
Int J Game Theory (2007) 36:149–176
DOI 10.1007/s00182-006-0058-x

O R I G I NA L PA P E R

Project games

Arantza Estévez-Fernández · Peter Borm ·
Herbert Hamers

Accepted: 1 November 2006 / Published online: 23 February 2007
© Springer-Verlag 2007

Abstract This paper studies situations in which a project consisting of several
activities is not executed as planned. It is divided into three parts. The first part
analyzes the case where the activities may be delayed, this possibly induces a
delay on the project as a whole with additional costs. Associated delayed pro-
ject games are defined and are shown to have a nonempty core. The second
part considers the case where the activities may be expedited, this possibly
induces an expedition of the project as a whole creating profits. Corresponding
expedited project games are introduced and are shown to be convex. The third
and last part studies situations where some activities may be delayed and some
activities may be expedited. Related project games are defined and shown to
have a nonempty core.

Keywords Project planning · Delay · Expedition · Cooperative game ·
Convexity

JEL Classification C71

A. Estévez-Fernández (B)
Centrum voor Wiskunde en Informatica,
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
e-mail: M.A.Estevez-Fernandez@cwi.nl

P. Borm · H. Hamers
CentER and Department of Econometrics and Operations Research,
Tilburg University, P.O.Box 90153, 5000 LE
Tilburg, The Netherlands

150 A. Estévez-Fernández et al.

1 Introduction

A project consists of a set of activities, for which the interconnections are known,
being completed over a period of time and intended to achieve a particular aim.
Before the project is realized, the time needed to execute each of the activities
is estimated and thus, in particular, a planned duration of the project can be
determined. In practice, the estimated duration and the duration after realiza-
tion (or real duration) of an activity may differ and as result, the real duration
of the project may not coincide with its planned duration. In many real-life
situations, if a project is delayed, some additional costs arise. Moreover, if the
project is expedited, some extra reward may be obtained. How to allocate the
costs (rewards) due to the delay (expedition) of the project among the activities
that have caused this difference in duration? Moreover, even if the real duration
of the project is as planned, those activities that are delayed might compensate
those that have been expedited in avoiding a delay of the project.

In the literature, the focus has been on projects where activities may be
delayed but not expedited. Bergantiños and Sánchez (2002) propose two rules
to allocate the total delay of the project. They propose to allocate first the
total delay among the paths in the project and then, in a second step, the delay
assigned to each path is attributed to the activities in the path. Branzêi et al.
(2002) analyze the problem of sharing the total delay of a project within the
framework of taxation. Their proposal is to consider an associated taxation
problem (and associated rules) where the total delay of the project (total tax)
has to be allocated among the different activities where the maximal ability
to pay for each activity is given by that activity’s delay. Here, the delay of an
activity is calculated taking into account the slack of the paths in which it is
involved. This slack is given only to the activities that are the last activity of a
path while for the others, the delay is the real delay of the activity. Following
the same ideas, Branzêi et al. (2004) analyze the problem of sharing the total
delay or reward of a project in which the activities have not been executed
according to plan. For this, they make use of generalized bankruptcy problems.
Besides, Branzêi et al. (2002) propose a two-step allocation rule: first, by allo-
cating the total delay of the project among the paths based on the aggregated
delays; second, the delay assigned to a path is shared among the activities in the
path proportionally to their delay. Finally, Castro and Tejada (2005), also in the
same delayed project setting, propose a parameterized family of rules stemming
from the cost sharing literature. A common aspect in these three papers is that
game theoretical aspects are only indirectly present in analyzing the allocation
problem related to project situations.

In this article we do not only provide a direct approach based on coopera-
tive game theory to analyze allocation issues in delayed project situations, but
we also consider the opposite setting where activities may be expedited but
not delayed. Moreover, we also analyze the mixed case where some activities
may be delayed and some activities expedited. Throughout we assume that the
associated reward and cost functions are linear with respect to the difference
between the planned and real project times. For a better understanding of the

Project games 151

rather technical general problem where some activities are delayed and some
are expedited, we separately study the situations where all activities are either
delayed or expedited. Moreover, in case activities cannot be delayed but only
expedited, stronger results can be obtained. Another reason to treat delayed
project problems separately is the direct connection to the usual setting in the
literature. Hence, three different models are studied: delayed project prob-
lems (activities are possibly delayed), expedited project problems (activities
are possibly expedited), and project problems (activities may be delayed or
expedited). It is shown that (general) project games have a nonempty core,
while expedited project games are convex.

One may note that an expedited project becomes a delayed project by inter-
changing the planned and the real durations of each activity. Hence, expedited
project problems might be studied by analyzing delayed project problems and
applying duality. We have decided to analyze both problems separately due to
the following intrinsic difference among the cost and reward sharing problems
related to project situations. While the delay of only one path (or even of only
one activity) can cause a delay on the whole project, the expedition of at least
all critical paths is needed to obtain an expedition on the whole project.

Section 2 introduces the definitions and terminology on projects. Section 3
studies delayed project problems. An associated delayed project game is intro-
duced where the worth of a coalition measures the maximum contribution of
the coalition to the total delay of the project caused by those paths in which the
coalition is involved. It is shown that delayed project games have a nonempty
core.

In Sect. 4 we study expedited project problems. First, we note that the total
expedition can be divided in several parts depending on the slack of the paths
of the planned project. Besides, we distinguish between several levels of expe-
dition that can be claimed by a specific set of paths. Hence, the total expedition
can be decomposed in several parts to be allocated among a particular set of
paths. Using such a “peeling-off” approach, we define expedited project games
by applying ideas from bankruptcy games recursively to the various levels of
the total expedition in an interrelated way. Although expedited project games
are not necessarily (strategically equivalent to) bankruptcy games, they turn
out to be convex.

Section 5 studies general project problems. We define an associated project
game where the underlying ideas of Sects. 3 and 4 are combined. It is shown
that project games have a nonempty core.

2 Project situations

A project consists of a set of activities for which the inter-connections are
known. These activities are completed over a period of time and intended to
achieve a particular aim. Let N denote the set of activities of a project. Given
an activity i ∈ N, let Pi denote the set of predecessors of i, i.e. the set of activ-
ities that have to be processed before i can start. Analogously, let Fi be the

152 A. Estévez-Fernández et al.

Table 1 Predecessors of
activities in Example 2.1

Activity Predecessors

A
B
C A, B

Fig. 1 Representation of the
project given in Table 1

1

2 30

A

B C

set of followers of i, i.e. the set of activities that need i to be completed before
starting. A project is defined as a collection of ordered subsets of N or paths,
{N1, . . . , Nm}, where a bijection σt : {1, . . . , |Nt|} → Nt describes the order in
Nt, t ∈ {1, . . . , m}, satisfying the following conditions:

1. N = ⋃m
t=1 Nt;

2. Fσt(|Nt|) = ∅, Pσt(1) = ∅, and Pσt(r) = {σt(1), . . . , σt(r − 1)} for every t ∈
{1, . . . , m} and every r ∈ {2, . . . , |Nt|};

3. for t, u ∈ {1, . . . , m}, if i, j ∈ Nt ∩ Nu with σ−1
t (i) < σ−1

t (j), then σ−1
u (i) <

σ−1
u (j).

A project is called a parallel project if {N1, . . . , Nm} is a partition of N. Through-
out there is no specific need to explicitly keep track of the ordering. Therefore,
σ1, . . . , σm are suppressed from the notation.

Note that a project can be represented by a directed graph where the set
of arcs corresponds to the set of activities. In order to avoid multiple arcs,
dummy activities are introduced in the graph (a dummy activity is an activity
that consumes neither time nor resources). Dummy activities are represented
by a dashed arc.

Example 2.1 Table 1 gives the set of activities of a project with their corre-
sponding predecessors.

Here, the set of activities is N = {A, B, C} and the collection of paths is
{N1, N2}, with N1 = {A, C}, and N2 = {B, C}. The graphical representation of
this project is given in Fig. 1.

Associated to a project {N1, . . . , Nm} there is a function l : N → [0, ∞)

with l(i) denoting the length or duration of activity i ∈ N. Given a project
{N1, . . . , Nm} and a duration function l, we define the duration of a path Nt, as
the sum of the duration of its activities, i.e. as

∑
i∈Nt

l(i). The duration of the
project according to l, D(l), is the maximum duration of its paths, i.e. D(l) =
max1≤t≤m

{∑
i∈Nt

l(i)
}
. The slack of Nt is the maximum time that the activ-

ities of Nt can be delayed without altering the duration of the project, i.e.
slack(Nt, l) = D(l) − ∑

i∈Nt
l(i). We say that a path is critical if it has slack zero.

Project games 153

Table 2 Duration and slack
of the paths in Example 2.2

Nt Duration slack(Nt)

AC 5 2
BC 7 0

Example 2.2 Consider the project given in Example 2.1 and let l : N → [0, ∞)

be given by l(A) = 3, l(B) = 5, and l(C) = 2. Table 2 summarizes the duration
and slack of the paths. Note that D(l) = 7.

Throughout we use a fixed notation for two specific duration functions. We
denote by p : N → [0, ∞) the function representing the planned or estimated
time of the activities, and by r : N → [0, ∞) the function giving the real time of
the activities after the realization of the project. We define the delay function
d : N → [0, ∞) as d(i) = (r(i) − p(i))+(:= max{r(i) − p(i), 0}), i.e. d(i) rep-
resents the delay of activity i. Analogously, we define the expedition function
e : N → [0, ∞) as e(i) = (p(i) − r(i))+, i.e. e(i) represents the expedition of
activity i.

In the following sections we study three kind of situations. Section 3 is devoted
to delayed project problems where r ≥ p, Sect. 4 to expedited project problems,
where r ≤ p, and Sect. 5 to the general situation.

3 Delayed project games

In this section we study those project situations where activities may be delayed
but not expedited, which possibly causes the real duration of the project to be
larger than the planned duration. A cost is associated to the delay of the project
which is assumed linear w.r.t. the total delay of the project. Due to the linearity
of the cost function, we can identify the total cost with the total delay of the
project. We analyze the corresponding allocation problem with techniques from
cooperative TU games.

We recall some basic concepts from game theory. A cooperative cost game
in characteristic function form is an ordered pair (N, c) where N is a finite set
(the set of players) and c : 2N → R represents the maximum cost chargeable to
the different coalitions (or subsets of players) satisfying c(∅) = 0. The core of a
cost game (N, c) is defined by

Core(c) =
{

x ∈ R
N
∣
∣
∣
∣

∑

i∈N

xi = c(N),
∑

i∈S

xi ≤ c(S) for all S ∈ 2N

}

,

i.e. the core is the set of allocations of c(N) to which no coalition can reasonably
object. An important subclass of cost games with nonempty core is the class of
concave games. A game (N, c) is concave if

c(T) + c(S) ≥ c(T ∪ S) + c(T ∩ S) (3.1)

for every S, T ⊂ N.

154 A. Estévez-Fernández et al.

Table 3 Duration of the
paths in Example 3.1

Nt Duration w.r.t. p Duration w.r.t. r

AC 5 9
BC 7 12

We define delayed project problems as those project problems where the
planned time of the activities was underestimated, i.e. the real time of an activity
is at least its planned time. Hence, a delayed project problem can be described
by ({N1, . . . , Nm}, p, r) with p ≤ r. To a delayed project problem we associate
a delayed project game where the set of players is the set of activities and the
cost of a coalition is the maximal contribution of the coalition to the delay of
the project caused by those paths where members of S are involved. Formally,
given a delayed project problem ({N1, . . . , Nm} , p, r), we define the associated
cost game (N, c) by

c(S) = max
t∈P(S)

⎧
⎨

⎩
max

⎧
⎨

⎩

∑

i∈Nt

r(i), D(p)

⎫
⎬

⎭
− max

⎧
⎨

⎩

∑

i∈Nt\S

r(i) +
∑

i∈Nt∩S

p(i), D(p)

⎫
⎬

⎭

⎫
⎬

⎭

for an S ⊂ N, where P(S) = {t ∈ {1, . . . , m}| Nt ∩ S
= ∅} represents the set of
paths in which S is involved. Note that c(N) equals the total delay of the project.

Example 3.1 Consider the project given in Example 2.1 and let p : N → [0, ∞)

be given by p(A) = 3, p(B) = 5, and p(C) = 2 and r : N → [0, ∞) by r(A) = 6,
r(B) = 9, and r(C) = 3. Table 3 gives the duration of the paths according to the
planned and real times.

Hence, the planned duration of the project is D(p) = 7 while the real dura-
tion is D(r) = 12. Therefore, there is a total delay of 5. The value of the
associated delayed project game, (N, c), for coalition {A, B} is obtained as fol-
lows: P({A, B}) = {1, 2}, the contribution of {A, B} to the delay caused by N1 is
max{r(A)+r(C), D(p)}−max{p(A)+r(C), D(p)} = max{6+3, 7}−max{3+3, 7} =
2 and the contribution of {A, B} to the delay caused by N2 is max{r(B) +
r(C), D(p)} − max{p(B) + r(C), D(p)} = max{9 + 3, 7} − max{5 + 3, 7} = 4, then
c({A, B}) = max{2, 4} = 4. All values of the game are: c({A}) = 2, c({B}) = 4,
c({C}) = 1, c({A, B}) = 4, c({A, C}) = 2, c({B, C}) = 5, c(N) = 5.

Next, we give an alternative expression of the coalitional values in a delayed
project game.

Lemma 3.1 Let ({N1, . . . , Nm} , p, r) be a delayed project problem and let (N, c)
be the associated delayed project game. Then,

c(S) = max
t∈P(S)

⎧
⎨

⎩
min

⎧
⎨

⎩

∑

i∈Nt∩S

d(i),

⎛

⎝
∑

i∈Nt

d(i) − slack(Nt, p)

⎞

⎠

+

⎫
⎬

⎭

⎫
⎬

⎭

for every S ⊂ N.

Project games 155

Proof Let S ⊂ N. Then,

c(S) = max
t∈P(S)

⎧
⎨

⎩
max

⎧
⎨

⎩

∑

i∈Nt

r(i), D(p)

⎫
⎬

⎭
− max

⎧
⎨

⎩

∑

i∈Nt\S

r(i) +
∑

i∈Nt∩S

p(i), D(p)

⎫
⎬

⎭

⎫
⎬

⎭

= max
t∈P(S)

⎧
⎨

⎩

⎛

⎝
∑

i∈Nt

r(i) − D(p)

⎞

⎠

+
−

⎛

⎝
∑

i∈Nt\S

r(i) +
∑

i∈Nt∩S

p(i) − D(p)

⎞

⎠

+

⎫
⎬

⎭

= max
t∈P(S)

⎧
⎨

⎩

⎛

⎝
∑

i∈Nt

(r(i)−p(i))+
∑

i∈Nt

p(i)−D(p)

⎞

⎠

+

−
⎛

⎝
∑

i∈Nt\S

(r(i)−p(i))+
∑

i∈Nt

p(i)−D(p)

⎞

⎠

+

⎫
⎬

⎭

= max
t∈P(S)

⎧
⎨

⎩

⎛

⎝
∑

i∈Nt

d(i) − slack(Nt, p)

⎞

⎠

+
−

⎛

⎝
∑

i∈Nt\S

d(i) − slack(Nt, p)

⎞

⎠

+

⎫
⎬

⎭

= max
t∈P(S)

⎧
⎨

⎩
min

⎧
⎨

⎩

∑

i∈Nt∩S

d(i),

⎛

⎝
∑

i∈Nt

d(i) − slack(Nt, p)

⎞

⎠

+

⎫
⎬

⎭

⎫
⎬

⎭

The first four equalities are straightforward. The last equality is proven below.
Take t ∈ P(S), we show that

⎛

⎝
∑

i∈Nt

d(i) − slack(Nt, p)

⎞

⎠

+
−

⎛

⎝
∑

i∈Nt\S

d(i) − slack(Nt, p)

⎞

⎠

+

= min

⎧
⎨

⎩

∑

i∈Nt∩S

d(i),

⎛

⎝
∑

i∈Nt

d(i) − slack(Nt, p)

⎞

⎠

+

⎫
⎬

⎭
.

Recall that d is a non-negative function. We distinguish between three cases:

Case 1
(∑

i∈Nt
d(i)− slack(Nt, p)

)
+ = 0. Then,

(∑
i∈Nt\S d(i)− slack(Nt, p)

)
+ =

0 and

⎛

⎝
∑

i∈Nt

d(i) − slack(Nt, p)

⎞

⎠

+
−

⎛

⎝
∑

i∈Nt\S

d(i) − slack(Nt, p)

⎞

⎠

+
= 0

= min

⎧
⎨

⎩

∑

i∈Nt∩S

d(i),

⎛

⎝
∑

i∈Nt

d(i) − slack(Nt, p)

⎞

⎠

+

⎫
⎬

⎭
.

156 A. Estévez-Fernández et al.

Case 2
(∑

i∈Nt
d(i) − slack(Nt, p)

)
+ > 0,

(∑
i∈Nt\S d(i) − slack(Nt, p)

)
+ = 0.

Then,
∑

i∈Nt\S d(i) − slack(Nt, p) ≤ 0 and hence
∑

i∈Nt
d(i) − slack(Nt, p) ≤∑

i∈Nt∩S d(i). Therefore,

⎛

⎝
∑

i∈Nt

d(i) − slack(Nt, p)

⎞

⎠

+
−

⎛

⎝
∑

i∈Nt\S

d(i) − slack(Nt, p)

⎞

⎠

+

=
⎛

⎝
∑

i∈Nt

d(i) − slack(Nt, p)

⎞

⎠

+

= min

⎧
⎨

⎩

∑

i∈Nt∩S

d(i),

⎛

⎝
∑

i∈Nt

d(i) − slack(Nt, p)

⎞

⎠

+

⎫
⎬

⎭
.

Case 3
(∑

i∈Nt
d(i) − slack(Nt, p)

)
+ > 0,

(∑
i∈Nt\S d(i) − slack(Nt, p)

)
+ > 0.

Then,
∑

i∈Nt\S d(i) − slack(Nt, p) > 0 and hence
∑

i∈Nt
d(i) − slack(Nt, p) >∑

i∈Nt∩S d(i). Therefore,

⎛

⎝
∑

i∈Nt

d(i) − slack(Nt, p)

⎞

⎠

+
−

⎛

⎝
∑

i∈Nt\S

d(i) − slack(Nt, p)

⎞

⎠

+
=

∑

i∈Nt∩S

d(i)

= min

⎧
⎨

⎩

∑

i∈Nt∩S

d(i),

⎛

⎝
∑

i∈Nt

d(i) − slack(Nt, p)

⎞

⎠

+

⎫
⎬

⎭
. �

Next, we show that delayed project games have a nonempty core. To do this,
we first study delayed parallel project games. The following result states that
subgames obtained by restricting delayed parallel project games to the paths of
the project are concave.

Lemma 3.2 Let ({N1, . . . , Nm} , p, r) be a delayed parallel project problem and
let (N, c) be the associated delayed project game. Then, (Nt, c|Nt) is concave for
any t ∈ {1, . . . , m}.

Proof Let t ∈ {1, . . . , m}. According to Lemma 3.1, c|Nt(S) = min
{∑

i∈S di,
(∑

i∈Nt
d(i) − slack(Nt, p)

)
+
}

for S ⊂ Nt. Let S, T ⊂ Nt. We show that

c|Nt(S) + c|Nt(T) ≥ c|Nt(S ∪ T) + c|Nt(S ∩ T).

We distinguish between two cases.

Project games 157

Fig. 2 Representation of the
parallel project in Example
3.2

1

2 3

40

A B

E

D

C

Case 1 c|Nt (S) = ∑
i∈S di and c|Nt(T) = ∑

i∈T di. Hence, c|Nt(S∩T) = ∑
i∈S∩T di

and

c|Nt(S) + c|Nt(T) =
∑

i∈S

di +
∑

i∈T

di =
∑

i∈S∪T

di +
∑

i∈S∩T

di

≥ min

⎧
⎨

⎩

∑

i∈S∪T

di,

⎛

⎝
∑

i∈Nt

d(i) − slack(Nt, p)

⎞

⎠

+

⎫
⎬

⎭
+

∑

i∈S∩T

di

= c|Nt(S ∪ T) + c|Nt(S ∩ T).

Case 2 c|Nt (S) = (∑
i∈Nt

d(i) − slack(Nt, p)
)
+. Hence, c|Nt(S ∪ T) = (∑

i∈Nt
d(i)

− slack(Nt, p))+ and

c|Nt(S) + c|Nt(T) =
⎛

⎝
∑

i∈Nt

d(i) − slack(Nt, p)

⎞

⎠

+

+ min

⎧
⎨

⎩

∑

i∈T

di,

⎛

⎝
∑

i∈Nt

d(i) − slack(Nt, p)

⎞

⎠

+

⎫
⎬

⎭

≥
⎛

⎝
∑

i∈Nt

d(i) − slack(Nt, p)

⎞

⎠

+

+ min

⎧
⎨

⎩

∑

i∈S∩T

di,

⎛

⎝
∑

i∈Nt

d(i) − slack(Nt, p)

⎞

⎠

+

⎫
⎬

⎭

= c|Nt(S ∪ T) + c|Nt(S ∩ T).

�

The next example illustrates that games arising from delayed parallel project
problems need not be concave.

Example 3.2 Consider the delayed parallel project problem ({N1, N2} , p, r)
with N1 = {A,B}, N2 = {C,D,E}; p = (3, 5, 2, 1, 3); and r = (4, 7, 5, 4, 5). The
project is represented in Fig. 2. Let (N, c) be the associated delayed parallel
project game. Let S = {A,B,D} and T = {A,B,C}. Then, c(S)+ c(T) = 3+3 =
6 < 9 = 6 + 3 = c(S ∪ T) + c(S ∩ T) and the game is not concave.

158 A. Estévez-Fernández et al.

Lemma 3.3 Delayed project games associated to delayed parallel project prob-
lems have a nonempty core.

Proof Let ({N1, . . . , Nm} , p, r) be a delayed parallel project problem and let
(N, c) be the associated game. Let Nt be a critical path in the realization. Hence,
c(Nt) = ∑

i∈Nt
r(i) − D(p) = D(r) − D(p) = c(N). By Lemma 3.2, there exists

y ∈ Core(c|Nt). Let x ∈ R
N defined as

xi =
{

yi if i ∈ Nt
0 if i ∈ N \ Nt

for every i ∈ N. We show that x ∈ Core(c). First, we show efficiency.

∑

i∈N

xi =
∑

i∈Nt

yi = c(Nt) = c(N)

where the second equality holds because y ∈ Core(c|Nt) and c(Nt) = c|Nt(Nt),
and the third one because Nt is critical in the realization.

Next, we show stability. If S ⊂ N \ Nt, then
∑

i∈S xi = 0 ≤ c(S) because c is
non-negative. Let S ⊂ N, S ∩ Nt
= ∅. Hence,

∑

i∈S

xi =
∑

i∈S∩Nt

yi ≤ c|Nt(S ∩ Nt) = c(S ∩ Nt) ≤ c(S)

where the first inequality holds because y ∈ Core(c|Nt) and the second because
c(S) = maxu∈P(S){c(S ∩ Nu)}. �

Theorem 3.4 Delayed project games have a nonempty core.

Proof Let ({N1, . . . , Nm} , p, r) be a delayed project problem and let (N, c) be
the associated delayed project game. Let

({
N∗

1 , . . . , N∗
m
}
, p∗, r∗) be the delayed

project problem defined as follows: N∗
t = {it| i ∈ Nt}, with p∗(it) = p(i) and

r∗(it) = r(i) for all i ∈ N. Note that
({

N∗
1 , . . . , N∗

m
}
, p∗, r∗) is a delayed parallel

project problem with N∗ = ⋃m
t=1 N∗

t . Let (N∗, c∗) be the associated delayed
project game. One readily verifies that, c(S) = c∗(S∗) for every S ⊂ N with
S∗ := ⋃m

t=1{it| i ∈ Nt ∩ S} ⊂ N∗.
By Lemma 3.3, there exists y ∈ Core(c∗). Let x ∈ R

N defined as xi = ∑m
t=1 yit .

We show that x ∈ Core(c). Efficiency holds by construction of x, because y ∈
Core(c∗) and c(N) = c∗(N∗). Next, we show stability. Let S ⊂ N. Then,

∑

i∈S

xi =
∑

i∈S

m∑

t=1

yit =
∑

i∈S∗
yi ≤ c∗(S∗) = c(S) �

Project games 159

Fig. 3 Representation of the
project in Example 4.1 0 1

2

3
A B

C

4 Expedited project games

This section analyzes project situations in which activities may be expedited
but not delayed. Consequently, the duration of the project after realization may
be shorter than the planned duration. A reward is associated to the expedition
of the project which is assumed to be linear w.r.t. the total expedition of the
project. Again, due to the linearity of the reward function, we identify the total
reward with the total expedition of the project.

Contrary to the previous section we are now in a reward setting. For this
reason we briefly overview concepts from reward games. A cooperative reward
game in characteristic function form is an ordered pair (N, v) where N is a finite
set of players and v : 2N → R is the function representing the worth of each
coalition, which satisfies v(∅) = 0. The core of a game (N, v) is defined by

Core(v) =
{

x ∈ R
N
∣
∣
∣
∣

∑

i∈N

xi = v(N),
∑

i∈S

xi ≥ v(S) for all S ∈ 2N

}

,

i.e. the core is the set of efficient allocations of v(N) to which no coalition can
reasonably object. An important subclass of games with nonempty core is the
class of convex games (see Shapley 1971). A game (N, v) is convex if

v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T)1 (4.1)

for every i ∈ N and every S ⊂ T ⊂ N \ {i}.
We define expedited project problems as those project situations where the

planned time of the activities was overestimated, i.e. the real time of an activity is
at most its planned time. Hence, an expedited project problem can be described
by a three-tuple ({N1, . . . , Nm}, p, r) with p ≥ r. At this stage, one may think
about using the duality between delayed and expedited project problems: an
expedited project problem can be viewed as a delayed project problem by inter-
changing the planned and real time vectors. The following example illustrates
however that this approach is inadequate to solve the corresponding problem.

Example 4.1 Consider the expedited project problem ({N1, N2} , p, r) with N1 =
{A,B} and N2 = {C}, p = (2, 2, 3), and r = (1, 1, 2). This project is represented
in Fig. 3.

1 This is equivalent to the dual of Eq. (3.1): v(T) + v(S) ≤ v(T ∪ S) + v(T ∩ S) for every S, T ⊂ N.

160 A. Estévez-Fernández et al.

Table 4 Coalitional values of
the delayed project game
associated to

({
N1, N2

}
, p̃, r̃

)

in Example 4.1

S A B C AB AC BC ABC

c(S) 1 1 1 2 1 1 2

Fig. 4 Representation of the
project in Example 4.2 0 1 4

2

3

A B

C

D

Table 5 Duration and slack
of the paths according to the
planned times in Example 4.2

Nt Duration slack(Nt , p)

AB 10 0
C 9 1
D 7 3

The total duration of the planned project is 4, while the real duration of the
project after realization is 2. Hence, the total expedition of the project is 2.

By interchanging the planned and real time vectors the expedited project
problem becomes a delayed project problem. Let consider the delayed project
problem ({N1, N2} , p̃, r̃) with p̃ = r and r̃ = p. The coalitional values of the
associated delayed project game are given in Table 4. It is left to the reader
to check that the core of the “dual” delayed project game has a unique point:
Core(c) = {(1, 1, 0)}. Note that the expedition of activity C is needed in order to
obtain an expedition of 2 in the project (otherwise the total expedition would
be 1). Still, C is not compensated according to an efficient and stable allocation.

Next, we give an example to explain the ideas behind our approach to solving
the reward sharing problem associated to an expedited project problem.

Example 4.2 Consider the expedited project problem ({N1, N2, N3} , p, r) with
N1 = {A,B}, N2 = {C}, and N3 = {D}; p = (6, 4, 9, 7); and r = (3, 2, 4, 6). This
project is represented in Fig. 4.

The total duration of the planned project is 10, while the real duration of
the project after realization is 6. Hence, the total expedition of the project is 4.
Table 5 gives the duration and slack of the paths according to the plan.

Note that the project cannot be expedited if the critical path N1 according to
plan is not expedited. Next, we analyze how this total expedition is obtained.
First, suppose that only the activities in N1 are executed according to the reali-
zation while the activities in paths N2 and N3 are executed according to the plan.
Then, the project has an expedition of just 1, while path N2 becomes critical,
and path N3 has a slack of 2 in the new situation. Hence, path N1 is responsible
by itself of one unit of time of the total expedition. Second, suppose that the

Project games 161

Table 6 Contribution of the
paths to the total expedition
of the project in Example 4.2

Phase 1 Phase 2 Phase 3

N1 1 2 1
N2 0 2 1
N3 0 0 1

activities both in N1 and N2 are executed according to realization while the
activities in N3 are executed according to plan. Then, N3 becomes critical and
there is an additional expedition of 2. Hence, both paths N1 and N2 are needed
for and responsible of two units of time of the total expedition. Finally, suppose
that all the activities are executed according to realization, then there is an
additional expedition of 1 for which all paths N1, N2, and N3 are responsible.
The contribution of the paths to the total expedition of the project during the
different phases is summarized in Table 6. Note that the sum of the first row
gives the total expedition of the project. This kind of “peeling-off” into levels of
expedition play a prominent role in the definition of expedited project games
below.

Let ({N1, . . . , Nm} , p, r) be an expedited project problem. We denote by I1
the set (of indices) of critical paths according to the planned time. Formally,

I1 = {
t ∈ {1, . . . , m}| slack(Nt, p) = 0

}
.

Recursively, we define for k ≥ 2,

Ik =
⎧
⎨

⎩
t ∈ {1, . . . , m}

∖ k−1⋃

l=1

Il| slack(Nt, p) ≤ slack(Nu, p)

for all u ∈ {1, . . . , m}
∖ k−1⋃

l=1

Il

⎫
⎬

⎭
,

i.e. Ik corresponds to all paths that would be critical in the (sub)project if all
the paths in I1, . . . , Ik−1 were not present. We denote by slack(Ik) the slack of
the paths in Ik according to the planned time, i.e. slack(Ik) = slack(Nt, p) for
each t ∈ Ik. Let h be such that slack(Ih) < D(p) − D(r) ≤ slack(Ih+1). For
k = 1, . . . , h, we define Ek as the level of expedition for which all paths in
I1, . . . , Ik are needed:

Ek =
{

slack(Ik+1) − slack(Ik) if 1 ≤ k < h;
D(p) − D(r) − slack(Ih) if k = h.

Note that
∑h

k=1 Ek = D(p) − D(r).
To an expedited project problem we associate an expedited project game.

The set of players is the set of activities. The worth of a coalition is the sum

162 A. Estévez-Fernández et al.

over all k ∈ {1, . . . , h} of those specific parts of the level of expedition Ek for
which the activities outside the coalition that are in paths of

⋃k
l=1 Il cannot

be held responsible for anymore at that phase. Formally, given an expedited
project problem ({N1, . . . , Nm} , p, r) and an expedition level k ∈ {1, . . . , h}, we
first recursively define wk by

wk(S) = min

⎧
⎪⎨

⎪⎩

∑

i∈(
⋃k

l=1 NIl)\S

e(i) −
k−1∑

l=1

wl(S), Ek

⎫
⎪⎬

⎪⎭
, (4.2)

for all S ⊂ N, where NIl = ⋃
t∈Il

Nt. Here, wk(S) represents the part of the level
of expedition Ek that players in S maximally would have to concede to players
in the paths corresponding to

⋃k
l=1 Il outside S, taking into account earlier con-

cessions from the previous phases. Note that wk is non-negative. Subsequently,
we define the associated game (N, v) by

v(S) =
h∑

k=1

(
Ek − wk(S)

)
(4.3)

for every S ⊂ N. Note that v(N) equals the total expedition of the project
because wk(N) = 0 for any k ∈ {1, . . . , h}.
Example 4.3 Consider the expedited project problem given in Example 4.2.
Here, D(p) = 10 and D(r) = 6. Hence, the total expedition is D(p) − D(r) = 4.
In this case, e = (3, 2, 5, 1); I1 = {1}, I2 = {2}, and I3 = {3}; and E1 = slack(I2) −
slack(I1) = 1, E2 = slack(I3) − slack(I2) = 2, and E3 = D(p)−D(r)−slack(I3) =
1. Consequently, for coalition {A, C}:

w1({A, C}) = min
{

e(B), E1
}

= min {2, 1} = 1,

w2({A, C}) = min
{

e(B) − w1({A, C}), E2
}

= min {2 − 1, 2} = 1,

w3({A, C}) = min
{

e(B) + e(D) − w1({A, C}) − w2({A, C}), E3
}

= min {2 + 1 − 1 − 1, 1} = 1.

Let (N, v) be the associated expedited project game. Then,

v({A, C}) = (
E1 − w1({A, C})) + (

E2 − w2({A, C})) + (
E3 − w3({A, C}))

= (1 − 1) + (2 − 1) + (1 − 1) = 1.

Coalitional worths are given by: v({A}) = v({B}) = v({C}) = v({D}) = 0,
v({A, B}) = v({A, C}) = 1, v({A, D}) = v({B, C}) = v({B, D}) = v({C, D}) = 0,
v({A, B, C}) = 3, v({A, B, D}) = 1, v({A, C, D}) = 2, v({B, C, D}) = 1, v(N) = 4.

Project games 163

For R ⊂ N, A(R) denotes the set of “active levels of expedition” of R, i.e.

A(R) := {
k ∈ {1, . . . , h}| wk(R) < Ek}.

and A(R) is the highest active level of expedition of R, i.e.

A(R) :=
{

max A(R) if A(R)
= ∅;
0 if A(R) = ∅.

.

For j ∈ N, k(j) is the first level of expedition in which j is involved, i.e.

k(j) := min
{
k ∈ {1, . . . , h}| j ∈ NIk

}
.

For R ⊂ N and j ∈ N, A(j, R) is the set of all active levels of expedition for R in
which j is also involved, i.e.

A(j, R) := {
k ∈ {1, . . . , h}| k ≥ k(j), k ∈ A(R)

}

and a(j, R) is the first active level of expedition of R in which j is also involved,
i.e.

a(j, R) :=
{

min A(j, R) if A(j, R)
= ∅;
h + 1 if A(j, R) = ∅.

.

The following example illustrates the notation above.

Example 4.4 Consider the expedited project problem given in Example 4.2.
Let R = {A, C} and i = B. Recall that N1 = {A,B}, N2 = {C}, and N3 = {D}.
Furthermore, I1 = {1}, I2 = {2}, and I3 = {3} and E1 = 1, E2 = 2, and E3 = 1.
Moreover,

w1({A, C}) = 1 = E1,

w2({A, C}) = 1 < E2,

w3({A, C}) = 1 = E3.

Hence, A(R) = {2}, A(R) = 2, k(B) = 1, A(i, R) = {2} and a(i, R) = 2.

The following lemma says that, at each level of expedition, the concession of
a smaller coalition exceeds the concession of a larger coalition.

Lemma 4.1 Let ({N1, . . . , Nm} , p, r) be an expedited project problem. Let k ∈
{1, . . . , h}. Then, for every S ⊂ T ⊂ N,

(i)
∑

i∈
(⋃k

l=1 NIl

)
\S

e(i) −
k−1∑

l=1
wl(S) ≥ ∑

i∈
(⋃k

l=1 NIl

)
\T

e(i) −
k−1∑

l=1
wl(T),

(ii) wk(S) ≥ wk(T),
(iii) A(S) ⊂ A(T).

164 A. Estévez-Fernández et al.

Proof Obviously, (ii) is a direct consequence of (i) together with the definition
of wk and (iii) follows immediately from (ii).

Let S ⊂ T ⊂ N. We show i by induction on k. For k = 1, it is obvious since
e(i) ≥ 0 for every i. Let k = 2. Then

∑

i∈(NI1∪NI2)\S

e(i) − w1(S) =
∑

i∈(NI1∪NI2)\S

e(i) − min

⎧
⎨

⎩

∑

i∈NI1\S

e(i), E1

⎫
⎬

⎭

= max

⎧
⎨

⎩

∑

i∈NI2\(NI1∪S)

e(i),
∑

i∈(NI1∪NI2)\S

e(i) − E1

⎫
⎬

⎭

≥ max

⎧
⎨

⎩

∑

i∈NI2\(NI1∪T)

e(i),
∑

i∈(NI1∪NI2)\T

e(i) − E1

⎫
⎬

⎭

=
∑

i∈(NI1∪NI2)\T

e(i) − min

⎧
⎨

⎩

∑

i∈NI1\T

e(i), E1

⎫
⎬

⎭

=
∑

i∈(NI1∪NI2)\T

e(i) − w1(T)

where the inequality holds because S ⊂ T.
Now, suppose that k ≥ 3 and suppose (i) is true for k − 1. Then,

∑

i∈
(⋃k

l=1 NIl

)
\S

e(i) −
k−1∑

l=1

wl(S)=
∑

i∈
(⋃k

l=1 NIl

)
\S

e(i) −
k−2∑

l=1

wl(S)

− min

⎧
⎪⎨

⎪⎩

∑

i∈
(⋃k−1

l=1 NIl

)
\S

e(i) −
k−2∑

l=1

wl(S), Ek−1

⎫
⎪⎬

⎪⎭

=max

⎧
⎪⎨

⎪⎩

∑

i∈NIk\
(⋃k−1

l=1 NIl ∪S
)

e(i),
∑

i∈NIk\
(⋃k−1

l=1 NIl ∪S
)

e(i)

+
∑

i∈
(⋃k−1

l=1 NIl

)
\S

e(i) −
k−2∑

l=1

wl(S)−Ek−1

⎫
⎪⎬

⎪⎭

≥ max

⎧
⎪⎨

⎪⎩

∑

i∈NIk\
(⋃k−1

l=1 NIl ∪T
)

e(i),
∑

i∈NIk\
(⋃k−1

l=1 NIl ∪T
)

e(i)

Project games 165

+
∑

i∈
(⋃k−1

l=1 NIl

)
\T

e(i) −
k−2∑

l=1

wl(T)−Ek−1

⎫
⎪⎬

⎪⎭

=
∑

i∈
(⋃k

l=1 NIl

)
\T

e(i) −
k−2∑

l=1

wl(T)

− min

⎧
⎪⎨

⎪⎩

∑

i∈
(⋃k−1

l=1 NIl

)
\T

e(i) −
k−2∑

l=1

wl(T), Ek−1

⎫
⎪⎬

⎪⎭

=
∑

i∈
(⋃k

l=1 NIl

)
\T

e(i) −
k−1∑

l=1

wl(T)

where the inequality holds by induction together with S ⊂ T. �

In the proof of the main convexity theorem, we refer to some technical lemmas
that can be found in the Appendix.

Theorem 4.2 Expedited project games are convex.

Proof Let i ∈ N and S ⊂ T ⊂ N \ {i}. It suffices to show that

v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T)

By Eq. (4.3),

v(S ∪ {i}) − v(S) =
h∑

l=1

[
wl(S) − wl(S ∪ {i})

]
(4.4)

and

v(T ∪ {i}) − v(T) =
h∑

l=1

[
wl(T) − wl(T ∪ {i})

]
(4.5)

We distinguish between three cases.

Case 1 A(i, S ∪ {i}) = ∅. Then,

h∑

l=1

[
wl(S) − wl(S ∪ {i})

]
= 0 ≤

h∑

l=1

[
wl(T) − wl(T ∪ {i})

]

where the equality holds by Lemma A.3 and the inequality holds by Lemma
4.1(ii).

166 A. Estévez-Fernández et al.

Case 2 A(i, S)
= ∅. Then, by Lemma 4.1(iii), A(i, T)
= ∅. Using Lemma A.3,

h∑

l=1

[
wl(S) − wl(S ∪ {i})

]
= e(i) =

h∑

l=1

[
wl(T) − wl(T ∪ {i})

]

Case 3 A(i, S) = ∅ and A(i, S ∪ {i})
= ∅. By Lemma 4.1(iii), A(i, T ∪ {i})
= ∅.
We distinguish between two subcases.

Subcase 3.1 A(i, T) = ∅. By Lemma A.1(i), it holds wl(S) = wl(S ∪ {i}) and
wl(T) = wl(T ∪ {i}) for every l < k(i). Moreover, wl(S) = wl(T) = El for every
l ≥ k(i) since A(i, S) = A(i, T) = ∅. Then,

v(S ∪ {i}) − v(S) =
h∑

l=1

[
El − wl(S ∪ {i})] −

h∑

l=1

[
El − wl(S)

]

=
h∑

l=1

[
El − wl(S ∪ {i})] −

k(i)−1∑

l=1

[
El − wl(S)

]

=
h∑

l=k(i)

[
El − wl(S ∪ {i})]

≤
h∑

l=k(i)

[
El − wl(T ∪ {i})]

=
h∑

l=1

[
El − wl(T ∪ {i})] −

k(i)−1∑

l=1

[
El − wl(T)

]

=
h∑

l=1

[
El−wl(T∪{i})] −

h∑

l=1

[
El − wl(T)

] = v(T ∪ {i}) − v(T)

where the inequality holds by Lemma 4.1(ii).

Subcase 3.2 A(i, T)
= ∅. By Lemma A.3,

h∑

l=1

[
wl(S) − wl(S ∪ {i})

]
= e(i) −

∑

j∈
(⋃A(S∪{i})

l=1 NIl

)
\S

e(j) +
A(S∪{i})∑

l=1

wl(S)

≤ e(i)−wA(S∪{i})(S) ≤ e(i) =
h∑

l=1

[
wl(T) − wl(T ∪ {i})]

where the first inequality holds by Eq. (4.2) and the second because wk is
non-negative for all k ∈ {1, . . . , h}. �

Project games 167

5 Project games

In this section we study general project situations in which some activities may
have suffered a delay with respect to the planned time while other may have
been expedited. The basis of analysis is rewards where costs are considered
to be negative rewards. We assume that the reward function is linear in the
difference between real duration and planned duration.

Let D = {i ∈ N| d(i) > 0} and E = {i ∈ N| e(i) > 0} denote the sets of
delayed activities and expedited activities, respectively. Associated to a (gen-
eral) project problem ({N1, . . . , Nm}, p, r) we define a project game where the
set of players is the set of activities and the worth of a coalition combines the
underlying ideas from Sects. 3 and 4. In determining the worth of a coalition
we pessimistically assume that all delayed activities have indeed been executed
according to realization and that all expedited activities outside the coalition
have been executed according to plan. Then, if the expedition given by the
expedited activities in the coalition itself is not enough to expedite the pro-
ject, the worth of the coalition is negative and is determined along the lines of
delayed project games. Otherwise, the worth of the coalition is positive and is
determined along the lines of expedited project games. Formally, given a project
problem ({N1, . . . , Nm} , p, r) we define the associated game (N, u), where u is
defined by

u(S) =
{−c(S) if D(p|N\(D∪(E∩S)), r|D∪(E∩S)) ≥ D(p);

v(S) if D(p|N\(D∪(E∩S)), r|D∪(E∩S)) < D(p).
(5.1)

for every S ⊂ N.
Let D(p|N\(D∪(E∩S)), r|D∪(E∩S)) ≥ D(p). Then, c(S) reflects the maximum

delay a coalition can be held responsible for. Given a path Nt, coalition S can-
not be held responsible for more than its (positive) net delay nor for more than
the net delay of the path as a consequence of the delay of activities in the path
and the expedition of the activities within the coalition. Formally,

c(S) = max
t∈P(S)

⎧
⎨

⎩
min

⎧
⎨

⎩

⎛

⎝
∑

i∈Nt∩S

d(i) −
∑

i∈Nt∩S

e(i)

⎞

⎠

+
,

⎛

⎝
∑

i∈Nt

d(i) −
∑

i∈Nt∩S

e(i) − slack(Nt, p)

⎞

⎠

+

⎫
⎬

⎭

⎫
⎬

⎭
. (5.2)

Note that Eq. (5.2) applied to a coalition S with D(p|N\(D∪(E∩S)), r|D∪(E∩S)) <

D(p) gives c(S) = 0. Moreover, if D(r) ≥ D(p), then D(p|N\(D∪(E∩S)), r|D∪(E∩S))

≥ D(p) for every S ⊂ N, and hence u(S) = −c(S) for every S ⊂ N.

168 A. Estévez-Fernández et al.

Next, consider the case D(p|N\(D∪(E∩S)), r|D∪(E∩S)) < D(p). In order to define
v(S), we introduce some notation. We denote by rslack(Nt, p, r) the amount of
remaining slack of a path w.r.t. the planned duration if only its delayed activ-
ities are executed according to realization, i.e. rslack(Nt, p, r) = slack(Nt, p) −∑

i∈Nt
d(i). Note that rslack(Nt, p, r) can be negative, meaning that the delayed

activities have consumed all the initial slack and would produce a delay on
the project as a whole of − rslack(Nt, p, r) if the expedited activities had been
executed according to plan. We denote by J1 the set of indexes of paths with
remaining slack less than or equal to zero:

J1 = {
t ∈ {1, . . . , m}| rslack(Nt, p, r) ≤ 0

}
.

Recursively, we define for k ≥ 2

Jk =
⎧
⎨

⎩
t ∈ {1, . . . , m} \

k−1⋃

l=1

Jl| rslack(Nt, p, r) ≤ rslack(Nu, p, r)

for all u ∈ {1, . . . , m} \
k−1⋃

l=1

Jl

⎫
⎬

⎭
,

i.e. Jk contains all paths that would have the smallest remaining slack if
the paths in J1, . . . , Jk−1 were not present.

Set rslack(J1) := 0 and let rslack(Jk) denote the remaining slack of the
paths in Jk for k ≥ 2, i.e. rslack(Jk) = rslack(Nt, p, r) for each t ∈ Jk, k ≥ 2.
Let g be such that rslack(Jg) < D(p)−D(r) ≤ rslack(Jg+1) if D(p)−D(r) > 0
and g = 0 otherwise. For k = 1, . . . , g, we define Fk as the level of expedition
that the paths in J1, . . . , Jk can obtain by acting according to realization, i.e.

Fk =
{

rslack(Jk+1) − rslack(Jk) if 1 ≤ k < g;
D(p) − D(r) − rslack(Jg) if k = g.

Note that
∑g

k=1 Fk = D(p) − D(r).
Next, we define v(S) as the sum over all k = 1, . . . , g of those specific parts of

the corresponding level of expedition Fk for which expedited activities outside
the coalition that are in paths of

⋃k
l=1 Jl cannot be held responsible. Formally,

given an expedition level k ∈ {1, . . . , h}, we recursively define wk by

wk(S) = min

⎧
⎪⎨

⎪⎩

∑

i∈
(⋃k

l=1 NJl

)
\S

e(i) −
k−1∑

l=1

wl(S), Fk

⎫
⎪⎬

⎪⎭
, (5.3)

where NJl = ⋃
t∈Jl

Nt. Here, wk(S) represents the part of the level of expe-
dition Fk that players in S maximally would have to concede to players in

Project games 169

Fig. 5 Representation of the
project in Example 5.1 1

30

2

A B

DC

⋃k
l=1 Jl outside S, taking into account concessions from the previous phases.

Subsequently, we define game v by

v(S) =
g∑

k=1

(
Fk − wk(S)

)
(5.4)

for all S ⊂ N. Note that Eqs. (5.3) and (5.4) applied to a coalition S with
D(p|N\(D∪(E∩S)), r|D∪(E∩S)) ≥ D(p) give v(S) = 0.

Example 5.1 Consider the project problem ({N1, N2} , p, r) with N1 = {A,B} and
N2 = {C,D}. Let p = (2, 5, 3, 6) and r = (5, 3, 4, 3). The project is represented in
Fig. 5.

Here, D(p) = 9, slack(N1, p) = 2, slack(N2, p) = 0, D(r) = 8, d = (3, 0, 1, 0),
e = (0, 2, 0, 3), D = {A, C}, E = {B, D}, rslack(N1, p, r) = −1, rslack(N2, p, r) =
−1, J1 = {1, 2}, g = 1 and F1 = 1. Note that the project has an expedition of 1
and hence u(N) = 1. Below, we explain in detail how to compute the value of
the associated project game for coalitions {A, C, D} and {B, C, D}.

First, consider coalition {A, C, D}. Since D(p|{B}, r|{A,C,D}) = 10 > 9 =
D(p), we have that u({A, C, D}) = −c({A, C, D}). In this case, P({A, C, D}) =
{1, 2}. The maximum amount chargeable w.r.t. path N1 is

min
{
(d(A) − e(A))+, (d(A) + d(B) − e(A) − slack(N1, p))+

}

= min{(3)+, (3 − 2)+} = 1

and for path N2 the corresponding amount is

min
{
(d(C) + d(D) − e(C) − e(D))+, (d(C) + d(D) − e(C) − e(D) − slack(N2, p))+

}

= min{(1 − 3)+, (1 − 3 − 0)+} = 0.

Hence, c({A, C, D}) = max{1, 0} = 1. Therefore,

u({A, C, D}) = −c({A, C, D})) = −1.

Second, consider coalition {B, C, D}. Since D(r) = 8 < 9 = D(p) we have
u({B, C, D}) = v({B, C, D}). In this case,

w1({B, C, D}) = min
{
e(A), F1} = min {0, 1} = 0,

170 A. Estévez-Fernández et al.

and therefore v({B, C, D}) = F1 − w1({B, C, D}) = 1 − 0 = 1 and

u({B, C, D}) = 1.

The coalitional values of the project game are: u({A}) = −1, u({B}) = 0,
u({C}) = −1, u({D}) = 0, u({A, B}) = 0, u({A, C})=u({A, D})=u({B, C}) =−1,
u({B, D}) = 1, u({C, D}) = 0, u({A, B, C}) =−1, u({A, B, D}) = 1, u({A, C, D})
= −1, u({B, C, D}) = 1, u(N) = 1.

Theorem 5.1 Project games have a nonempty core.

Proof Let ({N1, . . . , Nm} , p, r) be a project problem and let (N, u) be the asso-
ciated project game. By the remarks above, u(S) = v(S)− c(S) for every S ⊂ N.
Hence, it suffices to show that (N, v) and (N, c) have nonempty cores.

Note that the game (N, v) has a similar structure as an expedited project
game (Jk is replaced by Ik, Fk is substituted by Ek, and g is replaced by h).
Moreover, the explicit definition of Ik, Ek, and h is not relevant for the proof of
Theorem 4.2. Therefore, it can be shown that (N, v) is convex by following the
same line of reasoning. Hence, (N, v) has a nonempty core.

Next, we show that (N, c) has a nonempty core. Let S ⊂ N, then

c(S) = max
t∈P(S)

⎧
⎨

⎩
min

⎧
⎨

⎩

⎛

⎝
∑

i∈Nt∩S

d(i) −
∑

i∈Nt∩S

e(i)

⎞

⎠

+
,

⎛

⎝
∑

i∈Nt

d(i) −
∑

i∈Nt∩S

e(i) − slack(Nt, p)

⎞

⎠

+

⎫
⎬

⎭

⎫
⎬

⎭

= max
t∈P(S)

⎧
⎨

⎩
min

⎧
⎨

⎩
max

⎧
⎨

⎩

∑

i∈Nt∩S

d(i),
∑

i∈Nt∩S

e(i)

⎫
⎬

⎭
,

max

⎧
⎨

⎩

∑

i∈Nt

d(i) − slack(Nt, p),
∑

i∈Nt∩S

e(i)

⎫
⎬

⎭

⎫
⎬

⎭
−

∑

i∈Nt∩S

e(i)

⎫
⎬

⎭

= max
t∈P(S)

⎧
⎨

⎩
max

⎧
⎨

⎩
0, min

⎧
⎨

⎩

∑

i∈Nt∩S

d(i),

⎛

⎝
∑

i∈Nt

d(i) − slack(Nt, p)

⎞

⎠

+

⎫
⎬

⎭

−
∑

i∈Nt∩S

e(i)

⎫
⎬

⎭

⎫
⎬

⎭

First, suppose that the project is parallel. Then, for t ∈ {1, . . . , m} and S ⊂ Nt

c|Nt(S) = max

⎧
⎨

⎩
0, min

⎧
⎨

⎩

∑

i∈S

d(i),

⎛

⎝
∑

i∈Nt

d(i) − slack(Nt, p)

⎞

⎠

+

⎫
⎬

⎭
−

∑

i∈S

e(i)

⎫
⎬

⎭

Project games 171

Hence, c|Nt is the maximum of the zero(-sub)game with (a game which is
strategically equivalent to) a concave game according to Lemma 3.2. Therefore,
(Nt, c|Nt) has a nonempty core. Subsequently, following the same argument as
in the proof of Lemma 3.3, we can explicitly provide a core element for delayed
parallel project games. By applying the same translation technique as in the
proof of Theorem 3.4, it follows that (N, c) has a nonempty core in general. �

Acknowledgements The authors thank two referees for their valuable suggestions for improve-
ment. Special thanks go to Ruud Hendrickx and Bas van Venzel for their helpful discussion and
comments.

Appendix

Lemma A.1 Let ({N1, . . . , Nm} , p, r) be an expedited project problem. Let i ∈ N
and S ⊂ N \ {i}. Then,

(i) wk(S ∪ {i}) = wk(S) for all k < k(i).
(ii) Let A(i, S ∪ {i}) = ∅. Then, wk(S ∪ {i}) = wk(S) for all k ≥ k(i), and

consequently A(S ∪ {i}) = A(S).
(iii) Let A(i, S)
= ∅. Then wk(S ∪ {i}) = wk(S) for all k > a(i, S), and conse-

quently A(S ∪ {i}) = A(S).

Proof (i) follows readily by definition of wk and (ii) by definition of A(i, S∪{i})
and the fact that A(S) ⊂ A(S ∪ {i}). Next, we show (iii).

Let A(i, S)
= ∅. It is sufficient to show that

wk(S ∪ {i}) = wk(S) for all k > a(i, S) (A.1)

From the definition of “active level” and Eq. (4.2) we have

wa(i,S)(S) =
∑

j∈
(⋃a(i,S)

l=1 NIl

)
\S

e(j) −
a(i,S)−1∑

l=1

wl(S),

or equivalently
a(i,S)∑

l=1

wl(S) =
∑

j∈
(⋃a(i,S)

l=1 NIl

)
\S

e(j). (A.2)

By Lemma 4.1(iii), a(i, S) ∈ A(S ∪ {i}). Then

172 A. Estévez-Fernández et al.

wa(i,S)(S ∪ {i}) =
∑

j∈
(⋃a(i,S)

l=1 NIl

)
\S∪{i}

e(j) −
a(i,S)−1∑

l=1

wl(S ∪ {i})

=
∑

j∈
(⋃a(i,S)

l=1 NIl

)
\S

e(j) − e(i) −
a(i,S)−1∑

l=1

wl(S ∪ {i}),

or equivalently

a(i,S)∑

l=1

wl(S ∪ {i}) =
∑

j∈
(⋃a(i,S)

l=1 NIl

)
\S

e(j) − e(i). (A.3)

We show (A.1) by induction on k. First,

wa(i,S)+1(S ∪ {i}) = min

⎧
⎪⎨

⎪⎩

∑

j∈
(⋃a(i,S)+1

l=1 NIl

)
\(S∪{i})

e(j) −
a(i,S)∑

l=1

wl(S ∪ {i}), Ea(i,S)+1

⎫
⎪⎬

⎪⎭

= min

⎧
⎪⎨

⎪⎩

∑

j∈
(⋃a(i,S)+1

l=1 NIl

)
\S

e(j) − e(i) −
⎛

⎜
⎝

∑

j∈
(⋃a(i,S)

l=1 NIl

)
\S

e(j) − e(i)

⎞

⎟
⎠ ,

Ea(i,S)+1

⎫
⎪⎬

⎪⎭

= min

⎧
⎪⎨

⎪⎩

∑

j∈
(⋃a(i,S)+1

l=1 NIl

)
\S

e(j) −
⎛

⎜
⎝

∑

j∈
(⋃a(i,S)

l=1 NIl

)
\S

e(j)

⎞

⎟
⎠ , Ea(i,S)+1

⎫
⎪⎬

⎪⎭

= min

⎧
⎪⎨

⎪⎩

∑

j∈
(⋃a(i,S)+1

l=1 NIl

)
\S

e(j) −
a(i,S)∑

l=1

wl(S), Ea(i,S)+1

⎫
⎪⎬

⎪⎭

= wa(i,S)+1(S)

where the second equality holds by Eq. (A.3), and the fourth equality holds by
Eq. (A.2).

Project games 173

Let k > a(i, S) + 1 and suppose (A.1) holds for all levels from a(i, S) + 1 to
k − 1,

wk(S ∪ {i}) = min

⎧
⎪⎨

⎪⎩

∑

j∈
(⋃k

l=1 NIl

)
\(S∪{i})

e(j) −
k−1∑

l=1

wl(S ∪ {i}), Ek

⎫
⎪⎬

⎪⎭

= min

⎧
⎪⎨

⎪⎩

∑

j∈
(⋃k

l=1 NIl

)
\(S∪{i})

e(j) −
a(i,S)∑

l=1

wl(S ∪ {i})

−
k−1∑

l=a(i,S)+1

wl(S ∪ {i}), Ek

⎫
⎬

⎭

= min

⎧
⎪⎨

⎪⎩

∑

j∈
(⋃k

l=1 NIl

)
\S

e(j) − e(i) −
⎛

⎜
⎝

∑

j∈
(⋃a(i,S)

l=1 NIl

)
\S

e(j) − e(i)

⎞

⎟
⎠

−
k−1∑

l=a(i,S)+1

wl(S ∪ {i}), Ek

⎫
⎬

⎭

= min

⎧
⎪⎨

⎪⎩

∑

j∈
(⋃k

l=1 NIl

)
\S

e(j) −
(∑

j∈
(⋃a(i,S)

l=1 NIl

)
\S

e(j)
)

−
k−1∑

l=a(i,S)+1

wl(S), Ek

⎫
⎪⎬

⎪⎭

= min

⎧
⎪⎨

⎪⎩

∑

j∈
(⋃k

l=1 NIl

)
\S

e(j) −
k−1∑

l=1

wl(S), Ek

⎫
⎪⎬

⎪⎭
= wk(S)

where the third equality holds by Eq. (A.3), the fourth equality holds by induc-
tion, and the fifth one by Eq. (A.2). �

The following result provides an explicit expression for the sum of all con-
cessions for a coalition S.

Lemma A.2 Let ({N1, . . . , Nm} , p, r) be an expedited project problem. Let S ⊂
N. Then,

h∑

l=1

wl(S) =
∑

i∈
(⋃A(S)

l=1 NIl

)
\S

e(i) +
h∑

l=A(S)+1

El

174 A. Estévez-Fernández et al.

Proof For A(S) = ∅, the statement is obvious. Suppose A(S)
= ∅. Then

h∑

l=1

wl(S) =
A(S)−1∑

l=1

wl(S) + wA(S)(S) +
h∑

l=A(S)+1

wl(S)

=
A(S)−1∑

l=1

wl(S) +
∑

i∈
(⋃A(S)

l=1 NIl

)
\S

e(i) −
A(S)−1∑

l=1

wl(S) +
h∑

l=A(S)+1

El

=
∑

i∈
(⋃A(S)

l=1 NIl

)
\S

e(i) +
h∑

l=A(S)+1

El

where the second equality holds because A(S) ∈ A(S) and by definition of
wA(S)(S). �

Lemma A.3 Let ({N1, . . . , Nm} , p, r) be an expedited project problem. Let i ∈ N
and S ⊂ N \ {i}. Then,

h∑

l=1

[
wl(S) − wl(S ∪ {i})

]

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if A(i, S ∪ {i}) = ∅;
e(i) if A(i, S)
= ∅;

e(i) −
∑

j∈
(⋃A(S∪{i})

l=1 NIl

)
\S

e(j) +
A(S∪{i})∑

l=1

wl(S) if A(i, S ∪ {i})
= ∅ and A(i, S) = ∅.

Proof (i) Let A(i, S∪{i}) = ∅. By Lemma 4.1(iii), A(i, S) = ∅. Hence, by Lemma
A.1(i) and A.1(ii) we find that

∑h
l=1

[
wl(S) − wl(S ∪ {i})] = 0.

(ii) Let A(i, S)
= ∅. Then

h∑

l=1

wl(S) =
∑

j∈
(⋃A(S)

l=1 NIl

)
\S

e(j) +
h∑

l=A(S)+1

El =
∑

j∈
(⋃A(S)

l=1 NIl

)
\S

e(j) +
h∑

l=A(S)+1

wl(S)

(A.4)

Project games 175

where the first equality holds by Lemma A.2 and the second by definition of
A(S). Moreover

h∑

l=1

wl(S ∪ {i}) =
∑

j∈
(⋃A(S∪{i})

l=1 NIl

)
\(S∪{i})

e(j) +
h∑

l=A(S∪{i})+1

El

=
∑

j∈
(⋃A(S)

l=1 NIl

)
\S

e(j) − e(i) +
h∑

l=A(S)+1

wl(S)

=
h∑

l=1

wl(S) − e(i),

where the first equality holds by Lemma A.2, the second equality holds by
Lemma A.1(iii) and the third one by Eq. (A.4). Hence,

h∑

l=1

[
wl(S) − wl(S ∪ {i})] = e(i).

(iii) Let A(i, S ∪ {i})
= ∅ and A(i, S) = ∅.1 Then

h∑

l=1

wl(S ∪ {i}) =
∑

j∈
(⋃A(S∪{i})

l=1 NIl

)
\(S∪{i})

e(j) +
h∑

l=A(S∪{i})+1

El

=
∑

j∈
(⋃A(S∪{i})

l=1 NIl

)
\S

e(j) − e(i) +
h∑

l=A(S∪{i})+1

wl(S).

where the first equality holds by Lemma A.2 and the second by the fact that
A(S) ≤ A(S ∪ {i}). Hence,

h∑

l=1

[
wl(S) − wl(S ∪ {i})] = e(i) −

∑

j∈
(⋃A(S∪{i})

l=1 NIl

)
\S

e(j) +
A(S∪{i})∑

l=1

wl(S).

�

1 In fact A(i, S) = ∅ can be omitted here. In particular, part (ii) offers a further elaboration if

A(i, S)
= ∅. In this case, −∑

j∈
(⋃A(S∪{i})

l=1 NIl

)
\S

e(j) + ∑A(S∪{i})
l=1 wl(S) = 0.

176 A. Estévez-Fernández et al.

References

Bergantiños G, Sánchez E (2002) How to distribute costs associated with a delayed project. Ann
Oper Res 109:159–174

Branzêi R, Ferrari G, Fragnelli V, Tijs S (2002) Two approaches to the problem of sharing delay
costs in joint projects. Ann Oper Res 109:359–374

Branzêi R, Ferrari G, Fragnelli V, Tijs S (2004) Joint project management with penalties and com-
pensations. Preprint 519, Dipartimento di Matematica dell’ Universita di Genova, Genova,
Italy

Castro J, Tejada J (2005) Proportional rules applied to the problem of sharing delay costs in PERT
problems. Working paper, Complutense University Madrid, Madrid, Spain

Shapley LS (1971) Cores of convex games. Int J Game Theory 1:11–26

	Project games
	Abstract
	Introduction
	Project situations
	Delayed project games
	Expedited project games
	Project games
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

