Egozcue 
and Pawlosky-Glahn 2005). So, given two different vectors of balances b = G ln x 
and b∗ = G∗

ln x , it holds that b∗ = G∗G⊤b.
A popular type of balances are the so-called pivot coordinates (Fišerová and Hron 

2011), where one part (placed in the numerator) is set against the remaining ones (in 
the denominator). Note that the role of a single compositional part relative to all the 
others is highlighted in the first pivot coordinate. Thus, by placing one particular 
part each time in the numerator of the first pivot coordinate, we can construct D dif-
ferent olr coordinate systems and extract the first coordinate from each one of them. 
In more detail, denoting composition x rearranged so that the lth part is put at the 
first place as x(l) =

(
x
(l)

1
,… , x

(l)

D

)⊤

= (xl, x1,… , xl−1, xl+1,… , xD)
⊤, l = 1,… ,D , 

the corresponding set of pivot coordinates given by a real vector 
z(l) =

(
z
(l)

1
,… , z

(l)

D−1

)⊤

 is constructed as

(1)bj =

�
rjsj

rj + sj
ln

rj

�∏rj

i=1
x+
ji

sj

�∏sj

i=1
x−
ji

= g⊤
j
ln(x), j = 1,… ,D − 1,

gjd =

⎧
⎪⎨⎪⎩

+
1

rj

�
rjsj

rj+sj
, if xd ∈ {x+

ji
, i = 1,… , rj},

−
1

sj

�
rjsj

rj+sj
, if xd ∈ {x−

ji
, i = 1,… , sj},

0 otherwise ,

j = 1,… ,D − 1; d = 1,… ,D.
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Note that the first pivot coordinate z(l)
1

 isolates all the information about part xl rela-
tive to the others. It is interesting to note the relationship between the set of first 
pivot coordinates z(1)

1
,… , z

(D)

1
 and the well-known clr coefficients

Clr coefficients are not olr coordinates but coefficients with respect to a generating 
system on the simplex and lead a to singular covariance matrix (Aitchison 1986). 
It holds that cl =

√
(D − 1)∕D ⋅ z

(l)

1
, l = 1,… ,D and, therefore, z(1)

1
+…+ z

(D)

1
= 0 . 

Moreover, for general balances, it holds that b = Gc , which consequently also 
applies to pivot coordinates.

2.1 � Pivoting balances and their use with movement behaviour compositions

Although the process described above based on pivot coordinates has been com-
monly used in practice (Filzmoser et al. 2018), it might not necessarily be the best 
strategy when there is a natural ordering across compositional parts, as we can 
understand for time-use compositions. A pivot coordinate associated with a part 
regarded within the ordering as an “intermediate level” could potentially aggregate 
logratios having opposite associations with the outcome variable. Then it seems rea-
sonable to consider more general balances that represent relevant trade-offs between 
subsets of parts instead of just one against the others (McGregor et al. 2020). In par-
ticular, we are interested here in balances that take into consideration all the parts 
available and their order. That is, considering different first balances where each 
adds one more intense activity part into the subset in the numerator of the balance, 
and then investigate how these additions affect the results. It is not be possible to 
obtain all these balances from a single SBP by construction, and it requires to con-
sider different olr coordinate systems instead. Hence, following a strategy analogous 
to the one used with pivot coordinates, we can consider L olr coordinate systems to 
construct desirable balances b(l) =

(
b
(l)

1
,… , b

(l)

D−1

)⊤

 , with l = 1,… , L (the super-
script here refers to the balance coordinate system considered), that in turn isolate a 
balance of interest in the first coordinates b(l)

1
 . Accordingly, we denote the respective 

matrix of logcontrast coefficients as G(l) . The number of coordinate systems L to 
consider will depend on the specific data set. In the following, and because of its 
conceptual analogy with pivot coordinates, we will refer to the balances resulting 
from these coordinate systems as pivoting balances.

z
(l)

j
=

�
D − j

D − j + 1
ln

x
(l)

j

D−j

�∏D

d=j+1
x
(l)

d

j = 1,… ,D − 1, l = 1,… ,D.

c = (c1,… , cD)
⊤ =

⎛
⎜⎜⎜⎝
ln

x1

D

�∏D

d=1
xd

,… , ln
xD

D

�∏D

d=1
xd

⎞
⎟⎟⎟⎠

⊤

.
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Focusing on our context of application, it is generally accepted that a higher 
health benefit is obtained from more physically demanding activities, but the role of 
sleep is less clear (Felsö et al. 2017), we suggest the following coordinate systems 
with different initial partitions into two subgroups. Starting with sleep against the 
rest of behaviours, the subset of parts in the numerator is subsequently enlarged 
from the least to the most intense activities; and vice versa, sleep in the numerator is 
subsequently accompanied by the other activities from the most to the least intense. 
The remaining three balances in each coordinate system are constructed arbitrarily 

by following the SBP rules. Thus, this gives rise to L = 7 coordinate systems with 

pivoting balances b(l) =
(
b
(l)

1
, b

(l)

2
, b

(l)

3
, b

(l)

4

)⊤

, l = 1,… , 7 . We give those coordinates 

of interest, i.e. b(1)
1
,… , b

(7)

1
 , the symbolic notation Sleep_SB.LPA.MPA.VPA, Sleep.

SB_LPA.MPA.VPA, Sleep.SB.LPA_MPA.VPA, Sleep.SB.LPA.MPA_VPA, Sleep.
VPA_SB.LPA.MPA, Sleep.MPA.VPA_SB.LPA, and Sleep.LPA.MPA.VPA_SB (i.e. 
using an underscore to separate the parts in the numerator and the denominator of 
the logratio and a point symbol to split out the parts into the respective subgroup). 
Table 1 illustrates an exemplary SBP to obtain the required set of balances.

As for the interpretation, e.g. the balance Sleep_SB.LPA.MPA.VPA compares time 
spent in sleep relative to the average (computed by the geometric mean) of time spent 
in waking-time behaviours, Sleep.SB_LPA.MPA.VPA is a contrast of average time 
spent in inactive behaviours against average time spent in physical activities, and so 
on. Accordingly, positive values of the balance Sleep_SB.LPA.MPA.VPA mean domi-
nance of sleep over the averaged contributions of the waking-time components, and 
vice versa. Similarly, positive values of the balance Sleep.SB_LPA.MPA.VPA implies 
a dominance of averaged contributions of inactive behaviours over averaged contribu-
tions of physical activity. Note that the reciprocal balances, i.e. the balances result-
ing from swapping the subsets of behaviours in the numerator and denominator of the 
logratio, differ only on the sign. Thus, the arrangement of the subsets of behaviours in 
the balance can be chosen accordingly to the intended interpretation.

The approach based on balances, where the groups are represented by the respec-
tive geometric means, can be compared with the case where the groups are character-
ized by amalgamation (summing) of parts in both groups, called summated logratios 
(Greenacre 2020). In principle, the idea of pivoting logratio coordinates as discussed 
above could be used with summated logratios as well, but the resulting coordinate 
systems would not be orthogonal rotations of each other anymore, which is a crucial 
requirement for the PLS regression modelling introduced below. Another important 
point is the difference in interpretation. While the parts in each group are amalgamated 
when using summated logratios, using balances instead implies that all possible logra-
tios between parts from both groups are aggregated (Hron et al. 2020),

bj =

�
rjsj

rj + sj
ln

rj

�∏rj

k=1
x+
ji

sj

�∏sj

l=1
x−
ji

=

�
1

rjsj(rj + sj)

rj�
i=1

sj�
i=1

ln

x+
ji

x−
ji

, j = 1,… ,D − 1,
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which honours the fact that all relevant information in compositional data is con-
tained in (pairwise) logratios. Balances stress that each part has a role in the rela-
tionship with the response. Accordingly, when investigating the possible effect on 
the health outcome of changes in the balance as measured through the respective 
regression coefficient, for instance by increasing the value of the balance by one, 
such a change implies to multiply the parts aggregated by the geometric mean in the 

Table 1   Exemplary SBP for 
MB composition which results 
in the required pivoting balance 
systems with the (first) balance 
of interest as noted on the left. 
Parts chosen for the numerator 
and denominator of the jth 
balance are coded + and 
− , respectively; 0 indicates 
that the part is not included 
in the respective balance

j x
1

x
2

x
3

x
4

x
5

rj sj

Sleep_SB.LPA.MPA.VPA:
 1 + − − − − 1 4
 2 0 + − − − 1 3
 3 0 0 + − − 1 2
 4 0 0 0 + − 1 1

Sleep.SB_LPA.MPA.VPA:
 1 + + − − − 2 3
 2 + − 0 0 0 1 1
 3 0 0 + − − 1 2
 4 0 0 0 + − 1 1

Sleep.SB.LPA_MPA.VPA:
 1 + + + − − 3 2
 2 + − − 0 0 1 2
 3 0 + − 0 0 1 1
 4 0 0 0 + − 1 1

Sleep.SB.LPA.MPA_VPA:
 1 + + + + − 4 1
 2 + − − − 0 1 3
 3 0 + − − 0 1 2
 4 0 0 + − 0 1 1

Sleep.VPA_SB.LPA.MPA:
 1 + − − − + 2 3
 2 + 0 0 0 − 1 1
 3 0 + − − 0 1 2
 4 0 0 + − 0 1 1

Sleep.MPA.VPA_SB.LPA:
 1 + − − + + 3 2
 2 + 0 0 − − 1 2
 3 0 0 0 + − 1 1
 4 0 + − 0 0 1 1

Sleep.LPA.MPA.VPA_SB:
 1 + − + + + 4 1
 2 + 0 − − − 1 3
 3 0 0 + − − 1 2
 4 0 0 0 + − 1 1
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numerator of the balance by the same constant. Note that the result here involves the 
normalising constant of the balance which guarantees orthonormality. Alternatively, 
interpretation can be facilitated by omitting the normalising constants of the bal-
ances and considering binary instead of natural logarithms (Müller et al. 2018), so 
that the orthonormality of coordinates is relaxed to be orthogonality. In this case, 
an increase of one in the balance corresponds with each part in the numerator being 
doubled and, consequently, the values of all ratios whose logs are aggregated into 
the balance being doubled. For an interpretation in terms of e.g. min/day of a regres-
sion coefficient, say for the balance Sleep.VPA_SB.LPA.MPA, the coefficient would 
account for how the health outcome is changed when the time allocations to Sleep 
and VPA are doubled with respect to SB, LPA and MPA.

3 � PLS regression and biplot

PLS regression enjoys wide popularity in areas such as chemometrics (Höskuld-
son 1988; Martens 2001), especially in the case where the number of explana-
tory variables is significantly larger than the number of observations. It aims to 
fit the relationship between response variable(s) and potentially many and/or 
highly correlated explanatory variables by finding a small number of uncorrelated 
latent factors that synthetize the relationship in lower dimensions. The underly-
ing assumption is that the observed data are generated by a process driven by 
this small number of latent factors, also known as PLS components. The values 
on the PLS components (scores) are linear combinations of the explanatory vari-
ables with parameters (loadings) determined in such a way that they maximize 
the covariance between the response and the explanatory variables. Regression 
coefficients associated with the original explanatory variables can be deduced 
from the PLS components. Even if PLS regression is particularly useful for the 
analysis of high-dimensional data, it offers other features that make the method 
also appealing for datasets with a relatively small to moderate number of explana-
tory variables, as it is commonly the case of movement behaviour data. These 
include the capacity to handle multicollinearity and highly correlated explanatory 
variables, the ability to separate main information from noise, the no requirement 
of distributional assumptions for error terms and, what is particularly relevant for 
our purposes, the possibility to visualize data in low dimensions via a PLS biplot 
that, unlike common PCA biplots, takes into account the relationship between 
outcome and explanatory variables.

In this work we focus on PLS regression with just one response variable, com-
monly known as PLS1 in practice (in contrast with PLS2 used for the multivariate 
response case). Although meaning PLS1, for the sake of succinctness we will refer 
to just PLS in the following.

In order to describe PLS regression, we consider two data structures: a column 
vector y of size n and a matrix F of size n × m called design matrix. The vector 
y represents values of the response variable on n objects, whereas the columns of 
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F describe m explanatory variables measured on the same n objects. The data are 
assumed to be mean-centred. The aim of PLS is to find a linear relationship of the 
form

by estimating a vector � of m unknown regression coefficients. The vector e .0 repre-
sents an error term with n components. PLS decomposes the design matrix as

where �
�
 is an error matrix, T is a score matrix of size n × a , and P is a loading 

matrix of size m × a , with a being the number of PLS components. This latter is 
usually selected based on cross-validated (CV) prediction performance assessed by 
root mean squared error of prediction (RMSEP) and coefficient of determination R 2 
(Varmuza and Filzmoser 2009). One procedure to determine the optimal number of 
PLS components is the randomisation test approach (van der Voet 1994). In brief, 
given a reference model chosen according to the absolute minimum in the CV curve, 
the procedure tests for the significance of increments of the squared prediction error 
from using models with fewer components. The selected model is the one with the 
smallest number of components that is not significantly worse than the reference 
model. In the following, tj and pj , with j = 1,… , a , will denote the jth column of T 
and P respectively.

A number of numerical methods have been proposed to estimate the PLS model 
coefficients so that the covariance between the scores and the response is maxim-
ised. The NIPALS algorithm is a popular choice (Varmuza and Filzmoser 2009) and 
it can be summarised in the following steps.

For j = 1,… , a : 

1.	 vj =
F⊤

j
y

(
y⊤y

) , with F1 = F,

2.	 wj =
vj√
v⊤
j
vj

,

3.	 tj = Fjwj,

4.	 pj =
F⊤

j
tj(

t⊤
j
tj

),

5.	 uj =
y⊤tj(
t⊤
j
tj

),

6.	 Fj+1 = Fj − tjp
⊤
j
.

The regression coefficients are then estimated by

(2)y = F� + e

F = TP� + �
�
,

�̂ = W
(
P⊤W

)−1
u,
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where the matrix W is formed by columns wj , P by columns pj and the column vec-
tor u by elements uj, j = 1,… , a.

The NIPALS algorithm, as well as most of the other popular methods for PLS 
regression (e.g. kernel or SIMPLS algorithms), produces uncorrelated scores (i.e. 
t⊤
j
tk = 𝛿jk , for j, k = 1,… , a , with �jk being 1 if j = k and 0 otherwise) (Varmuza and 

Filzmoser 2009).
The individual statistical significance of the explanatory variables is determined by 

the bootstrap method. Denoting by 𝜇̂k , 𝜎̂k , 𝛾̂k(𝛼∕2) and 𝛾̂k(1−𝛼∕2) respectively the bootstrap 
mean, standard deviation, and the (�∕2) - and (1 − �∕2) quantiles of the coefficient esti-
mate 𝛽k , k = 1,… ,m, , over S bootstrap resamples; the estimated bootstrap standardised 
coefficients are computed as 𝜇̂k∕𝜎̂k and 100(1 − �)% bootstrap confidence intervals for 
standardised coefficients as (𝛾̂k(𝛼∕2)∕𝜎̂k, 𝛾̂k(1−𝛼∕2)∕𝜎̂k) . The k-th explanatory variable is 
considered statistically significant (at statistical significance level � ) if the respective 
confidence interval does not include zero.

Finally, the two-dimensional PLS biplot displays scores and loadings correspond-
ing to the first two PLS components (Oyedele and Gardner-Lubbe 2015). That is, the 
representation of the n observations (using points) is given by the rows of the matrix 
T2 = (t1, t2) and the representation of the m explanatory variables (using arrows from 
the origin) is given by the rows of the matrix P2 = (p1, p2) . The scores represent the 
projection of the observations onto the space defined by the PLS components, while 
the loadings represent the effect of the explanatory variables on the directions of the 
projections. Therefore, a PLS biplot provides a single graphical representation of the 
observations alongside the explanatory variables which, unlike ordinary biplots based 
on PCA, accounts for the relationship with the response variables as said above. The 
observations in the direction of an arrow are characterised by higher values on the cor-
responding explanatory variable. The sign of the relationship with the outcome vari-
ables determines the direction of the arrow.

3.1 � Compositional PLS regression and biplot based on pivoting balances

Where compositional explanatory variables are present, PLS regression is applied on 
an adequate logratio coordinate representation (Gallo 2010; Kalivodová et  al. 2015; 
Wang et al. 2010). Unlike in previous literature, we do not represent compositional data 
in just one coordinate system and instead extend the concept of pivot coordinates to a 
more general setting as described in Sect. 2.1. This allows to generate directly balance 
logratio coordinates which are of interest in the study at hand.

We consider D-part composition alongside other q non-compositional covariates as 
explanatory variables, with the composition represented by pivoting balances, i.e. by bal-
ance coordinates b(l)

1
,… , b

(l)

D−1
 from the lth coordinate systems, l = 1,… , L . Specifically, 

recall that the interest is in each of the first balances b(l)
1

 that includes all the parts in the 
given arrangement (see Sect. 2.1). Then the following L regression models are considered:

(3)y = F(l)� (l) + e, l = 1,… ,L,
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where the vector y stands for the values of the response variable and the columns of 
the matrix F(l) combine values on lth set of balances and q non-compositional covar-

iates for the n observations. The vector �(l) =
(
𝛽
(l)

1
,… , 𝛽

(l)

D−1
, 𝛽D,… , 𝛽D−1+q

)⊤

 is the 

corresponding vector of regression coefficients and e is the error term. Following the 
PLS approach depicted above, from the model fit resulting from each of the L coor-
dinate systems, the focus is on the coefficient estimate of the first balance b(l)

1
 . So the 

estimates of interest can be summarised in the vector 
(
𝛽
(1)

1
,… , 𝛽

(D)

1
, 𝛽D,… 𝛽D−1+q

)
 . 

Note that the coefficients associated with the non-compositional covariates are 
invariant to the specific choice of balances due to the orthogonality of the coordinate 
representation and linearity of PLS regression (Helland 2010). This property also 
leads to the fact that the decomposition of the matrix F(l) yields the same score 
matrix T in each of the L models; although of course different first D − 1 rows of the 
matrix of loadings

are obtained from each model.
For the PLS biplot, we display only loadings corresponding to the first balance 

from each coordinate system and the loadings corresponding to non-compositional 
variables. That is, we use the matrix of scores corresponding to the first two PLS 
components T2 = (t1, t2) for the visualisation of the observations. Denoting by 
P
(l)

2
= (p

(l)

1
, p

(l)

2
) the matrix of loadings corresponding to the first two PLS compo-

nents in the lth coordinate system, the first row of P(l)

2
 is used for the representa-

tion of the balance b(l)
1

 with l = 1,… , L ; and the last q rows from any given P(l)

2
 are 

used to visualise the q non-compositional covariates. When interpreting the biplot, 
similarly to the case for PCA biplots (Kynčlová et al. 2016), we need to take into 
account that the loadings are generated from different PLS models. Then, observa-
tions in the direction of an arrow are characterised by higher (absolute) values on 
the corresponding balance (and hence by dominance of the parts in the numerator 
over those in the denominator of the logratio). Nevertheless, note that due to the 
way the PLS biplot is constructed, i.e. using first balances from different coordi-
nate systems, the usual interpretation of the angles between arrows (loadings) in 
terms of degree of association between the corresponding balances would be mis-
leading. For example, we cannot say that two balances are highly correlated based 
on the fact that their two arrows nearly overlap. However, in such a case, we can 
still refer to proximity between the balances, in the sense that having them point-
ing to the same direction indicates that they have a similar relationship with the 
response variable. This follows from the fact that the same scores are produced by 

P(l) =

⎛⎜⎜⎜⎜⎜⎜⎝

p
(l)

11
⋯ p

(l)

a1

⋮ ⋱ ⋮

p
(l)

1,D−1
⋯ p

(l)

a,D−1

p1D ⋯ paD
⋮ ⋱ ⋮

p1,D−1+q ⋯ pa,D−1+q

⎞⎟⎟⎟⎟⎟⎟⎠
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all balance coordinate systems (as it is case for any olr coordinate system) and the 
corresponding matrices of loadings are orthogonal rotations of each other.

Building on such relationship between coordinate systems, a model can be fit 
in an arbitrary balance coordinate system and be used to obtain the regression 
coefficients and loadings for all the L models. Namely, it holds that

and

where G(k) and G(l) stand for the respective matrices of log-contrast coefficients.
Consequently, we can obtain results for all the L models from one model, where 

compositions are expressed in clr coefficients instead of balances (note that unlike 
for ordinary least squares (LS) regression, collinearity between clr variables is not a 
problem for PLS regression). The regression coefficient estimates and the loadings 
for the non-compositional covariates, as well as the matrix of scores, are the same 
for any of the L models using balances. Denoting the regression coefficient estimates 
for the clr coefficients by 𝛽⋆

1
,… , 𝛽⋆

D
 and the elements in the first D rows of the load-

ing matrix by p⋆
ij
 , it holds that

and

Then, the relevant information about the L first balances can be obtained as

and the composed matrix of loadings, with a = 2 for 2-dimensional graphical repre-
sentation, is

where

(
𝛽
(l)

1
,… , 𝛽

(l)

D−1

)⊤

= G(l)
(
G(k)

)⊤(
𝛽
(k)

1
,… , 𝛽

(k)

D−1

)⊤

⎛⎜⎜⎝

p
(l)

11
⋯ p

(l)

a1

⋮ ⋱ ⋮

p
(l)

1,D−1
⋯ p

(l)

a,D−1

⎞⎟⎟⎠
= G(l)

�
G(k)

�⊤ ⎛⎜⎜⎝

p
(k)

11
⋯ p

(k)

a1

⋮ ⋱ ⋮

p
(k)

1,D−1
⋯ p

(k)

a,D−1

⎞⎟⎟⎠
, k, l = 1,…L,

(
𝛽
(l)

1
,… , 𝛽

(l)

D−1

)⊤

= G(l)
(
𝛽⋆
1
,… , 𝛽⋆

D

)⊤

⎛⎜⎜⎝

p
(l)

11
⋯ p

(l)

a1

⋮ ⋱ ⋮

p
(l)

1,D−1
⋯ p

(l)

a,D−1

⎞⎟⎟⎠
= G(l)

⎛⎜⎜⎝

p⋆
11

⋯ p⋆
a1

⋮ ⋱ ⋮

p⋆
1D

⋯ p⋆
aD

⎞⎟⎟⎠
, l = 1,…L.

⎛⎜⎜⎝

𝛽
(1)

1

⋮

𝛽
(L)

1

⎞⎟⎟⎠
=

⎛⎜⎜⎝

h
(1,k)

1
⋯ h

(1,k)

D−1

⋮ ⋱ ⋮

h
(L,k)

1
⋯ h

(L,k)

D−1

⎞⎟⎟⎠

⎛⎜⎜⎝

𝛽
(k)

1

⋮

𝛽
(k)

D−1

⎞⎟⎟⎠
=

⎛⎜⎜⎝

g
(1)

11
⋯ g

(1)

1D

⋮ ⋱ ⋮

g
(L)

11
⋯ g

(L)

1D

⎞⎟⎟⎠

⎛⎜⎜⎝

𝛽⋆
1

⋮

𝛽⋆
D
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(1)

11
p
(1)

21
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11
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Finally, note that for pivot coordinates it holds that 𝛽(l)
1

=
√
D∕(D − 1) ⋅ 𝛽⋆

l
 and 

p
(l)

j1
=
√
D∕(D − 1) ⋅ p⋆

jl
 , with l = 1,…L and j = 1,… , a . This is analogous to the 

case of loadings in principal component analysis (Kynčlová et al. 2016). The rela-
tionships between PLS regression results from different coordinate systems are 
examined in more detail in Appendix A.

4 � Case study: examining the association of 24‑h movement 
behaviours with adiposity

The association between the 24-h time-use composition MB = 
(Sleep,SB,LPA,MPA,VPA) and adiposity is investigated from a sample of 414 Czech 
school-aged girls. Fat mass (FM) is used as an adiposity-related indicator and was 
measured using multi-frequency bio-electrical impedance analysis (InBody 720, 
InBody Co., Seoul, Korea). The 24-h time-use data were collected using a wrist-worn 
tri-axial ActiGraph accelerometers (ActiGraph Corp., Pensacola, FL, USA) wGT3X-
BT and GT9X Link for children and adolescents, respectively. Raw data were pro-
cessed with the GGIR package (version 1.10-7) on the R system for statistical comput-
ing (Migueles et al. 2019). Time spent in SB, LPA, MPA and VPA was classified using 
cut-points for non-dominant wrist (SB: < 36 mg; LPA: 36 − 200 mg; MPA: 201 − 706 
mg; VPA ≤ 707 mg, where mg stands for milli gravity-based acceleration units (Hilde-
brand et al. 2017)). The default algorithm guided by participants sleep log was used to 
detect sleep time (van Hees et al. 2015). Additionally, age and height were recorded. 
The age of the participants ranged from 8.1 to 19 years (with mean ± standard deviation 
equal to 13.8 ± 2.9 years). The height ranged from 117.7 to 181.9 cm ( 157.7 ± 12.2 
cm). Fat mass ranged from 1.1 to 38.7 kg ( 12.5 ± 6.6 kg). The compositional mean 
for MB, computed as the vector of geometric means of its parts and re-scaled to be 
expressed in min/day, was (491.3, 676.0, 231.9, 38.2, 2.5). The study was approved by 
the Ethics Committee of the Faculty of Physical Culture, Palacký University Olomouc 
(reference number: 19/2017). It was conducted in accordance with the Ethical princi-
ples of the 1964 Declaration of Helsinki and its later amendments. Parents or guardians 
provided a written informed consent for the participation of their children in the study.

To gain a initial insight into the problem at hand, we can visualise the (cen-
tred) data using ternary diagrams. Instead of plotting all 10 possible combinations 
of 3-part subcompositions, we display the 3-part composition of sleep, SB and the 
amalgamated parts of PA; as well as the 3-part subcomposition consisting of the 
PA parts only (Fig.  2 in Appendix B). The data points are coloured according to 
the individuals’ fat mass. We can already observe some patterns from this limited 
visualisation. Particularly, it indicates that a higher proportion of time spent in SB is 
associated with higher fat mass, whereas the association points towards the opposite 
direction for VPA.

h
(l,k)

j
=

D∑
i=1

g
(l)

1i
g
(k)

ji
j = 1,…D − 1; k, l = 1,…L.
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In the following, we illustrate how applying the proposed PLS regression biplot 
based on pivoting balances provides a more comprehensive view. As justified in 
Sect. 2.1, L = 7 regression models (3) are considered with FM (in log-scale) set as 
the response variable and the composition MB playing the role of explanatory varia-
ble, with this represented by sets of pivoting balances 

(
b
(l)

1
, b

(l)

2
, b

(l)

3
, b

(l)

4

)
, l = 1,… , 7 , 

resulting from seven balance coordinate systems. Naturally, fat mass depends on 
height and age (with these two being highly correlated for individuals in school age). 
Accordingly, age and height (both mapped into real space using a log-transformation) 
are put in as covariates in the models. PLS regression modelling is conducted as 
detailed in the previous section. Based on the randomised test approach, retaining the 
first two PLS components to produce the PLS biplot is considered adequate (CV 
RMSEP = 0.49 and CV R 2 = 0.32 ). Thus, estimates of the regression coefficients are 
derived from the first two PLS components for each of the 7 regression models. Actu-
ally, following on the relationships between olr coordinate systems detailed in 
Sect. 3.1, a single model is fitted and all the other estimates are derived from this one.

Table 2 shows the bootstrap standardised regression coefficients estimated from 
1000 bootstrap resamples (including the respective 95% bootstrap confidence inter-
vals) for each of the first pivoting balances b(l)

1
, l = 1,… , 7 , as indicated in Table 1, 

as well as for the additional covariates. Considering the usual 5% significance level 
threshold, statistically significant balances having a negative relationship with FM 
are the following: Sleep_SB.LPA.MPA.VPA, VPA_Sleep.SB.LPA.MPA, Sleep.
VPA_SB.LPA.MPA, Sleep.MPA.VPA_SB.LPA and Sleep.LPA.MPA.VPA_SB. 
Thus, the significant balances are those including SB in the denominator and Sleep 
and/or VPA in the numerator whereas the non-significant include a confront Sleep 
against VPA. Thus, the results suggest that for obesity prevention (in school-aged 
girls) it would be beneficial to spend relatively less time sitting and more time 
sleeping and doing high-intense physical activity. Moreover, it is suggested that 
the two non-active behaviours (sleep and SB) have opposite associations with fat. 
That is, sleep, unlike SB, would play a positive role in fat reduction. Finally, both 

Table 2   Bootstrap standardised 
coefficients (and 95% confidence 
intervals) from PLS regression 
fit to fat mass on movement 
behaviour pivoting balances 
with age and height as 
covariates (boldface indicates 
statistically significant results at 
5% level)

Explanatory variable Standardised regres-
sion coefficient (95% 
CI)

Sleep_SB.LPA.MPA.VPA −5.65 (−7.76,−3.78)

Sleep.SB_.LPA.MPA.VPA −0.59 (−2.24, 1.70)

Sleep.SB.LPA_MPA.VPA −1.19 (−2.82, 1.26)

Sleep.SB.LPA.MPA_VPA 2.97 (0.93, 4.70)

Sleep.VPA_SB.LPA.MPA −6.16 (−7.98,−4.07)

Sleep.MPA.VPA_SB.LPA −3.29 (−5.35,−1.51)

Sleep.LPA.MPA.VPA_SB −3.05 (−4.97,−1.25)

ln(Age) 6.42 (4.47, 8.45)

ln(Height) 5.70 (3.92, 7.73)



850	 N. Štefelová et al.

1 3

non-compositional covariates (age and height) are positively associated with FM as 
it would be expected.

It is worth mentioning that for this case study applying ordinary LS regression 
instead of PLS in a similar way (i.e. sequentially on the corresponding pivoting bal-
ance coordinate systems plus the covariates) leads to analogous final conclusions 
in terms of statistical significance for all the variables except for age, which is not 
identified as a relevant variable (see Table 5 in Appendix B). This counter-intuitive 
result is just a consequence of the high correlation between age and height, that is 
not well handled by LS regression but adequately so by using PLS instead.

Furthermore, the construction of the PLS biplot based on the first pivoting balances 
(together with the non-compositional variables) from the seven coordinate systems 

Sleep_SB.LPA.M
PA.VPA
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Fig. 1   PLS biplot based on compositional balances from seven pivoting balance coordinate systems. The 
lighter the colour of the point, the higher the fat mass level of the corresponding individual. Statistically 
significant variables in positive (resp. negative) direction are coloured in red (resp. blue), grey colour 
indicates non-significant variables. The dashed lines indicate the origin for the first and second PLS com-
ponent axes (PLS comp. 1 and PLS comp. 2). A 92.22% of the explanatory variables variance (resp. 
33.32% of the response variable variance) is explained by the first two PLS components: 88.50% by PLS 
comp. 1 and 3.72% by PLS comp. 2 (resp. 20.49% by PLS comp.1 and 12.83% by PLS comp. 2)
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provides further insight into what would be more recommendable movement behav-
iour patterns within the 24-h period associated with lower adiposity (Fig. 1). The first 
two PLS components explain 92.22% of the variance of the explanatory variables and 
33.32% of the variance of the response variable (i.e. the corresponding coefficient of 
determination for this model is 0.3332). The arrows representing the variables are 
coloured according to the sign of their respective associations with the FM outcome 
(positive in red and negative in blue for statistically significant associations, grey for 
non-significant association). Note that extending the arrow of a balance backwards 
from the origin would represent the direction of increasing value of the correspond-
ing reciprocal balance. A colour gradient is used to distinguish the points according to 
the individuals’ FM (in log-scale). The points are fairly well distinguished according 
to the relationships of the significant variables with the FM outcome along both PLS 
component axes. The arrows of the variables with significantly positive regression 
coefficients point roughly towards the top-right quadrant, which includes mainly indi-
viduals having higher fat mass. The variables with significantly negative regression 
coefficients point to opposite direction (i.e. roughly bottom-left quadrant), where the 
individuals with lower fat mass mostly concentrate. A few outlying cases are observed 
in the bottom-right quadrant, particularly two cases of lower fat mass corresponding to 
the very young individuals with low level of physical activity. We can see that the first 
PLS component is largely related to the relative amount of VPA, while the second one 
is determined rather by the relative amount of sleep (plus age and height). The balance 
that most clearly indicates the division between lower and higher fat mass is Sleep.
VPA_SB.LPA.MPA. So increasing the ratios of both VPA and sleep to SB, LPA and 
MPA is an even better strategy for obesity prevention than only increasing VPA with 
respect to the other behaviours. From the results obtained via PLS regression and the 
associated biplot we can therefore draw the conclusion that VPA is the most beneficial 
behaviour for fat reduction, however enjoying enough sleep is also relevant. Further-
more, the most beneficial action would be to spend more time in these activities at the 
expense of sitting, whereas there is no meaningful evidence of a beneficial impact of 
lighter PA.

4.1 � Comparison with pivot coordinates and PCA

For comparison, we can also look at the results obtained from PLS regression per-
formed on pivot coordinates (Table 6 and Fig. 3 in Appendix B; the notation has been 
simplified as there is no need to detail the parts in the denominator). The results indi-
cate that only balances considered in the pivoting balances are significant, and the PLS 
biplot leads to similar conclusions. However, note that if e.g. increasing MPA was also 
beneficial for fat reduction, the pivot coordinate representing MPA against the geomet-
ric mean of the others (which also aggregates logratios to VPA and sleep) would hardly 
give this information. Instead, the balance Sleep.MPA.VPA_SB.LPA could provide it 
when compared to Sleep.VPA_SB.LPA.MPA. Furthermore, we can compare the result-
ing PLS biplots with appropriate PCA biplots (Figs. 4 and 5 in Appendix B). Note that 
the relationships between PCA scores and loadings from different coordinate systems 
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are analogous to those in the PLS case. Here, the beneficial impact of VPA for obesity 
prevention is depicted, but the role of sleep is not that easily deduced.

4.2 � Isotemporal substitution analysis

By performing isotemporal substitution analysis (Dumuid et al. 2017a), we can look 
at how reallocation of time (in absolute sense) from one behaviour to another would 
impact the outcome variable. Table 3 shows estimated change in FM associated with 
1 min reallocation between movement behaviours. These estimates were computed 
as follows: (1) PLS regression coefficient estimates obtained from each bootstrap 
resample were used to compute the relative difference between the predicted FM 
from the reallocated mean composition and the FM from the original mean compo-
sition (with parts adding to � = 24 h); (2) the mean across bootstrap resamples was 
used as final estimate of the change (including a confidence interval based on the 
(�∕2) - and (1 − �∕2) quantiles of the distribution).

At the usual 5% significance level, statistically significant changes were obtained 
for time reallocations between VPA and any of the remaining activities and for time 
reallocation between sleep and SB. Hence, this support the idea that obesity can be 
prevented by increasing VPA even at the expanse of sleep. Moreover, note that to 
compare e.g. the impact of a time exchange of SB and VPA against SB and sleep, 
we should take into account that, in relative terms, 1 min of VPA means some-
thing completely different than 1 min of sleep. That is, taking our mean composi-
tion as reference, that means 40% of VPA, whereas 40% of sleep is about 200 min. 
Estimating the change in FM for a 200-min reallocation from sleep to SB (respec-
tively from SB to sleep) we obtain a 31.17% (20.35, 43.84)% increase (respectively 
−20.72% (−26.78,−13.69)% decrease).

Therefore it seems reasonable to also examine the effect of relative time reallo-
cations (something that in fact aligns with what pivoting balances are meant for). 
That is, looking at the difference in the outcome variable when, instead of a part xj , 
j = 1,… ,D , we consider R ⋅ xj , with R being a proportional factor. Note that in order 
to have all the parts adding up to � = 24 h, the remaining parts xk , with k = 1,… ,D 
and k ≠ j , need to be multiplied by (� − Rxj)∕(� − xj) . In case that two parts xi and 
xj, with i, j = 1,… ,D and i ≠ j , are multiplied by R, then the remaining parts xk , 
for k = 1,… ,D and k ≠ i, j , need to be multiplied by [� − R(xi + xj)]∕[� − (xi + xj)] , 
and so on for more parts. Using this procedure, Table  4 shows the results from 

Table 4   Estimated percentage 
changes in FM (with 95% 
confidence intervals) 
associated with 10% increase 
in given movement behaviours 
(statistically significant results at 
� = 0.05 indicated in boldface)

10% increased behaviour % decrease 
in the rest

% change (95% CI)

Sleep 5.18 −5.33 (−7.25,−3.60)

VPA 0.02 −1.33 (−2.10,−0.42)

Sleep & VPA 5.22 −7.31 (−9.37,−4.89)

Sleep & MPA & VPA 5.86 −4.10 (−6.58,−1.91)

Sleep & LPA & MPA & VPA 11.30 −6.30 (−10.07,−2.63)
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increasing a part by 10% , i.e. using R = 1.1 , while the remaining parts are propor-
tionally decreased. These results confirm that the relative increase in both VPA and 
sleep with respect to the remaining behaviours leads to even higher decrease in FM 
than only increasing VPA at the expense of the remaining behaviours.

5 � Final remarks

This work introduces and demonstrates the potential of the new concept of pivoting bal-
ance coordinates. In combination with a tailored compositional PLS regression biplot 
display, we devise an advanced method to investigate and visualize movement behaviour 
patterns and their association with health outcomes. This type of low-dimensional rep-
resentation becomes particularly relevant as the 24-h movement behaviours are increas-
ingly described at a higher level of granularity thanks to the use of new accelerometer 
technologies. The proposed method combines advantages of the pivot coordinate and 
the balance coordinate logratio approaches to deal with compositional data. In particular, 
only those balances which are relevant for the analysis are considered and the mutual 
orthonormality of the coordinate systems allows to achieve a unique PLS solution. The 
user just needs to be aware that the pivoting balances come from different coordinate 
systems and adapt interpretation of their relationships accordingly.

The practical use of the method has been illustrated using a database about 24-h 
movement behaviour and adiposity in Czech school-aged girls. The findings stress 
the relevant role that time-use exchanges combining both VPA and sleep together 
can play in obesity prevention. The study emphasizes the relevance of considering 
all movement behaviours within the day, while accounting for their compositional 
character, to better understand the combined effects of movement behaviours in obe-
sity within the paediatric population.

Building on previous developments, this work demonstrates the flexibility of the 
pivot coordinates approach (Hron et  al. 2020). In principle, any logratio of inter-
est (even beyond the concept of balances) can be set to occupy the pivotal position 
and be complemented by other coordinates to achieve orthonormality of the result-
ing olr coordinate system. We expect further methodological progress following this 
approach in the near future.

All computations in this work were performed on the R environment for statisti-
cal computing, (R Core Team 2021) using the packages compositions (van den 
Boogaart and Tolosana-Delgado 2008) and pls (Mevik and Wehrens 2007) for spe-
cific tasks. The computing routines implementing the proposed method are available 
at https://​github.​com/​Stefe​lovaN/​Balan​ce-​based-​PLS-​biplot/.

Appendix A: On the relationships between PLS regression results 
from different logratio coordinate systems

The relationships between results obtained from PLS regression performed on dif-
ferent logratio coordinate systems, as presented in Sect. 3.1, can be easily deduced. 
Let us consider 3 different models (2):

https://github.com/StefelovaN/Balance-based-PLS-biplot/
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where C ( B(k) and B(l) respectively) denotes a matrix of compositional data expressed 
in clr coefficients (balance coordinate systems k and l respectively) and �⋆ ( �(k) 
and �(l) respectively) denotes the respective vector of regression coefficients, with 
k, l = 1,… , L . For simplicity we do not include the additional non-compositional 
variables here.

The relationships between the vectors of regression coefficients �⋆ �(k) and �(l) are 
straightforward. Since C = B(l)G(l) and B(k) = B(l)G(l)

(
G(k)

)⊤ , then

As to the relationships between scores and loadings, these can be established from 
e.g. the NIPALS algorithm as summarised in Sect. 3. Denoting the score (loading, 
respectively) vectors corresponding to the matrix C by t⋆

j
 ( p⋆

j
 , respectively) and the 

score (loading, respectively) vectors corresponding to the matrix B(l) by t(l)
j

 ( p(l)
j

 , 
respectively), j = 1,… , a, l = 1,… , L , we have

for all l = 1,… , L,

and since
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y = C�⋆ + e = B(k)�(k) + e = B(l)�(l) + e,

� (l) = G(l)�⋆
, l = 1,… , L

= G(l)
(
G(k)

)⊤
� (k)

, k, l = 1,… , L.

t⋆
1
=

CC⊤y√
y⊤CC⊤y

=
B(l)G(l)

(
G(l)

)⊤(
B(l)

)⊤
y

√
y⊤B(l)G(l)

(
G(l)

)⊤(
B(l)

)⊤
y

=
B(l)

(
B(l)

)⊤
y

√
y⊤B(l)

(
B(l)

)⊤
y

= t
(l)

1
∶= t1

p
(l)

1
=

(
B(l)

)⊤
t1

t⊤
1
t1

=
G(l)C⊤t1

t⊤
1
t1

= G(l)p⋆
1
, l = 1,… ,

=
G(l)

(
G(k)

)⊤(
B(k)

)⊤
t1

t⊤
1
t1

= G(l)
(
G(k)

)⊤
p
(k)

1
, k, l = 1,… , L,

B
(l)

2
= B

(l) − t
1

(
p
(l)

1

)⊤

= C
(
G

(l)
)⊤

− t
1

(
p
(l)

1

)⊤(
G

(l)
)⊤

= C
2

(
G

(l)
)⊤
, l = 1,… ,L

= B
(k)
G

(k)
(
G

(l)
)⊤

− t
1

(
p
(l)

1

)⊤

G
(k)
(
G

(l)
)⊤

=B
(k)

2
G

(k)
(
G

(l)
)⊤
, k, l = 1,… , L,

t
(l)

j
= t⋆

j
∶= tj, j = 1,… , a, l = 1,… ,L

p
(l)

j
= G(l)p⋆

j
= G(l)

(
G(k)

)⊤
p
(k)

j
, j = 1,… , a, k, l = 1,… , L.



856	 N. Štefelová et al.

1 3

Appendix B: Comparing PLS‑based results of the case study 
with other methods

See Figs. 2, 3, 4 and 5. See Tables 5 and 6.
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Fig. 2   Ternary diagrams using centred data of the 3-part composition (Sleep, SB, PA), with centre 
(34.01, 46.80, 19.18)% (upper figure), and of the 3-part subcomposition (LPA, MVPA, VPA), with centre 
(85.06, 14.01, 0.93)% , (lower figure). The lighter the colour of the points, the higher the fat mass of the 
corresponding individual
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Fig. 3   PLS biplot based on pivot coordinates from five coordinate systems. The lighter the colour of the 
point, the higher the fat mass level of the corresponding individual. Statistically significant variables in 
positive (resp. negative) direction are coloured in red (resp. blue), grey refers to non-significant variables. 
The dashed lines indicate the origin for the first and second PLS component axes (PLS comp. 1 and PLS 
comp. 2). A 92.22% of the explanatory variables variance (resp. 33.32% of the response variable vari-
ance) is explained by the first two PLS components: 88.50% by PLS comp. 1 and 3.72% by PLS comp. 2 
(resp. 20.49% by PLS comp.1 and 12.83% by PLS comp. 2)
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the point, the higher the fat mass level of the corresponding individual. The dashed lines indicate the 
origin for the first and second PCA component axes (PC1 and PC2). A 95.01% of the data variability is 
explained by the first two PCs: 88.58% by PC1 and 6.43% by PC2
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Fig. 5   PCA biplot based on compositional balances from seven pivoting balance coordinate systems. The 
lighter the colour of the point, the higher the fat mass level of the corresponding individual. The dashed 
lines indicate the origin for the first and second PCA component axes (PC1 and PC2). A 95.01% of the 
data variability is explained by the first two PCs: 88.58% by PC1 and 6.43% by PC2
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Table 5   Bootstrap standardised 
coefficients (and 95% confidence 
intervals) from LS regression 
fit to fat mass on movement 
behaviour pivoting balances 
with age and height as 
covariates (boldface indicates 
statistically significant results at 
5% level)

Explanatory variable Standardised regres-
sion coefficient (95% 
CI)

Sleep_SB.LPA.MPA.VPA −2.09 (−4.10,−0.22)

Sleep.SB_.LPA.MPA.VPA −0.74 (−2.80, 1.24)

Sleep.SB.LPA_MPA.VPA 0.03 (−1.98, 2.00)

Sleep.SB.LPA.MPA_VPA 3.55 (1.51, 5.56)

Sleep.VPA_SB.LPA.MPA −2.56 (−4.57,−0.69)

Sleep.MPA.VPA_SB.LPA −2.05 (−4.03,−0.16)

Sleep.LPA.MPA.VPA_SB −2.10 (−4.12,−0.14)

ln(Age) 1.06 (−1.12, 2.98)

ln(Height) 3.84 (1.89, 5.90)

Table 6   Bootstrap standardized 
coefficients (and 95% confidence 
intervals) from PLS regression 
fit to fat mass on movement 
behaviour pivot coordinates with 
age and height as covariates 
(boldface indicates statistically 
significant results at 5% level). 
The symbol “_.” indicates pivot 
coordinate over the geometric 
mean of all the other parts

Explanatory variable Standardised regres-
sion coefficient (95% 
CI)

Sleep_. −5.65 (−7.76,−3.78)

SB_. 3.05 (1.25, 4.97)

LPA_. −0.49 (−2.47, 1.33)

MPA_. 1.96 (−0.40, 3.55)

VPA_. −2.97 (−4.70,−0.93)

ln(Age) 6.42 (4.47, 8.45)

ln(Height) 5.70 (3.92, 7.73)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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