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ABSTRACT

We consider an n-player bargaining problem where the utility
possibility set is compact, convex, and stricly comprehensive. We
show that a stationary subgame perfect Nash equilibrium exists,
and that, if the Pareto surface is differentiable, all such equilibria
converge to the Nash bargaining solution as the length of a time
period between offers goes to zero. Without the differentiability
assumption, convergence need not hold.
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1 Introduction

One of the most celebrated observations in the bargaining literature is by
Binmore, Rubinstein and Wolinsky (1985), who show that the unique sub-
game perfect equilibrium outcome of the two-player alternating offers bar-
gaining game & la Rubinstein (1982) converges to the Nash bargaining solu-
tion when frictions vanish, i.e., when the length of time period that it takes
to make offers and counter offers goes to zero.

We study how far these results extend to a multiplayer setting. To do
this, we employ the natural multiplayer version of the alternating offers bar-
gaining game by Binmore (1985), Herrero (1985), and Shaked (as reported
by Osborne and Rubinstein, 1990).!

Vastness of equilibria is a well known problem of multiplayer bargaining
games. To circumvent the problem, we shall focus on equilibria in stationary
strategies. It is known that under stationarity restriction convergence does
hold (see Sutton, 1986) when bargaining concerns linear, one dimensional
cake.? Our question is whether convergence holds if we relax the restrictions
on the underlying physical structure.

While in the two player case the underlying physical structure is imma-
terial, in the multiplayer case it is not. The one-cake restriction removes a
large portion of interesting trade-offs between players over which bargaining
could take place. In fact, we prove via an example that convergence of sta-
tionary equilibria to the Nash solution need not hold when the utility domain
is only asked to meet the more liberal assumptions made in the cooperative
bargaining literature, i.e. that the payoffs are drawn from a compact, con-
vex and comprehensive utility possibility set.? Such more general utility set
can be generated e.g. by multiplicity of goods or consumption externalities.
Our aim is to delineate conditions under which convergence does take place
in such a utility set.

We start by showing that a stationary subgame perfect equilibrium ex-
ists in any compact, convex, and comprehensive utility possibility set. To
our knowledge, this is the most general existence result concerning station-
ary bargaining equilibria. Our main result is that by slightly restricting the
utility space the convergence result can be saved: all stationary equilibria
converge to the Nash bargaining solution if the Pareto surface is differen-
tiable.!

A distinctive feature of our analysis is - since no specific correspondence

! Players are ordered into a circle. A player (say 1) proposes an outcome. If all other
players accepts the proposal, then it is implemented. Otherwise, the next player (say 2)
in the order makes an offer. The play continues this way until an offer is accepted.

?Chatterjee and Sabourian (2000) show that the stationarity restriction is without loss
of generality if players are complexity averse.

3Thomson and Lensberg (1989) is an authorative reference.

4We thank an associate editor for suggesting this weakening of our original restriction.



need be determined between payoffs and the physical environment - that a
closed form representations of strategies and payoffs cannot be used. Instead,
the results have to be derived via indirect means. At the heart of the proof
of the convergence is a novel dimensionality argument.®

There is a great number of work on n-player non-cooperative bargaining
games. Herrero (1985) and Sutton (1986) demonstrate the problems in
extending the number of players beyond two. The convergence to the Nash
bargaining solution typically requires that the bargaining game has a unique
subgame perfect equilibrium. Various examples of such games are available
in Chae and Yang (1988, 1994), Huang (2004), Krishna and Serrano (1996),
and Suh and Wen (2006).

2 The set up

There is a set {1,...,n} of players and a nonempty, compact, convex and
strictly comprehensive utility possibility set U C Rﬁﬁj The vector of utili-
ties is denoted by u = (uq, ..., up), or u = (u;, u_;). The (weak and strong)
Pareto frontier of U is then defined by P:={u €U : v } u, for allv e U}.

Delay is costly: The present value of player i’s next period utility u; is
6%u;, where 0 < § < 1 is the common discount factor, and A > 0 is the
length between two stages.

We study a class of unanimity bargaining games, defined as follows.

o At stage t =0, 1... player i = (¢ + 1) mod n makes an offer v € U and
the players j # ¢ accept or reject the offer in the ascending order of
their index.

e [f all j # i accept, then v is implemented. Otherwise the game moves
to stage t + 1.

We concentrate on the stationary (subgame perfect Nash) equilibria of
the game, where:

1. Each ¢’s proposal is dependent only on the continuation game.

2. Each 7’s acceptance decision in period ¢ depends only on the offer on
the table and the continuation game.

SKultti and Vartiainen (2007) develop a similar argument in a different context.

SVector notation: = > y if x; > y; for all 4, « > y iff 2 > y and not a; = y; for all 4,
and x > y iff x; > y; for all 4.

"X C R% is comprehensive if z € X and > y > 0 imply y € X. It is strictly
comprehensive if z % y for all x € X — {y} implies z 2 y for all z € X — {y}.



Define
o[-, ifi>j
pli,J) _{ i—j+mn, ifi<j.
Given the stationarity assumption, player j always offers u/ when it is his
turn to make an offer. Since player j’s offer v = (vy, ..., v,) is accepted if

v; > 02yl for all i  j,
the equilibrium offer v/ satisfies,
ul = 680yl for all 4, ;. (1)

Thus an equilibrium is characterized by a profile (u!,...,u") € U™, where
each u! = (ul,...,u})) € U specifies all players’ payoffs when it is i’s turn to
make an offer. We conclude that (u!,...,u") is an equilibrium profile if and
only if it meets (1) for all 4, j € {1,...,n}.

Theorem 1 A stationary equilibrium ezists.

Proof. Assume A = 1. Let U™ be the n-copy of the utility set U.
Denote a typical element of U™ by (u!,...,u™). For any i, j, define function
g; : U — Ry such that

gi(u) := "0 max{u; : (u;, (u})ry) € U}. (2)

By the compactness of U gj- exists, and by the convexity of U, g§ is contin-
uous. Let gi(+) := (g;())?zl : U™ — R%. Define function ¢ : U™ — R, such
that

Eul, ..., u") ;== max{z € R: z¢'(u!, ...,u") € U},
for all (ul,...,u") € U™.

By the compactness of U™, ¢ is well defined, and by the convexity of U",
¢" is continuous. Construct a function b’ : U™ — R’} such that

Ri(ul, ... u™) = g'(ul, ..., u™) min{€" (v, ..., u"™), 1},

for all (u',...,u") € U™.
Let h(ul,...,u™) = (h'(u, ...,u"), ..., h""(u}, ...,u™)). Then
h(ut,...,u™) : U™ — U™

By continuity of (g, ..., g") and (¢',...,€") h is a continuous function. By
Brouwer’s Theorem, there is a (Ul, e U”) in U™ such that

h(vl, ..., 0") = (vi, ..., 0"). (3)



If also
g(vl, L) e U, (4)

then g(vt,...,v") = (v}, ...,0"), i.e., by (2),

q):: = g:(/l)z) = Ina,X{uZ : (ui, (’l}i)k/g;) S U}, fOI' all ’i, (5)
sz: _ gjz(,uz) — 5P(j,i) maX{Uj : (uj’ (U{g)k/%) € U}, for all 7 75 7 (6)
or, by plugging (5) into (6),

vi = 5#0’@‘)@;, for all 4, j.

Thus (4) is sufficient for (v?, ...,v") to satisfy (1).
Suppose (4) does not hold. Then there is 7 such that

.., < 1. (7)

By (3),
Hence

By construction,
vt =gl (vl . M) E (VY L 0") € P
Thus, by (8), o
(gi(v'),v2;) € U. (9)
But, by (2), g/(v") = max{u; : (u;,v",) € U}, ie. (gi(v'),v",) is the element

in U that maximizes i’s payoff given that the other players get at least v’
a contradiction to (9). =

3 Relationship with the Nash solution
Denote the Nash solution by

n
u® = argmax [] wi. (10)
uelU i=1

Also denote by

H(u) = {(vl,...,vn) ER": [Twi =[] u}

i=1 i=1

the hyperbola that contains w. Note that, by construction, u” is the unique
point in which U is supported by a hyperbola, this time by H (u™).

4



It is not difficult to see that equilibrium offers u!(A),...,u"(A) under
A > 0 lie in the same hyperbola: for any j,

s

ul(A) =
1 %

—

SRR i (A) = §An=D/2 [T 4i(A). (11)
=1

[ 1

The last expression is independent of the proposer index j.

Theorem 2 Let P be differentiable. Then all stationary equilibrium out-
comes converge to uY as A tends to 0.

The proof can be summarized as follows. Consider the three player case.
Think of the surface P of U as a chart of 1-dimensional curves, each re-
flecting an intersection of P and a hyperbola. Identify the equilibrium offers
ul(A),u3(A),u3(A) under A. As A becomes small, the maximum distance
between vectors u!(A), u?(A), u3(A) becomes small. Since, by (11), they all
lie in the same hyperbola, they must either converge to the Nash solution,
or, in the limit, the vectors are contained by a 1 -dimensional subspace (see
Fig. 1). We show that u!'(A),u?(A),u?(A) are always linearly indepen-
dent, and hence cannot be embedded into a 1—dimensional subspace. Thus
ul(A),u?(A),u3(A) cannot converge anywhere but to the Nash solution.

[FIGURE 1 AROUND HERE]

Proof of Theorem 2. Denote by u/(A) = (uf(A))z":1 player j’s
equilibrium offer when the period length is A > 0. Note that, since U
is bounded, the difference (6~ 2P(7) — 1)uf (A) tends to 0 as A becomes
negligible for all i,j. Hence so does the difference u(A) — u{ (A). This
implies that u/(A) and u?(A), for all 4, j, approach one another as A tends
to 0.

Let {A} be a subsequence under which u!(A),...,u"(A) converge to u*.
Since U is bounded, it suffices for us to show that u* = uV. All the limits
below are taken with respect to the sequence {A}.

It will be easier to work with logarithmized objects since logarithmiza-
tion transforms hyperbolas into hyperplanes without affecting the nature of



local properties of the objects.® For expositional reasons, denote the loga-
rithmized variables by

U Inu = (Inwuq,...,Inuy,), for any u € U,
S = {u:ueS} forany SCRY},,
5 = Iné.
Thus, by (1), . B '
ul (A) = Adp(i,7) + w(A), for all 7, 5. (12)

Logarithmization preserves the convexity of U and the differentiability of P.
Thus P is an n — 1-manifold supporting, at each of its point, a unique n — 1
dimensional hyperplane. In particular, it supports a unique hyperplane at
u*.

Player j’s equilibrium offer under A > 0 is @/ (A) = (@!(A))™,.” Then,
by (12),

In 1:1 (D) = ; (1) (13)
— AS ; pli, ) + ; a(A)
~on(n—1)A0 =2
s+ L)

Construct the n — 1 -dimensional hyperplane L® such that,

LA:{SL‘ERnl imZ:eriu;(A)}
i=1 i=1

Since (13) is independent of the index j, it follows that

at(A),...,a"(A) e LA, (14)
Identify
0 n—1 1
1 0 2
C: 2 Y 1 P Y
: : n—1
n—1 n—2 0

8Since it is easier to verify whether an object can be embedded into a hyperplane than
into a hyperbola.

9To be precise, logarithmic scales require that all equilibrium offers are bounded away
from zero for all ¢ and all A > 0. This fact is easy to verify from the equilibrium conditions.



a collection of n — 1 linearly independent vectors. By (12), the collection of
equilibrium offers can now be written compactly

{a*(A), ..., aM(A)} = (@A), + ASC. (15)

Thus, by (14), ' B
(@A), + ASC c L?, for all A.

By making an affine transformation of both sides,!’
1

1
Cc—IA

N A_g(ﬂi(A))iZI’ for all A. (16)

Let L(u) be the hyperplane that supports U at u.!! Since P is compact
and differentiable, there is a function o > 0 such that o(¢) — 0 as ¢ — 0,
and such that (see Fig. 2)

min{||o — ¥'|| : ¥ € L(a)

—— }, for all @,v € P. (17)
[z — o]

o(lla—oll) >

For a formal proof of this, see Proposition 3 in the appendix.

[FIGURE 2 AROUND HERE]

By (17),

min{||@(A) — 3 : 5 € L(@"(A))}
[at(A) —at(A)]

o([[a’(A) —a (A)]]) = (18)
Denote by '
i max of||a*(A) - ﬂl(A)H)
Since Hﬂ’(A) - ﬂl(A)H — 0 for all 7 it follows that o® — 0 as A — 0.
Let [|X|| be the sup-norm of the set X, i.e. || X|| =sup, ,cx |z —y|. By
(15), |
|a*(A) —u'(A)|| < As |||, for all 4. (19)

By an affine transformation of a set X C R™ we mean a map X — aX + b, for
a €Riq and b€ R™, where aX +b={azx +b: 2 € X}

"That is, L(@) = {x € R™ : px = k}, where p € R™ and k € R such that po > k, for all
v €U, and pu = k.



By (18) and (19),
min{||@'(A) — 9|| : v € L(@"(A))} < o*AS||C||, foralli.  (20)
From (20) we have that
(@A), + ASC C {a: ||u — || < o2 AS||C|| and © € L(a'(A))}.

Or, by making an affine transformation of both sides,

1
SA
= {u @ -7 <o®|C|| and T € (%AL(ul(A))}

C C [{a:]ja—7v] <o®Ad|C| and o € L(a*(A))} — (@i(A))r,]

1

- — (@A),

(21)

That is, C'is contained in the UAJ|C || -neighborhood of an n—1 -dimensional
hyperplane (JA) ™' L(a'(A)) — (04) (@ (A))iL;.
Define

n n
L* = {SUER": Yz = Zuf}

i=1 i=1
By construction, @* € L*. Suppose that L(u*) # L*, i.e. the hyperplane
that supports U at @* does not coincide with the hyperplane L*. Since both
L(w*) and L* are n— 1 dimensional hyperplanes, the hyperplane L(a*)N L*
is only n — 2 dimensional. Since C' contains n — 1 independent vectors, and
o — 0, there is A’ > 0 such that for all A < A’,

1 1 1
c¢ {u @ — 9| <o®||C| and T € 5—AL(u*)} N 5—AL* - 5—Aa*.
Since P is differentiable and @'(A) — @*, it follows that L® — L* and
L(u'(A)) — L(w*).'? Thus there is A” < A’ such that for all A < A",

1 .

O {as Ju=oll <A ] and v & S L@ () fisE L4 —5E AN
which contradicts (16) and (21). Thus L(u*) = L*.
Since L(u*) = L*, L* supports U at u*. Since, by definition, L* is the
log-transformed hyperbola H(u*), and U is the log-transformed utility set
U, this must mean that the U is supported by the hyperbola H(u*) at u*.

Thus v* = u?V. m

12Where the limits are defined with respect to the normals of the hyperplanes.



4 Necessity of the Differentiability of P

The result of the previous section, which is the main finding of the paper,
is based on the local properties of the Pareto frontier, i.e. it shows that the
Nash program works in any environment where the Pareto frontier is locally
isomorphic to a hyperplane. However, when this is not the case, the result
need not hold. Indeed, to this end we argue that the convergence result
is sensitive to the differentiability assumption. We give an example of a
scenario where stationary equilibria do not converge to the Nash bargaining
solution.
Let
U:{ueRi:ul—f—qul, U3§1}.

Here 1 and 2 bargain over a linear cake and 3 is a "dummy" player, without
strategic significance.
Equilibrium condition (1) implies that the stationary equilibrium offers

ul,u?, and u? satisfy

Al = 58 =2,

(52Au% = 5Au% = u%, (22)
2A 3 <A 2 1

(5 U3 = (5 U3 = U3.

In equilibrium, players do not waste their own consumption possibilities
when making offers. This means

U& = 1_u%7
g o= 1-dl, (23)
ug = 1.

Combining (23) with (22) gives the equilibrium offers for players 1, 2 and 3,

S <1—5A 68 — g3 520
-8 g )

) 52A753A 1752A 5A
A

5 5A752A 52A754A

R N =

By taking the limit A — 0, we obtain the common convergence point of u?,

u?, and u3
12
f=(=,=,1].

However, by symmetry, the Nash solution of the problem is

11
N
=(=,=,1).
= (32)



Thus the convergence point u* of the stationary equilibrium does not coin-
cide with the Nash solution uV (see Fig. 3). Hence the differentiability of
P is crucial for the convergence result (the seminal idea is by Lensberg and
Thomson, 1988).

[FIGURE 3 AROUND HERE]

However, our equilibrium is not the only stationary equilibrium that U
entertains. This is due to the fact that U is comprehensive but not strictly
comprehensive, as demanded by our characterization (1). However, using
the above reasoning, it is clear that U can be approximated by a strictly
comprehensive problem whose unique stationary equilibrium is close to the
equilibrium we characterize.!> Thus the no-convergence result does hold
also in the class of convex, compact, and strictly comprehensive problems.

Discussion To understand why the convergence to the Nash solution
does not always hold, note that in the above example, there is no tradeoff
between player 3 and the other players. Players 1 and 2 effectively bargain
against one another, and the only effect of the existence of 3 is to delay 1’s
offer once 2 has rejected his offer. The role of differentiability is to guarantee
that the Pareto surface is locally fully competitive; a small chunk of payoff
of one player can be distributed to others in any proportion. This means
that the details of the players’ intra game relations, e.g. dummyness as
in the above example, do not affect bargaining when the discount factor
becomes small. Hence, in the limit, each player regards the other players
symmetrically. Because of the convexity of the problem, this property is
met locally only in the Nash solution. This is what drives the convergence
result.

In the two player context, however, there is no problem in treating all
opponents symmetrically as each player only faces one opponent. This guar-
antees convergence even when the Pareto surface is not differentiable. Tech-
nically, this is mirrored by the fact that the intersection of the Pareto surface
and a hyperbola is zero dimensional, and hence cannot be connected. Be-
cause of this, the shrinking set of players equilibrium offers cannot converge

"*Think of the problem U® = U(1—¢)+ Ve, where V = {u € RY : 2uy + 2uz +us < 3},
and € < 0. Now UF® is strictly comprehensive and for small &, the unique stationary
equilibrium converges to a point close to u*.

10



anywhere but to the point of intersection of the highest hyperbola and the
Pareto surface.

To interpret this observation in terms of the so called "Nash program",
which aims at reconciling the strategic approach and the axiomatic one,
note that a non-differentiable utility space can always be approximated by
differentiable ones. Since the Nash solution is continuous with respect to
small changes in the Pareto surface, it must be the case that the nonco-
operative equilibrium correspondence is discontinuous with respect to the
underlying payoff parameters. Thus the "problem" seems to be with the
noncooperative approach; (the limit) outcome of noncooperative bargaining
can be sensitive to the fine details of the underlying physical model.

On the other hand, the non-convergence result may be interpreted as a
manifestation of the fact that the Nash IIA axiom does not adequately take
into account categorial changes in players’ relationships, e.g. that one player
becomes competely independent in terms of payoffs. Indeed, replacing ITA
with the multilateral stability condition of Lensberg and Thomson (1988)
(see also Thomson and Lensberg, 1990, ch 8), whose target is precisely that,
is known to characterize the Nash solution only in the domain of smooth
problems.
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A Appendix

In the following proposition, all variables are defined as in Theorem 2.

Proposition 3 There is a function o > 0 such that o(¢) — 0 as € — 0 and
such that

min{||o —?v'|| : ¥/ € L(a)}
o — 2|

o(||lu—2[) > , for allw,v € P.

Proof. Since P is differentiable, it supports at every % € P an n—dimensional
ball with radius r(@) > 0. Since P is differentiable, and a ball is locally
isomorphic to a hyperplane, it suffices for us to show that r is uniformly
bounded below by some ;> 0 on P.

If r is not uniformly bounded by any p > 0 on P, then there is a
sequence {@*} of elements in P such that r(@") converges to 0. Since P
is differentiable at w if and only if P is differentiable at wu, it follows that
there is a corresponding sequence {u*} of elements in P such that r(u*), the
strictly positive radius of a ball supporting P at u*, converges to 0. But this
cannot hold since P is compact and differentiable. m
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