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Abstract

In this paper, we provide further support for the family of average values for

games with externalities defined in Macho-Stadler et al. (2007). This is a large

family of values that includes several recent proposals. We show that they can be

constructed through the sharing of appropriately defined dividends. Furthermore,

we show the flexibility of this approach by using it to generate non-symmetric values.
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1 Introduction

In recent years there has been increasing interest in the construction and implementation

of sharing rules for environments with externalities. Such environments encompass a large

array of economic scenarios and arise whenever the benefits or costs to a group of agents

depend on the coalitions formed by agents outside the group. Prominent examples are

a market with several competing firms, countries negotiating on trade agreements and

union-firm bargaining in a given industry.

One fruitful approach has been to proceed axiomatically and propose sharing methods

(known as values) based on a collection of desirable properties. Some of the proposals

extend the Shapley axioms (Shapley, 1953a), which are stated for games with no external-

ities. This is the direction taken in the papers by Myerson (1977), Bolger (1989), Feldman

(1996), Albizuri, Arin and Rubio (2005), Pham Do and Norde (2007), and Macho-Stadler,

Pérez-Castrillo and Wettstein (2007) (that we will refer to as  ). These proposals

satisfy the properties (axioms) of efficiency, anonymity (symmetry), linearity, and the

“null” player property that states that players which have no effect on the outcome should

neither receive nor pay anything. The particular definitions of these properties, at times

together with some additional axioms, lead to different extensions of the Shapley value.1

In  we strengthen the symmetry property by proposing the “strong symmetry

axiom” capturing the idea that players with identical influence should receive the same

outcome. We show that this axiom is equivalent to adopting an “average approach”,

which generates an attractive family of sharing methods (see Section 2).

In games without externalities, another useful approach to find sharing methods has

been to take a constructive point of view. Harsanyi (1959) used the notion of dividends ac-

cruing to a player from the various coalitions he could participate in and showed that their

sum yields the Shapley value. Maschler (1982) generalized this approach to a procedure

through which the payoffs accruing to agents are still given by the Shapley value.

1de Clippel and Serrano (2008), rather than extend the Shapley axioms, focus on the implications of

the marginality underlying the Shapley value, for games with externalities. McQuillin (2009) characterizes

a value that simultaneously extends the Shapley value to games with externalities and situations where

there is a prior coalition structure. Dutta, Ehlers and Kar (2008) adopt the potential approach to study

and provide values for games with externalities.
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In this paper, we provide further support for the family of average values. We show

that they can be constructed through the sharing of appropriately defined dividends.

Furthermore, we show that this approach is flexible and can be easily adopted to generate

non-symmetric values. Hence we provide a new family of weighted Shapley values for

games with externalities and show that each one coincides with the weighted Shapley

value of the average game.

2 The environment and the average approach

Cooperative environments with externalities are best described as games in partition

function form (Thrall and Lucas, 1963). We denote by  = {1  } the set of players.
An embedded coalition is a pair (  ), where  ⊆  is a coalition and  3  is a

partition of  . An embedded coalition specifies the coalition as well as the organization

of the rest of players. Also, we denote by P the set of all partitions of  and by  =

{(  ) |  ∈   ∈ P} the set of embedded coalitions.
Let ( ) be a game in partition function form, where the characteristic function

 : → R associates a real number with each embedded coalition. For each (  ) ∈
, we interpret (  ) as the worth of coalition  when the players are organized

according to the partition  The partition  is always taken to include the empty set ∅

and the characteristic function satisfies (∅  ) = 0.

A sharing method, or a value, is a mapping  which associates with every game ( )

a vector in R that satisfies
P

∈ ( ) = ( {}). A value determines the payoffs
for every player in the game and, by definition, it is always efficient since we assume that

forming the grand coalition is the most efficient way of organizing the society.

To introduce the family of values proposed in  using the average approach we

present first the axioms that characterize it.

We say that player  ∈  is a null player in the game ( ) if (  ) = (0  0) for

every (  ) ∈  and for any embedded coalition (0  0) that can be obtained from

(  ) by changing the affiliation of player .

The addition of two games ( ) and ( 0) is defined as the game ( + 0) where

( + 0)(  ) ≡ (  ) + 0(  ) for all (  ) ∈ . Similarly, given the game
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( ) and the scalar  ∈ R the game () is defined by ()(  ) ≡ (  ) for all

(  ) ∈ .

For any permutation  of  the  permutation of the game ( ), denoted by ( )

is defined by ()(  ) ≡ (  ) for all (  ) ∈ 

The extension of Shapley (1953b)’s basic axioms proposed in  for values in

environments with externalities are:

1. Linearity: A value  satisfies the linearity axiom if:

11 For any two games ( ) and ( 0) (  + 0) = ( ) + ( 0).

12 For any game ( ) and any scalar  ∈ R () = ( ).

2. Symmetry: A value  satisfies the symmetry axiom if for any permutation  of  ,

() = ( ).

3. Null player : A value  satisfies the null player axiom if for any player  which is a

null player in the game ( ) ( ) = 0.

In games with no externalities where the worth of any coalition  does not depend

on the organization of the other players, i.e., (  ) = (  0) for every  ⊆  and

(  ) (  0) ∈ , these three basic axioms characterize a unique value (Shapley,

1953b). For expositional clarity, we denote by (b) a game with no externalities, whereb : 2 → R is a function that gives the worth of each coalition. The Shapley value  can

be written as:

(b) =X
⊆

( )b() for all  ∈  , (1)

where we have denoted by ( ) the following numbers:

( ) =

⎧⎨⎩ (||−1)!(−||)!
!

for all  ⊆  if  ∈ 

− ||!(−||−1)!
!

for all  ⊆  if  ∈ \

In games with externalities, the previous axioms are satisfied by a large set of values.

In  we propose an extension of the notion of symmetry also to the externalities

created. The strong symmetry axiom strengthens the symmetry axiom by requiring that
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exchanging the names of the players inducing the same externality should also not af-

fect the payoff of any player. To formally state the axiom, we denote by  , with

 3 , a new partition with  ∈  resulting from a permutation of the set \.
Given an embedded coalition (  ), the  permutation of the game ( ) denoted by

() is defined by ()(  ) = (  ), ()(  ) = (  ), and

()() = () for all () ∈ \ {(  ) (  )} 

2’. A value  satisfies the strong symmetry axiom if:

201 for any permutation  of  , () = ( )

202 for any (  ) ∈  and for any permutation  , ( ) = ( ).

As proven in , any value  satisfying linearity and null player axioms also satis-

fies the strong symmetry axiom if and only if it can be constructed through the “average

approach”. This approach consists of, first constructing an average game (b) asso-
ciated with ( ), by assigning to each coalition  ⊆  the average worth b() ≡P

3∈P (  )(  ) with
P

3∈P (  ) = 1We refer to (  ) as the “coeffi-

cient” of the partition  in the computation of the value of coalition  ∈  . Second, the

average approach constructs a value  for the partition function game ( ) by taking

the Shapley value of the game with no externalities (b) Therefore, if a value  is
obtained through the average approach then, for all  ∈  ,

( ) =
X
⊆

( )b() = X
( )∈

(  )( )(  ) (2)

There are still a variety of values satisfying the requirements of linearity, strong

symmetry, and null player, each value corresponding to a different averaging method.

In  we add a “similar influence axiom” to characterize a value with coefficients

(  ) =


∈\

(| |−1)!

(−||)! (Feldman, 1996, also proposed but did not axiomatize this value)

Other recent proposals also satisfy the average approach. The externality-free value stud-

ied and characterized by Pham Do and Norde (2007) and de Clippel and Serrano (2008)

corresponds to the vector of coefficients (  ) = 1 if  =
n
 {}∈\

o
and (  ) = 0

otherwise; that is, only the partition where players outside  form singleton coalitions is

taken into account. On the other extreme, in his extension of the Shapley value McQuillin
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(2009) ends up proposing a value that corresponds to (  ) = 1 if  = {\} and
(  ) = 0 otherwise; that is, the only important partition is the one where players

outside  form a single coalition. Finally, the proposal by Albizuri et al. (2005) corre-

sponds to the Shapley value associated with the simple average: (  ) = 1
 ()

where

 () = |{()() ∈ }|.2
We denote by  the value constructed through the average approach with a vector

of coefficients . The analysis developed in the next section can be applied to any value

, in particular to those previously discussed.

3 Dividends and weighted values in games with ex-

ternalities

In games with no externalities, the Shapley value can be characterized as the value that

distributes the Harsanyi dividends of the game equally among the players in the cor-

responding coalitions. Harsanyi (1959) assumed that every coalition would negotiate a

vector of “dividends” such that the sum of all coalitions’ dividends vectors would be a

feasible allocation for the grand coalition. Therefore, the dividends of a coalition  are

what is left after all proper subcoalitions of  have received their corresponding dividends.

More formally, the dividends ∆() of a game in characteristic form (b) are defined
recursively: ∆(∅) = 0 and ∆() = b() −P( ∆() if  6= ∅. Harsanyi (1959)

showed that all the equal shares of the dividends a player is entitled to, sum up to his

Shapley value:

(b) =X
3

1

||∆() for all  ∈ 

In a similar spirit, consider a game with externalities ( ) and a system of coefficients

. We can obtain the dividends of a coalition  when it is part of the partition  taking

into account that the dividends of subcoalitions of  should matter only in proportion to

2The values proposed by Myerson (1977) and Bolger (1989) can not be constructed through the average

approach. Some of the values proposed by Dutta, Ehlers and Kar (2008) can also be constructed through

the average approach while others can not.
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its corresponding coefficients. Formally, we define the dividends inductively as follows:

∆
 (∅  ) = 0

∆
 (  ) = (  )−

X
()∈

(

()∆
 () if  6= ∅

Proposition 1 provides an interpretation of any value  in terms of dividends. There-

fore, it is a result that can be applied, in particular, to the values studied by Feldman

(1996) and  (2007); Albizuri et al. (2005); Pham Do and Norde (2007) and de

Clippel and Serrano (2008); and McQuillin (2009).

Proposition 1 The value  can be written as follows:


 ( ) =

X
( )∈

3

1

||(  )∆

 (  )

Proof. We denote by ∆() the dividends of the average game (b) associated
with the ( ). We prove by induction over the number of elements of  that

∆() =X
3
∈P

(  )∆
 (  )

The proof is immediate when  = ∅ (and it is also immediate when || = 1). Assuming
that the expression holds for any coalition  with ||  ||, we can write

X
3
∈P

(  )∆
 (  ) =

X
3
∈P

(  )

⎡⎢⎢⎣(  )− X
()∈

(

()∆
 ()

⎤⎥⎥⎦
=
X
3
∈P

(  )(  )−
X
3
∈P

(  )
X
(

∆() = b()−X
(

∆() = ∆()

Since  is the Shapley value of the (characteristic form game) b we can write ( )

in terms of sum of dividends:

(b) =X
3

1

||∆()
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therefore,


 ( ) = (b) =X

3

1

||
X
3
∈P

(  )∆
 (  ) =

X
( )∈

3

1

||(  )∆

 (  )

Maschler (1982) showed that the sharing method based on dividends was a special case

of a procedure where a sequence of coalitions sequentially claim their worth. At each step

the worth of one coalition is equally shared by its members. The process then generates

a new game where the worth of each coalition containing the sharing coalition is reduced

by the worth of the sharing coalition, whereas the worth of other coalitions is not altered.

The next coalition in the sequence then proceeds to share its worth. This process ends

when all coalitions arrive at zero worth. It was shown that this process must end, and the

sum of payoffs accruing to each player is his Shapley value. The value  can be arrived

at via these more general procedures as well if the proportion (  ) of the dividend

associated with each embedded coalition (  ) is assigned to each player  ∈  and the

coefficient (  ) is also used to reduce the worth of each coalition containing .

We can use the dividends we have constructed to derive a family of weighted values for

games with externalities, similarly to the Shapley (1953b) construction for games without

externalities. We define, for a given vector of weights  ∈ R with   0 for  ∈  (and

for each vector of coefficients ) a weighted Shapley value for games with externalities:


 ( ) =

X
( )∈

3





(  )∆
 (  )

Note that we keep the symmetric treatment of externalities (since the coefficients (  )

are anonymous) while allowing for different bargaining powers when sharing the dividends.

It follows easily that there is a relationship between the weighted Shapley value for

games with externalities that we have defined through the dividends and the weighted

Shapley value of the corresponding average game ( b). We state this result in the next
proposition:

Proposition 2 The value  can be written as follows:


 ( ) =  ( b)
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Proof. We write the value :

 (b) =X
⊆
3





∆() =X
⊆
3





X
3
∈P

(  )∆
 (  )

following the proof of Proposition 1 Therefore,

 (b) =X
⊆
3

X
3
∈P





(  )∆
 (  ) =

X
( )∈

3





(  )∆
 (  ) = 

 ( )

Finally, we note that the value ( ) can be implemented via bidding mechanisms

in the same spirit as the ones that appear in Macho-Stadler et al. (2006), for any system

of non-negative coefficients, i.e., (  ) ≥ 0 for all (  ) ∈ , as it is shown in

Macho-Stadler et al. (2008).
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