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Abstract  This paper introduces yet another algorithm to compute the nucleolus of a
standard tree game. One advantage of this algorithm is that it provides a very intuitive
interpretation of the nucleolus, under which the players participate in a joint enter-
prize in which each group sends a member to help the community. Another advantage
is that it demonstrates monotonicity properties of the nucleolus within this class of
games. As a consequence the nucleolus of a tree game can be extended to a population
monotonic allocation scheme.

Keywords Standard tree games - Nucleolus - Population monotonic allocation
scheme
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1 Introduction

The computation of a solution concept for a general n-person cooperative game is
not an easy task. One reason is the fact that one has to enter O(2") pieces of data to
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90 M. Maschler et al.

the computer, i.e., the worths of the various coalitions, before even starting to apply
computation protocols. And even if one finds a solution to a particular game, say, the
nucleolus, one obtains a vector of numbers and the question is: what does it signify
aside from the fact that some game theorists happen to like it?

For these reasons, a lot of research has been done on families of games in the hope
that one can use properties of such families to shorten the computation significantly
and also be able to capture common properties of the solutions for each particular fam-
ily. This may provide insight into the nature of the solution and may make it attractive
to apply the solution to particular real cases.

One such family is the family of standard tree games. Its nucleolus (Schmeidler
1969) was first studied by Megiddo (1978), who produced an algorithm to compute it
in O(g?) steps, where ¢ is the number of edges of the tree. His method was modified by
Galil (1980) who shortened it to O (g log ¢) steps. Granotetal. (1996) produced another
algorithm whose complexity was O(q) for subclasses of trees which includes all binary
trees on the one hand and the airport games (when the tree is a chain), on the other hand.

In this paper we produce another algorithm which has in our opinion a natural
interpretation. It can be interpreted as a procedure followed by a group of agents to
accomplish a task. They work in such a way that various subgroups send one of their
members ahead, helping the general community. This insight, aside from being inter-
esting in itself, encourages studying and employing other related solution concepts,
in which, say, helping the community takes different directions and still yields an
outcome in the core of the game.

The nucleolus is usually not too good at following monotonicity rules. It may hap-
pen, for example, that by raising the worth of a single coalition some members of that
coalition get less (have to pay more in a cost game). This drawback is a consequence
of being a core-related solution. (See Megiddo (1974) and a discussion of this issue
in Maschler (1992).) It therefore came somewhat as a surprise when Sonmez (1994)
proved that the nucleolus of the airport game is a population monotonic allocation
scheme—a concept due to Thomson (1983a,b) for bargaining games and to Sprumont
(1990) for general n-person TU games. By this, one means that if some of the players
leave the cost game, none of the remaining players has to pay less in the nucleolus.
This paper extends Sonmez’s result to any standard tree game, using the insight gained
from the interpretation of the nucleolus.

The paper is organized as follows: Sect. 2 defines the standard tree game and shows
that other tree games can be reduced to standard ones without changing the coalition
function. Section 3 briefly describes the algorithms mentioned above, introduces our
own and compares them with each other. Section 4 interprets the new algorithm in
an intuitive way. This interpretation is used in Sect.5 to prove the two monotonicity
properties.

2 Definitions and notations

A tree network T is given by the following:

(i) (V, E) is a finite tree, i.e., a connected graph without cycles. V is the set of
nodes and E is the set of edges. The number of edges is denoted by ¢.
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The nucleolus of a standard tree game revisited 91

(i) Onenode o € V has a special meaning and is called the root of the tree.
(iii)) There is a cost function @ : E — 9 on the edges of the tree.
(iv) There is a cost function b : V — N on the nodes of the tree.
(v) Foreachnode p € V there is a (possibly empty) player set N, whose members
are the residents of p. The cardinality of Np is denoted by ny. The union of all
players is called N.

We denote nodes by boldface characters like p and q, players are denoted by numbers
or italic characters like i and j. For every node p in V \ {0} there is a unique path from
the root o to p. The node on this path adjacent to p is called the parent 7 (p) of p. The
edge (7 (p), p) is denoted by e}, and its costs by ap. Furthermore, we write p < q if the
path from o to q contains p. For a node p € V we denote by dp the number of nodes
of which it is the parent. If d, = 0, p is called a leaf. A trunk T = (V(T), E(T))
is a subgraph of (V, E), spanned by a set of nodes V(T') € V that is closed under
the precedence relation <, i.e., if p € V(T) and q < p, then q € V(T). A branch,
denoted Bp = (V(Bp), E(Bp)), is a pair consisting of the set of nodes that succeed a
certain node p, i.e., V(Bp) = {q € V | q > p}, and the set of edges that enter these
nodes, i.e., E(Bp) = {eq | q € V(Bp)}. Note that a branch By, is not a graph, because
(w(p), p) € E(Bp), but m(p) ¢ V(Bp). The complement of branch B, is called Tp.
For trunk T we define the total costs C(T) = b(0) + ZPGV(T)\{O} (ap + b(p)) and,
similarly, for branch Bj, we define C(Bp) = zqev(gp)(aq + b(q)).

In one possible interpretation of the model the nodes p are villages that are con-
nected via a road system to a central supplier 0. The costs on the edges are the “road
maintenance costs” of the connections and the costs in the nodes are “local mainte-
nance costs.” The issue is: how to share the maintenance costs among the residents of
the villages? In order to give an answer to this question we associate to I the trans-
ferable utility tree game (N; cr). The costs for a coalition S € N, S # @, are defined
by the costs of the cheapest trunk that connects all members of S to the root:

cr(S) =min{C(T) : Tisatrunkand S C N(T)}.

Here, N(T) is an abbreviation for (J,cy () Np.

Let Ts denote the trunk spanned by the root and the nodes in which the members
of S reside (S € N). Since the cost functions a and b can have negative values, it may
well happen that cr (S) < C(Ty).

A standard tree network obeys the following additional properties (cf. Definition
2.5 of Granot et al. (1996)):

(a) The cost function a on the edges is non-negative.
(b) The cost function b on the nodes is the zero function.
(c) Np # ¥ for every leaf p.

Games generated by standard tree networks are called standard tree games. They have
the property that for each coalition S € N,

cr(S) = C(Ts).

@ Springer



92 M. Maschler et al.

The following lemma shows that the class of standard tree games coincides with the
class of tree games of which all trunks have non-negative costs. This is the class of
tree networks that will be considered in this paper.

Lemma 2.1 Let T" be a tree network such that all trunks have non-negative costs.
Then there is a standard tree network I that generates the same cost game.

Proof We modity the tree network gradually and prove that the generated game does
not change under each given action. In the description of an action, we will only state
the data that change and indicate the changed data with a bar.

— First, we transfer the costs in the nodes p € V \ {0} to the edges: b(p) = 0 and
ap = ap + b(p).
This action does not change costs of trunks and, therefore, neither coalitional costs.

— If the costs on an edge ep are negative and 7 (p) # o, we replace ap by zero and
add ap to azp). If ap < 0 and 7 (p) = o we replace again ap by zero but add ap to
the costs of the root.
This action neither changes the coalitional costs, nor the nonnegativity of the costs
of trunks, as, if ap < 0, a trunk containing 7 (p) and not p cannot be optimal for
any coalition; it is always better to add node p. So optimal trunks contain both p
and 7 (p) or none of them. The costs of these trunks are not changed by the pro-
posed action. Repeating this action as long as there are edges with negative costs
leads to a nonnegative costs function a. The final costs at the root are nonnegative,
because they are equal to the initial costs of some trunk, perhaps consisting of the
root alone.

— If b(o) > 0, we add a new root e and define 7 (0) = o, @, = b(0), and b(e) = 0.
Again, coalitional costs remain the same. By now, properties (a) and (b) are met.

— Ifpisaleaf and Np = ¥, we remove p and ep from the network.
If p occurs in a trunk optimal for some coalition, node p and its edge can be omitted
from the optimal trunk without losing the optimality of the trunk. Hence, deleting
such a leaf p and its edge ep does not change the generated game. Repeating this
action as long as there are leaves p with np = 0, we get a tree network satisfying
property (c). O

Granot et al. (1996), Theorem 2.6, show that a standard tree game is convex. Our
definition of being standard differs from theirs, but their proof can be adapted in a
straightforward manner. A direct consequence of their result and the previous lemma
is thereby

Corollary 2.2 Let I be a tree network such that all trunks have non-negative costs.
Then the game (N; cr) is convex.

The following two lemmas show that the core and the nucleolus of a standard tree
game (N; cr) depend on the coalitions N\{i}, (i € N), and N(Tp), (p € V \ {o}),
only. We denote this collection of coalitions by .

Lemma 2.3 Let T be a standard tree network with player set N and let x € %"V. Then

x € Core(N; cr) ifandonly if x(N) =cr(N), x(S) <cr(S)forall§ € €.
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Proof Clearly, the conditions are necessary. To prove that they are sufficient, let x
satisfy the restricted set of constraints above. It is to be showed that x is a core point.
For every player i in N we have

xi = cr(N) —x(N\{i}) = cr(N) —cr(N\{i}) = 0.

Let S be a proper subset of N. Denote the set of nodes adjacent to T by Is, i.e.,
Is ={p € V\V(Ts) | (p) € V(Ts)}. We have

cr(S) = C(Ts) = cr(N) — Z C(Bp).
pels

C(Bp) = cr(N) — C(Tp) < x(N) — x(N(Tp)) = x(N(Bp)),
we find

cr(8) = er(N) = D~ x(N(Bp)) = x(N(Ts)) = x(S).
pels

O

The excess of coalition S in the game (N; cr) with respect to x € RY is defined by
excr (S, x) = cr(S) — x(S).

The nucleolus nu(N; cr), or simply nu if no confusion can occur, of the game (N; cr)
is the imputation! that maximizes the excesses of all coalitions lexicographically,
i.e., it has the largest possible minimum excess, under the imputations with maximal
minimum excess, it has the largest possible second minimum excess, and so on. The
following lemma shows that it is not necessary to take all coalitions into account. If
we consider only the coalitions in &£, the nucleolus is found as well.

Lemma 2.4 Let " be a standard tree network and let the imputation x maximize the
excesses {excr (S, x) : S € &} lexicographically. Then x is the nucleolus of (N; cr).

Proof Since the game (N; cr) is convex, its kernel is a single point (see Maschler
et al. 1972) which is therefore the nucleolus. The kernel intersected with the core is
a locus of the core (Maschler et al. 1979), i.e., any two games having the same core
have the same intersection of core and kernel. Thus, any game with the same core as
(N; cr) has the same nucleolus as (N; cr) as well.

By Lemma 2.3, we get a game with the same core as (N; cr) if we increase the
costs of all coalitions not in £. Let (N, ¢) be a game obtained in this way such that
for any element of the core, the excess of any coalition outside £ exceeds the excess

1A vector x € 9V is an imputation of (N; cy) if x(N) = cpr(N) and x; < cp({i}) foralli € N.
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of any coalition inside £. By lexicographically maximizing the excesses with respect
to the game (N, c¢), we reach a single point at the moment when the excesses of all
coalitions in £ have become constant, because the excesses of the coalitions of type
N\{i} determine this point. Hence, the nucleolus of (N, ¢), which as we have seen is
also the nucleolus of (N; cr), maximizes the excesses {excr (S, x) : § € £} lexico-
graphically. O

Let us take another look at the proof above to obtain a useful corollary. Since the
games (N; cr) and (N, ¢) are balanced, their prenucleoli2 coincide with their nucleoli
and hence, with each other. A collection of coalitions B is called balanced if there
exist positive reals Ag, S € B, such that ZSEB Ases = ey, in which eg denotes the
indicator vector of coalition S. Recall Sobolev’s criterion (cf. Kohlberg (1971)) for
the prenucleolus (in terms of cost games):

Theorem 2.5 (Sobolev (1975)) A preimputation of a cost game (N, c¢) equals the
prenucleolus of this game if and only if for allt € RN the set {S C N| c(S) — x(S) <t}
is balanced or empty.

Because the nucleolus of (N; cr) coincides with the prenucleolus of (N, ¢), we
obtain

Corollary 2.6 Let x be a (pre-)imputation of the game (N; cr). Then x = nu(N; cr)
ifand only iffor allt € N the collection {S € £| excr (S, x) < t}is balanced or empty.

3 An algorithm for the nucleolus

In this section we present an algorithm for the nucleolus of games associated with
standard tree networks. In the literature one finds two different approaches to the
computation of the nucleolus of standard tree games. The first algorithm is due to
Megiddo (1978). It runs as follows. For every trunk 7" in I" one can define its weight
w(T) to be %, where C (T) denotes the total costs on the edges of 7" and D (T)
denotes the sum of the number of players in 7 and the number of edges outgoing from
T . To compute the nucleolus one has to find the largest trunk 7* with minimal weight.
The players in T* pay each w (7T*) under the nucleolus. The trunk 7* is then absorbed
to the root and the costs of the outgoing arcs of T* are increased by w (7*). In the
contracted tree we repeat these steps. Megiddo proved that this algorithm yields the
nucleolus and that the complexity of the algorithm is O (¢%). Galil (1980) improved
the performance of the algorithm mainly by shortening the method to find 7*. The
complexity of his algorithm is O (¢ log ¢). A different algorithm for the nucleolus of
standard tree games can be found in Granot et al. (1996). It assumes that all nodes are
inhabited. This algorithm starts with the computation of—what they call—the proto-
nucleolus. The proto-nucleolus v* is computed recursively, starting from the root: put

ve = 0. If the component v ® of the proto-nucleolus has been computed, define

2 The prenucleolus of a cost game (N, ¢) is the preimputation that maximizes the excesses of all coalitions
lexicographically. A vector x € RV is said to be a preimputation it x(N) = c¢(N).
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*
* ap—&-v”(p)

P nptd
steps. If lt)hepproto—nucleolus v* turns out to satisfy v; < v; whenever p < (, the
resulting payoff vector is the nucleolus of the game. If not, then there are “bad” edges,
ie., edges ep with vy < v;(p). By contracting bad edges in an appropriate order, one
finds, finally, a contracted tree whose proto-nucleolus is the nucleolus of the original
game. Contracting means eliminating the edge, adding the residents of p to 7 (p) and
increasing the costs of e (p) by the costs of the eliminated edge. The subtlety of the
algorithm lies in the order in which the edges must be contracted. For each bad edge
ep, compute % and eliminate that edge for which this expression is minimal. The

. Thus, each player in Np pays vy. This computation requires O (¢)

algorithm has a complexity of O(¢?), but for important classes of trees, such as airport
games and binary trees, the algorithm is even linear.

The main advantage of Megiddo’s algorithm is the fact that its description is the
shortest. Also, it sheds some light on the nature of the nucleolus for standard trees.
However, we find the intuitive meaning of C (7')/D (T') hard to explain. Granot et al.’s
algorithm has the advantage that quite often it provides the shortest procedure to reach
the nucleolus. The proto-nucleolus is quite intuitive in economic terms and so is the
contraction procedure. However, we do not know of any intuitive explanation that
justifies the required order of contractions.

In this section we present yet another algorithm which is, in our opinion, the most
intuitive of the three. The algorithm runs as follows. Let I be a standard tree network.
The heart of the algorithm consists of ¢ iterations in which the costs on the edges
are partly allocated. Each iteration allocates the (remaining) costs of at least one edge
completely, resulting in an edge with zero costs. This edge is contracted.

To keep track of how much costs players are allocated, a variable x is introduced.
Since players with the same residence are treated equally, it is not necessary to store
this amount for each player individually. So x is an element of )" and xp denotes the
amount that every player residing in p has been allocated so far.

We define a “shadow tree network” I'?. It has the same tree and the same values ny,
as I'. The costs of the edges, however, are different. Let for each node p € V \ {0} its
grade gp be defined by gp = np + dp — ip. The number i, equals 1 if 7 (p) # o and
equals O if 7 (p) = o. The costs of an edge of the shadow tree are equal to its grade.

The number y € N, is computed satisfying a, — ygp > O forall p € V \ {o} with
at least one equality. Since np + dp > 0 by property (c), we have gp > 0 with a strict
inequality if i, = 0. Hence, the number y is well defined. We denote by I' — y ro
the tree network having the same tree and values ny as I', and with costs ap — y gp
(P € V \ {0}). The tree I" is replaced by I — y 'Y In order to finance this costs
reduction, all players not residing in the root are allocated an amount of y, i.e., xp
increases by y for all nodes p except the root.

After this partial allocation of the costs, one> edge, say ep, with, by now, zero costs
is contracted as follows. Let V,, C V \ {0} denote the set of nodes that are still active
(of which the edges have not been contracted yet). p is removed from V,, the resi-
dents of p move to 7 (p), (nx(p) = Nz (p) + Np), and the parent map 7 is adapted by

3 If there are multiple edges with zero costs, an arbitrary one is chosen. In the next iteration, y will equal
Zero.
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m(q) = n(p) for all q € V, with 7(q) = p. Note that after contraction, the resulting
tree network is still standard. In order to keep track of to which vertices the original
nodes have been contracted, we introduce another function. » : V \ {o} — V, U {0}
denotes for each original node p € V \ {0} the node to which it is contracted. So,
initially 7 (p) = p and when edge ey, is contracted, we set ¥ (q) = 7 (p) for all nodes q
with r(q) = p. After the contraction another iteration starts, until all edges have been
contracted and all costs have been divided.
Let us here present a scheme of the algorithm.

Scheme of the algorithm

Input
A standard tree network I' with data V (of size ¢ + 1), 0, 7w, (np)pev, and
(ap)pEV\{O}'

Initialization
Definex =0e R, g, =¢q, V. =V \ {0}, and let forall p € V,:

1 if =
dp =g €V | 7@ =pll. ip=[0 )= o and r(p) = p.

Iterations
As long as g, > 0, perform the following steps:

let gp = np +dp —ip forallp € V,,
take y as the largest number satisfying ap — y gp = O forallp € V,,
for each p € V \ {o} with 7(p) # o, increase x;, by y,
setap = ap — ygp forallp € V,,
choose anode p € V, withap =0,
let Vy = Vo \{p} and g, = g2 — 1,
letnz(p) = na(p) +np and drp) = dzp) +dp — 1,
let 7(q) = 7 (p) for all q € V, with 7 (q) = p,
letr(q) = n(p) forall q € V, with r(q) = p,
if r(p) =o0,letiq =0forallq € V, withm(q) =o.

Output
Nu(l') = x.

Let us illustrate the algorithm with an example.

Example 3.1 Consider the standard tree network I'" depicted in Fig. la. It has four
villages a, b, ¢, and e. The number inside a village equals the number of inhabitants.
Node d is uninhabited, say, a storage center. The number alongside an edge ep, denotes
its costs ap.

First, the grades g, of the nodes are determined to find the costs of the shadow
tree 'Y (Fig. 1b). By comparing I' and ', we find that in the first iteration y
equals 3. Since no nodes are contracted to the root yet, x is set to (3, 3, 3, 3, 3). The
costs of each edge are reduced by 3 times its grade. By now, edge a, has zero costs and
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Fig. 1 The standard tree network I (a), its shadow tree ro (b), and the resulting trees after four (c—f)
consecutive contractions of edges (costs between brackets are of the corresponding shadow trees)

is contracted. Node a is no longer active (i.e., V, = V'\{a}). The inhabitants of node
amove to d (n; @) = Ny(a) + na). Nodes ¢ and e get d as their parent. The number dqg
is set to 2, since after contraction there are two active nodes that have d as their parent
(c and e). r(a), denoting the current active node with which a is contracted, is set to d.

The second iteration starts with the tree as depicted in Fig. 1c. The grades are
updated (and depicted between brackets). This time y equals 1 and x becomes
(4,4,4,4,4). b is contracted to the root. Other variables are updated similar as in
the first iteration.

In the third iteration y equals 1 again. Since b is contracted to the root, i.e., 7 (b) = o,
xp does not change anymore and x is set to (5,4, 5, 5, 5). After the fourth iteration
x equals (6, 4, 6, 6, 6). In the final iteration all nodes but e are contracted to the root.
The final value 2 of y is only added to xe. The output is Nu= (6, 4, 6, 6, 8). O

Discussion We will call the output Nu(I") the nucleolus of I". The nucleolus value of
aplayer can be obtained by taking the nucleolus-value of his residency, i.e., if i € Np,
then nu; = Nuy,.

Note that the players absorbed by the root are not charged any further. Consequently,
nu; < nuj,wheneveri € Ny, j € Nqand p < q. Weregard this as a fairness property
which should be satisfied by any reasonable solution. Indeed, player j should pay
more since he uses all edges used by player 7, and probably more.

Let us consider the complexity of the algorithm. The size of the input is of or-
der O(q). In order to find the values dp, define d, = 0 for all p € V, followed
by drp) = drp) + 1 forall p € V \ {o}. Hence, all initial steps are of linear or-
der as well. There are ¢ iterations. Within a single iteration, each line takes O(q)
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steps. Consequently, the algorithm has a complexity of order O(g?). Similar to Galil’s
procedure (1980) to shorten Megiddo’s algorithm, we can improve the performance
to O(g log g). This improvement will be omitted.

In the next theorem we prove that the algorithm computes the nucleolus.

Theorem 3.2 The algorithm above computes for a standard tree network I its nucleo-
lus Nu. The nucleolus of the associated game (N; cr) can be derived by nu; = Nup
foralli € N,p € V withi € Ny,

Proof The proof is by induction on ¢g. If ¢ = 0, then nu; = Nu, = 0 foralli € N,
which is in line with the algorithm. Suppose that the theorem is valid for tree networks
with less than g edges. Let I be a standard tree network with ¢ edges. The firstiteration
changes the network as follows:

subtraction o contraction
_

p ST T —yro.

After one iteration we have the contracted network I' — y I'0; a tree network with
less than ¢ edges. Let x and x denote the output of the algorithm applied to the tree
networks I" and I' — y I'0 respectively. We have x = X + y ey\{o}, in which ey\ (o
denotes the characteristic vector of V \ {o}.

Let z € 0" be such that z; = xp foralli € N, p € V withi € Np. The induction

hypothesis implies that ¥ = Nu(N; I' — y I'0). The network I' — y I generates the
same cost game as ' — y 9. Thus, we find

z = nu(N; Cr_y r0) + YEN\N,-

In order to derive that z equals nu(N; cr), we first show its efficiency. For the rest
of the proof we use the abbreviations r=r- yI'%and 7 = nu(N; ¢q-). Because

Zp;ﬁo dp = Zp;ﬁo ip = |{ep € E | m(p) # o}|, we have Zpyéo 8p = Zp;éo np. Thus

dN)=Z(N)+y D np=ce(N)+y D gp=cr(N),
pF#o p#o

and z is efficient.

Since I' and T only differ in costs, the set of coalitions £ is the same for both tree
networks. The induction hypothesis and Corollary 2.6 give that for all # € N the col-
lections {S € Elexcp(S,2) < t} are balanced whenever they are not empty. We must
show that these collections are also balanced with respect to z and the game (N; cr).
Therefore we compute and compare the excesses of the coalitions in £ with respect
to the networks I" and T".

Fori € N,, we have z; = z; = 0 and excr (N \{i}, z) = 0.
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The nucleolus of a standard tree game revisited 99

For p € V \ {0} with w(p) = o we have

cr(N(Tp) = cp(N(Tp)) + D ying+dq —ig)
qeV (Tp)\{o}
= cx(N(Tp)) + y IN(Tp)\Nol + y lfeq € E(Tp) | (q) # o}
—y l{eq € E(Ty) | 7(q) # o}
= cp(N(Tp)) + y [N (Tp)\No|.

To verify the second equality, recall that trunk 7}, is spanned by the nodes that can be
reached without passing p and that by definition p ¢ V (7},). The result above yields

excr (N (Tp), 2) = (cp(N(Tp) + ¥ IN(Tp)\Nol) — (Z(N(Tp)) + ¥ IN(Tp)\No|)
= excp(N(Tp), 2)

= 0.

The latter equality is valid because N is the disjoint union of N (7p) and N (Byp), Z is
a core element of (N; ¢), and, since 7w (p) = 0, ¢(N(Tp)) + ¢(N(Bp)) = ¢(N).
For p € V \ {0} with w(p) # o we have

cr(N(Tp)) = cp(N(Tp)) + y IN(Tp)\No| + y {eq € E(Tp) | m(q) # 0} U {ep}|
—yleq € E(Tp) | m(q) # o}
= cp(N(Tp)) + y IN(Tp)\No| + y.

Hence, excr (N (Tp), z) = excp(N(Tp),2) + y.
Leti € N\N,. If i is the unique resident of some leaf p, then N\{i} = N(Ty), so
excr(N\{i}, z) = excp(N\{i}, 2) + y. Otherwise, cr (N\{i}) = cr(N), yielding
excr(N\{i}, 2) = cr (N) — z(N\{i}) =z = Z; + y = excp(N\{i}, 2) + y.
Resuming, we find {S € £ | excp(S,z) <0} =@ and, for0 <t <y,

(S €€ lexcr(S.2) <1} = [N(Ty) | m(p) = 0} UN\(i} | i € No}.

This collection is, if non-empty, balanced since

Z en(t,) + Z en\(i} = (do +no — Dep.
p;(p)=0 ieN,

For t > y, we have
{Seflexcr(S,z) <t}= {S €& lexcp(S,2) <t — y}.

This collection is, if non-empty, balanced because Z = nu(N’; ¢-) and Corollary 2.6.
Now the induction step and the theorem follow by applying Corollary 2.6 on z with
respect to cr. O
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4 An interpretation of the nucleolus of a tree game: a painting story

This section provides an easily understandable interpretation to the algorithm pre-
sented in the previous section. This interpretation is of prime importance as it provides
an additional insight that enables people to rationally adopt the nucleolus, or reject it,
in any application at hand.

We start by viewing a tree network as a system of road segments connecting villages
to the capital city (the root). The players are now villagers who are responsible for
maintaining the road segments, i.e., painting them regularly. The costs of an edge in
the original game are now viewed as the length (in km) of the corresponding line-
segment. This is also equal to the time of painting the road segment, given that each
villager paints at unit speed. We are going to describe a way of painting in which the
time each villager spends is numerically equal to his nucleolus payoff.

4.1 The painting story

The initial positions of the villagers at which they start the painting are determined as
follows. In principle, all villagers start at their residencies, except for one per village.
Each village p € V \ {0}, is asked to choose a representative and send him to 7 (p).
Because not all villages are inhabited, this must be done with some care.

First, each village p located at an endpoint of the tree sends a representative forward
to 7 (p). (This is possible, because the end vertices are occupied).

Thereafter, each village p at which just one or more representatives arrived sends
a representative to 7 (p). This can be someone who was sent previously from an end-
point. In this case this person represents two villages. (This again is possible, because
by now these villages are occupied.)

Subsequently, each village p, at which just and for the first time a representative
has arrived, chooses a representative and sends him to  (p). This continues until all
villages have chosen a representative. Villagers not chosen to represent start at their
residencies. The painting proceeds in accordance with the following rules:

(i) Every villager traverses from his starting point to the capital city, and then from
the capital city back to his residency. If he comes across an unpainted road, he
paints it. If he comes to a painted part, he skips it. When he has returned to his
residency, he stops painting.

(i) Road segments are painted with a speed of k km per hour, where k is the number
of villagers painting at that segment.

(iii) The time needed for a villager to traverse a segment already painted is negligi-
ble.

We are interested in the length of the time period that each resident is working. Let
us consider an example.

Example 4.1 Consider the standard tree network I" depicted in Fig.2a. This time the

numbers inside a node represent the names of its inhabitants. All roads have a length
of 8 kilometers.

@ Springer



The nucleolus of a standard tree game revisited 101

o

@—< OSONE
OO0 Om0
© /o\ @ AN @

Fig. 2 The standard tree network I" (a) and the locations of the painters after O (b), 2 (¢), 4 (d), 5 (e), and
6h (f) of work respectively

First, let us say at 12 o’clock, the villagers take their positions to start the paint-
ing. Since each village can determine its representative, several options are possible.
We describe one of them. First, the endpoints a, b, and d send villagers 1, 2, and 5 as
their representatives to nodes ¢, ¢, and f respectively. Subsequently, villages ¢ and f
send villagers 2, and 5 as their representatives to node e respectively. Finally, village
e chooses villager 7 to start in the capital city. Figure 2b depicts the initial locations
of the villagers.

After 2h, edge ee has been painted completely. Villagers 6 and 7 return to their
residency e and stop painting. Villagers 2 and 5 start their ways back to their residen-
cies (Fig.2c). After another 2h, edge eq has been completed. Villagers 3 and 4 move
down one edge. The procedure continues in the way the figure displays. After 6 h, only
villagers 1 and 2 still have painting obligations (Fig. 2f). They both paint for another
7h. The villagers 1, ..., 7 then have painted for 13, 13, 6, 6, 6, 2, and 2 h respectively.
The following theorem states that these times form the nucleolus of the associated
game.

Theorem 4.2 Let ' be a standard tree network modeling a system of roads to be
painted. If the painting is according to the painting story above, then each villager
paints for a duration equal to his nucleolus payoff of the game (N; cr).
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Proof The algorithm and the story have two main differences. First, the algorithm
is discrete, while in the story time is continuous. Second, in the algorithm edges are
contracted, where in the story edges remain present, leaving the original tree struc-
ture intact. The first difference can be avoided by considering only moments in time in
{0, 11, ..., t4}, where #; denotes the moment when for the kth time an edge is completed
in the story. The second difference can be overcome by modifying the interpretations
of the variables of the algorithm as follows. At each moment,

— V. denotes the set of nodes p in V \ {o} for which e, has not been painted com-
pletely,
— r(p) denotes the node in (V, U {0})\{p} closest to p on the road from p to o,

(P eVa)

— np denotes the number of villagers of which the roads from their residencies to p
have been painted completely, pe V)

— ap denotes the size of the uncompleted part of edge ep, P eV
— dp still equals |{¢g € V, | m(q) = p}, ip still indicates whether 7 (p) = o, and g,
still equals np + dp — ip, P eV
Note that initially the interpretations coincide. Denote the kth value of y in the algo-
rithm by yi. Letk € {1, ..., g} and suppose that the story has followed the algorithm
up to time #4_1,1.e.,t] = y1,fp —t] = Y2, ..., tk—1 — tk—2 = Yk—1, and the ¢th edge

that has been contracted is the edge with completion time #, in the story (¢ < k).

Consider the painting process at moment #;_;. Let p € V,. We are interested in the
number of villagers that are painting somewhere on ey,. Let P be the largest subset of
V(Bp) such that p € P and all roads between villages in P are painted completely.
Then ny equals [N (P)].

If i, = 0,ie., w(p) = o, all members of N(P) and all representatives of the
villages in {q € V, | w(q) = p} are painting on ep, so in total n, + d, are paint-
ing on ep. If dp = 1, the same set of villagers is painting on ep, except for the
representative of p, who is painting somewhere on the road from 7 (p) to the city.
In both cases the number of villagers currently working on ep equals gp. Therefore,

ty — tr—1 = min {g—i IpeVa g # 0}, which equals yg.

Hence, by induction, #; = 214?:1 y¢ and the k' edge that has been contracted in the
algorithm equals the edge with completion time #; in the story (k € {1, ..., g}). Since
Nup = max{zlgzl ve | the kth edge that is contracted is situated between p and o},
and the length of time inhabitants of p paint equals max{#; | the kth edge that is fully
painted is situated between p and o}, the algorithm and the painting story comport.

O

5 Monotonicity properties of the nucleolus

This section shows that the nucleolus of a standard tree game is monotonic in two
senses:

(i) If players are omitted from the network, none of the remaining players pay
less than before, i.e., the nucleoli of all subgames of (N; cr) form a population
monotonic allocation scheme (cf. Sprumont (1990)).

(i) If costs of edges are increased, none of the players pays less.
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Theorem 5.1 Let " be a standard tree network. Let T' be obtained from T by increas-
ing the costs on some edges and/or decreasing the number of residents in some nodes.
Then the remaining players pay a weakly larger contribution under the nucleolus in T".

Proof Because of Theorem 4.2 we can compare I" and I" by means of the painting
story. Let o be the coarsest partition of the time-schedule of the painting on I' into
open time-segments during which no change in the number of painters on any edge
takes place. Let ¢ be the same for . Let T be the meet of the two partitions, i.e.,
the coarsest partition having the property that each segment in o or ¢ is a union of
segments in 7. Denote the elements of t by 7y ... 7 in chronological order.

Claim At any time, the number of players painting on any edge is weakly larger in I’
than in T, except, perhaps, when that edge is completely painted in T.

Proof of the claim At the beginning, i.e., in time segment 71, weakly more people
paint on any arc in I than in T'. Let j be a natural number and suppose (in order to
apply induction) that in all open time segments 71, ..., T; weakly more people paint
on any arc in I" than in T, except for edges that have been painted completely in T.

Until the end of 7, weakly more work has been done on each edge in the I'-case
than in the "-case. In particular, any edge finished by that time in I is finished in I" as
well. Let ep be any edge not yet finished in both procedures at the end of ;. We are
going to compare for both instances and for each q € V'\{o}, the number of people
that q sends to ep in period 741 to work on. The summary of cases below shows that
the more edges have been painted completely, the more people q sends:

— If q = p, then the representative of p works at ep, only if the road from 7 (p) to the
capital city has been painted completely. All (other) inhabitants of q work on ey.

— If q > p (i.e., p is situated on the path from q to the capital city) and all edges
between q and p have been painted completely, all inhabitants of q work on ep.

— If q > pand all edges between q and p but eq have been painted completely, only
the representative of q works on ep.

— If q > p and at least one of the edges between 7 (q) and p has not been painted
completely yet, no inhabitants nor the representative of q work on ep.

— Finally, if q # p, no inhabitants of q work (ever) on ep.

Since at the end of period 7; weakly more edges have been completed in I" than in r,
village q sends weakly more people in the I'-case. Since no people move from one
edge to another during time segment 7,1, this will be valid until the end of period
7j4+1. By induction, it will be true until edge ep will be finished completely in I'. This
proves the claim.

As a corollary of the claim we find that each edge is finished weakly earlier in I
than in T'. We conclude the proof by stating that for all p € V

Nup with respect to I'

= max({¢ | some edge between p and o is contracted at time 7 in I"}
< max{r | some edge between p and o is contracted at time ¢ in r}

= Nu,, with respect to T
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Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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