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Abstract Behavioral economics provides several motivations for the common
observation that agents appear somewhat unwilling to deviate from recent choices.
More recent choices can be more salient than other choices, or more readily available
in the agent’s mind. Alternatively, agents may have formed habits, or use rules of
thumb. This paper provides discrete-time adjustment processes for strategic games in
which players display such a bias towards recent choices. In addition, players choose
best replies to beliefs supported by observed play in the recent past. We characterize
the limit behavior of these processes by showing that they eventually settle down in
minimal prep sets (Voorneveld in Games Econ Behav 48:403–414, 2004).

Keywords Adjustment · Learning · Minimal prep sets · Availability bias · Salience ·
Rules of thumb

JEL Classification C72 · D83

1 Introduction

The behavioral economics literature provides several motivations for the common
observation that agents appear somewhat unwilling to deviate from their recent choices.
For instance, Tversky and Kahneman (1982, p. 11) mention the bias towards recent
choices as an example of the availability bias, the ease with which instances come to
mind. Similarly, Schelling (1960) has argued that players, when indifferent between
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strategies, choose the most salient strategy. In combination with the so-called recency
effect (Miller and Campbell 1959) this may explain why agents appear to have a pre-
ference for recent choices. The recency effect refers to the cognitive bias that results
from disproportionate salience of recent stimuli or observations. Other motivations in-
clude models for agents displaying defaulting behavior or inertia (cf. Vega-Redondo
1993; Madrian and Shea 2001), the formation of habits (cf. Young 1998), the use of
rules of thumb (cf. Ellison and Fudenberg 1993), or the locking in on certain modes
of behavior due to learning by doing (cf. Grossman et al. 1977) or, as Joosten et al.
(1995) express it: unlearning by not doing.

This paper provides a class of discrete-time adjustment processes for mixed exten-
sions of finite strategic games in which players display precisely such a bias towards
recent choices. Apart from this behavioral assumption, the assumptions underlying
the adaptive processes in this paper are in conformance with much of the literature on
learning (cf. Hurkens 1995; Fudenberg and Levine 1998; Young 1998): players choose
best replies to beliefs that are supported by observed play in the recent past. The pur-
pose of this paper is to show that these behaviorally plausible models of adaptive
play eventually settle down in so-called minimal prep sets, thus providing a dynamic
motivation for such sets.

Minimal prep sets (‘prep’ is short for ‘preparation’) were introduced and studied
in a static framework in Voorneveld (2004, 2005). This set-valued solution concept
for strategic games combines a standard rationality condition, stating that the set
of recommended strategies to each player must contain at least one best reply to
whatever belief he may have that is consistent with the recommendations to the other
players, with players’ aim at simplicity, which encourages them to maintain a set of
strategies that is as small as possible. The latter feature discerns minimal prep sets
from (a) minimal curb sets (Basu and Weibull 1991), which are product sets of pure
strategies containing not just some, but all best responses against beliefs restricted to
the recommendations to the remaining players, and (b) persistent retracts (Kalai and
Samet 1984), which also require the recommendations to each player to contain at
least one best reply to beliefs in a small neighborhood of the beliefs restricted to the
recommendations to the other players.

The choice of the term “preparation” in connection with minimal prep sets is
motivated by the rationality requirement. Given an arbitrary belief of a player that
is consistent with the recommendations to the other players, his recommended set of
strategies leaves him well-prepared: it contains an optimal response against all such
eventualities. On the other hand, one does not have to be exhaustive to be prepared:
the notion of prep sets avoids the potential snowball effect from the requirement that
all best replies against a given belief (and all best replies against all these best replies,
and so on…) need to be included, as demanded of the curb sets of Basu and Weibull
(1991). Think of the set of recommendations to a player in a minimal prep set as a
well-packed suitcase for a holiday: you want to be prepared for different kinds of
weather, but bringing all five of your umbrellas and all seven bathing suits may be
overdoing it.1

1 We are grateful to Dries Vermeulen for suggesting this “no excess luggage” interpretation.
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Fig. 1 A 3 × 3 game

The game in Fig. 1 provides a simple example to illustrate the difference between
pure Nash equilibria, minimal curb sets, and minimal prep sets. The game has no pure
Nash equilibria. Its only—hence minimal—curb set is the entire pure strategy space
{R1, R2, R3} × {C1, C2, C3}. There are two minimal prep sets, {R1, R2} × {C1, C2}
and {R2, R3} × {C2, C3}, roughly speaking the “Matching pennies” subgames.

Voorneveld (2004, 2005) contains a general existence proof and a detailed compa-
rison of minimal prep sets with Nash equilibria, rationalizability, minimal curb sets,
and persistent retracts. Voorneveld et al. (2005) provide axiomatizations of minimal
prep sets and minimal curb sets. Tercieux and Voorneveld (2005) show that minimal
prep sets provide sharp predictions in many economic applications, including potential
games, congestion games, and supermodular games, even in cases where minimal curb
sets have no cutting power whatsoever and simply consist of the entire strategy space.
The current paper complements this literature by providing a dynamic motivation for
minimal prep sets.

For play to settle down in a specific set, like a minimal prep or curb set, players
somehow need to learn to coordinate on actions from within this set. Crawford and
Haller (1990, p. 577) indicate that an important coordination device is the fact that
players “use asymmetric history to “label” actions that cannot be distinguished at the
start”. In our model, players use histories to form beliefs, but also to select between
best replies. The behavioral bias towards recent best replies is a specific example of a
way to exploit the history to distinguish between actions that all perform well against
a player’s beliefs.

The work that is closest in spirit to our analysis is that of Hurkens (1995). In
both his work and in the current paper, convergence to a set-valued solution concept
is established, firstly, for discrete-time adjustment processes characterized by condi-
tions on transition probabilities (zero or positive), secondly, for all finite games (in
contrast with e.g., Young (1998), who restricts attention to weakly acyclic games),
and, thirdly, for all memory lengths exceeding a certain lower bound. There are,
however, important differences. The behavioral bias towards recent choices that players
use to distinguish between best replies is absent in Hurkens’ model: there, players
indiscriminately choose best replies to their beliefs. As a consequence, players in our
model need to keep track of whether one best reply was chosen more recently than
another. However, this does not mean that a player needs to have perfect memory of his
own past action choices. This is particularly clear if a player has only two actions: if
both happen to be a best reply to his current belief, the action he chose in the previous
round is the most recent one and therefore all he needs to recall. We return to this issue
in more detail in Remarks 3.1 and 5.2.

The outline of this paper is as follows. We recall definitions in Sect. 2. The evolution
of play is discussed in Sect. 3. Section 4 contains the convergence theorem and explains

123



336 W. Kets, M. Voorneveld

the steps towards the proof. In Sect. 5, we discuss a more general class of adjustment
processes for which play also settles down in minimal prep sets. Section 6 contains
concluding remarks. All proofs are contained in the appendix.

2 Preliminaries

Weak set inclusion is denoted by ⊆, strict set inclusion by ⊂. The number of elements
in a finite set S is denoted by |S|. For k ∈ N, the k-fold cartesian product ×k

i=1S is
denoted by Sk .

A game is a tuple G = 〈N , (Ai )i∈N , (ui )i∈N 〉, where N = {1, . . . , n} is a
nonempty, finite set of players, each player i ∈ N has a nonempty, finite set Ai of
pure strategies/actions and a von Neumann–Morgenstern utility function ui : A → R

on the set of pure strategy profiles A = ×i∈N Ai . Let Xi be a nonempty subset of
Ai . The set of mixed strategies of player i ∈ N with support in Xi is denoted by
�(Xi ). Payoffs are extended to mixed strategies in the usual way. Let i ∈ N and let
α−i ∈ × j∈N\{i} �(A j ) be a belief2 of player i . The set

B Ri (α−i ) = {ai ∈ Ai | ∀bi ∈ Ai : ui (ai , α−i ) ≥ ui (bi , α−i )}

is the set of pure best responses of player i against α−i .
Fix a game G = 〈N , (Ai )i∈N , (ui )i∈N 〉. A prep set (Voorneveld 2004) is a

nonempty product set X = ×i∈N Xi ⊆ A of pure-strategy profiles such that for
each i ∈ N and each belief α−i of player i with support in X−i , the set Xi contains at
least one best response of player i against his belief:

∀i ∈ N ,∀α−i ∈ × j∈N\{i} �(X j ) : B Ri (α−i ) ∩ Xi 
= ∅.

A prep set X is minimal if no prep set is a proper subset of X . Establishing existence
of minimal prep sets in finite games is simple: the entire pure-strategy space A is
a prep set. Hence the collection of prep sets is nonempty, finite (since A is finite)
and partially ordered by set inclusion. Consequently, a minimal prep set exists. See
Voorneveld (2004, Theorem 3.2) for a general existence result.

In our adaptive processes, a game G = 〈N , (Ai )i∈N , (ui )i∈N 〉 is played once every
period in discrete time. A history (of play) is a sequence h = (a1, . . . , aL) ∈ AL of
some arbitrary length L ∈ N, whose leftmost element

�(h) := a1 ∈ A

is interpreted as the action profile chosen in the previous period according to history
h, with �i (h) := a1

i ∈ Ai the action played by i ∈ N . Generally, the k-th element
from the left is the action profile ak ∈ A chosen k ∈ N periods ago.

2 Beliefs are profiles of mixed strategies: correlation is not allowed.
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A successor of history h = (a1, . . . , aL) is a history obtained after one more
period of play, a history h′ = (b1, b2, . . . , bL+1) obtained from h by appending a new
leftmost element: b1 ∈ A and bk = ak−1 for all k = 2, . . . , L + 1.

Fix a history h = (a1, . . . , aL) and a player i ∈ N . The set of actions chosen by i
during the last3 k ∈ {1, . . . , L} rounds of history h is denoted by

λi (h, k) := {a1
i , . . . , ak

i }.

The order oi,h of player i’s actions in history h is defined as follows: his most recent
action, i.e., the first encountered action is oi,h(1) := a1

i and, inductively, for k =
2, . . . , |{a1

i , . . . , aL
i }|, the k-th encountered action is oi,h(k) := am

i with m = min{q ∈
{1, . . . , L} | aq

i /∈ {oi,h(1), . . . , oi,h(k − 1)}}.
Example 2.1 Consider a two-player game with N = {1, 2} and action spaces A1 =
{R1, R2}, A2 = {C1, C2}. Consider the history

h = ((R1, C2), (R2, C2), (R2, C1))

of length three. Then �(h) = (R1, C2). The set of actions player 1 chose during the most
recent two periods is λ1(h, 2) = {R1, R2}, whereas λ2(h, 2) = {C2}. As to orders,
player 1’s action R1 is encountered first, then R2, so o1,h(1) = R1, o1,h(2) = R2.
Similarly, o2,h(1) = C2, o2,h(2) = C1.

3 Adaptive play

This section presents a class of Markov chains to model adaptive play with a bias
towards choices from the recent past. A game G = 〈N , (Ai )i∈N , (ui )i∈N 〉 is played
once every period in discrete time. In line with much of the literature on learning models
(cf. Hurkens 1995; Fudenberg and Levine 1998; Young 1998), players choose, at each
moment in time, best replies to beliefs supported by a limited horizon of observed past
play of fixed length T ∈ N.4 Consequently, we define the state space H to consist of
all histories h = (a1, . . . , aL) with length at least T , i.e., h ∈ ∪K∈N,K≥T AK .

Having defined the set H of states, we proceed to transition probability functions
P : H × H → [0, 1], where P(h, h′) is the probability of moving from state h ∈ H
to state h′ ∈ H in one period and

∑
h′∈H P(h, h′) = 1 for all h ∈ H . To do so, we

model beliefs and responses to them.
Beliefs: Players’ beliefs are based on observed play in the past T ∈ N periods. Formally,
for each state h ∈ H , if the sequence of action profiles played in the past T periods
is (a1, . . . , aT ) ∈ AT , then player i’s beliefs are drawn from a probability measure
P(i,(a1,...,aT )) over the set of beliefs (with its standard topology and Borel σ -algebra)

3 Hence our choice of the alliterative λ (lambda).
4 Our adjustment processes are defined for a fixed game G and memory length T ; to simplify notation,
indices G and T are suppressed.
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× j∈N\{i}�({a1
j , . . . , aT

j }) = × j∈N\{i}�(λ j (h, T ))

with support in the product set of actions chosen in the previous T periods. For the
convergence result, the exact probabilities are irrelevant: what matters is that some
are positive, others zero. We therefore refrain from restricting attention to specific
belief formation processes or updating procedures. As long as beliefs are sufficiently
diverse—see Remark 3.2 or the related discussion in Hurkens (1995, pp. 310–311)—it
is immaterial how they are formed.
Responses: Given a belief α−i ∈ × j∈N\{i}�(λ j (h, T )), we assume that player i
chooses the most recent best reply to α−i if such a best reply exists, i.e., if in state h
some best reply to α−i has been played before. Otherwise, player i chooses each best
reply to α−i with positive probability, i.e., it is drawn from a probability measure Pα−i

over Ai whose support coincides with the set of best replies B Ri (α−i ). Players thus
have a bias towards recent choices.5

Together, the probability distributions P(i,(a1,...,aT )) that fix for each player i ∈ N
and account of recent play (a1, . . . , aT ) ∈ AT the way beliefs are drawn, and the
assumption that players are biased towards recent choices, determine the transition
probabilities P(h, h′) ∈ [0, 1] for each pair of states (h, h′) ∈ H ×H . If P(h, h′) > 0,
then histories h, h′ ∈ H satisfy conditions P1 and P2 in Fig. 2.

Condition P1 is standard for discrete-time processes, stating that between time
periods the game is played once: the process moves from a history h to one of its
successors h′. Condition P2 states, firstly, that the process P is a best-reply process:
the action �i (h′) ∈ Ai chosen by each player i ∈ N is a best reply to some belief α−i

about the remaining players’ behavior based on recent experience, i.e., with support in
× j∈N\{i}�(λ j (h, T )). Secondly, it models the bias towards recent choices: whenever
possible, each player i ∈ N chooses the most recent best reply to belief α−i .

Let P be the class of transition probability functions P achieved in this way, i.e.,
using probability distributions {P(i,(a1,...,aT )) | i ∈ N , (a1, . . . , aT ) ∈ AT } and the
behavioral bias, and with P(h, h′) > 0 if and only if states h, h′ ∈ H satisfy conditions
P1 and P2 in Fig. 2.

Remark 3.1 The behavioral bias towards recent choices modeled in P2 requires that a
player with multiple best replies against his current belief recalls whether one of them
was played more recently than another. However, this does not require players to have
perfect memory about their own actions: If you played one best reply yesterday and
another a week ago, your choice is independent of whether you also adopted these
actions further away in the past. All that matters is that each player i ∈ N in history
h ∈ H recalls the order oi,h defined in Sect. 2. This is a considerably more modest
requirement than remembering the entire history of own actions: oi,h specifies a simple

5 The probability of choosing ai ∈ Ai against beliefs to which no best reply was chosen before is

∫

{α−i |B Ri (α−i )∩λi (h,L)=∅}
Pα−i (ai ) dP

(i,(a1,...,aT ))
,

i.e., α−i �→ Pα−i (ai ) is assumed to be Borel measurable.
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Fig. 2 For P ∈ P , P(h, h′) > 0 iff h, h′ ∈ H satisfy P1 and P2

linear order of at most |Ai | actions. Between consecutive rounds of play, this linear
order either remains the same or changes in the following way: The action ranked first
(the most recent action) is changed and the other actions are moved one step down the
ladder. For instance, even after numerous rounds of play, the only thing a player with
just two actions needs to recall from his own past is last period’s action.

Remark 3.2 Inherent in the definition of the class P of transition probability functions
(see Fig. 2) is that beliefs must be “sufficiently diverse” to assure that player i ∈ N has
a positive probability of selecting ai ∈ Ai whenever it is a (most recent) best reply to
some belief over recent past play. More specifically, by P2, player i is tempted to play
ai against beliefs α−i over recent past play to which it is the most recent best reply
or—if no such most recent best reply exists—to which it is an arbitrary best reply. If the
set of such “tempting” beliefs is nonempty, player i assigns positive probability to it.

For each k ∈ N, Pk : H × H → [0, 1] denotes the k-step transition probabilities
of the Markov process with transition probability function P ∈ P: P1 = P and
Pk = P ◦ Pk−1 if k > 1.

4 Convergence and steps towards the proof

This section presents the main result of this paper. Theorem 4.1 states, for each game
G and adjustment process in the class P , that if beliefs are based on recent experience
of sufficient length T , then play will eventually settle down within a minimal prep set.
The steps of the proof are briefly explained in this section; the proof itself is contained
in Appendix A.

Given a game G and an adjustment process P ∈ P , we say that the process
eventually settles down in a minimal prep set of G if the probability that the process
after k steps is in a state h ∈ H where

• the most recently played action profile �(h) lies in some minimal prep set X of G:

�(h) ∈ X

• all future action profiles remain inside X :

�(h′) ∈ X whenever Pm(h, h′) > 0 for some m ∈ N, h′ ∈ H ,

converges to one as k goes to infinity.
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Theorem 4.1 Let G = 〈N , (Ai )i∈N , (ui )i∈N 〉 be a game. Let the horizon T ∈ N of
recent past play on which beliefs are based satisfy

T ≥ max

{
∑

i∈N

|Ai | − n + 1, 2|A1|, . . . , 2|An|
}

. (1)

If P ∈ P , then play eventually settles down in a minimal prep set of G.

Remark (i) If the game has several minimal prep sets, the one selected by the
learning process typically depends on initial conditions. For instance, if the
initial state is such that the collection of most recent actions is a minimal prep
set X , the process settles down in X .

(ii) Condition P2 assures that play will not settle down in proper subsets of a minimal
prep set. Suppose play settles down in a product set Y properly contained in a
minimal prep set X . Since Y is not a prep set, there is a player i with a belief
over recent past play against which Yi contains no best reply. Condition P2
assures that player i with positive probability chooses such a best reply, i.e.,
an action outside Yi , contradicting the assumption that play has settled down
in Y . A similar intuition is used in the proof of the Theorem in Appendix A
(Lemma A.1).

(iii) The statement of Theorem 4.1 follows the traditional pattern (cf. Hurkens 1995;
Fudenberg and Levine 1998; Young 1998): if memory is ‘sufficiently long’, play
settles down in sets of a certain type. Thus, we indicate a sufficient length in (1),
without aiming at sharpness. Were one to exploit specific features of a game,
the bound might be decreased (e.g., Kets and Voorneveld 2007).

Steps of the proof The proof of Theorem 4.1 proceeds in four steps:

Step 1 Let h0 ∈ H . The process moves with positive probability in T − 1 steps to a
state h1 ∈ H where the product set ×i∈N λi (h1, T ) ⊆ A of actions played in the past
T periods is a prep set.

The intuition behind this step is as follows. If, for some state g ∈ H and some
k ≤ T , the product set ×i∈N λi (g, k) is a prep set, then with positive probability,
players choose actions from this prep set for T − k periods in a row. If on the other
hand, ×i∈N λi (g, k) is not a prep set, then there is a nonempty set of players i ∈ N
with a belief α∗−i ∈ × j∈N\{i} �(λ j (g, k)) over play in the past k periods to which
λi (g, k) does not contain a best reply. In that case, one can construct a sequence of
states g1, g2, . . . ∈ H with g1 = g, P(gk, gk+1) > 0 for all k = 1, 2, . . . , such
that the sequence of product sets ×i∈N λi (gk, k) is strictly increasing with respect to
set inclusion (see Lemma A.1 in Appendix A). All these sets are contained in the
finite set A of action profiles which is a prep set. Since there are only finitely many
actions, the sequence reaches, after a finite number of steps, a state gK ∈ H where
×i∈N λi (gK , K ) is a prep set. From that state onwards, players choose with positive
probability actions from the prep set for T − K periods in a row.

Step 2 From state h1, the process moves with positive probability in a finite number
of steps to a state h2 ∈ H where X := ×i∈N λi (h2, T ) is a minimal prep set.
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Indeed, let X = ×i∈N Xi ⊆ ×i∈N λi (h1, T ) be a minimal prep set. The proof of
this step relies on the fact that one can—under some conditions—perform so-called
neighbor switches: from a state h ∈ H , the process moves with positive probability
in T steps to a state h′ ∈ H whose horizon of recent past play is identical to the one
in h, except that two neighboring actions of some player have changed places (see
Lemma A.6). As all permutations of a finite set can be obtained by a chain of such
neighbor switches, the process moves with positive probability from state h1 to a state
h′ where, for each player i ∈ N , λi (h′, |Xi |) = Xi , i.e., the |Xi | most recent actions
of each player i are exactly those in his component of the minimal prep set X . Then
it is easy to show that the process moves with positive probability to a state h2 within
a finite number of steps such that ×i∈N λi (h2, T ) = X is a minimal prep set.

Step 3 After reaching state h2, all action profiles that are played with positive proba-
bility lie in X , i.e.,

∀k ∈ N, ∀h ∈ H : Pk(h2, h) > 0 ⇒ �(h) ∈ X.

In state h2, ×i∈N λi (h2, T ) = X is a minimal prep set, which by definition contains
at least one best reply to whatever belief a player may have about other players’ choices
from X . Hence, by induction, the actions from minimal prep set X will always be
fresher in players’ recollection of past play than actions outside X , so that to any
belief that a player i may have about opponents’ play, there is an action in Xi that is
the most recent best reply. Hence, from state h2 onwards, players i ∈ N only choose
actions from Xi .

Step 4 Starting from an arbitrary history h0, Steps 1 and 2 show that there is a positive
probability of proceeding to a history h2 in a finite number of steps, after which play
settles down in a minimal prep set, i.e., a positive probability of proceeding to an
absorbing set of states in finitely many steps. Since the initial history was chosen
arbitrarily, this eventually happens with probability one, finishing the proof. ��

5 Allowing for other behavioral biases

To show that processes from P eventually settle down in minimal prep sets, the
proof of Steps 1 and 2 of Theorem 4.1 (see Appendix A) uses that certain transition
probabilities are positive to show that the process can move from any initial state
h0 ∈ H in a finite number of steps to a state h2 ∈ H where ×i∈N λi (h2, T ) is a minimal
prep set. The proof of Step 3 uses that certain transition probabilities are zero to
show that each player—once such a state h2 is reached—continues to play action
profiles from the minimal prep set. We motivated these conditions on the transition
probabilities by assuming that players, whenever possible, choose the most recent best
reply to a certain belief. However, any class of adjustment processes that respects these
conditions on the sign of the transition probabilities will converge to minimal prep
sets. Hence, one can easily extend the class of adjustment processes with this limit
behavior.

123



342 W. Kets, M. Voorneveld

In particular, suppose that for each player i ∈ N , the response to a belief drawn
from recent past play is chosen according to a probability distribution (mixed strategy)
Ri,h ∈ �(Ai ) depending on (1) the account (a1, . . . , aT ) of recent past play, and (2)
the order in which the players’ used actions appear in h. That is, for each pair of states
h = (a1, . . . , aL), g = (b1, . . . , bK ) ∈ H :

(a1, . . . , aT ) = (b1, . . . , bT )

oi,h = oi,g for all i ∈ N

}

⇒ Ri,h = Ri,g for all i ∈ N . (2)

The collection of functions R = (Ri,h)i∈N ,h∈H determines, for each pair of states
h, h′ ∈ H , the transition probability PR(h, h′) ∈ [0, 1]. If PR(h, h′) > 0, then h′ is a
successor of h (property P1 in Fig. 2) and

PR(h, h′) =
∏

i∈N

Ri,h(�i (h
′))

is the probability of the players choosing action profile �(h′). Let P̃ be the collection
of transition probability functions {PR : H × H → [0, 1] | R = (Ri,h)i∈N ,h∈H }
satisfying the restrictions on the sign of the transition probabilities instrumental to the
proof of Theorem 4.1, i.e., for each pair of histories h, h′ ∈ H :

(α) If P1 and P2 hold, then PR(h, h′) > 0.
(β) If the product set of actions played during the most recent k ≥ T rounds of

h is a minimal prep set, play settles down within this set. Formally, if X :=
×i∈N λi (h, k) is a minimal prep set for some k ≥ T and PR(h, h′) > 0, then
×i∈N λi (h′, k + 1) = X , i.e., �(h′) ∈ X .

One easily shows that P ⊆ P̃ . In many games, the set inclusion is strict and one finds
processes in P̃\P by letting players choose more freely among recent best replies.
By construction, if memory is sufficiently long, processes in P̃ eventually settle down
in minimal prep sets. To summarize (the proof is in Appendix B):

Proposition 5.1 Let G = 〈N , (Ai )i∈N , (ui )i∈N 〉 be a game andlet T ∈ N. Then

P ⊆ P̃ . Moreover, if PR ∈ P̃ and the horizon T ∈ N of recent past play is sufficiently
large, then play eventually settles down in a minimal prep set of G.

Finally, we show why it is essential for convergence to minimal prep sets that
players keep track of the order oi,h defined in Sect. 2, rather than just the order of their
actions over the past T rounds of play.

Remark 5.2 If players remember from their own past only their actions in the previous
T periods, the resulting processes need not converge to minimal prep sets: None of
the players i ∈ N can condition his behavior on the order oi,h of actions chosen more
than T periods ago at state h. To see why this prevents convergence to minimal prep
sets, refer back to Fig. 1. Suppose that over the past T rounds, players have chosen
the actions from minimal prep set X = {R1, R2} × {C1, C2}. Why wouldn’t play
settle down there? Suppose players play (R1, C2) at a given round, which are best
replies to beliefs over X . In response to these actions, there is a positive probability
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that they choose (R2, C2) for T consecutive periods. At that point, player 2’s only
feasible belief over past play is that player 1 chooses R2. Player 2 recalls only his past
T actions, i.e., just C2 which is no best reply to R2. Therefore, he chooses among the
best replies {C1, C3} to R2, which means that he may jump outside the minimal prep
set X by selecting C3.

6 Concluding remarks

The purpose of this paper was to study discrete-time best-response processes with a
behaviorally plausible bias towards recent actions. Such processes were shown to settle
down in minimal prep sets. This dynamic motivation complements earlier papers on
minimal prep sets in a static environment, where the concept is compared with many
other solution concepts (Voorneveld 2004, 2005; Voorneveld et al. 2005) and shown to
have genuine “bite” in economic applications (Tercieux and Voorneveld 2005), even
in cases where, for instance, minimal curb sets have no cutting power whatsoever.

Several modifications of these processes were discussed in the previous section. We
cannot possibly do justice to the long list of choice biases discussed in the behavioral
economics literature. An interesting direction for future research—although outside
the scope of the current paper—would be to more systematically investigate the links
between different types of behaviorally plausible biases in adjustment processes and
the corresponding limiting behavior.
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Appendix A Proof of Theorem 4.1

Fix a game G = 〈N , (Ai )i∈N , (ui )i∈N 〉, length T ∈ N of recent past play with
T ≥ max{∑i∈N |Ai | − n + 1, 2|A1|, . . . , 2|An|}, and an adjustment process with
transition probability function P ∈ P . We start with some additional notation. Fix an
arbitrary history h = (a1, . . . , aL) ∈ H and player i ∈ N . The action player i chose
in h a number of t ∈ {1, . . . , T } periods ago is denoted by

ai (h, t) := at
i

and the action player i chose in h exactly T periods ago is denoted by

τi (h) := aT
i = ai (h, T ).
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Action ai ∈ λi (h, T ) is blocked in h if there is no belief α−i ∈ × j∈N\{i}�(λ j (h, T ))

against which it is the most recent best reply. Finally, the frequency with which player
i chose action ai ∈ λi (h, T ) during the past T rounds of history h is

fi (h, ai ) = |{t ∈ {1, . . . , T } : ai (h, t) = ai }|.
We now prove the four steps of Theorem 4.1.

A.1 Proof of Step 1

Step 1 Let h0 ∈ H . The process moves with positive probability in T − 1 steps to a
state h1 ∈ H where the product set ×i∈N λi (h1, T ) ⊆ A of actions played in the past
T periods is a prep set. The proof uses the following lemma.

Lemma A.1 Consider state h = (a1, . . . , aL) ∈ H and a number t ∈ {1, . . . , T −1}.
(a) Suppose that ×i∈N λi (h, t) ⊆ A is not a prep set. Then the process moves with

positive probability to a successor h′ of h where

×i∈N λi (h, t) ⊂ ×i∈N λi (h
′, t + 1). (3)

(b) Suppose that ×i∈N λi (h, t) ⊆ A is a prep set. Then the process moves with
positive probability to a successor h′ of h where

×i∈N λi (h, t) = ×i∈N λi (h
′, t + 1). (4)

Proof (a) Since ×i∈N λi (h, t) ⊆ A is not a prep set, there is a nonempty set S ⊆ N
of players i ∈ N with a belief α∗−i ∈ × j∈N\{i} �(λ j (h, t)) over the play in
the past t periods to which λi (h, t) does not contain a best reply: B Ri (α

∗−i ) ∩
λi (h, t) = ∅. Fix such a belief α∗−i for each i ∈ S and let bi ∈ B Ri (α

∗−i ) be
a best reply to α∗−i chosen in accordance with P2: it is the most recent one if
B Ri (α

∗−i ) ∩ {a1
i , . . . , aL

i } 
= ∅. For each i ∈ N\S, let bi ∈ λi (h, t) be the most
recent best reply to an arbitrary belief over play in the past t periods. Such a best
reply exists by definition of S. By P1 and P2, the process moves with positive
probability from state h to successor h′ = (b, a1, . . . , aL). Now (3) holds by
construction: if i ∈ N\S, then bi ∈ λi (h, t), so λi (h, t) = λi (h′, t + 1), and if
i ∈ S, then bi /∈ λi (h, t), so λi (h, t) ⊂ λi (h, t) ∪ {bi } = λi (h′, t + 1).

(b) Fix, for each i ∈ N , a belief α−i ∈ × j∈N\{i} �(λ j (h, t)) over the play in the past
t periods. Since ×i∈N λi (h, t) is a prep set, there is an action bi ∈ λi (h, t) which
is the most recent best reply to this belief. By P1 and P2, the process moves with
positive probability from h to h′ = (b, a1, . . . , aL). Since bi ∈ λi (h, t) for all
i ∈ N , it follows that λi (h′, t + 1) = λi (h, t), so (4) holds.

��
Applying Lemma A.1 T − 1 times, one can construct a sequence g1, . . . , gT in H

with g1 := h0 and for all k = 1, . . . , T − 1: P(gk, gk+1) > 0 and

×i∈N λi (gk, k) ⊆ ×i∈N λi (gk+1, k + 1),
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with strict inclusion if ×i∈N λi (gk, k) is not a prep set and equality otherwise. The
sequence of product sets ×i∈N λi (gk, k) in A can increase strictly during at most∑

i∈N |Ai | − n steps: the action space A is a prep set containing
∑

i∈N |Ai | actions;
×i∈N λi (g1, 1) captures n of them, and in each step at least one action is added until a
prep set is reached. Hence, the sequence has to reach, after K ≤ ∑

i∈N |Ai |− n steps,
a state gK+1 ∈ H where ×i∈N λi (gK+1, K + 1) is a prep set.6 In the final T − K − 1
steps, we proceed to a state gT , where

×i∈N λi (gT , T ) = ×i∈N λi (gT −1, T − 1) = · · · = ×i∈N λi (gK+1, K + 1)

remains a prep set. Taking h1 := gT finishes the proof of Step 1.

A.2 States without blocked actions

In this section, we show that from a state h ∈ H such that ×i∈N λi (h, T ) is a prep set,
the process moves with positive probability within a finite number of steps to a state
h′ ∈ H where ×i∈N λi (h′, T ) ⊆ ×i∈N λi (h, T ) is a prep set without blocked actions.
This is established in Lemma A.3, using Lemma A.2. Furthermore, in Lemma A.4 we
show that when considering a sequence g1, . . . , gK such that, for all k = 1, . . . , K ,
×i∈N λi (gk, T ) is a prep set and ×i∈N λi (g1, T ) ⊇ · · · ⊇ ×i∈N λi (gK , T ), we can
assume without loss of generality that none of the states (gk)k=1,...,K contains a blocked
action. We use this result in the lemmata of the following subsections.

Lemma A.2 Let h ∈ H be such that ×i∈N λi (h, T ) is a prep set. For each player
i ∈ N, define βi (h) ∈ λi (h, T ) as follows:

• if τi (h) is blocked, let βi (h) ∈ λi (h, T ) be an arbitrary non-blocked action;
• if τi (h) is not blocked, let βi (h) = τi (h).

Set h′ = (β(h); h), with β(h) = (βi (h))i∈N . Then:

P(h, h′) > 0 (5)

×i∈N λi (h
′, T ) ⊆ ×i∈N λi (h, T ) (6)

×i∈N λi (h
′, T ) is a prep set. (7)

Proof For all i ∈ N , βi (h) ∈ λi (h, T ) is not blocked by definition: there is a belief
α−i ∈ × j∈N\{i}�(λ j (h, T )) against which βi (h) is the most recent best reply. By
P1 and P2, (5) holds. Since βi (h) ∈ λi (h, T ) for all i ∈ N , (6) holds. To prove (7),
let i ∈ N and α−i ∈ × j∈N\{i}�(λ j (h′, T )). To show: B Ri (α−i ) ∩ λi (h′, T ) 
= ∅.
By construction, λi (h′, T ) equals either λi (h, T ) or, if τi (h) was blocked and chosen
only once in the most recent T periods of history h, λi (h, T )\{τi (h)}. Consequently,
λi (h′, T ) still contains a best reply to every belief over × j∈N\{i}�(λ j (h, T )), in par-
ticular to every belief over the subset × j∈N\{i}�(λ j (h′, T )). ��

6 This motivates the term M := ∑
i∈N |Ai | − n + 1 in the lower bound on T in (1): reaching a prep set

can take M − 1 steps; recalling the added actions and those in g1 can consequently take a memory length
M .
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Claim (6) means that we weakly decrease the pool of feasible beliefs in going from
h to h′ = (β(h); h). This implies that if ai := τi (h) was blocked in h, but was chosen
more than once in the last T rounds of h, i.e., if ai ∈ λi (h′, T ), then it remains blocked:

if ai := τi (h) was blocked in h and ai ∈ λi (h
′, T ), then it is blocked in h′. (8)

By definition, blocked actions are not chosen in going from h to h′. Thus, if an action is
blocked in h, it is either no longer contained in ×i∈N λi (h′, T ), in which case (6) holds
with strict inclusion, or it remains blocked in h′ by (8), but lies further back in players’
memory. Hence, repeated application of Lemma A.2 to the sequence g1, g2, . . . in
H with g1 = h and gk+1 = (β(gk); gk) for all k ∈ N, yields that a blocked action
disappears from memory in at most T steps, in which case the product set of recent
actions has become strictly smaller in the weakly decreasing sequence

×i∈N λi (g1, T ) ⊇ ×i∈N λi (g2, T ) ⊇ · · ·

By (7), the product set remains a prep set. Since there are only finitely many prep sets,
it follows that we eventually reach a state gk without blocked actions. This proves:

Lemma A.3 Let h ∈ H be such that ×i∈N λi (h, T ) is a prep set. Either h contains
no blocked actions, or the process moves with positive probability in a finite number
of steps to a state h′ ∈ H where ×i∈N λi (h′, T ) ⊂ ×i∈N λi (h, T ) is a prep set and h′
contains no blocked actions.

The proof of Step 2 uses so-called drag-to-front operations (Sect. A.3) and neigh-
bor switches (Sect. A.4) to establish the following: Given a state g1 ∈ H where
×i∈N λi (g1, T ) is a prep set, the process moves with positive probability in a finite
number of steps through a sequence of states g1, g2, . . . , gK such that

∀k = 1, . . . , K : ×i∈N λi (gk, T ) is a prep set, (9)

×i∈N λi (g1, T ) ⊇ ×i∈N λi (g2, T ) ⊇ · · · ⊇ ×i∈N λi (gK , T ), (10)

and gK has the property that for some minimal prep set X = ×i∈N Xi and each i ∈ N :

λi (gK , |Xi |) = Xi ,

i.e., for each player i ∈ N , the most recent |Xi | actions are exactly those in i’s
component of the minimal prep set X . If any of the states gk contains a blocked action,
apply Lemma A.3 to move to a state g′ where ×i∈N λi (g′, T ) ⊂ ×i∈N λi (gk, T ) is a
prep set and g′ contains no blocked actions. Then, we can start the repeated use of drag-
to-front operations and neighbor switches anew from g′. Since there are only finitely
many prep sets and the prep set ×i∈N λi (g′, T ) is strictly contained in ×i∈N λi (gk, T ),
we eventually reach in a finite number of steps a state from which we can apply
drag-to-front operations and neighbor switches without ever encountering a state with
a blocked action. Hence:
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Lemma A.4 In a sequence of states (gk)k=1,...,K satisfying (9) and (10), obtained
using drag-to-front operations and neighbor switches, we may assume w.l.o.g. that
none of the states contains a blocked action.

A.3 Drag-to-front operations

Consider a state h ∈ H containing no blocked actions for which ×i∈N λi (h, T ) is
a prep set. Then, by definition, for each i ∈ N , βi (h) = τi (h), the action player i
chose T periods ago in state h (see Lemma A.2). Hence, in the successor (β(h); h) =
(τ (h); h), this action is dragged to the front of player i’s account of recent past play.
For easy reference, call the transition from h to (β(h); h) = (τ (h); h) a drag-to-front
operation.

Suppose some player j ∈ N has an action a j ∈λ j (h,T ) with frequency f j (h,a j )=1.
Since7 T ≥ 2|A j | by (1), there must be an action b j ∈ λ j (h, T ) with frequency
f j (h, b j ) ≥ 3. By Lemma A.4, and using drag-to-front-operations if necessary, we
can assume without loss of generality that player j chose b j exactly T periods ago:
τ j (h) = b j . For each player i ∈ N , define γi (h) ∈ λi (h, T ) as follows:

γi (h) =
{

τi (h) if i 
= j,
a j if i = j.

Set h′ = (γ (h); h) with γ (h) = (γi (h))i∈N . Recall: (1) γi (h) ∈ λi (h, T ) for all
i ∈ N , (2) ×i∈N λi (h, T ) is a prep set, and (3) no actions in h are blocked; so each
γi (h) is the most recent best reply to a belief α−i ∈ ×k∈N\{i}�(λk(h, T )). By P1 and
P2, P(h, h′) > 0.

By construction, ×i∈N λi (h′, T ) = ×i∈N λi (h, T ) remains a prep set. The frequency
of the actions of players i 
= j is unaffected:∀i ∈ N\{ j},∀ci ∈ λi (h′, T ) = λi (h, T ) :
fi (h′, ci ) = fi (h, ci ). For player j and c j ∈ λ j (h′, T ) = λ j (h, T ):

f j (h
′, c j ) =

⎧
⎨

⎩

f j (h, c j ) if c j /∈ {a j , b j },
f j (h, a j ) + 1 = 2 if c j = a j ,

fi (h, b j ) − 1 ≥ 2 if c j = b j .

By going from h to h′, the number of actions with frequency one has strictly decreased,
whereas there is no action with frequency larger than or equal to two whose frequency
becomes less than two.

Repeating this process, we eventually reach a state where all actions in the history
of recent past play have frequency greater than or equal to 2. By Lemma A.3, we may
assume that none of its actions is blocked. This proves:

7 This motivates the term 2|A j | in the lower bound on T . Moreover, if the memory length is below this
bound, neighbor switches as defined in Sect. A.4 may cause actions from prep sets to disappear from a
player’s recollection.
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Lemma A.5 Let h ∈ H be such that ×i∈N λi (h, T ) is a prep set. Then the process
moves with positive probability in a finite number of steps to a state h′ ∈ H with
×i∈N λi (h′, T ) ⊆ ×i∈N λi (h, T ) such that

[C1] ×i∈N λi (h′, T ) is a prep set,
[C2] all actions have frequency at least 2: ∀i ∈ N ,∀ai ∈ λi (h′, T ) : fi (h′, ai ) ≥ 2,
[C3] h′ contains no blocked actions.

A.4 Neighbor switches

Repeatedly applying drag-to-front operations starting in a state h ∈ H where no actions
are blocked and ×i∈N λi (h, T ) is a prep set, we get a sequence of states g0, g1, . . . ∈ H
with g0 := h such that for all players i ∈ N and all t ∈ N: �i (gt ) = τi (gt−1), i.e., we
get a periodic repetition of each player’s actions.

Instead, it is possible that some player i chooses his actions in such a way that the
process moves to a state in which the order in which player i plays two neighboring
actions—say those chosen t and t + 1 periods ago in state h—is changed, while the
others continue to play actions in their given order. For instance, the process may move
from Fig. 3a to e, where player i’s order of actions b and c, chosen 2 and 3 periods
ago in Fig. 3a, respectively, is reversed while the order of actions of players j 
= i is
unchanged. In Fig. 3, the length of recent past play T is 4; actions chosen during the
most recent four periods are contained in the boxed part of the table; actions outside
the boxes have disappeared from recent past play. For instance, in Fig. 3c, player i
chose c five periods ago, d six periods ago. Since T = 4, these actions are no longer
part of recent past play.

The idea is simple:8 use drag-to-front operations until the actions to be switched are
those chosen T − 1 and T periods ago (the transition from Fig. 3a to 3b); in the next
two periods, let players j 
= i continue with drag-to-front operations, while player i
chooses the actions that are to be switched in reverse order (in going from Fig. 3b to
3c, i chooses b instead of c, in going from the Fig. 3c to 3d, i chooses c instead of b).
Finally, use drag-to-front operations until the switched actions are again at coordinates
t and t + 1 in the recent past play (the transition from Fig. 3d to 3e). Formally:

Lemma A.6 Let h ∈ H satisfy [C1] to [C3]. Let i ∈ N , t ∈ {1, . . . , T −1}. Assuming
w.l.o.g. (Lemma A.4) that we encounter no blocked actions, the process moves with
positive probability in T steps to a state h′ ∈ H satisfying [C1] to [C3] and in which
a j (h′, k) = a j (h, k) if j = i and k /∈ {t, t + 1}, or if j 
= i , whereas ai (h′, t) =
ai (h, t + 1) and ai (h′, t + 1) = ai (h, t).

Proof For notational convenience, let ai and bi be the actions player i chose t + 1
and t periods ago in h, respectively. Performing T − t − 1 drag-to-front operations,
we reach a state g1 satisfying [C1] to [C3] in which ai is the action i chose T periods
ago and bi the action he chose T − 1 periods ago.

Construct a successor g2 of g1 as follows: for each j ∈ N\{i}, set s1
j = τ j (g1) and

set s1
i = bi . Define g2 = (s1; g1), where s1 = (s1

j ) j∈N .

8 Figure 3 is for illustration only; we assume that all steps we describe there are feasible.
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Fig. 3 Switch i’s actions b and
c, keeping those of players j 
= i
in the same order

a

b

c

d

e

Construct a successor g3 of g2 as follows: for each j ∈ N\{i}, set s2
j = τ j (g2) and

set s2
i = ai . Define g3 = (s2; g2), where s2 = (s2

j ) j∈N .
For players j 
= i , these two steps involve simple drag-to-front operations. For

player i it involves reversing the order: in going from g1 to g2, i chooses bi , in going
from g2 to g3, i chooses ai , rather than playing first ai , then bi .

As ×i∈N λi (g1, T ) is a prep set and no actions are blocked in g1, it follows from
P1 and P2 that P(g1, g2) > 0. Moreover, as all actions in h have frequency at least
2, we have that λi (g1, T ) = λi (g2, T ) for all i ∈ N . Hence, also ×i∈N λi (g2, T ) is a
prep set. By Lemma A.4 we may assume that g2 contains no blocked actions. Hence,
also P(g2, g3) > 0. Moreover, it is easy to see that frequencies in g3 are identical to
frequencies in g1, i.e., at least equal to 2. We can thus conclude that also g3 satisfies
[C1] to [C3].

In g3, the two actions that are played most recently are ai and bi , respectively. Thus,
performing t − 1 drag-to-front operations leads to the desired state h′. ��

A.5 Proof of steps 2–4

Step 2 Let h1 ∈ H be such that ×i∈N λi (h1, T ) is a prep set. The process moves with
positive probability in a finite number of steps to a state h2 ∈ H where ×i∈N λi (h2, T )

is a minimal prep set.

Proof By Lemma A.5, the process moves with positive probability in a finite num-
ber of steps from h1 to a state g ∈ H satisfying [C1] to [C3]. Let X = ×i∈N Xi ⊆
×i∈N λi (g, T ) be a minimal prep set. Assuming w.l.o.g. (Lemma A.4) that from g
onward we do not encounter blocked actions, Lemma A.6 allows us to perform neigh-
bor switches. Every permutation of a finite set can be obtained by a chain of neighbor
switches; thus, repeated application of Lemma A.6 yields that the process moves in a
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finite number of steps to a state g0 ∈ H with the property that for each player i ∈ N ,
λi (g0, |Xi |) = Xi , i.e., for each player i ∈ N , the most recent |Xi | actions in g0 are
exactly those in i’s component of the minimal prep set X .

For each k ∈ N, let gk := ((ai (gk−1, |Xi |))i∈N ; gk−1) ∈ H , i.e., gk is the successor
of gk−1 obtained by letting each player i ∈ N play the action he chose |Xi | periods ago
in gk−1. Recalling that X is a minimal prep set, a simple inductive proof establishes
that for all k ∈ N it holds that P(gk−1, gk) > 0 and for all players i ∈ N we have

λi (gk, min{|Xi | + k, T }) = Xi .

Set k = T to find that ×i∈N λi (gT , T ) = X . Taking h2 := gT finishes the proof of
Step 2. ��
Step 3 Let h2 ∈ H be such that X = ×i∈N λi (h2, T ) is a minimal prep set. After
reaching h2, all action profiles that are played with positive probability lie in X :

∀k ∈ N,∀h ∈ H : Pk(h2, h) > 0 ⇒ �(h) ∈ X. (11)

Proof By P1 and P2, players always base beliefs on the actions played in the last T
periods and choose the most recent best reply to such beliefs. In h2, their account
of recent play ×i∈N λi (h2, T ) equals the minimal prep set X , which by definition
contains at least one best reply to whatever belief a player may have about other
players’ choices from X . Hence, by induction, the actions from minimal prep set X
will always be fresher in players’ recollection of past play than actions outside X , i.e.,
beliefs and best replies to these beliefs will, by P1 and P2, always have support in X .
Formally, for all k ∈ N and h ∈ H :

if Pk(h2, h) > 0, then ×i∈N λi (h, T + k) = X,

and hence

×i∈N λi (h, T ) ⊆ X.

In particular, this means �(h) ∈ X , i.e., (11) holds. ��
Step 4 For every state h0 ∈ H , the process eventually reaches a state h2 ∈ H satis-
fying the conditions in Step 2, i.e., where according to Step 3 play settles down in a
minimal prep set.

Proof Call two states h = (a1, . . . , aL) and g = (b1, . . . , bK ) in H equivalent,
denoted h ∼ g, if they have the same account of recent past play and the same order
in which each player i’s actions are encountered:

h ∼ g ⇔
{

(a1, . . . , aT ) = (b1, . . . , bT ),

oi,h = oi,g for all i ∈ N .

Notice that ∼ is an equivalence relation on H ; for each h ∈ H , let [h]= {h′ ∈ H : h ∼
h′} be the equivalence class containing h. Recall from Sect. 3 that in each state h ∈ H ,
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if the sequence of action profiles from the past T periods is (a1, . . . , aT ) ∈ AT , then,
firstly, player i’s beliefs α−i are drawn from a probability distribution P(i,(a1,...,aT ))

and, secondly, his response is (whenever possible) the most recent best reply to this
belief or (otherwise) drawn from a probability distribution Pα−i over his best replies.
Thus, player i’s choice behavior is the same in two equivalent states. Since there are
only finitely many elements in AT and N , it follows that the set of positive transition
probabilities {P(h, h′) | h, h′ ∈ H, P(h, h′) > 0} is a finite set. Let ε > 0 be its
minimum.

By Steps 1 to 3, it is possible, from any history h0 ∈ H , to reach a state h2 ∈ H in
an absorbing set where play settles down in a minimal prep set in a finite number of
steps, say k(h0) ∈ N. By definition of equivalence, k(h) = k(h0) for all h ∈ [h0]: the
set {k(h0) | h0 ∈ H} is finite. Let κ ∈ N be its minimum.

By definition of ε and κ , the probability of entering an absorbing set where play
settles down in a minimal prep set in at most κ steps is at least εκ from any state.
Hence, the probability of not reaching an absorbing set in κ steps is at most 1 − εκ ,
which is less than 1. So the probability of not reaching an absorbing set in kκ steps is
less than or equal to (1 − εκ)k , which goes to zero as k goes to infinity. ��

Appendix B Proof of proposition 5.1

Proof (The inclusion P ⊆ P̃): Let P ∈ P . The probability Ri,h(ai ) that player
i ∈ N in state h = (a1, . . . , aL) ∈ H chooses action ai ∈ Ai equals the probability
of drawing a belief α−i from P(i,(a1,...,aT )) to which:

(i) ai is the most recent best reply, or, alternatively,
(ii) no best reply was played before, but response ai is drawn from Pα−i .

Hence, there are functions R = (Ri,h)i∈N ,h∈H such that P = PR . Conditions (α) and
(β) follow trivially from P1 and P2 in the definition of P . Conclude that P ∈ P̃ .
(Convergence:) The proof of Theorem 4.1 in Appendix A applies with minor changes
to PR as well:

– condition (α) guarantees that Steps 1 and 2 hold without change,
– condition (β) guarantees that Step 3 holds without change,
– by (2), there are only finitely many different functions in R = (Ri,h)i∈N ,h∈H , so

the equivalence relation in Step 4 is well defined and there are again finitely many
equivalence classes; hence, also Step 4 holds. ��
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