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Abstract Spatial models of two-player competition in spaces with more than one 
dimensión almost never have pure-strategy Nash equilibria, and the study of the equi­
librium positions, if they exist, yields a disappointing result: the two players must 
choose the same position to achieve equilibrium. In this work, a discrete game is 
proposed in which the existence of Nash equilibria is studied using a geometric argu-
ment. This includes a definition of equilibrium which is weaker than the classical one 
to avoid the uniqueness of the equilibrium position. As a result, a "región of equilib­
rium" appears, which can be located by geometric methods. In this área, the players 
can move around in an "almost-equilibrium" situation and do not necessarily have to 
adopt the same position. 
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1 Introduction 

The Nash equilibrium is studied in general models of competition. It was described for 
the flrst time by John Forbes Nash in his dissertation, Non-Cooperative Games (Nash 
1951), as a way to obtain an optimum strategy for games with two or more players. 
Plott (1967), Kramer (1973), McKelvey (1976), and others have demonstrated that 
pure-strategy Nash equilibria generally do not exist when the competition takes place 
in a space with more than one dimensión. 

Various approaches have been presented in the literature in an attempt to resolve 
this situation: restricting the positions of the players, studying mixed-strategy Nash 
equilibria, or studying uncovered sets, among others (see, for example, Abellanas et al. 
2006, 2010; Roemer 2001; McKelvey 1986). 

In this work, a discrete model of competition between two players is presented, and 
the equilibrium positions are studied using a geometric analysis. This analysis involves 
geometric features such as convex hulls (de Berg et al. 1997). The uniqueness of the 
Nash equilibrium is stated, when this equilibrium exists: if there is Nash equilibrium 
in the game presented, then it is attained in a unique position. To avoid this situation a 
definition of equilibrium which is weaker than the classical one is proposed, to define 
a región from which the players should not deviate if they want to ensure that the other 
player cannot "greatly" improve his gain. 

The game can be considered as a discrete versión of the Voronoi game (Fekete and 
Meijer 2003), which is widely studied in computational geometry. It can be applied 
to some discrete competition models in different áreas, as political competition. 

The structure of the paper is as follows: Sect. 2 introduces the model. In Sect. 3, 
necessary and sufficient conditions are presented for the Nash equilibrium positions to 
exist. Section 4 proposes a definition of equilibrium which is weaker than the classical 
one. 

2 The model 

This work generalizes the study of Nash equilibrium in a competitive game in which 
two players choose their positions in the plañe to attract the largest possible number 
of points from n fixed points on the plañe. 

Each player is considered to capture those points which lie closer to his position 
than to that of the other player. The perpendicular bisector of the players' locations 
thus partitions the plañe into two regions. Each player wins the points in his own half-
plane (Serra and Revelle 1994; Smid 1997; Aurenhammer and Klein 2000; Okabe 
et al. 2000). The goal of each player is to get the most points that can be achieved 
given the behavior of the other player. 

In formal terms, consider a strategic game G = (N, X, TI), where N = {1, 2} is 
the set of two players, X = 9t2 x 9t2 is the strategy space, and n : X -> {0, . . . , n] x 
[ 0 , . . . , n] is the payoff function. Moreover, the set of points each player wants to 
capture is denoted by H = {p\,..., pn} c R2. 



The description of the payoff function in the game presented here is given by: 

n 1 (íi, t2) = number of points pi such that d (pi, t\) <d(pi, t2) 

n 2 (íi, t2) = number of points pi such that d (pi, t\) > d(pi, t2) 

= n- n 1 ( í i , í 2 ) 

i f í i ^ Í 2 

wheted(pi, í)represents the Euclideandistancebetween the points pi, í ,andn ' , i = 
1, 2 represent the payoff of player i. 

In the case where íi = t2,U
1 (ti, ti) = n 2 (ti, ti) = § is deflned. 

Note that the game as presented here is a constant-sum game. Although the strategy 
space is infinite, the game can be considered as a discrete game in the sense that the 
image of n is a finite set. This is the main contribution of the paper compared to exist-
ing literature such us Rosenthal (1973) or Barón et al. (2004) where a finite strategy 
space is considered or for example Lindsey et al. (1995) where the payoff functions 
are not discrete. 

3 Equilibrium in the game 

3.1 Existence of equilibrium 

In this section, necessary and sufficient conditions are developed for the existence of 
Nash equilibrium in the game defined in Sect. 2. Preliminary definitions are required. 

Definition 1 A strategy profile (t®, t®) is a Nash equilibrium if: 

n1 (ti, i) < n1 (ti i), n2 (r°, t2) < n2 (íf, tf) vtl, t2 e 3Í2 

Definition 2 For fixed positive integer numbers n, i, consider the convex hulls of all 
possible selections of [ |] + / points from H. Define Cnj as the intersection of the 
convex hulls aforementioned ([] represents the floor function). 

Proposition 1 There exist locations for a player in which the other player cannot 
obtain a payoff greater or equal than [ |] + 1 if and only if C„,i is not empty. Any 
point in CBii will be one ofthose locations. 

Proof «=) If C„,i is not empty, then any location of, say, player 1 at a point of C„,i 
ensures that the other player cannot obtain any selection of [ |] + 1 points from H, 
because the position of player 1 is included in the convex hull of fhese [|] + 1 points. 

=>•) If C„,i is empty, then for each position ti occupied by, say, player 1, it is pos­
sible to find [f ] + 1 points of H such that t\ is not in their convex hull, and therefore 
there exist positions t2 for player 2 that obtain fhese points (t2 could be the symmetric 
image of íi with respect to any straight line that separates the convex set and ti, see 
Fig. 1). D 



Fig. 1 Player 2 is located at the 
symmetrical image of the 
position of player 1 with respect 
to a line that separates the 
convex set and the position of 
player 1 

Now Proposition 1 can be used to flnd the Nash equilibrium positions in the 
proposed game. 

Proposition 2 In the game presented here, Nash equilibrium positions exist if and 
only ifCn¿ is not empty. In this case, the only Nash equilibrium positions will be any 
(ti, í2) such that t\ and í2 are in this set. 

Proof «=) If Cn, i is not empty, then any position (íi, í2) such that íi and í2 belong to 
Cn, i is an equilibrium position. 

If, say, the flrst player locates at ti, then it is known (by Proposition 1) that player 
2 cannot obtain more than | points no matter where he locates, so n 2 (ti, í) < | for 
every t in R2. The same reasoning applies for the flrst player when the second one is 
atí2. 

On the other hand, in position (ti, í2), each player obtains a payoff of § points, 
because n 1 (ti, í2) < | , n 2 (ti, í2) < | , and the gains are complementary. There-
fore, n 2 (íi, í) < 5 = n 2 (ti, í2), and the same pattern exists for player 1, so (ti, í2) 
is a Nash equilibrium position. 

These are the only equilibrium positions, forif (íi, í2) is a Nash equilibrium position, 
then because n1 (t, t) = § Vi and a complementary payoff is assumed, n 1 (ti, í2) = 
n 2 (ti, í2) = f. If, say, íi does not belong to C„j , then there is a strategy for player 
2 to obtain at least [|] + 1 points of H in a position t (Proposition 1). Therefore, 
n 2 (ti, t) > [ |] + 1 > n 2 (ti, ti), which is a contradiction because (ti, í2) is a Nash 
equilibrium position. 

=>•) If C„,i is empty and there is a Nash equilibrium position (ti, í2), then one of 
the payoff functions, say n 2 , satisfles the condition that n 2 (ti, í2) < | because the 
gains are complementary. However, applying Proposition 1, since C„,i is empty, for 
position ti of player 1, there exists a position t for player 2 that obtains at least [f ] + 1 
points of the set. Therefore, n 2 (ti, t) > [§] + 1 > \ > n 2 (ti, í2), and player 2 
can change his position profitably. This leads to a contradiction because (ti, í2) is an 
equilibrium position. D 



3.2 Uniqueness of equilibrium 

The previous section established geometrically which are the Nash equilibrium posi-
tions for the game presented here, whether they exist, and where they are located. Now 
it will be determined when these positions are unique. 

3.2.1 Case ofoddn 

Proposition 3 For odd n,Cn^ is empty or it is a non empty subset of H. Since the 
intersection ofconvex sets is a convex set, in this last case, Cn^\ is a set consisting of 
a single point of H. 

Proof If there is a point in Cw,i not belonging to H and, say, player 1 is located at this 
point, then player 2 cannot gain [ |] + 1 points from the first player, by Proposition 1, 
but for odd n, it is easy to see that there is a strategy for a player to obtain [ | ] + 1 
points of H if the other, say player 1, is situated in a position t\ that is not a point of 
H: just consider a line that separates [ |] + 1 points of H of the rest of the points of 
H and t\ and lócate player 2 in the symmetrical of t\ with respect to this line. This 
yields a contradiction. D 

3.2.2 Case ofeven n 

A similar result can be obtained for even n. A preliminary proposition is required. 

Proposition 4 Let pi be a point of H in the boundary ofthe convex hull ofH. There 
exists a straight line that connects pi with another point ofH and that leaves the same 
number of points ofthe set in each half-plañe. 

Proof For any point of H in the boundary of the convex hull, say p\, it is possible to 
find a line containing this point that leaves the convex hull in a half-plane (de Berg 
et al. 1997). It can then be assumed without loss of generality that the convex hull is 
in the half-plane below the line (or on the right side of the line if it is a vertical line). 

In this way, it is possible to assume that p\ is the highest point of H on the line and 
to arrange the other points of H according to the angle of each with p\. Because all 
the points of H are in the same half-plane, it follows that the line that joins the middle 
point in the arrangement with p\ leaves the same number of points on each side ofthe 
line (Fig. 2). D 

Fig. 2 Angular arrangement of 
points and selection of the point 
that, together with p\, leaves 
half the points of H on each side 
of the line 

i 
i 
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Remark In the case of points not being in general position (there are more than two 
points in a same line) the line that joins the middle point in the arrangement with p\ 
could contain other points of the set. In this case, the points of the set belonging to 
the segment joining p\ and the middle point, are considered to be in the half-plane of 
the ones wifh less angle that the middle point, and the points of the set in the line not 
belonging to this segment, are considered to be in the other half-plane. 

Proposition 5 For even n, ifthe n points of H are not collinear, then CHi i is a point 
or the empty set. 

Proof Select a point of H on the boundary of the convex hull of the n points. It is 
known by Proposition 4 that there is another point of the set such that the line con-
necting the two points leaves § - 1 points on each side. Then the intersection of the 
convex hull of | — 1 points on one side plus the two points on the line, and the convex 
hull of | - 1 points on the other side plus the two points on the line, is a segment 
contained in the line. Because the points of H are not collinear, there is a point on the 
boundary of the convex hull which is not on the line containing the segment, and by 
applying Proposition 4, it is possible to obtain another point of the set such that the 
line containing the two points leaves § - 1 points on each side. Therefore, following 
the same reasoning as before, it is possible to flnd two convex hulls of | + 1 points of 
the set whose intersection is another segment contained in the line, and then the inter­
section of the two segments is contained in the intersection of the two lines. It follows 
that the intersection of the two segments is contained in a set of one point. Therefore, 
the intersection of the four convex hulls is contained in a point, and therefore C„, i is 
empty or a unique point. D 

Remark In the case of even n and collinear points, there are an infinite number of 
equilibrium positions because C„, i is the segment determined by the two intermedíate 
points. 

3.2.3 General result 

Taking into account the results established in cases a) and b), it is possible to state the 
following general result: 

Proposition 6 C„,i is a point or the empty set unless the points of H are collinear 
with even n. Therefore, if there is Nash equilibrium in the game presented here, then 
this equilibrium is unique, with the two players choosing the same position t, unless 
the points are collinear with even n. Moreover, ifn is an odd number, then t e H. 

Remark It is possible to develop an algorithm that flnds C„j with computational 
complexity of O(nlogn). 

It can be seen that C„,i is an empty set except for very special conflgurations of the 
points of H. Therefore, in the presented game, the equilibrium positions fail to exist 
except in singular cases. This result is analogous to the stated in Roemer (2001) for 
games similar to the presented one but with differentiable payoff functions. Neverthe-
less the discretenature of thepayoffs deflned in this game, requires different techniques 
for the proofs that those used in Roemer (2001). 



4 Weak equilibrium 

In this section, the discrete nature of the model is used to revise the definition of Nash 
equilibrium by means of: 

Definition 3 A strategy proflle (t®, 4) is a weak equilibrium if: 

n1 (tu 4) < n1 (r°, 4) + i, n2 (4, t2) < n2 (4,4) + 1 VÍI, Í2 e m2 

This definition can be seen as a particular case of the e-equilibrium studied by 
Monderer and Shapley (1996). Due the discrete nature of the game presented in the 
paper it makes sense taking e = 1. This is the motivation of Definition 3. 

A geometric analysis is developed here that extends the concepts presented in the 
previous section and underlies the search for the equilibrium positions, if they exist, 
according to this definition. For another generalization of the Nash equilibrium con-
cept, see Aumann (1959). 

4.1 Existence of weak equilibrium 

Proposition 7 In a weak equilibrium position (4, 4), it is necessarily true that 

n i ( M ) > f - i , n2 ( « ) > f - i. 

Proof Let (í°, 4) be a weak equilibrium position. Assume that, say, n 1 (t®, 4) < 
| - 1. Then n 1 (í°, tf) = § > n 1 (í°, tf) + 1, which is a contradiction because 
(íj, 4) is a weak equilibrium position. D 

Remark As aconsequence of this last proposition, because complementary payoffs are 
assumed, in a weak equilibrium position with even n, the payoffs must be § - 1 , § +1 
or else | for both. In a weak equilibrium position with odd n, the payoffs must be 

[§] = ^~T~> [f] + * = ñ^T~ o r e l s e b°th equal to | (in this last case, the two players 
choose the same position). 

The next step is to search for necessary and sufficient conditions for a position to 
be a weak equilibrium position. 

Proposition 8 In the game presented here, there exist weak equilibrium positions 
ifand only ifCn¿ is not empty (n > 2). 

Proof «=) Let t be a point belonging to C„,2. K will be shown that position (í, í) is a 
weak equilibrium position. 

n 1 ^ , t) = n 2 ( í , í ) = |.If, say, U.l(h,t) > [ | ] + 2 for someposition íioccupied 
by the first player, then there exists a straight line that separates at least [§] + 2 points 
of H from í, so t does not belong to the convex hull of fhese [ |] + 2 points. This 
contradicts the initial assumption. D 

Remark The proof of the other implication of the proposition is analogous to that 
performed in the case studied in the previous section (Proposition 2). 



Now the weak equilibrium positions will be characterized according to the parity 
of n. 

4.1.1 Case ofoddn 

1. The weak equilibrium positions are (ti, ti), with n ^ í i , ti) = [§ ] , U2(ti, ti) = 
[|] + 1, íi belonging to C„,3, and H in C«,2. In this situation, player 2 cannot earn 
[§] + 3 points to increase by two his payoff in any position, and likewise player 1 
cannot obtain [|] + 2 points in H. These are the only possible weak equilibrium 
positions with these payoffs. If one of the players is not in the set under consid-
eration, the other one can sepárate that player from at least [|] + 3 or at least 
[§] + 2 points respectively of the set by changing his position and increasing his 
gain by at least two units. 

These positions make sense when [§] + 3 < n, that is to say, n > 5. 
2. The other weak equilibrium positions are (t, t) with t belonging to Cn^(n > 1). 

There are no more weak equilibrium positions with other payoffs because they would 
not satisfy the necessary condition (Proposition 7). 

4.1.2 Case ofevenn 

The weak equilibrium positions will be: 

1. Those in which one of the players has gain | - 1 and is located in Cn¿, and the 
other has gain | + 1 and is located in C„, i, assuming that this last set is not empty 
and n > 4. In these positions, neither of the players can increase his score by two 
by moving. These are the only possible weak equilibrium positions with these 
gains. 

2. The other weak equilibrium positions are those where the two players each obtain 
half the payoff and are in C«,2. 

4.2 Examples 

For odd n, with n > 1, every position (ti, ti) such that ti, Í2 are in C«,2 is a weak 
equilibrium position, because these positions with ti ^ Í2 ensure that the payoffs of 
the players are [f ] , [ |] + 1. This is equivalent to case a), but these are not the only 
weak equilibrium positions. 

For example, for n = 5 and the set of points shown in Fig. 3, Cs,2 is the shaded 
polygon. 

If ti, Í2 are the positions labeled in Fig. 3, then n 1 (íi, ti) = 2, U2(ti, ti) = 3. 
Because Í2 belongs to Cs,2, the flrst player cannot change his position to win four 

points of H, so he cannot improve his payoff by two units. Likewise, because íi is 
inside the polygon deflned by the points of H, the second player cannot win flve points 
in any position, and fherefore they are in a weak equilibrium position, but íi does not 
belong to Cs,2. 



Fig. 3 Points in a weak 
equilibrium position for odd n 

Fig. 4 Points in a weak 
equilibrium position for even n 

Note that in this set there is no Nash equilibrium position because C5, i is empty 
(Proposition 3). Therefore, the search for weak equilibrium in this example appears 
to be interesting. 

For even n, n > 2, it should be noted that positions fe, H) with ti, H in C„,2 are 
not necessarily weak equilibrium positions because these positions do not ensure the 
payoffs stated in case b). There are also, as in the previous case, weak equilibrium 
positions in which one of the parties is not in C„,2. For example, for n = 6, in the sit-
uation shown in Fig. 4, the gains are F^fe, í2) = 2, n 2 f e , í2) = 4, í2 is in Ce,i, ti 
is in C6,3, and therefore (ti, H) is a weak equilibrium position as in case b), but t\ is 
not in C6,2-

This example yields a unique Nash equilibrium position, fe, ti), meaning that the 
two players choose the same position, but it has an infinite number of weak equilibrium 
positions. 

4.3 Generalization 

In this section a generalization of the weak equilibrium concept is introduced by means 
of the following definition: 

,o ,o\ Definition 4 A strategy profile \t{, tj) is a Ai-equilibrium if: 

n1 (h, tñ < n1 (tf, tñ + k, n2 (tf, t2) < n2 (tf, tñ +k Vh,t2e at2 

(k is an integer number with 0 < k < [ j] if n is an odd number, 0<k<^-liín 
is an even number). 



Remark O-equilibrium is equivalent to Nash equilibrium and 1-equilibrium is equiv-
alent to weak equilibrium. 

The results obtained in the previous sections can be easily translated to ^-equilibrium 
definition as follows: 

Proposition 9 In a k-equilibrium position (t®, t®), it is necessarily true that 
n'{tlt¡)>^-k, n2 (r°,Í2°) > f - k . 

Proposition 10 In the game presented here, there exist k-equilibrium positions ifand 
only ifCn^k+i) is not empty. 

It can be seen that greater valúes of k provide bigger ^-equilibrium regions but this 
situation carries less degree of stability. 

4.4 Political application 

The discrete game and the generalization of the concept of equilibrium showed in this 
paper can be applied to múltiple doctrines, especially those related to problems of 
location. 

As an example it can be given an interpretation in terms of political competition in 
the following way: 

The two players are two political parties which compete in an election. The posi­
tions they choose in the plañe are the policies they adopt in two certain important items 
in the electoral process. The set of points each player wants to capture are the voters 
in the election. 

We have proved that when Nash equilibrium positions exist in the game presented, 
these are unique and they are reached when the two players choose the same strategy. 
That is to say in terms of this example, the two parties will propose, in essence, a 
similar political program to offer to their voters. This is not a very realistic situation. 
The consideration of a generalization of the equilibrium is then a contribution for 
avoiding this problem because it permits more political options to the parties which 
assure them positions very much cióse to stability. 

A versión of this layout, supposing that the set of voters is a continuum, can be seen 
inRoemer(2001). 

5 Conclusions 

In equilibrium analysis of most competitive multidimensional games with two play­
ers, it has been found that such positions do not exist except for singular cases, and 
therefore there are no positions for the players that guarantee that the other player can-
not increase his gain by moving. A discrete two-dimensional competition model has 
been proposed and analyzed using geometric strategies that flnd the Nash equilibrium 
positions if they exist and ensure their uniqueness. In spite of this, Nash equilibrium 
in the majority of the situations studied has been found not to exist. To resolve this 
situation, a weakened definition of equilibrium has been presented, which ensures 



for each player that the other cannot improve his payoff by more than one unit if he 
changes his position. This new definition of equilibrium can be useful in cases which 
have no Nash equilibrium. 

Indeed, the weak equilibrium positions as deflned in this research are usually regions 
of the plañe, so they yield infinite possibilities for the players to move, in contrast to 
the single position available to the players in a Nash equilibrium. 

The study of the existence and locations of Nash equilibrium and weak equilibrium 
positions has here been expanded in scope by applying techniques from computational 
geometry such as the intersection of convex hulls, which can be used because of the 
discrete nature of the game. 
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