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Abstract For 2-convex n-person cooperative TU games, the nucleolus is determined
as some type of constrained equal award rule. Its proof is based on Maschler, Peleg,
and Shapley’s geometrical characterization for the intersection of the prekernel with
the core. Pairwise bargaining ranges within the core are required to be in equilibrium.
This system of non-linear equations is solved and its unique solution agrees with the
nucleolus.
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1 Introduction and notions

Fix the player set N and its power set P(N ) = {S|S ⊆ N } consisting of all the subsets
of N (including the empty set ∅). A cooperative transferable utility (TU) game is
given by the so-called characteristic function v : P(N ) → R satisfying v(∅) = 0.
That is, the TU game v assigns to each coalition S ⊆ N its worth v(S) amounting the
(monetary) benefits achieved by cooperation among the members of S. The marginal
benefit bv

i of player i in the game v is defined by bv
i = v(N )−v(N\{i}) for all i ∈ N .

Associated with the game v there is the so-called gap function gv : P(N ) → R such
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that, for every coalition S, its gap gv(S) represents the surplus of the marginal benefits
of its members over its worth, i.e., gv(S) = ∑

k∈S bv
k − v(S) for all S ⊆ N , where

gv(∅) = 0. A payoff vector �x = (xk)k∈N ∈ R
N is said to belong to the core C(v) if

it satisfies, besides the efficiency constraint
∑

k∈N xk = v(N ), the group rationality
constraints

∑
k∈S xk ≥ v(S) for all S ⊆ N , S �= ∅. It is simple to observe that the

marginal benefit of any player is an upper bound for core allocations in that xi ≤ bv
i

for all i ∈ N , all �x ∈ C(v).

Definition 1.1 An n-person game v is said to be 1-convex if its corresponding non-
negative gap function gv attains its minimum at the grand coalition N , i.e.,

gv(S) ≥ gv(N ) ≥ 0 for all S ⊆ N , S �= ∅ (1.1)

In terms of the characteristic function v, (1.1) requires that v(N ) ≥ v(S)+∑
k∈N\S bv

k
for every non-trivial coalition. In words, concerning the division problem, the worth
v(N ) is sufficiently large to meet the coalitional demand amounting its worth v(S),
as well as the desirable marginal benefit for any nonmember of S. The theory on
1-convex n-person games has been well developed (Driessen 1988). The key feature
of 1-convex n-person games is the geometrically regular structure of its core, com-
posed as the convex hull of n extreme points of which all the coordinates, except one,
agree with the marginal benefits of all, but one, players. Moreover, the center of gravity
of the core turns out to coincide with the so-called nucleolus of the 1-convex game. So,
the payoff to player i according to the nucleolus of 1-convex n-person games equals
bv

i − gv(N )
n for all i ∈ N . Particularly, the nucleolus on the class of 1-convex n-person

games satisfies the mathematically attractive additivity property.
For any payoff vector �x ∈ R

N satisfying
∑

k∈N xk = v(N ) as well as xi ≤ bv
i for

all i ∈ N , it is simple to observe the validity of the core constraint
∑

k∈S xk ≥ v(S)

whenever the gap of S weakly majorizes the gap of N , i.e., gv(S) ≥ gv(N ). Conse-
quently, for 1-convex n-person games v, the following core equivalence holds:

�x ∈ C(v) if and only if
∑

k∈N

xk = v(N ), xi ≤ bv
i for all i ∈ N (1.2)

Definition 1.2 An n-person game v is said to be 2-convex if on the one hand, the
gap of the grand coalition N is weakly majorized by the gap of every multi-person
coalition S, and on the other, the concavity of the gap function gv with respect to the
sequential formation of the grand coalition N by individuals up to size 1, whereas the
remaining n − 1 players merge as one syndicate to complete the sequential formation
of N , i.e.,

gv(S) ≥ gv(N ) for all S ⊆ N with |S| ≥ 2, and (1.3)

gv({ j}) ≥ gv(N ) − gv({i}) ≥ 0 for all i, j ∈ N , i �= j , or equivalently,

(1.4)

gv({ j}) + gv({i}) ≥ gv(N ) ≥ gv({i}) for every pair i, j ∈ N of players.

(1.5)

123



A note on the nucleolus for 2-convex TU games 187

In view of (1.3), for 2-convex n-person games v, the following core equivalence
holds:

�x ∈ C(v) if and only if
∑

k∈N

xk = v(N ), v({i}) ≤ xi ≤ bv
i for all i ∈ N (1.6)

Alternatively, for 2-convex n-person games, its core coincides with a so-called core
catcher associated with appropriately chosen lower- and upper core bounds. Our main
goal is to exploit the core equivalence (1.6) in order to determine the nucleolus based
on bargaining ranges within the core.

Example 1.3 Consider the zero-normalized 3-person game 〈{1, 2, 3}, v〉 of which the
characteristic function is given by v({1, 2}) = 6, v({1, 3}) = 7, v({2, 3}) = 8, and
v(N ) not yet specified.

In case the worth v(N ) is small enough, for instance v(N ) = 12, then the marginal
benefit vector �bv = (4, 5, 6), and so, its gap function gv is given by gv({i}) = 4, 5, 6
for i = 1, 2, 3, respectively, whereas gv(S) = 3 otherwise. By (1.1), the 3-person
game v is 1-convex, but fails to be 2-convex, and its core is the convex hull of the
three vertices (1, 5, 6), (4, 2, 6), (4, 5, 3). Further, the nucleolus coincides with the
center (3, 4, 5) of gravity of the core.

In case the worth v(N ) is large enough, say v(N ) = 15, then �bv = (7, 8, 9), and so,
gv({i}) = 7, 8, 9 for i = 1, 2, 3, respectively, whereas gv(S) = 9 otherwise. By (1.5),
the 3-person game v is 2-convex, but fails to be 1-convex, and its core is the convex
hull of the five vertices (7, 0, 8), (6, 0, 9), (0, 6, 9), (0, 8, 7), (7, 8, 0) (the latter with
geometric multiplicity 2).

In summary, the 3-person game v turns out to be 1-convex iff 10.5 ≤ v(N ) ≤ 13
and moreover, to be 2-convex iff v(N ) ≥ 15. Appealing examples of 1-convex games
are discovered, like the library game together with a suitably chosen basis (Driessen
et al. 2005) as well as the co-insurance game (Driessen et al. 2009). It is still an
outstanding challenge to search for appealing examples of 2-convex games.

2 The nucleolus of 2-convex n-person games

The main purpose is to apply the geometric characterization for the intersection of
the prekernel with the core as introduced by Maschler et al. (1979). In view of the
core equivalence (1.6) for 2-convex games, the largest amount that can be transferred
from player i to another player j with respect to a given core allocation �x ∈ C(v)

while remaining in the core of the game is either player’s i-th decrease amounting
xi − v({i}), or player’s j-th increase amounting bv

j − x j , whichever is less. Hence,

the largest transfer from i to j equals δv
i j (�x) = min

[
xi − v({i}), bv

j − x j

]
. We are

looking for core allocations �x satisfying the equilibrium condition δv
i j (�x) = δv

j i (�x) for
every pair i, j ∈ N of players.

Define the vector �y = (yk)k∈N ∈ R
N by yk = bv

k − xk for all k ∈ N . Note that∑
k∈N yk = gv(N ) and the equilibrium conditions may be rewritten by
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min
[
gv({i}) − yi , y j

] = min
[
gv({ j}) − y j , yi

]
or equivalently, (2.1)

y j + min
[
gv({i}), yi + y j

] = yi + min
[
gv({ j}), yi + y j

]
for every pair of players.

(2.2)

From (2.2), it follows that y j ≥ yi whenever gv({ j}) ≥ gv({i}). In fact, the system
(2.1) of pairwise (non-linear) equations, together with the adapted efficiency constraint∑

k∈N yk = gv(N ), is uniquely solvable (Driessen 1998, p. 47) and its unique solution
is of the parametric form

yk = min

[

λ,
gv({k})

2

]

and so, xk = v({k}) + max

[

gv({k}) − λ,
gv({k})

2

]

(2.3)

for all k ∈ N , where the parameter λ ∈ R is determined by the efficiency constraints∑
k∈N yk = gv(N ) and

∑
k∈N xk = v(N ). The latter solution (2.3) applies only if

1
2 · ∑

k∈N gv({k}) ≥ gv(N ), otherwise for all k ∈ N

yk = max

[

gv({k}) − λ,
gv({k})

2

]

and so, xk = v({k}) + min

[

λ,
gv({k})

2

]

(2.4)

Theorem 2.1 The nucleolus of a 2-convex n-person game v is of the parametric form
(2.3) or (2.4), a so-called constrained equal award rule, incorporating the constraints
amounting a half of the individual gaps gv({k}), k ∈ N. For instance, by (2.3), the
payoff to any player i according to the nucleolus equals either the midpoint of its
individual worth v({i}) and its marginal benefit bv

i , or its parametric shortage bv
i −λ,

whichever is more. By (2.4), its payoff equals either the same midpoint, or its para-
metric gain v({i}) + λ, whichever is less.

Remark 2.2 The non-void intersection of the two classes of 1-convex and 2-convex
n-person games is fully characterized by identical individual gaps such that gv({k}) =
gv(N ) for all k ∈ N . In this setting, (2.3) applies, and the parameter λ is determined
through the slightly adapted efficiency constraint

∑

k∈N

min

[

λ,
gv(N )

2

]

= gv(N ). Thus, yk = λ = gv(N )

n
and so,

the nucleolus payoff equals xk = bv
k − yk = bv

k − gv(N )
n for all k ∈ N , which is in

accordance with previous remarks involving the nucleolus payoff vector �x .

Remark 2.3 In view of the core equivalence (1.2) for 1-convex n-person games v,
the largest transfer from player i to another player j , while remaining in the core of
the game, is fully determined by player’s j-th increase amounting bv

j − x j . That is,
δv

i j (�x) = bv
j − x j for all i, j ∈ N , i �= j . The equilibrium condition δv

i j (�x) = δv
j i (�x),

or equivalently, the system of linear equations bv
j − x j = bv

i − xi for every pair
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i, j ∈ N of players, is easily solved by the unique efficient payoff vector of which the
coordinates are given by bv

k − gv(N )
n , k ∈ N .

Remark 2.4 In Quant et al. (2005), the authors study the so-called class of compromise
stable games of which the core agrees with a certain core cover in the sense of (1.6)
by replacing the weak lower bound v({i}) by another sharp lower bound amounting
bv

i − minS�i gv(S). Their approach to determine the nucleolus of compromise stable
games games is totally different and strongly based on the study of (convex) bankruptcy
games (Quant et al. 2005, Theorem 4.2, pp. 497–498). Our geometrical approach to
determine the nucleolus of compromise stable games applies once again, but is left to
the reader. In fact, (2.1) applies once again, replacing gv({i}) by minS�i gv(S).

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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