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Abstract

In this paper we combine the concepts of local smoothing and fitting
with basis functions for multivariate predictor variables. We start with
arbitrary basis functions and show that the asymptotic variance at interior
points is independent of the choice of the basis. Moreover we calculate the
asymptotic variance at boundary points. We are not able to compute the
asymptotic bias since a Taylor theorem for arbitrary basis functions does
not exist. For this reason we focus on basis functions without interactions
and derive a Taylor theorem which covers this case. This theorem enables
us to calculate the asymptotic bias for interior as well as for boundary
points. We demonstrate how advantage can be taken of the idea of local
fitting with general basis functions by means of a simulated data set, and

also provide a data-driven tool to optimize the basis.
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1 Introduction

In the last decades nonparametric smoothing has been one of the most attended
and challenging fields in statistics. A widely used concept is that of localizing,
where only observations in a neighborhood of the target value are used for the

estimation of the regression function.

Nadaraya (1964) and Watson (1964) developed one of the earliest local estima-
tors by simply fitting locally a constant mean value to the data. Stone (1977)
was among the first to replace the constant by a line, which reduced the bias of
the fit significantly, as Fan (1992) shows. Cleveland (1979) did the next exten-
sion and fitted polynomials of arbitrary degree instead of a line. Surprisingly
the next step, replacing the polynomial basis 1,z,...,zP by an arbitrary basis
¢o(z), ..., Pp(z), as suggested briefly in Ramsay & Silverman (1997), has never

been further pursued.

Since local fitting is so far only performed with the polynomial basis, the ques-
tion of what is special about this particular basis arises. The answer is simple.
For this basis Taylor’s theorem is available which enables us to interpret the
estimated parameters and to calculate the error of the approximation. Accord-
ing to this theorem, whose univariate version was firstly discovered by Brook
Taylor (1685-1731) and published 1715 in his book Methodus incrementorum
directa et inversa, a function m at point z can be approximated by a linear

combination of polynomials in a neighborhood of z.

Local fitting with general basis functions will require to find a new Taylor
theorem for every basis one wants to use, if some theoretical background is
desired. Though this is certainly not possible for every basis, extensions for
special cases exist. Einbeck (2001) provides a Taylor theorem covering the
case where polynomials are replaced by the powers ¢(z), $*(x),...,¢"(z) of
an invertible function ¢. The properties of local modelling with such a power
basis are examined, and it is shown that by a suitable basis the results of local

polynomial fitting can be significantly improved.

Recently, the general research interest has turned from univariate to multivari-
ate smoothing. Cleveland & Devlin (1988) gave an introduction to multivariate

locally weighted regression and showed that the concept is useful in practice.



Further impacts on multivariate local modelling were made by Staniswalis,
Messer & Finston (1993), treating kernel estimators for multivariate regres-
sion, Wand & Jones (1993), describing bivariate kernel density estimation, and
Wand (1992), calculating asymptotic mean square errors for multivariate ker-
nel estimators. In a landmark paper of Ruppert & Wand (1994) asymptotic
expressions for bias and variance of the multivariate local linear and quadratic

fit are derived.

In Section 2 we will introduce the concept of multivariate local fitting with
general basis functions. However, a fully theoretical handling of this estimator
is not possible since a Taylor theorem for general basis functions does not exist.
In Section 3 we focus on basis functions without interactions. We derive a new
Taylor theorem which covers this case and provide asymptotic expressions for
bias and variance of the corresponding local estimator. We give an example for
fitting with general basis functions by means of a simulated data set in Section
4 and provide a data-driven tool to obtain a suitable basis in Section 5. We

finish with the discussion in Section 6.

2  Multivariate locally weighted regression using a

general basis

Let (X1,Y1),...,(Xn,Y,) be a set of i.i.d. random variables sampled from a
population (X,Y) € R*!. Y is a scalar response variable and X a R¢-valued
predictor variable with density f having support supp(f) € R?. We want to

estimate the regression function
m(z) = E(Y|X = z) (1)

at a vector z € supp(f) nonparametrically, i.e. without assuming m to belong

to a parametric family of functions. A model fulfilling (1) is
Y = m(X;) + o(Xi)e, (2)

where 02(z) = Var(Y|X = z) is finite, E(e) = 0, Var(e) = I and € indepen-
dent of all X;,i=1,...,n. Let {¢; : R — R j =1,...,q} a set of multivari-

ate continuously differentiable basis functions, ®(z) = (¢1(z), ..., ¢,(x))? and

aig(z) = (o (z), ..., qqx))T.



The amount of smoothing is determined by a symmetric positive definite band-
width matrix H € R%?. (Often instead of H a nonsingular matrix B € R%¢ is
called bandwidth matrix, where H and B have the relationship H = BBT). Let
K : R? - R be a multivariate kernel function and Ky (u) = |H|~'/2K (H~/?u).
For a detailed description of multivariate kernels and bandwidth matrices see

Wand & Jones (1993). The estimator of the function m(-) at point z is &g(z),

where &(z) = (&o(z), leq(m))T is the minimizer of

3 {Yi— ao(a) — o, (@) (@(Xy) — @(x)} K (X; — ). (3)
=1

The constant ®(x), which only transforms the parameters, is useful because it
makes the computation faster and the asymptotic calculations more convenient.
This approach covers a wide range of well-known estimators. If, for example,
q = d, then with ¢;(z1,...,24) = zj, j = 1,...,d we get the multivariate local

linear estimator.

With
L (X)) = ¢ul@) oo dg(Xa) = ¢y(2)
Xe=1| : : : ;

L ¢1(Xn) —d1(z) ... ¢q(Xn) - ¢q(x)
W, = diag(Kg(X1 — z),...,Kg(X, —x)) and y = (Y1,...,Y,)T the least

squares problem (3) can be written as

Mg (z)(y — Xoo(2))" Waly — Xoo(w))
and has the solution

i) = (X3 WaXa) ™' XT Way, (4)
provided that the matrix XxT WX, is nonsingular. Thus we obtain
() = do(x) = e1 (Xg WaXa) ™ X Way,

where el = (1,0...,0) € RI*t!. Furthermore,

E(i(x)|X) = ef (X7 W, X,) ' X3 Wom, (5)

where m = (m(Xy),...,m(X,))" and X = (Xy,...,X,). Finally the condi-

tional covariance matrix is given by

Var(iiv(2)|X) = ef (Xg WoXo) (X7 S0 X0) (X7 WaXo) e, (6)



where X, = diag(K% (X; — z)0?(X;)).

In the following we will provide an asymptotic expression for the variance of
the estimator 7i(z). We will treat interior as well as boundary points. Thereby
we call a point z € supp(f) an interior point if {z : H'/2(x — z) € supp(K)} C
supp(f); otherwise, z will be called a boundary point. Let

Dy ={u: (x+ H'?u) € supp(f)} Nsupp(K).

Then D, g = supp(K) if and only if « is an interior point. Note that we
consider x as a fixed point in the case of an interior point, but as a sequence z,,
converging sufficiently rapidly to the boundary in the case of a boundary point,

ensuring that z is a boundary point for all n (see (A4)). Also let

M, = /DZ,H ! (1 uT)K(u)du,

u

N, = /Dz,H ! (1 ul )K2(u)du,

D, = (V¢1($), s 7V¢q($))7
1

S

Ap, =

T

D,

T
The symbol V denotes the gradient function (91, ..., )" = <8i’ e 8i> .
1 Tq

Let vy = [ K%(u)du. op(l) denotes a sequence of random variables which
tends to zero in probability. The asymptotic variance of the estimator m(x) is
provided by the following theorem:

Theorem 1.

Let  be a fized element in the interior of supp(f). Then under regularity con-
ditions (A1) to (A3) and (A5)

2
Var(ina) %) = T || (1 + 0p(1) M)

holds. Let further z be a boundary point, i.e. © = zp + H'/?c, where z is a

point on the boundary of supp(f) and c is a fized element of supp(K). Then
under conditions (A2) to (A5)

Var(rn(z)[X) = (8)

02((?)|H| V2l (AD, My Ap,) ™" A, No Ap, (AL, M, Ap,) ™ er (1 + op(1)).



Surprisingly, the asymptotical conditional variance of 7i(z) for interior points
doesn’t depend on the basis function (compare Ruppert & Wand (1994), The-
orem 2.1). Thus, with a suitable basis, one could reduce the bias without a
rise of the variance. However: For general basis functions we can’t compute
the asymptotical bias, since a general Taylor theorem is missing. In the next

section we will focus on a case where a Taylor theorem is available.

3 Asymptotics for basis functions without interac-

tions

Multivariate locally weighted polynomial regression, described in Ruppert &
Wand (1994), is based on the multivariate Taylor theorem, which we will extend
in the following. Let d > 0,p > 0, U C R¢ open and Uj the projection of U

th

on the j"! coordinate. We impose an invertible basis function ¢; € CP*1(U;)

separately on every single coordinate, i.e.
(ﬁj : Uj —>R,zj,r—> (ﬁj(Zj),j =1,...,d.

For convenience of notation we give the same names to the functions

¢j U = R (21,...,24) — ¢;(2;) picking the jth

coordinate. Taking the
notation from the previous section, it is ®(z1,...,2q) = (¢1(21),...,dq(zq))7,
and the inverse function ®~! : ®(U) — U is given by @ (z1,...,24) =
(gbfl(zl),...,(ﬁd (24))'. The matrix D, reduces to P, = diag(¢;(z5))1<j<d-
The following theorem holds.

Theorem 2 (Generalized multivariate Taylor expansion).

Assume U C R? open, p > 0, m € CPTYU), ® : U — R¢ like above, further
assume the points z, z and their connection curve Cs(x, z), given by the function
yo(t) = ©1[®(z) + t(P(2) — ®(x))], t €[0,1], to be in U. Then there exists a
point ¢ € Cg(x, z) with

D
m Z ]1 (x) - Volm] (z) + Spia(57),  (9)

where Vom(z) = P, 'Vm(z), and

1
(p+1)!

[((2(2) = @(2)) - Va)P " m] (0).

Spt1(z,2) =



For a better understanding and application of this theorem, we set
Nin(z) = Hp(z) — P, P, diag(Vm(z)),

where Hy,(z) is the Hessian matrix of m and P, = diag(¢j(z;))1<;j<a the deriva-
tive of P;. Thus N,,(z) equals the Hessian matrix at all entries out of the
diagonal, while the diagonal values are modified proportionally to the gradient
function of m. Now we can write the generalized Taylor expansion in the form

®(2) — ®(2)) ' P, V() + (10)

m(z) =m(z) + (
1
T3

(2(2) = ()" Py ' Ni(2) P 1 (2(2) — @()) + S5(2, ),
which reduces to the usual Taylor theorem by setting ® = id.

We denote z = (z1,...,2q) and X; = (X;1,...,X;q) and work from now on

with the design matrix

1 ¢1(Xu1) —du(z1) .. pa(X1a) — Pa(zq)
X, =| s 5 ,

I $1(Xn1) —d1(z1) ... ¢a(Xna) — da(za)

where the ¢; are continuously differentiable, but not necessarily invertible. All
formulas given from (3) to (6) remain thereby unchanged. Next, we derive
asymptotic expressions for bias and variance of m(xz) at interior as well as
boundary points. Let p2 = [w?K(u)du and vy = [ K?(u)du. We have the
following theorem:

Theorem 3.

Let x be a fized point in the interior of supp(f). Then under regularity condi-
tions (A1) to (A3) and (A5)

Bias(i(@)|X) = Lpiotr (HNn(x) + o (ir(H) (11)
" o)
Var(in(2)2) = TN ] (1 -+ 0p(1) (12)
hold

Note that the formula for the conditional bias only differs from the correspond-
ing formular for ®(z) = z by using N,,(x) instead of H,(z) (compare Ruppert
& Wand (1994), Theorem 2.1). In the univariate case (11) reduces to

LGNS
Ct@) +ort®). (1

Bias (1 (z)[X) = %mh? <m"(x)

7



This result gives a hint of how to profit by general basis functions: (13) is
minimized for ¢(z) = m(z), thus the bias is reduced if the basis function is
as near as possible to the underlying function m. In Sections 4 and 5 we will

demonstrate how we can take advantage out of this result.

Now we continue with the treatment of boundary points. The following theorem
can be seen as an extension of Theorem 3 which covers the case that the odd-
order moments of K (see condition (A1)) do not vanish.

Theorem 4.

Let xy, be a point at the boundary of supp(f), z = zp+ H'?¢, where ¢ is a fized
element of supp(K). Then under conditions (A2) to (A5)

Bias(m(z)|X) = (14)

1
= %elTMlTl / K (uw){u" H'? Ny, (z)H"?u} du + op(tr(H))
Dw,H u

and

Var(m(z)|X) = %mrlﬂ (et M7 IN, M er +op(1)) . (15)

Again the asymptotic bias only differs from the corresponding formula for local
linear fitting by the modified Hessian matrix N,,(z). The asymptotic condi-
tional variance at the boundary turns out to be independent of the basis function
and is identical to the corresponding formula for a linear basis (see Ruppert &
Wand (1994), Theorem 2.2). Note that this result is not self-evident, since we
showed in (8) that for arbitrary basis functions the asymptotic variance at the

boundary is not independent of the basis.

Finally recall that in the beginning of the section we defined the function ®(-)
to be invertible on U. Here U is a neighborhood of # which becomes arbitrarily
small for large n, see condition (A3). Thus it is sufficient if the basis functions

are locally invertible around the target value x, what is already guaranteed by

(A5).



4 Example

In this example we contaminate the underlying function m : [0,1]2 — R,
m(z1,x2) = (1 — 21) sin (1223) + 27 cos (16x1) (16)

with Gaussian noise (o = 0.25). The n = 961 design points are uniformly

distributed on [0,1]?. The function without and with contamination is shown

in Fig. 1. For assessing the quality of the fit we use the relative squared error

i —ml| _ /S (m(X5) — (X))
kgl 2= (X))

In the following table we compare the results of the local fit with various basis

RSE(rn) = (17)

functions. For reasons of comparability we restrict on the case of two basis
functions. From the first to the last line we will increase the amount of infor-
mation which we install in the basis. Note that all basis functions fall in the
general framework of Section 2, whereas only a) to e) fit the setting of Section
3. We provide the bandwidths A; and ho which minimize the RSE, and the
value of RSE obtained at this minimizing bandwidth.

1 () b2 () hi | hy | RSE
a) | o T9 0.03 | 0.04 | 0.162
b) | cos16x; T9 0.14 | 0.03 | 0.132
c) | 2 cos 167, T9 0.11 | 0.03 | 0.108
d) | o1 sin 1224 0.03 | 1.00 | 0.080
e) | cos16x; sin 124 0.04 | 1.00 | 0.059
f) | 2% cos 1621 (1 — 21)sin 122 1.00 | 1.00 | 0.011
) ¢0.33,0.152 (z1) - ¢0.67,0.152 (z2) ¢0.67,0.152 (z1) - ¢0.33,0.152 (z2) | 0.04 | 0.03 | 0.164

Table 1: Relative squared errors for various basis functions.

bu,02(+) denotes the density of a normal distribution with mean p and variance
0?. The bandwidth was restricted to a maximum value of 1. For a), d), f) and
g) the results are illustrated in Fig. 2, where the plots of the basis functions

and the corresponding fits are shown.

The observations obtained from the table and the figures are the following:




e The more information the basis carries about the underlying function, the

better the local fit and the higher the optimal bandwidths, see b) to f).

e If by accident a basis is used which doesn’t contain any information about
the underlying function, as in g), the results fortunately stay similar like
for the linear basis. This result is simply explicable: The linear basis is a
wrong basis. Mostly it does not contain any information about the true
function. Thus replacing a wrong basis with another wrong basis will not

make much difference.

Now we have the chance to use given information in an effective way. If one has
any notion about the true function one can use this information in the basis. If

the basis was more or less correct the fit can be improved tremendously.

5 Finding a data-driven basis function

A logical objection to this methodology will be that usually no information
about the true function is available. The question is then whether a data-driven

method to obtain a suitable basis exists?

We said that the fit will improve if one uses a basis which is similar to the true
function. There is a well-known way to obtain a function which is similar to
the true function: Smoothing. This gives us the following idea: We perform a

simple local linear fit and use the result as a basis function.

Returning to the previous example this means that we use the function in the
top right of Fig. 2 as our basis function. Fitting only to this basis we obtain
an RSE value of 0.143 (at optimal bandwidths h; = 0.29, hy = 0.20), which is
already a good part better than the relative error in a). However, the resulting
fit in Fig. 3 (top right) seems to be identical to the basis we used. What is
happening? The second step - smoothing with the data-driven basis - does not
change the local properties of the basis. If there is a wiggly structure in the
basis, this wiggly structure will be retained after the second fit. Nevertheless
the fit is improved, because the global properties of the basis are modified. The
range of the basis obtained from the fit in a) is (—1.28,0.93). If we smooth the
data with this basis, the range blows up to (—1.36,1.06), i.e. this smoothing

10



step is in fact a kind of backwards-smoothing of the basis, which is corrects fit

where the basis was oversmoothed.

This observation motivates us not to use the optimal bandwidths in the first fit,
but somewhat higher bandwidths, in order to avoid a wiggly basis. Of course
the result will be oversmoothed, but this will be corrected in the second fit.
In our example calculating a local linear fit with h; = 0.06 and hy = 0.08
leads to RSE(m) = 0.318, which is certainly not a very good fit, as shown in
Fig. 3 (bottom left). However, if we use this fit as a basis for the second fit
the RSE can be optimized down to 0.122, what is an impressive improvement.

The resulting smooth curve is shown in Fig. 3 (bottom right).

Summarizing the findings, we suggest the following algorithm (for d > 1 dimen-

sions).

1. Calculate a d-dimensional local linear fit, using the double size of the op-
timal bandwidths. The optimal bandwidth matrix H/2 = diag(hi)1<i<d
can be obtained by applying usual multivariate local linear bandwidth

selection routines, see e.g. Yang & Tschering (1999).

2. Use the result as a d-dimensional basis for the second fit. As a rule of
thumb, use of the same bandwidths as in the first fit leads to satisfactory

results.

For the verification of this algorithm we did 200 simulations of the contaminated
function (16), and plotted the corresponding RSE for the local linear fit (using
the optimal bandwidth) and the fit according to the algorithm in boxplots.
Since our intention was to explore the benefit of the use of a pre-fit basis and
not the performance of local polynomial bandwidth selection procedures, we
used the bandwidth minimizing (17) as optimal bandwidth - keeping in mind
that this is certainly not possible for a real data set. The boxplots are shown

in Fig. 4. The result is obvious and confirms the algorithm.

Note that for d > 1 the multivariate pre-fit basis does not fit in the framework
of Section 3. Thus the provided example shows that the idea motivated in
Section 3 - to use a basis similar to the underlying function - is useful not only

if the basis is free of interactions.

11



6 Discussion

We finish with some considerations about the properties that basis functions
should fulfill in theory and practice. Regarding condition (A5), the theory
demands the basis functions to be once or twice differentiable and to have non-
vanishing gradients at the target point z. Differentiablility, i.e. smoothness,
is also important in practice and is fulfilled by all basis functions given in this
paper. In particular, the pre-fit basis in Section 5 will be sufficiently smooth

for a large initial bandwidth, as proposed in the algorithm.

The condition of non-vanishing gradients is however purely technical and of
little practical relevance. In practice, one is free in the choice of a smooth basis,
which might or might not contain interactions, and invertibility is no neces-
sary requirement, neither locally nor globally. The fit at points with vanishing
gradients will not have apparent drawbacks compared to a fit where (A5) is
fulfilled. However, only in the latter case the asymptotic bias and variance can
be calculated. Taking any smooth basis, the corresponding theorems hold for
all points with non-vanishing gradients of the basis functions. This will usually

be fulfilled for all points except a set of measure zero.

In this paper we showed that the concepts of localization and fitting with basis
functions can be combined successfully. However we stress that there exists
no optimal basis function which could replace the usual polynomial basis in
general. The benefit of the application of alternative basis functions depends
on the amount of information which is available about the underlying function.
If no information is available, we fortunately still can profit by applying the

algorithm introduced in Section 5.

There is still plenty of room for further research. For example, it would be
desirable to calculate more accurate estimators for the bandwidths which are
used in the algorithm. In particular the factor 2, which we use to derive the
initial bandwidth from the optimal bandwidth, probably can be further im-
proved. However, a fully theoretical treatment of the pre-fit algorithm will be
extremely difficult, since the basis function in the second fit is now a random

variable itself.

12
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Appendix

A

(A1)

(A2)

Regularity conditions

The kernel K is bounded with compact support, [uu’ K(u)du = poly,
where po is a scalar and I; the d x d identity matrix. In addition, all
odd-order moments of K vanish, i.e. fulll e U?K(u)du = 0 for all non-

negative integers [q,...,l; with an odd sum.

The point x is € supp(f). At x, o? is continuous, f is continuously dif-
ferentiable and all second-order derivatives of m are continuous. Further

f(z) >0, o%(z) > 0.

The sequence of bandwidth matrices H'/? is such that n~'|H|~'/? and

each entry of H tends to zero as n — oo .

For a boundary point z, there exists a value x; on the boundary of supp(f)
with z = z, + HY?¢, where ¢ is a fixed element of supp(K), and a convex

set C with nonnull interior containing x; such that inf f(z) > 0.
zeC

At z, all basis functions are continuously differentiable (for variance ex-
pressions in Theorem 1,3,4) resp. twice continuously differentiable (for
bias expressions in Theorem 3 and 4). In either case, the point z is non-

singular for all basis functions, i.e. V;(z) #0for j =1,...,q.

For explanations and interpretations of conditions (A1) to (A4) see Ruppert &
Wand (1994).

14



B Proofs

B.1 Proof of Theorem 1

Let 1 be a matrix of appropriate dimension having only entries equal to 1,

further let

Ag = ! 0 e RHLAHL and 4, = Lo € RétLatl
0 HY? 0 1

Note that for any u € R?
®(z 4+ H'?u) — ®(z) = DH?u+ o(H'/?1)

holds. For interior and boundary points we derive

xX'w,x, =
- 1 (B(X;) — B())"
= Kg(X;, —x
2 farle =) ( (X))~ B(x) (B(X;) — B(2))(B(X;) — ()T )

1 (@ ()~ ()"
= n KH(t—:I?) f(t)dt
{t:H~1/?(t—2)€Dq,u } e(t)=2(z) (2(t)—2(2))(2(t)—=2(2))"

+nop(ATAy1ALAy)
1 wTHY?2D,
= nf(x)/ K(u) du (18)
Dy DIH'?y DYHY?uu"H'?D,
+nop(ATAg1AgAy)
= nf(z)(A}, AuMAyAp, + op(AL Ap1AyAy)). (19)

and analogously
X8, X, = n|H|7V2 f(2)o?(2)(A}, ArN, Ag Ap, +op(A] Ap1Ag Ar)). (20)

Substituting (19) and (20) into (6) leads to (8). In the special case of an interior

. 1 0 140 0
point we have M, = and N, = . Thus
0 poly 0 [uu"K*(u)du

(8) reduces to

O'2x
V)% = ZEHI NG ro) = (2
2
_ o(z) -1/2,, o

15



B.2 Proof of Theorem 2

We introduce the function M : [0,1] = R,
M(t) = m(ya () = m(@(®(z) + H®(2) — b(x)).

Then we have M (0) = m(z) and M(1) = m(z). We apply the univariate Taylor
theorem on the function M € CPT1([0,1]) and obtain
1 1

M(1) = M(0) + M'(0) + EM”(O) +. 4 HM(”)(O) +rpr1,  (23)

where
1
p+1)!

Using the Inverse Function Theorem we obtain

T4 = ¢ MPHD(r) (7 €[0,1]).

, 1

Yo (1) ) (¢i(2i) — bi(i))

N & (ya(t)

(1<i<n)

Repeated application of the chain rule on M = m o yg leads to

M'(t) = Vm(ye(t) -ya(t) = [(2(2) — 2(x)) - Vao)m](ya(t)
M"(t) = [(2(2) = ®(2)) - Vo) m](ya(t))

M™ @) = [(9(z) — @(z)) - V)" m](ya(t))

Applying the latter formulas in (23) and substituting { = yg(7) proves the

allegation.

B.3 Proof of Theorem 3

The proof is kept shortly since it follows mainly the ideas of the corresponding
proof for multivariate local linear fitting, see Ruppert & Wand (1994).

Asymptotic Bias

First note that, applying (10), we have

= m(z) l T T
e Xa: ( P;lvm(x) ) ' 2Qm( )+ Sm( ) (24)

16



with
Qu(x) = [(2(X:) = () Py N () P (@) — ()] i,
and Sy, (z) = o(Qm(x)). Plugging (24) into (5) shows that
Bias(i(z)|X) = 5 T (X W X)X W Qu(2) (1 + o(1). (25)

Let w; = Ky(X; — z). Using matrix algebra (see e.g. Fahrmeir & Hamerle
(1984)) we derive

~1
S wi(P(X;) — O(x)) Do wi(P(X;) (:1:) (@(X;) — (x))”
_ . f(@) +op(1) op(1TH?) -
= OP(H1/21) #21_—, HP f +0P
_ L[ gater®) op(1TH'/?) (26)
n\ op(H™'/?1) mpw LH=1P-l 4 op(H™Y)
and
Xe WoQu(w) =

_ Y wi(2(X;) — @(2))" Py Nin(2) Py 1(‘1>( )—‘P(w))
Y wi {(®(Xi) — ()" Py N (2) P (2(X) — 2(2)) } — &(x))

T

_ n(uﬁ@%ﬂHMM@}+wﬁdHD), o
OP(H3/21)

so that substituting (26) and (27) into (25) proves (11).
Asymptotic variance
Similar like above we obtain
X'y, x, =

_ > wio?(X;) Zw%?( )( ( ) @ (z))"

> wio?(Xi)(R(X;) — ®(2)) 3 wio?(X;)(R(X; N(R(X;) —

|H|~ 2 (g0 (x) f(z) + op(1)) |H|~Y21THY?(1 + 0p(1
n
|H|='2HY?1(1 + op(1)) G(z,H) +op(|H|~ 1/2H

where

G(z, H) </K2 uquu> |H| Y2 P,HP,0%(z)f ().

Plugging this result and (26) into (6) leads to (12).
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B.4 Proof of Theorem 4

Let

Asymptotic bias

Note that
X'w, X, =
1 ~&(z))T
~ n / Kult— z) (#(0-2 @) F(t) dt
{t:H='/?(t—2)€Dq,n } (@(t)—®(2)) (2(t)—0(x))(2(t)—2(x))"
+n0p(AH1AH)
and, using the first step in (27),
Xy WaQn(z) = (29)
f(a) I u K(u)u" HY2N,,(z)H"?udu + op(tr(H))
= nflx o
P,H'/? sz u uK (u){u” H'? Ny, () H"?u} du + op (H"/*1tr(H))

hold. Assuming (A4), M, is nonsingular and we have

M-l — N%:l /‘%:2
x 9
pat o pz?
22

where 3! = (fo11 — fai2by sotte21) ™Y pa2 = —(pa12/pean)pd? and p22 =
(pa,22 — MI,le,w’lg/Mw’ll)_l. Then substituting (28) and (29) into (25) and

noticing that
el A A M A A =l pizprige )
yields formula (14).

Asymptotic variance

Similar considerations like in (28) lead to

XIW2X, = nf(z)|H|""*(Ap, AyuN, AgAp, + op(Ag1Ag)).  (30)
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With (6), (28) and (30) we get

Var(m(z)|X) = el (XIW, X)) " (XIW2X, ) (XIW,X,) er (0% (x) + op(1))

o(x), . _ _
= W|H| 1/2 (e,{Mz 1NIMJ: 161 + OP(]')) )

what had to be proven.
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Figure 1: Function (16) without (top) and with contamination (bottom).
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Figure 2: From top to bottom: Basis functions a), d),

sponding fits.

f) and g) and corre-
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Figure 3: top left: Local linear pre-fit (identical to the top right picture in Fig

); bottom left: Local linear pre-fit using the double bandwidth. On the right
side is each found the fit obtained using the basis to the left
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Figure 4: Boxplots of the RSE values of 200 simulations of function (16); left:
with local linear basis using the optimal bandwidths; right: with pre-fit basis
using the double bandwidths.
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