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Abstract

In this article, a new method is proposed for clustering longitudinal curves. In
the proposed method, clusters of mean functions are identified through a weighted
concave pairwise fusion method. The EM algorithm and the alternating direction
method of multipliers algorithm are combined to estimate the group structure, mean
functions and principal components simultaneously. The proposed method also al-
lows to incorporate the prior neighborhood information to have more meaningful
groups by adding pairwise weights in the pairwise penalties. In the simulation
study, the performance of the proposed method is compared to some existing clus-
tering methods in terms of the accuracy for estimating the number of subgroups and
mean functions. The results suggest that ignoring the covariance structure will have
a great effect on the performance of estimating the number of groups and estimating
accuracy. The effect of including pairwise weights is also explored in a spatial lattice
setting to take into consideration of the spatial information. The results show that
incorporating spatial weights will improve the performance. A real example is used
to illustrate the proposed method.

key words: ADMM algorithm, B-spline regression, Clustering, EM algorithm,
Functional principal component analysis, Penalty functions

1 Introduction

Clustering is a method to identify homogeneous subgroups from a heterogeneous
population. Jain (2010) had a review of different clustering methods. One particular
type of clustering problems is to find clusters for longitudinal curves. There are a lot
of applications in clustering longitudinal curves, such as bioscience (Zhu et al., 2019),
bioinformatics (Ng et al., 2006), geostatistics (Chiou and Li, 2008) and social science
(Jiang and Serban, 2012). As mentioned in Zhu and Qu (2018), traditional cluster-
ing methods don’t take time ordering into account. Besides time ordering, traditional
clustering methods don’t consider covariance structure. To solve this problem, different
clustering methods are developed.
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If we consider that longitudinal observations are from some functions over time, we
can use the framework of functional data to analyze longitudinal data (Ramsay and
Silverman, 2005). In functional data analysis, longitudinal curves are assumed to be
functions of time, but functions are only observed on discrete time points. Jacques
and Preda (2014) provided an overview of some functional clustering methods. James
and Sugar (2003) proposed a model-based method for clustering sparse sampled func-
tional data, where spline basis was used to model mean curves. Peng and Müller (2008)
considered a distance-based clustering approach that defined the distance between two
functions. Luan and Li (2003) and Coffey et al. (2014) both used mixed effects models
to find clusters in time-course gene expression data. Some related works are based on
functional principal components analysis (FPCA). In functional data analysis, FPCA is
a useful tool to model mean curves and covariance functions (Yao et al., 2005; Li and Hs-
ing, 2010). Chiou and Li (2007) and Chiou and Li (2008) proposed functional clustering
methods based on principal components and k-means. Sangalli et al. (2010) (KMA) de-
veloped an algorithm to cluster and align curves jointly. Bouveyron and Jacques (2011)
(funHDDC) built a procedure based on a functional latent mixture model for cluster-
ing functional data. A method based on functional mixture models and discriminative
functional subspace was proposed in Bouveyron et al. (2015) (FEM) to find clusters of
curves. Jacques and Preda (2013) defined an approach using a mixture model when as-
suming a Gaussian distribution of the principal components. Their approach was based
on an approximation of the notion of probability density for functional random variables
and Karhunen-Loève expansion.

These methods mentioned above cannot incorporate extra information, such as lo-
cations. In the traditional clustering problem, constrained clustering is discussed to use
extra information or labeled data, such as Basu et al. (2004) and de Amorim (2012).
Must-link and cannot-link are needed. Instead of defining two sets of links, Chi and
Lange (2015) considered all pairwise links and constructed an optimization problem for
clustering based on pairwise Lp(p ≥ 1) penalties. They also considered pairwise weights
based on distances of observations in pairwise penalties. The optimization problem was
solved by the alternating direction method of multipliers algorithm (ADMM, Boyd et al.
(2011)). Using the ADMM algorithm, the original optimization problem can be divided
into several simpler sub-problems, which would be easier to solve. This idea is extended
to different regression settings. Ma and Huang (2017) and Ma et al. (2020) considered
clustering problems in linear regression models using smoothly clipped absolute devi-
ation (SCAD) penalty (Fan and Li, 2001) and the minimax concave penalty (MCP)
(Zhang, 2010). They also used the ADMM algorithm to solve the optimization problem
constructed under linear regression models to find estimates of regression coefficients
and the corresponding group structure. But they didn’t consider pairwise weights in the
penalty functions to incorporate extra information, such as locations. However, some
extra information can help find clusters that would be more reasonable and easier to
interpret. For example, spatial location information is used to help find spatial continu-
ous groups in Wang et al. (2023). Age distances are used to find continuous age obesity
groups in Miljkovic and Wang (2021). Both methods used weighted pairwise penalties
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and the ADMM algorithm, which can easily incorporate extra information in pairwise
penalties. Zhu and Qu (2018) used spline bases to represent mean functions and used
the ADMM algorithm to identify clusters for longitudinal data without estimating the
covariance structure. Fang et al. (2022) used the ADMM algorithm and spline functions
for both clustering in both the sample and covariate dimensions. But they didn’t con-
sider any extra information, either. Ma et al. (2023) considered the clustering problem
for functional partial linear regression, not the mean functions.

In this work, a new method is proposed to use spatial information or ordering in-
formation to cluster longitudinal curves. The new approach can find cluster structures,
estimate mean functions and the covariance function simultaneously using FPCA. In
the proposed method, each individual curve is assumed to have its own mean function
represented by B-spline bases (De Boor, 2001). Eigenfunctions are also expressed by B-
spline bases with some constraints in parameters, which are assumed to be the same for
all individual curves. Clusters of individual curves are identified based on the weighted
pairwise concave penalty as in Wang et al. (2023). In the proposed algorithm, spatial
or location information can be considered when constructing pairwise weights if the in-
formation is known. Mean functions and the covariance function, along with the group
structure, are estimated simultaneously by combining the ADMM algorithm and the
EM algorithm. The idea of the combination of the EM and the ADMM algorithm is also
used in Ren et al. (2022) and Foulds et al. (2015) in other setups, where the ADMM
algorithm is used in the M-step in the EM algorithm. Zhou et al. (2022) proposed a two-
stage algorithm, which used the ADMM algorithm in the first step to finding the initial
values for the EM algorithm. And the difference between the proposed algorithm and
the two-stage algorithm in Zhou et al. (2022) is that the ADMM algorithm is iteratively
used in the EM algorithm instead of using it as an initial step.

The contributions of this work can be summarized as below. First, a model based on
FPCA with individual mean functions and weighted pairwise penalty functions (FWP)
is assumed, which can incorporate extra spatial or location information. Second, a
new algorithm is developed based on the EM and ADMM algorithms to find estimates
and clusters. In both the simulation study and the application, data sets with regular
time observations are considered. The proposed method is compared to some existing
methods in the simulation study. The results show that the weighted penalty performs
better if there is a potential spatial structure.

The article is organized as follows. In Section 2, the FPCA model with individual
mean functions and weighted pairwise penalty (FWP) is described. In Section 3, the
proposed optimization problem and the algorithm are introduced. The simulation study
is conducted in Section 4 to show the performance of the proposed method. A real
example is analyzed in Section 5 to illustrate the new method. Finally, some discussions
are given in Section 6.
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2 The FPCA subgroup model

Following the model discussed in Yao et al. (2005) and James et al. (2000), let T
be the time interval with [0, 1], and Yi(t) be the independent curves for t ∈ T and
i = 1, . . . , n. Xi (t) is the latent functional process of Yi(t) and the covariance function
is Γi (t1, t2) = Cov[Xi(t1), Xi(t2)]. Assume that Xi(t) is a square integrable stochastic
process over T with mean function µi(t) and covariance function is continuous, then
the covariance function can be decomposed as Γ (t1, t2) =

∑∞
l=1 λlψl (t1)ψl (t2) , where

λ1 ≥ λ2 ≥ · · · > 0 are eigenvalues and ψl (·)’s are corresponding eigenfunctions which are
orthonormal, that is,

∫
T ψl (t)ψl′ (t) dt = I (l = l′). The covariance function here does

not have the stationary assumption, and is more flexible. Based on the Karhunen-Loève
expansion, Xi (t) can be written as in (1)

Xi (t) = µi (t) +
∞∑

l=1
ξilψl (t) , (1)

where µi(t) is the mean function of the ith individual, ξil is a normal random variable
with E [ξil] = 0 and V ar [ξil] = λl. Note that different individual curves have the same
covariance function. In practice, it is not feasible to estimate the infinite number of
components in the covariance function. Thus, the truncated form is used to approximate
(1) as in James et al. (2000), that is,

Xi (t) ≈ µi (t) +
P∑

l=1
ξilψl (t) , (2)

where P is the number of components that will be selected later. The method of choosing
P will be introduced in Section 4. Then the model for Yi(t) is

Yi(t) = µi (t) +
P∑

l=1
ξilψl (t) + ϵi(t), (3)

where ϵi(t) is the additional measurement error following a normal distribution, which
has mean 0 and variance σ2 and is independent of ξil. The Karhunen-Loève expansion
is also used in some other clustering work, such as Jacques and Preda (2013) and Huang
et al. (2014). In the previous work, latent variables were used to indicate the group
information, which differs from the proposed method. In the proposed method, the
group information is indicated by values of parameters instead of latent variables, which
will be introduced later in detail.

Assume that both mean functions µi(t) and eigenfunctions ψl(t) are smooth func-
tions. Regression splines are used to approximate them. Specifically, let B (t) =
(B1 (t) , . . . , Bq (t))T be the q dimensional B-spline bases with equally spaced knots de-
fined on T . Then, mean functions and eigenfunctions are expressed as

µi (t) = BT (t)βi, (4)
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(ψ1 (t) , . . . , ψP (t)) = BT (t)Θ, (5)

where βi’s are unknown coefficients, Θ is a q × P parameter matrix. Note that, βi’s
indicate the difference among different mean functions. Let ξi = (ξi1, . . . , ξiP )T , then
the reduced rank model becomes

Yi(t) = BT (t)βi + BT (t)Θξi + ϵi(t), (6)

where ξi
iid∼ N (0,Λ) and Λ is a P × P diagonal matrix with the lth element as λl.

As used in James et al. (2000) and Zhou et al. (2008), the orthogonality constraint of
eigenfunctions ψl(·)’s is guaranteed based on the following constraints on spline bases
and the parameter matrix Θ,∫

B (t)B (t)T dt = Iq, ΘTΘ = IP , (7)

where Iq and IP are a q-dimensional identity matrix and P -dimensional identity ma-
trix, respectively. Instead of using the numeric approximation procedure in Zhou et al.
(2008), the matrix representation method is used to obtain the orthogonal B-spline bases
functions (Redd, 2012). Based on Lemma 1 in Zhou et al. (2008), the identifiability of
parameters Θ, Λ is guaranteed by two conditions: 1) ΘTΘ = IP and 2) the sign of the
first element with the largest magnitude is positive in each column of Θ.

Let tih for h = 1, . . . H be the observed time point, and Yi(tih) be the observed value
of Yi(t) at time tih. Define Yi = (Yi(ti1), . . . , Yi(tiH))T , Bi = (B(ti1), . . . ,B(tiH))T and
ϵi = (ϵi(ti1), . . . , ϵi(tiH))T , the data model becomes

Yi = Biβi + BiΘξi + ϵi. (8)

Assume that there are K distinct groups with different mean functions, denoted by
G1,G2, . . . ,GK , which is a partition of {1, 2, . . . , n}. Under this partition, µi (t) = µj (t)
if i and j ∈ Gk, which means i and j are in the same group. Based on the expression
of the reduced rank model in (6), the clustering problem becomes to find a partition
of {1, 2, . . . , n} such that βi = βj if i and j are in the same group. But neither the
partition Gk, k = 1, 2, . . . ,K nor the number of clusters K is known. Thus, the goal is
to find the partition Ĝk and the number of clusters K̂ based on the observations.

To achieve the goal of estimating parameters and finding group structure, pairwise
penalties are applied to the differences of βi (Ma et al., 2020; Wang et al., 2023). Then,
the following optimization problem is considered: minimize the objective function with
pairwise penalties,

Q(β,Θ, ξ,λ, σ2) = σ̃2

H
l
(
β,Θ, ξ,λ, σ2

)
+

∑
1≤i<j≤n

pγ (∥βi − βj∥, cijτ) , (9)

where ∥ · ∥ denotes the Euclidean norm, σ̃2 is an initial value of σ2, and l
(
β,Θ, ξ,λ, σ2)

is the joint negative loglikelihood function similar to that in James et al. (2000). The
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difference is that the proposed model has individual coefficients βi instead of a common
vector as that in James et al. (2000). l

(
β,Θ, ξ,λ, σ2) has the following form,

l(β,Θ, ξ,λ, σ2) = 1
2σ2

n∑
i=1

∥Yi − Biβi − BiΘξi∥2

+n

2 log (|Λ|) + 1
2

n∑
i=1

ξT
i Λ

−1ξi + 1
2

n∑
i=1

H log(σ2), (10)

where β = (βT
1 , . . . ,β

T
n )T , ξ = (ξT

1 , . . . , ξ
T
n )T ,λ = (λ1, . . . , λP )T .

The reason for using σ̃2 is to avoid some numerical issues due to possible smaller
values of σ2 found in some simulations when having the second term of (9) in the ADMM
algorithm. Adding a constant will not change the shape of the likelihood function. And
in the algorithm, the parameter σ2 will be estimated together with other parameters.
The method of obtaining σ̃2 is discussed in Remark 2 and the Appendix. (25) in the
Appendix gives the approach of obtaining σ̃2. The proposed method works well in
different simulation setups.

In (9), pγ (·, τ) is a penalty function with a tuning parameter τ ≥ 0, which will be
selected later described in Section 4. The penalty function can be L1 penalty (Tibshirani,
1996), SCAD (Fan and Li, 2001) and MCP (Zhang, 2010). In Ma and Huang (2017), they
considered both SCAD and MCP, and they showed that L1 penalty tended to produce
too many groups, SCAD and MCP performed similarly and had the same theoretical
results. Thus, here we only consider the SCAD penalty, which is defined as,

pγ(t, λ) = λ

∫ |t|

0
min{1, (γ − x/λ)+/(γ − 1)}dx. (11)

Here we treat γ as a fixed value 3 as in Ma et al. (2020). As the value of cijτ increases,
some pairs of ∥βi −βj∥ would be shrunk to zeros, then i and j will be in the same group.
According to the estimate of β denoted as β̂, we will have the estimated partition of
{1, 2, . . . , n} such that β̂i = β̂j if i and j are in the same group.

Besides that, an associated weight cij is assigned to each pair of the penalty. cij

is defined based on similarities between individual i and individual j, such as distance,
which is discussed in Wang et al. (2023). For closer locations, larger weights are assigned
such that they tend to be grouped together. And for locations which are far away from
each other, smaller weights are assigned and they tend to be separated. For example,
if si is the location of individual i, then cij can be defined as cij = exp(−α∥si − sj∥),
where α is another tuning parameter to be chosen. And it can be seen that when the
distance between two locations is small, the corresponding weight cij is large. With a
larger weight, these two locations tend to be shrunk together. Pairwise weights cij ’s can
be defined according to different contexts of different problems. In Wang et al. (2023),
they discussed several possible ways of defining the weights. The cij is defined such that
the largest value is 1 when α = 0, which will not have a scale issue between cij and τ . In
the simulation study, a spatial grid structure is considered, and corresponding weights
are defined in Section 4.2. Both τ and α are tuning parameters, which will be selected
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based on Bayesian information criteria (BIC) (Ma and Huang, 2017; Wang et al., 2023).
The detail will be given in Section 4.

3 The proposed algorithm

In this section, the proposed algorithm is introduced in detail. The proposed algo-
rithm is an iterative algorithm, combining the EM and ADMM algorithms.

Recall that the goal is to minimize the objective function proposed in (9). (12) shows
more details about the objective function,

Q(β,Θ, ξ,λ, σ2) = σ̃2

2Hσ2

n∑
i=1

∥Yi − Biβi − BiΘξi∥2

+ σ̃2

2

n∑
i=1

log(σ2) + nσ̃2

2H log (|Λ|) + σ̃2

2H

n∑
i=1

ξT
i Λ

−1ξi

+
∑

1≤i<j≤n

pγ (∥βi − βj∥, cijτ) . (12)

The ADMM algorithm is used widely to solve this type of optimization problem in
linear regression setups with pairwise penalties. In the ADMM algorithm, let δij =
βi − βj , then the objective function becomes

Q0(β,Θ, ξ,λ, σ2, δ) = σ̃2

2Hσ2

n∑
i=1

∥Yi − Biβi − BiΘξi∥2

+ σ̃2

2

n∑
i=1

log(σ2) + nσ̃2

2H log (|Λ|) + σ̃2

2H

n∑
i=1

ξT
i Λ

−1ξi

+
∑

1≤i<j≤n

pγ (∥δij∥, cijτ)

subject to βi − βj − δij = 0.

The augmented Lagrangian without the constraints is

Q1
(
β,Θ, ξ,λ, σ2, δ,v

)
= Q0

(
β,Θ, ξ,λ, σ2, δ

)
+
∑
i<j

⟨vij ,βi − βj − δij⟩

+ ϑ

2
∑
i<j

∥βi − βj − δij∥2, (13)

where v =
(
vT

ij , i < j
)T

are Lagrange multipliers and ϑ is the penalty parameter, which
is fixed at 1 here as in Ma and Huang (2017) and Ma et al. (2020). Parameters will be
updated based on minimizing the objective function (13).

As in James et al. (2000) and Zhou et al. (2008), the EM algorithm can be used
when treating ξi’s as missing data. In the E-step of the EM algorithm, the distribution
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of ξi is needed given the current values of parameters. From James et al. (2000), the
conditional distribution of ξi is

ξi|β,Θ,λ, σ2 ∼ N (mi,Vi) ,

where

mi = E
[
ξi|β,Θ,λ, σ2

]
=
(
ΘTBT

i BiΘ + σ2Λ−1
)−1

ΘTBT
i (Yi − Biβi) , (14)

Vi = V
[
ξi|β,Θ,λ, σ2

]
=
( 1
σ2Θ

TBT
i BiΘ + Λ−1

)−1
. (15)

Note that, in James et al. (2000), a common mean function is used. Here individual βis
are used for individual mean functions. When all individuals have the same observed
time points, then all Vi’s are the same here. This is the case considered in this article.
For simplicity, V will be used to denote Vi later. Define m̂i and V̂ as the evaluated
vector and matrix of mi and V at β̂, Θ̂, λ̂ and σ̂2, respectively. The proposed algorithm
can be extended to a more general case.

In the M-step, parameters β,Θ,λ, σ2, δ and Lagrange multipliers v will be updated.
The details will be introduced in two parts. In part 1, Θ, λ and σ2 are updated, and all
of these updates don’t depend on the penalty part. In part 2, β, δ and v are updated.

Part 1

Let β(r), Θ(r), λ(r), (σ2)(r), δ(r) and v(r) be estimates at the r-th iteration. σ2 is
updated based on E

[
Q1
(
β,Θ, ξ,λ, σ2, δ,v|β(r),Θ(r),λ(r), (σ2)(r), δ(r),v(r)

)]
, that is

(
σ2
)(r+1)

= 1
nH

n∑
i=1

∥Yi − Biβ
(r)
i − BiΘ

(r)m̂i∥2

+ 1
nH

n∑
i=1

tr

(
BiΘ

(r)V̂
(
Θ(r)

)T
BT

i

)
. (16)

When updating Θ, each column is updated sequentially as in Zhou et al. (2008) and
Huang et al. (2014). Let θj be the jth column of Θ for j = 1, . . . , P . θj is updated by
minimizing the following expectation with respect to θj ,

E

 n∑
i=1

Yi − Biβ
(r)
i −

∑
l ̸=j

Biθlξil − Biθjξij

2 ∣∣∣β(r),Θ(r),λ(r), (σ2)(r)

 .
Therefore, the estimate for θj is

θ̃j =
(

n∑
i=1

BT
i Bi

(
m̂2

ij + V̂ (j, j)
))−1

·
n∑

i=1
BT

i

(Yi − Biβ
(r)
i

)
m̂ij −

∑
l ̸=j

Biθl

(
m̂ilm̂ij + V̂ (l, j)

) , (17)
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where m̂ij is the jth element of m̂i and V̂ (l, j) is the ljth element of V̂ . But the matrix
Θ̃ =

(
θ̃1, . . . , θ̃P

)
obtained by this procedure is not orthonormal. The same procedure as

in Zhou et al. (2008) and Huang et al. (2014) is used to orthogonalize Θ and provide the
updated estimate of λ. In this procedure, compute Σ = 1

n

∑n
i=1

(
m̂im̂

T
i + V̂

)
. Then

an eigenvalue decomposition is done such that Θ̃ΣΘ̃T = Θ̂Λ̂Θ̂T , where Λ̂ is a diago-
nal matrix with eigenvalues arranged in decreasing order and Θ̂ has the corresponding
eigenvectors. Thus, Λ̂ is the update of Λ denoted as Λ(r+1) and Θ̂ is the update of Θ
denoted as Θ(r+1).

By applying the above procedure, updates of parameters, Θ(r+1), Λ(r+1) and (σ2)(r+1)

are obtained.

Part 2

When ignoring other unrelated components about β, δ and v in
E
[
Q1
(
β,Θ, ξ,λ, σ2, δ,v|β(r),Θ(r),λ(r), (σ2)(r), δ(r),v(r)

)]
, the objective function be-

comes,

Q2 (β, δ,v) = σ̃2

2H (σ2)(r+1)

n∑
i=1

∥Yi − Biβi − BiΘ
(r+1)m̂i∥2

+
∑
i<j

⟨vij ,βi − βj − δij⟩ + ϑ

2
∑
i<j

∥βi − βj − δij∥2

+
∑
i<j

pγ (∥δij∥, cijτ) . (18)

Based on (18), β, δ and v are updated as follows to minimize the above objective
function. β is updated as below,

β(r+1) =
(
BT

0 B0 + ϑ
(
σ̃2
)−1

H(σ2)(r+1)ATA

)−1 [
BT

0

(
Y − B̃m̂

)
+ ϑ

(
σ̃2
)−1

H(σ2)(r+1)vec
((

∆(r) − ϑ−1Υ(r)
)
D
)]

(19)

where B0 = diag (B1, . . . ,Bn), B̃ = diag
(
B1Θ

(r+1), . . . ,BnΘ
(r+1)

)
, Y =

(
Y T

1 , . . . ,Y
T

n

)T
,

m̂ =
(
m̂T

1 , . . . , m̂
T
n

)T
, A = D⊗Iq (⊗ is the kronecker product), D =

{
(ei − ej , i < j)T

}
,

ei is an n × 1 vector with ith element 1 and other elements 0, ∆ =
(
δ

(r)
ij , i < j

)
is a

q × n (n− 1) /2 matrix and Υ(r) =
(
v

(r)
ij , i < j

)
is a q × n (n− 1) /2 matrix.

δ is updated by minimizing

ϑ

2 ∥ς(r)
ij − δij∥2 + pγ (∥δij∥, cijτ) ,
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where ς
(r)
ij =

(
β

(r+1)
i − β

(r+1)
j

)
+ ϑ−1v

(r)
ij . The solution based on the SCAD penalty is

δ
(r+1)
ij =


S
(
ς

(r)
ij , τcij/ϑ

)
if
∥∥∥ς(r)

ij

∥∥∥ ≤ τcij + τcij/ϑ,

S

(
ς

(r)
ij ,γτcij/((γ−1)ϑ)

)
1−1/((γ−1)ϑ) if τcij + τcij/ϑ <

∥∥∥ς(r)
ij

∥∥∥ ≤ γτcij ,

ς
(r)
ij if

∥∥∥ς(r)
ij

∥∥∥ > γτcij ,

(20)

where γ > 1+1/ϑ, S (w, t) = (1 − t/∥w∥)+ w and (t)+ = t if t > 0, 0 otherwise. Finally,
vij is updated as in the typical ADMM algorithm,

v
(r+1)
ij = v

(r)
ij + ϑ

(
β

(r+1)
i − β

(r+1)
j − δ

(r+1)
ij

)
. (21)

The proposed algorithm can be summarized as follows.

Algorithm: The EM-ADMM algorithm
Require: : Initialize β(0), δ(0), v(0), Θ(0), (σ2)(0) and λ(0).

1: for r = 1, 2, . . . do
2: Calculate m̂i and V̂ for i = 1, . . . , n according to (14) and (15).
3: Update σ2 by (16).
4: Calculate Θ̃ by (17).
5: Update Θ and λ by the orthonormal procedure.
6: Update β by (19).
7: Update δ by (20)
8: Update v by (21).
9: if convergence criterion is met then

10: Stop and get the estimates
11: else
12: r = r + 1
13: end if
14: end for

Remark 1. The stopping criterion is based on the criterion in Boyd et al. (2011).
Define

u(r+1) = Aβ(r+1) − δ(r+1),

and
s(r+1) = ϑAT

(
δ(r+1) − δ(r)

)
.

The stopping criterion is ∥∥∥u(r)
∥∥∥ ≤ ϵpri,

∥∥∥s(r)
∥∥∥ ≤ ϵdual

with

ϵpri =

√
n (n− 1)

2 qϵabs + ϵrel max
{∥∥∥Aβ(r)

∥∥∥ , ∥∥∥δ(r)
∥∥∥} ,

ϵdual = √
nqϵabs + ϵrel

∥∥∥ATv(r)
∥∥∥ .
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The values of ϵabs and ϵrel are 10−4 and 10−2, respectively.

Remark 2. The following procedure is used to initialize starting values of parameters.
First calculate the coefficients for each individual using the following form,

β∗
i = Bi

(
BT

i Bi + τ1Ω1
)−1

BT
i Yi,

where Ω1 =
∫
B(t)B(t)Tdt is the roughness penalty, which is an identity matrix here

due to the constraint of the basis function in (7). Generalized cross validation (GCV) is
used to select τ1 with the following form

GCV (τ1) =
n∑

i=1

HY T
i (I − Li)2 Yi

tr [I − Li]2
,

where Li = Bi

(
BT

i Bi + τ1Ω1
)−1

BT
i .

Then, k-means is used to obtain an initial group information based on initial es-
timates β∗

i , given the number of groups. According to the given group structure by
k-means, the EM algorithm is then applied to obtain initial values of β, Θ, λ and σ2.
The EM algorithm is presented in the Appendix. δ(0) is initialized as δ(0) = Aβ(0) and
v is initialized as 0 for each element.

As shown above, the proposed algorithm can estimate the group structure and mean
functions by estimating β. And estimated values of Θ and λ give the estimated covari-
ance function.

Here, a two-step procedure is used to select the number of components P , tuning
parameters τ and α. A two-step procedure is commonly used when there are multiple
tuning parameters, examples can be found in Zhu and Qu (2018) and Zhang et al. (2022).
In the first step, P is selected when fixing τ = 0 and α = 0. In particular, P components
are used such that at least 95% variation is explained, this is method is widely used in
functional data analysis, see examples in James et al. (2000); Xiao and Wang (2022);
Zhang et al. (2022). When P is selected, τ and α will be selected based on the selected
P . Let K̂(τ, α) be the number of estimated groups for given values of τ and α. The
following modified Bayesian information criteria (BIC) is used to select τ and α, which
adopts the forms in Li et al. (2013) and Wang et al. (2007). The modified BIC is defined
as

BIC(τ, α) = 2l̂ + Cn log (nH)
(
K̂(τ, α)q

)
, (22)

where l̂ is E[l] in (10) evaluated at the estimates, and 2l̂ = nH log
(
σ̂2

P

)
+n

∑P
l=1 log λ̂l +∑n

i=1 m̂
T
i Λ̂

−1m̂i, which is typically used in EM based algorithm (Ibrahim et al., 2008;
Huang et al., 2014). When Cn = 1, it becomes a traditional BIC. But when pairwise
penalty is used, a modified Cn is usually used in different models. Here Cn = log(log(n))
is used as in Ma and Huang (2017); Zhang et al. (2022); Li et al. (2021). σ̂2

P based on
P components has the following form.

σ̂2
P = 1

nH

(
n∑

i=1
∥Yi − Biβ̂i − BiΘ̂m̂i∥2

)
.
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When cijτ increases, more pairs of ∥βi −βj∥ will become 0, thus, the group structure can
be estimated, together with the number of clusters. By selecting τ and α, the number
of clusters and the group structure will be selected. When selecting tuning parameters,
a two-dimensional grid search was used as in Wang et al. (2023), where a grid search
method is widely used in penalty-based approach (Ma and Huang, 2017; Ma et al., 2023;
Fang et al., 2022; Tibshirani, 1996; Fan and Li, 2001). In particular, a grid of values of τ
and a grid of values of α are predefined. The combination of τ and α with the smallest
BIC is selected, then the number of clusters and the cluster structure are determined.
The proposed method works well in terms of selecting the number of clusters and the
number of components in the simulation study. The number of knots used is based on
q ≈ (nH)1/5 + 4 in Huang et al. (2014) and Li and Hsing (2010) or some values around
this value. The algorithm can be found in https://github.com/wangx23/FWP.

4 Simulation study

In this section, the simulation study is conducted to compare the performance of the
proposed new method FWP to some existing methods.

For each individual curve i, the same time points are considered with tih = h/(H+1)
for h = 1, 2, . . . ,H without boundary points, where H is the total number of observations
for each individual. Data sets are simulated based on the below model with three or
four groups and two principal components,

Yi(tih) = Xi(tih) + ϵi(tih) with Xi (t) = µi (t) +
2∑

l=1
ξilψl (t) .

Several sets of mean functions are considered in the simulation study. Two principal
components are considered with ψ1(t) =

√
2 sin (2πt) and ψ2(t) =

√
2 cos (2πt). And

ξil
iid∼ N(0, λl) for l = 1, 2 with λ1 = 0.1 and λ2 = 0.2, ϵi(tih) iid∼ N(0, σ2) with σ = 0.2.
In the simulation study, H = 10, 20, 30 are considered and the number of knots are 7,

9 and 9, respectively. To evaluate the performance of the proposed method, the estimated
group number K̂, adjusted Rand index (ARI) (Rand, 1971; Hubert and Arabie, 1985;
Vinh et al., 2010) are reported. The ARI measures the degree of agreement between two
partitions, taking the largest value 1: the larger ARI value, the more agreement. The
performance of estimating the curve is defined as follows

RMSE =

√√√√ 1
n

n∑
i=1

∥µ̂i − µi∥2, (23)

where µ̂i = Biβ̂i and µi is the true curve mean from the simulation setting. The average
K̂ and the average ARI over 100 simulations are reported along with values of standard
deviation in the parenthesis. When using the proposed method, the selected number of
components is also reported with the average value along with the standard deviation.

Several methods are compared to the proposed method. “IND” represents the model
without covariance structure proposed in Zhu and Qu (2018), “JS” represents the method
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proposed in James and Sugar (2003) and “FWP” represents the proposed method. The
number of clusters for “JS” is determined based on the “distortion function” approach
described in James and Sugar (2003) and Sugar and James (2003). Besides these, three
other methods in functional data clustering with available R packages are also included.
“FEM” represents the method proposed in Bouveyron et al. (2015), which is implemented
by R package funFEM. “funHDDC” represents the method proposed in Bouveyron and
Jacques (2011), which is implemented by the R package funHDDC . “KMA” represents
the method proposed in Sangalli et al. (2010), which is implemented by the R package
fdacluster. For “FEM” and “funHDDC”, BIC methods provided in packages are used to
select the number of clusters and other potential structures in models. For “KMA”, the
number of clusters is fixed at the true number of clusters. The number of knots used in
these methods are the same as the proposed method.

4.1 Scenario 1

In this scenario, a random group structure with three groups is considered. Each
group has 50 individuals, and each individual has the same number of time points
(denoted as H). Three values of H are considered with 10, 20, 30. The mean func-
tions of these three groups are µ1(t) =

√
2 sin(4πt), µ2(t) = exp(−10(t − 0.25)2) and

µ3(t) = 1.5t− 1. If individual i is in group k for k = 1, 2, 3, then µi(t) = µk(t).
Table 1 and Figure 1 show the results about the estimated number of groups K̂, ARI

and the number of components. From the results, “FWP” performs better than “IND”in
terms of estimating the number of groups, recovering the group structure (large ARI) and
estimating the mean functions (small RMSE). “FWP” is also better than “JS”, “FEM”,
“funHDDC” and “KMA” in terms of estimating the number of groups and recovering
the true group structure. As H increases the performance of “FWP” becomes better,
but not for “IND”. Besides that, the number of components can be selected well. In the
simulation study of Zhu and Qu (2018), they showed that when the covariance structure
is AR(1) or exchangeable, the method they proposed without covariance structure can
capture the group structure well. However, under the setup here with a more flexible
covariance structure, the performance becomes worse.

H=10 H=20 H=30

FWP IND JS FWP IND JS FWP IND JS

0.1

0.2

0.3

0.4

0.5

0.6

model

R
M

S
E

Figure 1: RMSE of Scenario 1
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Table 1: Summary of K̂ and average ARI for Scenario 1

H = 10 H = 20 H = 30

K̂

IND 7.78(2.81) 20.11(5.81) 28.62(5.76)
FWP 3.44(0.76) 3.84(2.02) 3.25(0.48)

JS 3.9(1.4) 3.45(1.08) 3.61(1.25)
FEM 2.26(0.61) 3.98(0.43) 4.22(0.7)

HDDC 4.15(0.87) 3.81(0.95) 4.34(0.87)

ARI

IND 0.9(0.089) 0.5(0.162) 0.31(0.073)
FDA 0.97(0.04) 0.95(0.142) 0.99(0.018)
JS 0.89(0.168) 0.94(0.14) 0.9(0.181)

FEM 0.55(0.038) 0.44(0.097) 0.64(0.216)
HDDC 0.43(0.09) 0.6(0.151) 0.67(0.141)
KMA 0.75(0.147) 0.82(0.132) 0.83(0.136)

components FWP 1.85(0.36) 2(0) 2(0)

4.2 Scenario 2

The second scenario is considered in a grid lattice with a spatial group structure as
shown in Figure 2. Each dot represents an individual with an associated location. If two
locations are connected or neighbors, then the grey line is connected to these two dots.
And the three different shapes represent three groups. There are 48 individuals in each
group. The same mean functions are used as in Scenario 1.

1

2

3

Figure 2: Spatial group structure

As mentioned in Section 3, pairwise weights are considered in this Scenario. The
pairwise weights have the following form as used in Wang et al. (2023),

cij = exp (α(1 − aij)) , (24)

where aij is the neighbor order between individual i and individual j and α is also
a tuning parameter to be selected using the modified BIC in (22). For example, if i
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and j are neighbors, then aij = 1, and if i and j are not neighbors, but they share
neighbors, then aij = 2. If i and j are not neighbors and do not share neighbors, but
their neighbors are neighbors, then the neighbor order will be 3. Similarly, all values of
aij can be defined. Figure 3 gives an example of this definition for point 0. For points
with “1”, they are neighbors of “0”, for other points, the neighbor orders are also defined.
And the neighbor order can be considered as a measure of distance. When individual
i and individual j are close in spatial location, the corresponding weight cij would be
large, then two locations will tend to shrink together. More discussions can be found
in Wang et al. (2023). In Wang et al. (2023), they used four candidate values of α to
select the best one. Here, a grid of 20 values of α is used, where this grid of values is in
a range of 0.05 to 1 with an increment of 0.05. And the best one will be selected based
on BIC. In the simulation results when compared to “FWPe” with equal weights cij = 1
(Tables 3, 4 and 5), this range of α can make use of the spatial neighbor information to
improve the clustering results.

4 3 2 3 4

3 2 1 2 3

2 1 0 1 2

3 2 1 2 3

4 3 2 3 4

Figure 3: An example of the definition of neighbor order

Since Scenario 1 is the easiest case with more separate mean functions, “IND” did
not perform well compared to other methods because of ignoring the covariance function,
thus, this method is not included in other setups. Table 2 and Figure 4 show the results
of the comparison of different methods. “FWPe” represents equal weights, that is cij = 1
and “FWPw” represents pairwise weights in (24). Note that, the selection of the number
of principal components P does not depend on cij , thus “ FWPe” and “FWPw” have the
same number of components. From the results, it can be seen that “FWPw” performs
slightly better than “FWPe” for estimating the number of groups, recovering the group
structure and smaller RMSE. But “FWPw” is still much better than the other three
methods under this simulation. In terms of ARI, “FWPw” is slightly better than “JS”,
especially has a smaller standard deviation.
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Table 2: Summary of K̂ and average ARI for Scenario 2

H = 10 H = 20 H = 30

K̂

FWPe 3.31(0.56) 4.09(2.27) 3.41(0.68)
FWPw 3.01(0.1) 3.76(2.38) 3.1(0.33)

JS 3.06(0.34) 3.03(0.22) 3.02(0.2)
FEM 2.2(0.47) 4(0.47) 4.18(0.69)

HDDC 4.14(0.93) 4(0.94) 4.4(0.8)

ARI

FWPe 0.98(0.033) 0.94(0.167) 0.98(0.029)
FWPw 1(0.001) 0.95(0.17) 0.999(0.005)

JS 0.94(0.169) 0.97(0.112) 0.98(0.097)
FEM 0.55(0.034) 0.45(0.121) 0.6(0.221)

HDDC 0.43(0.098) 0.6(0.155) 0.66(0.151)
KMA 0.78(0.123) 0.81(0.153) 0.83(0.142)

components 2(0) 1.93(0.25) 2(0)

H=10 H=20 H=30

FWPe FWPw JS FWPe FWPw JS FWPe FWPw JS
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Figure 4: RMSE of Scenario 2

4.3 Scenario 3

Several sets of mean functions are considered, and functions are more similar.

Example 1 Three mean functions are µ1(t) =
√

2 sin(4πt)+1, µ2(t) =
√

2 sin(4πt)+0.3
and µ3(t) = 2.5 exp(−25(t − 0.25)2) + 2 exp(−50(t − 0.75)2). The group structure in
Scenario 2 (Figure 2) is used. Table 3 and Figure 5 show the results comparing equal
weights (FWPe), pairwise weights (FWPw) and other methods. From the results, it can
be shown that the model with pairwise weights (FWPw) performs much better than the
model with equal weights, the JS method and the other three methods in this scenario.
The reason is that the three groups are similar and the group structure depends on the
location. In the model with pairwise weights, the spatial information is incorporated to
improve the estimator’s performance.
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Table 3: Summary of K̂ and average ARI for Scenario 3

H = 10 H = 20 H = 30

K̂

FWPe 6.61(1.63) 5.58(1.34) 5.93(1.12)
FWPw 3.19(0.44) 3.61(0.97) 3.38(0.65)

JS 2.35(1.12) 2(0) 2.14(0.7)
FEM 3.41(0.75) 3.78(0.5) 3.84(0.63)

HDDC 4.72(0.51) 4.52(0.56) 4.9(0.3)

ARI

FWPe 0.71(0.131) 0.78(0.103) 0.78(0.09)
FWPw 0.99(0.029) 0.98(0.053) 0.99(0.023)

JS 0.58(0.035) 0.57(0) 0.55(0.073)
FEM 0.46(0.061) 0.42(0.064) 0.42(0.076)

HDDC 0.39(0.079) 0.45(0.091) 0.47(0.108)
KMA 0.32(0.089) 0.31(0.108) 0.32(0.128)

components 2(0) 2.23(0.43) 2(0)
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Figure 5: RMSE of Scenario 3

Example 2 Two examples with K = 4 are considered to illustrate the performance
when there are more groups. In the first set of mean functions, four group mean functions
are µ1(t) =

√
2 sin(4πt) + 1, µ2(t) =

√
2 sin(4πt) + 0.3, µ3(t) = 2.5 exp(−25(t− 0.25)2) +

2 exp(−50(t−0.75)2), µ4(t) = 2.5 exp(−25(t−0.25)2)+2 exp(−50(t−0.75)2)+0.7, where
group 1 and group 2 are similar, group 3 and group 4 are similar. In the second set, µ1(t)
and µ3(t) are the same as those in the first set, and µ2(t) =

√
2 sin(4πt) + 0.5, µ4(t) =

2.5 exp(−25(t− 0.25)2) + 2 exp(−50(t− 0.75)2) + 0.5. In these two examples, each group
has 49 individuals and the spatial structure is shown in the left figure of Figure 6. The
right figure in Figure 6 shows an example of observed curves when H = 30 for the second
set of mean functions. From this figure, we can see that observations from group 1 and
group 2 are not well separated, and observations from group 3 and group 4 are not well
separated.
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Figure 6: The spatial grid and an example of observed curves for K = 4

Table 4 and Table 5 show the summary results based on 100 simulations. It can be
seen that when H is not small, “FWPw” can still recover the group structure for both
sets of mean functions. “FWPe” with equal weights cannot separate groups well. For JS
method, it can be seen that the estimated number of groups is around 2 and the average
ARI is small. However, “FWPw” can recover the group structure well with average
high values of ARI. But the estimated number of groups tends to be larger. This could
be because some individuals are not clustered into main groups. But when the group
difference becomes even smaller, such as less than 0.5, then all methods cannot separate
clusters well.

Table 4: Summary of results for the first set of mean functions

H = 10 H = 20 H = 30

K̂

FWPe 10.12(1.82) 9.19(2.3) 8.16(1.33)
FWPw 4.14(0.4) 4.72(2.64) 4.23(0.62)

JS 2(0) 2(0) 2(0)
FEM 3.31(0.79) 3.67(0.53) 3.6(0.72)

HDDC 4.78(0.48) 4.62(0.55) 4.91(0.29)

ARI

FWPe 0.74(0.091) 0.79(0.107) 0.76(0.087)
FWPw 0.999(0.003) 0.982(0.098) 0.996(0.012)

JS 0.5(0) 0.5(0) 0.5(0)
FEM 0.39(0.077) 0.38(0.046) 0.39(0.057)

HDDC 0.35(0.044) 0.39(0.051) 0.41(0.07)
KMA 0.35(0.072) 0.4(0.104) 0.4(0.099)

components 2(0) 2.06(0.23) 2(0)

4.4 A homogeneous model

Besides examples of nonhomogeneous models discussed above, a case with data
simulated from a homogeneous model is considered. The mean function is µ(t) =√

2 sin(4πt) + 1. 150 individual curves are simulated. Equal weights with cij = 1 are
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Table 5: Summary of results for the second set of mean functions

H = 10 H = 20 H = 30

K̂

FWPe 13.6(0.75) 12.9(2.84) 17.74(1.75)
FWPw 4.2(0.49) 4.07(0.73) 5.23(1.7)

JS 2(0) 2(0) 2(0)
FEM 3.3(0.69) 3.79(0.48) 3.63(0.69)

HDDC 4.72(0.51) 4.52(0.56) 4.9(0.3)

ARI

FWPe 0.35(0.047) 0.38(0.056) 0.37(0.067)
FWPw 0.99(0.012) 0.97(0.12) 0.99(0.022)

JS 0.5(0) 0.5(0) 0.5(0)
FEM 0.41(0.043) 0.37(0.045) 0.38(0.057)

HDDC 0.34(0.047) 0.37(0.045) 0.33(0.028)
KMA 0.22(0.048) 0.22(0.055) 0.23(0.051)

components 2(0) 2.06(0.23) 2(0)

used. Here rand index (RI) is reported because ARI will have 0 value when one of the
partitions only has one group. Table 6 shows the summary results for the estimated
number of groups K̂, RI and the estimated number of principal components. It can be
seen that when the number of observations in each curve is small, H = 10, the pro-
posed method will estimate more groups and less number of components. But when
the number of observations increases, the proposed method can accurately identify the
homogeneous structure from data and estimate the number of principal components.

Table 6: Summary of K̂ and average RI for a homogeneous model

H = 10 H = 20 H = 30
K̂ 3.75(2.76) 1.05(0.26) 1.04(0.28)
RI 0.605(0.333) 0.987(0.068) 0.989(0.077)

components 2(0) 2.32(0.469) 2.04(0.197)

4.5 Evaluation of initial values

Since the optimization problem is non-convex, appropriate initial values would be
important. In the literature using ADMM algorithms and penalty functions to find
clusters, most of these works used fixed initial values obtained from ridge regression
type of models such as Ma et al. (2020), Zhu and Qu (2018), Lv et al. (2020), Fang
et al. (2022). In Ma et al. (2020) and Zhu et al. (2021), they assigned the original initial
values to K groups to further improve the initial values. In Ren et al. (2022), they used
both EM and the ADMM algorithm and used k-means to obtain the initial values. In
this part, a simulation study is conducted to evaluate the initial values setup.

For each simulated data set in Scenario 1 with H = 30, 100 different initial values
are constructed based on the proposed initial value with a random noise from a normal
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distribution with mean 0 and standard deviation 0.5 and 0.1, respectively. We compare
the l̂ values in (10), BIC values, ARI and RMSE to the oracle estimator, where the
oracle estimator is defined when the true cluster structure is known. For each simulated
data set, the smallest l̂, smallest BIC, smallest RMSE and the largest ARI are computed
for 100 initial values generated by random noises. Table 7 shows the average of different
measures for 100 simulated data sets with standard deviation in the parenthesis. When
the random initial values are quite different (based on standard deviation 0.5) from the
original initial values (described in Section 3), the results based on the original initial
values are better. When the random initial values are close to the original initial values
(based on standard deviation 0.1), the random initial values can have slightly better l̂,
BIC and RMSE, but similar ARI. Together with the simulation results in Sections 4.1,
4.2 and 4.3, the proposed initial values can perform pretty well with larger ARI values.
But random initial values based on the original initial values are also suggested to have
better results. This approach is used in the real data example in Section 5.

Table 7: Summary of results for different initial values

l̂ BIC RMSE ARI
original initial values -14657 (210) -14057 (220) 0.046 (0.073) 0.99 (0.018)
standard deviation 0.5 -8975 (793) -7498 (448) 0.476 (0.026) 0.452 (0.06)
standard deviation 0.1 -15019 (151) -13996 (247) 0.033 (0.044) 0.992 (0.011)

From the simulation study, it can be concluded that, the proposed method is better
than the method without considering covariance structure in terms of estimating the
number of groups and mean functions. Besides that, when there is a certain spatial
structure in the data set, consideration of spatial weights could also improve the results.
Especially when the mean functions are close, the proposed method with weighted penal-
ties is much better than the other methods discussed in this paper.

5 A real data example

In this section, the proposed method is applied to a real data set about the obese
proportion. The obese proportion data set is aggregated by year and age based on
individual records from the U.S. Department of Health and Human Services, Cen-
ter for Disease Control and Prevention (CDC) (https://www.cdc.gov/brfss/annualdata/
annualdata.htm). For each age from 18-79, obese proportions from year 1990 to 2017
are obtained. Figure 7 shows the longitudinal curves for each age. There are some
traditional age groups, such as 20-39, 40-59 and 60+ used by CDC without analyzing
the data pattern. For example, Hales et al. (2017) used age groups defined by CDC to
analyze prevalence of obesity among adults and youth. However, these age groups are
somewhat arbitrary, which don’t consider the data trend. Daawin et al. (2019) analyzed
this data set with a quadratic trend assumption over time for age curves, but without
considering clusters. Miljkovic and Wang (2021) considered clustering age curves based
on parametric models without considering the covariance structure.
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Figure 7: Observed curves for different ages over year

Instead of using traditional age groups, a model-based group structure for ages can
be found using the proposed method. In order to obtain continuous groups of ages, the
following weight is considered,

cij = exp(α(1 − |i− j|)),

where i and j are ages and α is a tuning parameter. This form is also used in Miljkovic
and Wang (2021). From the form of the weight, it can be seen that when |i − j| = 1,
the weight will take the largest value 1. If age i and age j are close, the corresponding
weight is large and if age i and age j are not close, the corresponding weight is small. By
using unequal weights, more shrinkage is put on pairs with closer ages, which will tend
to be grouped together. According to the two-step procedure described in Section 4, the
number of components is selected first, which is 3. The other two tuning parameters will
be selected based on the BIC in (22). The tuning parameter α is selected in the range
from 0 to 1 (with increment 0.05) and τ is selected in the range from 0.05 to 0.25 (with
increment 0.05). Note that, when α = 0, cij = 1. The combination of α and τ with
the smallest BIC are selected, then the number of clusters and the cluster structure are
determined. Two values of the number of knots, 8 and 9, are used. Besides the original
initial values, 20 random initial values are also used. The result with the smallest BIC
is presented. For two different numbers of knots, the result based on 8 knots has smaller
BIC value. Besides this, the third component has a very small value of variance, which
only contributes about 1% of the total variation, thus the model with two components is
also fitted, which does not change the group structure compared to the three components.
Figure 8 shows the estimated group structure and corresponding mean curves based on
two components. All groups are continuous without any discontinuities. The estimated
value of σ2 is 0.014 and the estimated value of λ1 is 0.0485 and λ2 is 0.018.
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Figure 8: Five clusters with the smoothed group curves

The JS method is also used to analyze this data set. Figure 9 shows the group struc-
ture with seven groups selected based on the distortion approach. The estimated group
structures based on the JS method are not continuous, which makes the interpretation
difficult.
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Figure 9: Estimated group structures based on the JS method

6 Summary

In this article, a new method is proposed to find clusters in functional data. The
new method, FWP, uses functional principal component analysis to reduce the dimen-
sion in the covariance function. Clusters are identified based on a pairwise concave
fusion penalty, which allows different weights in pairwise penalties. A new algorithm is
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proposed to solve the constructed optimization problem. The algorithm combines the
EM algorithm and the ADMM algorithm. The proposed method is compared to some
existing methods in the simulation study. The results show that ignoring the covariance
structure will reduce the performance in identifying groups. Besides that, the perfor-
mances of pairwise equal weights (FWPe) and pairwise spatial weights (FWPw) are
also considered. The results show that “spatial weights” performs better than “equal
weights” and traditional methods when a spatial structure exists and the mean functions
are close.

There are some future works that can be considered under this framework. One
potential work is to explore the algorithm’s performance for functional sparse data and
explore the theoretical properties of the proposed estimator. Another potential work is
to find clusters of covariance functions together with mean functions. For example, if
individual covariance functions are expressed as B-spline basis functions, corresponding
parameters Θi could be grouped for different individuals. But the algorithm needs to
incorporate the constraint of Θi and penalty functions. A new algorithm is needed to
solve this problem. Besides these, the proposed algorithm can be extended to situations
to incorporate other covariates with common regression coefficients or clustered regres-
sion coefficients, that is Yi(t) = xi(t)Tη+Xi(t) + ϵi(t), where η is the vector of common
regression coefficients. Under the proposed framework, pairwise weights can be added
to spline coefficients in Xi(t) and estimate η simultaneously.

Appendix

In this appendix, the EM algorithm with a known group structure is presented. The
EM procedure is similar to the EM algorithm in James et al. (2000), the main difference
is that a new design matrix is constructed based on the given group information.

If the group structure is known, suppose there are K̃ groups and define W̃ be an
n × K̃ matrix with element wij and wij = 1 if i is in the kth group. Also define
W = W̃ ⊗ Iq and U = B0W .

(
α̃T

1 , . . . , α̃
T
K̃

)T
= α̃ =

(
UTU

)−1
UTY is the estimate

of coefficients for K̃ groups α = (αT
1 , . . . ,α

T
K̃

)T , which is set as the initial estimate of
α. Thus, β̃i = α̃k if i is in the kth group. Define

Cn = 1
n

n∑
i=1

(
β∗

i − β̃i

)T (
β∗

i − β̃i

)
,

where β∗
i is obtained using the same procedure in Remark 2. Then, the eigendecompo-

sition is done for Cn = Θ0Λ0Θ
T
0 , where Θ0 and Λ0 are the initial values of Θ and Λ,

respectively.
Similar to the proposed algorithm, the conditional distribution of ξi is needed, which

has the following forms
ξi|Ω ∼ N (mi,Vi) ,
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where mi = E
[
ξi|α,Θ,λ, σ2] and Vi = V

[
ξi|α,Θ,λ, σ2] with the following form.

mi =E
[
ξi|α,Θ,λ, σ2

]
=
(
ΘTBT

i BiΘ + σ2Λ−1
)−1

ΘTBT
i (Yi − Uiα) ,

Vi =V
[
ξi|α,Θ,λ, σ2

]
=
( 1
σ2Θ

TBT
i BiΘ + Λ−1

)−1
.

The only difference between the conditional distribution here and the proposed algorithm
is that α is used instead of β, since the group structure information is given.

Similarly, σ2 is updated by

σ2 = 1∑n
i=1 ni

n∑
i=1

(Yi − Uiα − BiΘm̂i)T (Yi − Uiα − BiΘm̂i)

+ 1∑n
i=1 ni

n∑
i=1

tr
(
BiΘV̂iΘ

TBT
i

)
. (25)

Also, the same procedure is used to updated Θ and λ with

θ̃j =
(

n∑
i=1

BT
i Bi

(
m̂2

ij + V̂i (j, j)
))−1

·
n∑

i=1
BT

i

(Yi − Uiα) m̂ij −
∑
l ̸=j

Biθl

(
m̂ilm̂ij + V̂i (l, j)

) .
Last, α is updated as

α̃ =
(
UTU

)−1
UT (Y − B0(In ⊗ Θ)m̂) .
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