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Abstract Recently, applications of cooperative game theory to economic allocation
problems have gained popularity. In many such allocation problems there is some
hierarchical ordering of the players. In this paper we consider a class of games with a
permission structure describing situations in which players in a cooperative TU-game
are hierarchically ordered in the sense that there are players that need permission
from other players before they are allowed to cooperate. The corresponding restricted
game takes account of the limited cooperation possibilities by assigning to every coa-
lition the worth of its largest feasible subset. In this paper we provide a polynomial
time algorithm for computing the nucleolus of the restricted games corresponding to
a class of games with a permission structure which economic applications include
auction games, dual airport games, dual polluted river games and information market
games.
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1 Introduction

A cooperative game with transferable utility, or simply a TU-game, is a finite set
of players and for any subset (coalition) of players a worth representing the total
payoff that the coalition can obtain by cooperating. A payoff vector is a vector which
gives a payoff to each of the players, i.e., each component corresponds to precisely
one of the players. A payoff vector is efficient if the sum of the payoffs is equal to
the worth of the grand coalition of all players. A set-valued solution for TU-games
assigns a set of payoff vectors (possibly empty) to every TU-game. A single-valued
solution assigns precisely one payoff vector to every TU-game. A solution is said to
be efficient if for every game any payoff vector assigned by the solution is efficient.
The best known efficient set-valued solution is the Core (Gillies 1953). The two best
known efficient single-valued solutions are the Shapley value (Shapley 1953) and the
nucleolus (Schmeidler 1969).

In this paper we assume that the players in a TU-game are part of some hierarchical
structure that is represented by a directed graph such that some players need permis-
sion from other players before they are allowed to cooperate within a coalition. In the
literature two approaches to these games with a permission structure can be found. In
the conjunctive approach, as considered in Gilles et al. (1992) and van den Brink and
Gilles (1996), it is assumed that each player needs permission from all its predecessors
in the directed graph before it is allowed to cooperate. Alternatively, in the disjunctive
approach as developed in Gilles and Owen (1994) and van den Brink (1997), a player
needs permission to cooperate of at least one of its direct predecessors (if it has any).
So, according to the conjunctive approach a coalition is feasible if and only if for any
player in the coalition it holds that all its predecessors are also in the coalition, whereas
according to the disjunctive approach a coalition is feasible if and only if for any player
in the coalition at least one of its predecessors (if it has any) is also in the coalition.
Following an approach similar to that of Myerson (1977) for games with limited
communication (graph) structure, in both the conjunctive and disjunctive approach to
games with a permission structure a restricted game is derived. In games with a per-
mission structure the restricted game assigns to every coalition the worth of its largest
feasible subset. Applying well-known solutions as the Shapley value, Core or nucleo-
lus to such restricted games yields solutions for games with a permission structure.

A special subclass of games with a permission structure arises from peer group
situations, as introduced in Brânzei et al. (2002). A peer group situation is a triple
consisting of a set of players, a hierarchical structure represented by a rooted directed
tree, and for each player a real number representing its potential individual (economic)
contribution to the society of all players. This yields an associated TU-game being the
additive game in which the worth of any coalition is equal to the sum of the individual
potentials of its members. In a rooted directed tree there is one top node (not having a
predecessor), while any other node has precisely one predecessor. So, in case the hier-
archical structure on the player set is a rooted directed tree, the conjunctive approach
and the disjunctive approach as described above, coincide. The restricted game of the
associated TU-game with respect to such a permission structure is called a peer group
game. These peer group games have many interesting applications, such as auction
games, dual airport games (see Brânzei et al. 2002) and dual polluted river games (see
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Ni and Wang 2007). The larger class of games that we consider here also contains
information market games (see Muto et al. 1989).

Clearly, in a peer group game the worth of a coalition is the sum of the individual
potentials of the members of the largest feasible subset of the coalition. Since the top
player is always in this set when it belongs to the coalition, and the largest feasible
set is the empty set for any coalition not containing the unique top player, it follows
that the top player is a veto player, i.e., any coalition not containing the (veto) top
player has zero worth in the restricted game. In Arin and Feltkamp (1997) an expo-
nential time algorithm has been given to compute the nucleolus for veto-rich games. In
Brânzei et al. (2005) a polynomial time algorithm is given to compute the nucleolus of
a peer group game. In this paper we modify the Arin-Feltkamp algorithm to compute
the nucleolus of the restricted game induced by more general situations, including
the examples mentioned above as special cases. The generalization concerns both the
hierarchical graph structure and the class of unrestricted TU-games by allowing for
any digraph having one top node and no directed cycles and any game satisfying a so-
called weak digraph monotonicity condition and a weak digraph concavity condition.
The algorithm finds the nucleolus in polynomial time.

The paper is organized as follows. Section 2 is a preliminary section on cooperative
TU-games (with special attention for the nucleolus) and directed graphs. In Sect. 3
games with a permission structure are defined as considered in this paper and we
introduce the properties of weak digraph monotonicity and weak digraph concavity
for such games. In Sect. 4 we present some properties of essential and feasible coali-
tions. These properties are crucial for the algorithm given in Sect. 5. Section 5 contains
three subsections. In the first subsection the algorithm is given and the second one con-
tains the proof that the algorithm indeed finds the nucleolus. In the third subsection
the algorithm is illustrated by an example. In Sect. 6 we discuss the complexity of the
algorithm. Finally, Sect. 7 contains concluding remarks.

2 Preliminaries

2.1 TU-games

A situation in which a finite set of players can obtain certain payoffs by cooperation
can be described by a cooperative game with transferable utility, or simply a TU-
game, being a pair (N , v), where N ⊂ IN is a finite set of n players and v : 2N → R

is a characteristic function on N such that v(∅) = 0. For any coalition S ⊆ N , v(S)

is the worth of coalition S, i.e., the members of coalition S can obtain a total payoff
of v(S) by agreeing to cooperate. For simplicity, for a single player i we denote its
worth v({i}) by v(i). We denote the collection of all characteristic functions on N by
GN . A TU-game (N , v) is monotone if v(S) ≤ v(T ) for all S ⊆ T ⊆ N . It is convex
(concave) if v(S) + v(T ) ≤ (≥)v(S ∩ T ) + v(S ∪ T ) for all S, T ⊆ N .

A collection B = {S1, . . . , Sm} of subsets of N is said to be a balanced collection
when the system of equations

m∑

j=1

λ j e
S j = eN (1)
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has a positive solution. A balanced collection B is called a minimal balanced collec-
tion if the system of Eq. 1 has a unique positive solution. In that case we denote it
by λB

j , j = 1, . . . , m, where, for S ⊆ N , the n-vector eS is given by eS
i = 1 when

i ∈ S and eS
i = 0 otherwise. By B we denote the set of all minimal balanced collec-

tions, excluding the balanced collection {N } having the grand coalition N as its single
element. In the following we will only use minimal balanced collections and, since
there is no confusion, just refer to a minimal balanced collection B ∈ B as a balanced
collection. A game (N , v) is balanced if

m∑

j=1

λB
j v(S j ) ≤ v(N )

for any balanced collection B = {S1, . . . , Sm} ∈ B.
A payoff vector is a vector x ∈ IRn assigning a payoff xi to every i ∈ N . In

the sequel, for S ⊆ N we denote x(S) = ∑
i∈S xi . A payoff vector is efficient

if x(N ) = v(N ) and it is individually rational if xi ≥ v(i) for every i ∈ N . The
imputation set I (N , v) of game v is given by

I (N , v) = {
x ∈ R

n|x(N ) = v(N ) and xi ≥ v(i) for every i ∈ N
}
,

i.e., I (N , v) is the set of all efficient and individually rational payoff vectors.
A (set-valued) solution F on GN assigns a set F(N , v) ⊂ R

n of payoff vectors to
every characteristic function v ∈ GN . The best known set-valued solution is the Core
assigning to every v ∈ GN the set

C(N , v) = {x ∈ I (N , v)|x(S) ≥ v(S) for all S ⊂ N },

i.e., it is the set of all imputations that are stable in the sense that no coalition can do
better by separating from the grand coalition. The Core of (N , v) is non-empty if and
only if the game is balanced, see e.g. Bondareva (1962) or Shapley (1967).

A solution F is said to be single-valued if it assigns to any v ∈ GN a unique payoff
vector. The two best known single-valued solutions are the Shapley value (Shapley
1953) and the nucleolus (Schmeidler 1969). Since the aim of this paper is to give an
algorithm for computing the nucleolus for a special class of characteristic functions,
we devote the next subsection to this solution.

2.2 Nucleolus

Consider a given characteristic function v ∈ GN , and payoff vector x ∈ IRn . Then the
excess e(S, x) of a coalition S ⊆ N is defined by

e(S, x) = v(S) − x(S).

Further, let E(x) be the (2n − 2)-component vector that is composed of the excesses
of all coalitions S ⊂ N , S �= ∅, in a non-increasing order, so E1(x) ≥ E2(x) ≥
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· · · ≥ E2n−2(x). Then the nucleolus Nuc(N , v) of the game (N , v) is the unique
imputation which lexicographically minimizes the vector-valued function E(·) over
the imputation set. Formally,

Nuc(N , v) = x ∈ I (N , v) such that E(x) �L E(y) for all y ∈ I (N , v),

where �L denotes the lexicographic order of vectors. It is well-known that
Nuc(N , v) ∈ C(N , v) when C(N , v) �= ∅.

In a game (N , v), a coalition S is called inessential if it has a partition {S1, . . . , Sr }
with r ≥ 2, such that v(S) ≤ ∑r

j=1 v(S j ). Coalitions which are not inessential
are called essential. Notice that single player coalitions are always essential. It is
straightforward to observe that for an inessential coalition S it holds that

e(S, x) ≤
r∑

j=1

e(S j , x), for all x ∈ IRn .

Therefore the Core, and thus also the nucleolus, is independent of inessential coali-
tions, as was noticed by Huberman (1980). In fact, in any n player game there are at
most (2n − 2) coalitions which actually determine the nucleolus, see Brune (1983)
and Reynierse and Potters (1998). Although, as noticed by Brânzei et al. (2005), iden-
tifying these coalitions is no less laborious as computing the nucleolus itself, in the
following we state some facts for games with non-empty Core which will appear to
be useful later on. We denote

e∗(N , v) = min{S⊂N |S �=∅} − e(S, x) at x = Nuc(N , v),

i.e., e∗(N , v) is the minimal negative excess at the nucleolus of game (N , v). Clearly,
e∗(N , v) ≥ 0 if and only if Core(N , v) �= ∅.

Lemma 2.1 If e∗(N , v) > 0, then every coalition S ⊂ N with −e(S, x) = e∗(N , v)

at x = Nuc(N , v) is essential.

Proof Suppose S ⊂ N with −e(S, x) = e∗(N , v) is inessential. Then there is a
partition {S1, . . . , Sm} such that e∗(N , v) = −e(S, x) ≥ ∑m

j=1 − e(S j , x). Since
e∗(N , v) > 0 there must be at least one j ∈ {1, . . . , m} such that −e(S j , x) <

−e(S, x), which contradicts that e∗(N , v) = min{S⊂N |S �=∅} − e(S, x). ��
Let B = {S1, . . . , Sm} ∈ B be a balanced collection of coalitions. The next lemma

follows from Arin and Inarra (1998, Theorem 3.2)

Lemma 2.2 (Arin and Inarra 1998) If e∗(N , v) ≥ 0 then

e∗(N , v) = min
B∈B

v(N ) − ∑m
j=1 λB

j v(S j )
∑m

j=1 λB
j

,

with λB
j , j = 1, . . . , m, the solution of the system (1) for the balanced collection

B = {S1, . . . , Sm} ∈ B.
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The next two corollaries follow immediately.

Corollary 2.3 Let B = {S1, . . . , Sm} ∈ B be a balanced collection with weights
λB

j , j = 1, . . . , m, satisfying

e∗(N , v) = v(N ) − ∑m
j=1 λB

j v(S j )
∑m

j=1 λB
j

. (2)

Then at x = Nuc(N , v) we have that −e(S j , x) = e∗(N , v), j = 1, . . . , m.

Proof Since
∑

{ j |i∈S j } λB
j = 1 for every i ∈ N , it holds that x(S) = ∑

i∈S xi =
∑

i∈S
∑

{ j |i∈S j } λB
j xi for every x ∈ IRn and S ⊂ N . Hence,

m∑

j=1

λB
j x(S j ) =

m∑

j=1

∑

i∈S j

λB
j xi =

∑

i∈N

∑

{ j |i∈S j }
λB

j xi = x(N )

and thus at x = Nuc(N , v) we have that

v(N ) − ∑m
j=1 λB

j v(S j )
∑

h λB
h

=
m∑

j=1

λB
j∑

h λB
h

· (x(S j ) − v(S j ))

=
m∑

j=1

λB
j∑

h λB
h

· (−e(S j , x)).

Thus, the right-hand side of Eq. 2 is a convex combination of the numbers −e(S j , x).
Therefore, for each j, e∗(N , v) ≤ −e(S j , x) must hold with equality. ��
Corollary 2.4 If e∗(N , v) > 0, then for any balanced collection B = {S1, . . . , Sm} ∈
B satisfying e∗(N , v) = v(N )−∑m

j=1 λB
j v(S j )∑m

j=1 λB
j

, it holds that any set S j is essential.

Proof This follows immediately from Lemma 2.1 and Corollary 2.3. ��
Arin and Feltkamp (1997) propose an exponential time algorithm to find the nucleo-

lus of a veto-rich game, i.e., a game (N , v) such that there exists (at least one) veto
player being a player i such that v(S) = 0 when i �∈ S. In this paper we modify this
algorithm to find, in polynomial time, the nucleolus of restricted games arising from
games with a permission structure in which players in a cooperative TU-game belong
to a hierarchical structure that is represented by a directed graph.

2.3 Directed graphs

A directed graph or digraph is a pair (N , D) where N ⊂ IN is a finite set of nodes
(representing the players) and D ⊆ N ×N is a binary relation on N . Given (N , D) and
S ⊆ N , the digraph (S, D(S)) is the induced subgraph on S, that is given by D(S) =
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A polynomial time algorithm for computing the nucleolus 597

{(i, j) ∈ D|i, j ∈ S}. In the sequel we simply refer to D for a digraph (N , D) and to
D(S) for the subgraph (S, D(S)). For i ∈ N the nodes in SD(i) := { j ∈ N | (i, j) ∈
D} are called the successors of i , and the nodes in PD(i) := { j ∈ N | ( j, i) ∈ D} are
called the predecessors of i .

For given D on N , a path between i and j in N is a sequence of distinct nodes
(i1, . . . , im) such that i1 = i, im = j, and {(ik, ik+1), (ik+1, ik)} ∩ D �= ∅ for k =
1, . . . , m−1. A set of nodes T ⊆ N is connected in digraph D if there is a path between
any two nodes in T that only uses arcs between nodes in T , i.e., if for every i, j ∈ T
there is a path (i1, . . . , im) between i and j such that {i1, . . . , im} ⊆ T . A component
in D is a maximally connected set T of nodes, i.e., T is connected and T ∪ {i} is not
connected for every i ∈ N\T . A path (i1, . . . , im) between i and j in D is a directed
path if (ik, ik+1) ∈ D for k = 1, . . . , m − 1. A directed path (i1, . . . , im), m ≥ 1, in
D is a cycle if (im, i1) ∈ D. We call digraph D acyclic if it does not contain any cycle.
Note that acyclicity of a digraph D implies that D is irreflexive, i.e., (i, i) �∈ D for all
i ∈ N .

A digraph is called quasi-strongly connected if there exists a node i0 ∈ N , such
that for every j �= i0 there is a directed path from i0 to j . Note that this implies
that N is connected. When D is acyclic then i0 is the unique node in N having no
predecessors and i0 is called the top-node of the digraph. The collection of all acyclic,
quasi-strongly connected digraphs on N is denoted by DN . A digraph D ∈ DN is a
rooted directed tree with root i0 if there is precisely one path from the top-node i0 to
every other node. Node j ∈ N is a complete subordinate of node i ∈ N in D ∈ DN

if every directed path from the top-node i0 to node j contains node i . We denote the
set of complete subordinates of node i by SD(i), i.e.,

SD(i)

=
{

j ∈ N

∣∣∣∣
i ∈ {h1, . . . , ht−1} for every sequence of nodes h1, . . . , ht

such that h1 = i0, hk+1 ∈ SD(hk), k ∈ {1, . . . , t − 1}, and ht = j

}
.

3 Games with a permission structure

In this paper we assume that the players in a TU-game are part of a hierarchical
structure that is represented by a directed graph, referred to as a permission structure,
such that some players need permission from other players before they are allowed to
cooperate within a coalition. A triple (N , v, D) with (N , v) a TU-game and (N , D)

a digraph with the player set N as the set of nodes is called a game with a permission
structure. In the sequel we assume that D ∈ DN and, without loss of generality, we
assume that i0 = 1 as its unique top-node1 and that N is essential in the restricted
game (N , r).

Assumption 3.1 (i) (N , D) is acyclic and quasi-strongly connected with
PD(1) = ∅.

(ii) N is essential in the restricted game (N , r).

1 This implies that 1 ∈ N . Later we consider reduced games on proper subsets of N ′ ⊂ N , but the top-player
1 always belongs to N ′.
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The first part of Assumption 3.1 implies that PD(i) �= ∅ for every i �= 1.
As noticed in the introduction, we can distinguish between the conjunctive and

disjunctive approach. In this paper we take the disjunctive approach as developed in
Gilles and Owen (1994) and van den Brink (1997), where a player i �= 1 needs per-
mission to cooperate of at least one of its direct predecessors. Therefore a coalition
is feasible if and only if it contains the top-player 1 and for every other player in the
coalition at least one of its predecessors is also in the coalition. So, for digraph (N , D),
the set of disjunctive feasible coalitions is given by2

�D = {S ⊆ N |PD(i) ∩ S �= ∅ for all i ∈ S\{1} }.

For any S ⊆ N , let σ(S) = ∪{T ∈ �D | T ⊆ S} be the largest disjunctive feasible
subset of S in D.3 Since, by quasi-strongly connectedness, for every i �= 1 there is at
least one directed path from 1 to i , it follows that for every S ⊆ N with σ(S) �= ∅, the
subgraph (σ (S), D(σ (S)) is acyclic and quasi-strongly connected with node 1 ∈ σ(S)

as its unique top-node.
Given the triple (N , v, D) with v ∈ GN and D ∈ DN , under the disjunctive

approach the induced restricted game r : 2N → R is given by

r(S) = v (σ (S)) for all S ⊆ N . (3)

Since player 1 is the top-node it holds that r(S) = 0 when 1 �∈ S, i.e., the restricted
game is a veto-rich game with respect to the top-player 1. If D is a rooted directed tree
(with node 1 as its root), then |PD(i)| = 1 for all i �= 1, and the conjunctive and disjunc-
tive approach coincide. When D is a rooted tree and (N , v) is a non-negative additive
game, i.e., there exist real numbers ai , i ∈ N , such that v(S) = ∑

i∈S ai , S ⊆ N ,
then the triple (N , v, D) is a peer group situation (see Brânzei et al. 2002). For a peer
group situation the restricted game (N , r) as defined in (3) is a so-called peer group
game and is given by

r(S) = v(σ (S)) =
∑

{i∈S|P̂D(i)⊆S}
ai ,

where j ∈ P̂D(i) if and only if there exists a sequence of players (h1, . . . , ht ) such
that h1 = j, hk+1 ∈ S(hk) for all 1 ≤ k ≤ t − 1, and ht = i . A peer group game
(N , r) is a monotone veto-rich game and has a non-empty Core. In particular (with 1
the veto player) the payoff vector x ∈ IRn+ given by x1 = v(N ) and xi = 0, i �= 1,
belongs to the Core.

In Sect. 5 we will present an algorithm for computing the nucleolus of the restricted
game (N , r) of a game with a permission structure (N , v, D) that satisfies weak
digraph monotonicity and weak digraph concavity.

2 Since we allow for cycles in the underlying undirected graph, the set of feasible coalitions �D is not
necessarily the set of connected coalitions in some cycle-free undirected graph as considered in Kuipers
et al. (2000).
3 Every coalition having a unique largest feasible subset follows from �D being closed under union.
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Definition 3.2 (a) A game with permission structure (N , v, D) satisfies weak
digraph monotonicity if

S ∈ �D ⇒ v(S) ≤ v(N ).

(b) A game with permission structure (N , v, D) satisfies weak digraph concavity if

[
S ∪ T = N and S, T ∈ �D

]
⇒ v(S) + v(T ) ≥ v(S ∩ T ) + v(N ).

Part (a) states that the triple (N , v, D) satisfies weak digraph monotonicity if the
worth of every feasible coalition is at most equal to the worth of the grand coalition
N . Weak digraph monotonicity weakens monotonicity in two respects, namely (i) the
monotocity condition v(S) ≤ v(T ) if S ⊆ T only has to hold for T = N and (ii) for
sets S that are feasible given the disjunctive permission structure on the digraph D.4

Part (b) states that (N , v, D) satisfies weak digraph concavity if the usual inequalities
for concavity are only required for feasible coalitions which union equals the grand
coalition. This property weakens concavity in two respects, namely that the concavity
condition only has to hold for sets S and T satisfying (i) S ∪ T = N and (ii) S and
T are feasible given the disjunctive permission structure on D. In fact, for both prop-
erties the adjunctive ‘weak’ means that the inequality conditions are only required
for T = N , respectively S ∪ T = N , and the adjunctive ‘digraph’ means that the
inequality conditions are only required for feasible sets with respect to the permission
structure. Monotonicity is a condition satisfied by most of the games that arise from
economic or social situations, so this is certainly the case for weak digraph mono-
tonicity. Although concavity is a strong condition for profit games5, weak digraph
concavity is considerably weaker and is also satisfied by several interesting classes of
profit games with a permission structure. We give some examples.

Example 3.3 Generalised peer group situations It is obvious that a peer group situa-
tion (N , v, D) satisfies weak digraph monotonicity. Further, for any feasible S and T
such that S ∪ T = N we have that S ∩ T is feasible (since D is a rooted tree) and

v(S) + v(T ) =
∑

i∈S

ai +
∑

i∈T

ai =
∑

i∈S∩T

ai +
∑

i∈N

ai = v(S ∩ T ) + v(N ).

So, (N , v, D) also satisfies weak digraph concavity. A triple (N , v, D) is a general-
ised peer group situation when D ∈ DN is an acyclic and quasi-strongly connected

4 For (N , v, D) weak digraph monotone, part (ii) of Assumption 3.1 is without loss of generality. When N
is inessential, then there exists a partition {S1, . . . , Sm } such that r(N ) ≤ ∑m

j=1 r(S j ), S1 is essential, and
1 ∈ S1. Because of the latter we have that S2, . . . , Sm are not feasible and thus r(S j ) = 0 for j = 2, . . . , m.
Together with weak digraph monotonicity this implies that r(N ) = r(S1). According to Arin and Feltkamp
(1997), the nucleolus then assigns zero payoff to every player not in S1 and we can restrict ourselves to the
subgame and subgraph on the essential coalition S1 containing player 1.
5 Given our nucleolus concept in which the maximum excess v(S) − x(S) is minimized, in this paper we
deal with profit games.
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digraph and v is again a nonnegative additive game. Clearly, also every generalised
peer group situation satisfies weak digraph monotonicity and weak digraph concavity.

Example 3.4 Generalised information market situations Let S = {S1, . . . , SK } be a
collection of K (nonempty) subsets of N , and αk, k = 1, . . . , K , be positive numbers.
Then we consider the game (N , v) given by

v(S) =
∑

{k|Sk∩S �=∅}
αk, S ⊆ N . (4)

Further, let D ∈ DN be any digraph satisfying (1, j) ∈ D for all j ∈ {2, . . . , n}. So,
j = 1 is the top-player and S ⊆ N is feasible if and only if 1 ∈ S. Now, the restricted
game (N , r) is given by r(S) = 0 if 1 �∈ S and

r(S) =
∑

{k|Sk∩S �=∅}
αk, if 1 ∈ S.

The game (N , r) is an information game as introduced in Muto et al. (1989). Obvi-
ously, (N , v, D) satisfies weak digraph monotonicity. Further, for any feasible S and
T such that S ∪ T = N we have that S ∩ T is feasible and

v(S) + v(T ) =
∑

{k|Sk∩S �=∅}
αk +

∑

{k|Sk∩T �=∅}
αk

=
∑

{k|Sk∩(S∩T ) �=∅}
αk +

∑

{k|Sk∩N �=∅}
αk = v(S ∩ T ) + v(N )

where the last but one equality follows since S ∪ T = N . Thus (N , v, D) also satisfies
weak digraph concavity. In fact, this condition is satisfied for any D ∈ DN . Also any
game with a permission structure (N , v, D) where v is the sum of an additive game
and a game as given in Eq. 4, satisfies the conditions of weak digraph monotonicity
and weak digraph concavity.

4 Essential and feasible coalitions

In this section we prove several results of essential and feasible coalitions for games
with a permission structure (N , v, D) satisfying Assumption 3.1. These results will
be used later on to prove that the algorithm of Sect. 5 will indeed find the nucleolus
of the induced restricted game (N , r) under the disjunctive approach. The first lemma
states that any essential coalition with at least two elements is feasible.

Lemma 4.1 Let (N , v, D) be a game with a permission structure. If S ⊆ N with
|S| ≥ 2 is essential in the restricted game (N , r), then S is feasible.

Proof Suppose that S is not feasible. Then r(S) = r(σ (S)) with σ(S) ⊂ S. Since
r( j) = 0 for all j ∈ S\σ(S), it holds that r(S) = r(σ (S))+∑

j∈S\σ(S) r( j), implying
that S is not essential. ��
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When (N , v, D) satisfies weak digraph monotonicity, then the restricted game
(N , r) is a weak monotone (r(S) ≤ r(N ) for all S ⊆ N ) veto-rich game (with veto
player 1) and therefore the Core contains the payoff vector (r(N ), 0, . . . , 0)� ∈ IRn

and thus is not empty. (Observe that r(N ) = v(N ).) Hence, Nuc(N , r) is in the Core
of (N , r) and independent of inessential coalitions. Thus Lemma 4.1 implies that every
non-feasible coalition S with |S| ≥ 2 can be ignored.

According to Arin and Feltkamp (1997) the nucleolus assigns positive payoff to
every player in N when N is essential. Notice also that r(N ) > r(S) for every S ⊂ N
when N is essential. This yields the next lemma.

Lemma 4.2 Let (N , v, D) be a game with a permission structure. If (N , v, D) is weak
digraph monotone, then e∗(N , r) > 0.

Proof By weak digraph monotonicity we have that C(N , r) �= ∅ and thus e∗(N , r)≥ 0.
Hence, according to Lemma 2.2,

e∗(N , r) = min
B∈B

r(N ) − ∑m
j=1 λB

j r(S j )
∑m

j=1 λB
j

,

with λB
j , j = 1, . . . , m, the solution of the system (1) for the balanced collection

B ∈ B. Since r(S j ) = 0 when 1 �∈ S j , we obtain that

e∗(N , r) = min
B∈B

r(N ) − ∑
{ j |1∈S j } λB

j r(S j )
∑m

j=1 λB
j

.

Since the collection {N } does not belong to B, any S j in a balanced collection B ∈ B
is a real subset of N and thus r(S j ) < r(N ) for every S j . Since

∑
{ j |1∈S j } λB

j = 1 by

the definition of balancedness, it follows that r(N ) − ∑
{ j |1∈S j } λB

j r(S j ) > 0 for any
B ∈ B, which proves the lemma. ��

Similar as in Arin and Feltkamp (1997), in the sequel we denote for S ⊂ N and
the restricted game (N , r),

τ(S, r) = r(N ) − r(S)

|N\S| + 1
.

In the following, �D = �D\{N } denotes the collection of all feasible coalitions not
equal to N . We now have the following lemmas.

Lemma 4.3 Let (N , v, D) be a game with a permission structure. If (N , v, D) is weak
digraph monotone, then

e∗(N , r) = min
S∈�D

τ(S, r).
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602 R. van den Brink et al.

Proof According to Kohlberg’s theorem (Kohlberg 1971) there exists a balanced col-
lection {S1, . . . , Sm} such that −e(Sk, x) = e∗(N , r) for all k = 1, . . . , m. Since
e∗(N , r) > 0 by Lemma 4.2, according to Corollary 2.4 we have that any S j is
essential. Without loss of generality, let 1 ∈ S1. Then, we have that either S1 = {1}
and thus feasible, or |S1| > 1 and thus feasible according to Lemma 4.1. Denote
U = S1. Now, consider j �∈ U . Since the collection is balanced, there must be a
coalition Sk �= S1 = U containing j , but not 1. Then Sk is essential, but not feasible.
Hence it follows with Lemma 4.1 that |Sk | = 1 and thus Sk = { j}. Now, let λB

U
and λB

j , j �∈ U , be the corresponding weights. Then λB
U = λB

j = 1, j �∈ U . Further
r( j) = 0 for all j �∈ U since { j} is not feasible. Substituting these values in (2) gives

e∗(N , r) = r(N )−λB
U r(U )

|N\U |+1 = τ(U, r), showing that there exists a coalition U ∈ �D sat-

isfying e∗(N , r) = τ(U, r). Next, consider any S ∈ �D . Then B = {S}∪{{ j} | j �∈ S}
is a balanced collection with corresponding weights λB

S = λB
j = 1, j �∈ S. Since 1 ∈ S

(because S is feasible), it follows that r( j) = 0 for all j �∈ S. Hence with Lemma 2.2

we obtain that e∗(N , r) ≤ r(N )−λB
S r(S)−∑

j �∈S λB
j r( j)

|N\S|+1 = r(N )−r(S)
|N\S|+1 = τ(S, r). ��

Lemma 4.4 Let (N , v, D) be a game with a permission structure satisfying weak
digraph monotonicity, let U ∈ �D be such that τ(U, r) = e∗(N , r), and let y ∈ IRn

be such that y(U ) = r(U ) + τ(U, r) and y j = τ(U, r) for all j �∈ U. Then x =
Nuc(N , r) satisfies x(U ) = y(U ) and x j = y j for all j �∈ U.

Proof First, observe that

y(N ) = y(U ) +
∑

j �∈U

y j = r(U ) + (|N\U | + 1)τ (U, r) = r(N ),

so y is efficient. Next, observe that U is feasible and thus 1 ∈ U . Hence for any
j �∈ U , the singleton coalition { j} is not feasible and thus r( j) = 0. Therefore the
excesses for the coalitions U ∈ �D and the singletons { j}, j �∈ U , at y are equal to
e(U, y) = −τ(U, r) = e({ j}, y), j �∈ U . Now, suppose that x = Nuc(N , r) does not
satisfy x(U ) = y(U ) and x j = y j . Then

min[−e(U, x), min
j �∈U

−e({ j}, x)] < τ(U, r),

contradicting that τ(U, r) = e∗(N , r) = min{S⊂N ,S �=∅} − e(S, x). ��
The two lemmas above show that as soon as a coalition U ∈ �D has been found

with τ(U, r) = minS∈�D τ(S, r), the nucleolus values of all players j �∈ U have been
found and that these values are equal to τ(U, r). This gives us the basic idea for the
algorithm in the next section. In the sequel, denote τ ∗(r) = minS∈�D τ(S, r). In the
first step the algorithm searches for a coalition U1 ∈ �D satisfying

τ(U1, r) = τ ∗(r) and |U1| = max
{U∈�D |τ(U,r)=τ∗(r)}

|U |, (5)

i.e., any other feasible set U �= N satisfying τ(U, r) = τ ∗(r) contains at most the
same number of players as U1. This gives nucleolus payoffs τ ∗(r) = τ(U1, r) to any
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player j �∈ U1 and in the next step the algorithm continues with a search on a reduced
set of players U1. The details of the algorithm will be given in the next section.

In the rest of this section we give several results with respect to a set U1 satisfying
condition (5). Notice that in the previous three lemmas only weak digraph monoto-
nicity is required. The next results require both weak digraph monotonicity and weak
digraph concavity.

Lemma 4.5 Let game with permission structure (N , v, D) satisfy weak digraph
monotonicity and weak digraph concavity and, for a coalition U1 satisfying con-
dition (5), let {T1, T2} be a partition of N\U1. Then at least one of the two coalitions
U1 ∪ T1, U1 ∪ T2 is not feasible.

Proof Suppose that both sets U1 ∪ T1 and U1 ∪ T2 are feasible. Then we have that

|T2| + 1

|T1| + |T2| + 2
τ(U1 ∪ T1, r) + |T1| + 1

|T1| + |T2| + 2
τ(U1 ∪ T2, r)

= r(N ) − r(N\T2)

|T1| + |T2| + 2
+ r(N ) − r(N\T1)

|T1| + |T2| + 2

= 2r(N ) − r(N\T1) − r(N\T2)

|T1| + |T2| + 2
≤ r(N ) − r(U1)

|T1| + |T2| + 2
,

where the last inequality follows from weak digraph concavity for the sets N\Tj , j =
1, 2, since r(N ) = v(N ), r(U1) = v(U1) by the feasibility of U1, and for i ∈
{1, 2}, i �= j , we have that r(N\Tj ) = r(U1 ∪ Ti ) = v(U1 ∪ Ti ) because of the
feasibility of U1 ∪ Ti . Further since r(U1) = v(U1) ≤ v(N ) = r(N ) because of weak
digraph monotonicity, we have that

r(N ) − r(U1)

|T1| + |T2| + 2
≤ r(N ) − r(U1)

|T1| + |T2| + 1
= τ(U1, r).

So, τ(U1, r) is at least equal to the given convex combination of τ(U1 ∪ T1, r) and
τ(U1 ∪ T2, r), implying that for at least one i, i = 1, 2, it holds that

τ(U1 ∪ Ti , r) ≤ τ(U1, r).

This contradicts condition (5). ��

The next proposition says that for a set U1 satisfying condition (5) the complement
N\U1 is connected and that the collection of all successors of players in U1 contains
precisely one player not in U1. For T ⊆ N , let SD(T ) = ∪i∈T SD(i) denote the union
of all successors of at least one player of T in the digraph (N , D).

Proposition 4.6 Let game with permission structure (N , v, D) satisfy weak digraph
monotonicity and weak digraph concavity and let U1 be a coalition satisfying condition
(5). Then:
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1. The set N\U1 is connected, and
2. |SD(U1) ∩ (N\U1)| = 1.

Proof To prove 1, suppose N\U1 consists of at least two components. Let T1 be one of
the components and denote T2 = N\(U1∪T1). We show that both U1∪Ti , i = 1, 2 are
feasible. To do so, let i be any player in T1. By quasi-strongly connectedness of (N , D),
there exists a directed path (i1, i2, . . . , im) from i1 = 1 to im = i . Let ik, 1 ≤ k < m,
be the last player in the path not in T1, thus ik ∈ U1 ∪ T2 and ik+1, . . . , im ∈ T1.
Since (ik, ik+1) ∈ D, ik ∈ T2 contradicts that T1 is a component of N\U1. Hence
ik ∈ U1. Since U1 is feasible, 1 ∈ U1 and there is a path ( j1, . . . , j�) from j1 = 1
to j� = ik with jr ∈ U1 for all r = 1, . . . , �. Hence for any i ∈ T1 there is a path
( j1, . . . , j�, ik+1, . . . , im) from 1 to i only containing nodes in U1 ∪ T1. This shows
that U1 ∪ T1 is feasible. Similarly it follows that U1 ∪ T2 is feasible. This contradicts
Lemma 4.5, which proves the first statement.

To prove 2, assume that there are two players i1, i2 ∈ SD(U1) ∩ (N\U1), i1 �= i2.
For any player i ∈ N\U1, let S̃D(i) be defined as the subset of N\U1 such that node
j ∈ N\U1 belongs to S̃D(i) if and only if j = i or there is a directed path from node
i to node j that only consists of nodes in N\U1. Since (N , D) is acyclic by Assump-
tion 3.1, we have that i1 �∈ S̃D(i2) or i2 �∈ S̃D(i1) (or both). Suppose i2 �∈ S̃D(i1).
We now consider the partition of N\U1 into two non-empty sets T1 = S̃D(i1) and
T2 = (N\U1)\T1 and obtain a contradiction by using Lemma 4.5. Since there is a
directed path from node 1 to i1 ∈ T1 consisting of nodes in U1 ∪{i1}, and from i1 ∈ T1
to any other node in T1 consisting of nodes in T1, for each j ∈ U1 ∪ T1 there is a path
from 1 to j in U1 ∪ T1, and thus U1 ∪ T1 is feasible.

Next consider U1 ∪ T2. For a node j ∈ T2, let (i1, i2, . . . , im) be a path from
i1 = 1 to im = j and let ik, 1 ≤ k < m, be the last player in the path not in T2,
thus ik ∈ N\T2 = U1 ∪ T1. Then ik ∈ U1, because ik ∈ T1 = S̃D(i1) contra-
dicts that j �∈ T1. Since U1 is feasible, there is a path ( j1, . . . , j�) from j1 = 1 to
j� = ik with jr ∈ U1 for all r = 1, . . . , �. Hence for any j ∈ T2 there is a path
( j1, . . . , j�, ik+1, . . . , im) from 1 to j only containing nodes in U1 ∪ T2. This shows
that U1 ∪ T2 is feasible. Hence the existence of two players in SD(U1) ∩ (N\U1)

contradicts Lemma 4.5, which proves the second statement. ��
For U1 satisfying condition (5), let i1 be the unique node in SD(U1) ∩ (N\U1) i.e.,

i1 is the unique successor of U1 in N\U1. Since 1 ∈ U1, this implies that any path
from node 1 to a player j ∈ N\U1 has node i1 as the first player on the path not
in U1. Together with the connectedness of N\U1 (see Proposition 4.6) this gives the
following corollary.

Corollary 4.7 Let game with permission structure (N , v, D) satisfy weak digraph
monotonicity and weak digraph concavity and let U1 be a coalition satisfying condition
(5). Then the subgraph (N\U1, D(N\U1)) of (N , D) on N\U1 is also a quasi-strongly
connected, acyclic directed graph with one top-node (node i1).

5 An algorithm for computing the nucleolus

In this section we modify the exponential time algorithm of Arin and Feltkamp (1997)
to find, in polynomial time, the nucleolus of the restricted game (N , r) of a game with
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a permission structure (N , v, D) satisfying weak digraph monotonicity and weak
digraph concavity. It will appear that Proposition 4.6 is needed to prove that the algo-
rithm indeed finds the nucleolus of the restricted game (N , r). Since this proposition
holds for games (N , v, D) that are weak digraph monotone and weak digraph concave,
both properties are required. Further recall from Assumption 3.1 that node 1 is the
unique top node in (N , D) (thus 1 is a veto player in the restricted game (N , r)) and
that N is essential in (N , r).

This section contains three subsections. In the first subsection the algorithm is given
and the second one contains the proof that the algorithm indeed finds the nucleolus.
In the third subsection the algorithm is illustrated by an example.

5.1 The algorithm

For the reduced game with permission structure (Uk, vk, Dk) defined in iteration k −1
at Step 3 of the algorithm given below, the set �Dk denotes the set of all feasible
coalitions not equal to Uk in the digraph (Uk, Dk). Also, for i ∈ Uk , we denote by
SDk (i) and PDk (i) the set of successors, respectively predecessors in (Uk, Dk). Then
the algorithm proceeds as follows.

Algorithm

Step 1 Set k = 0, U0 = N , v0 = v, D0 = D and r0 = r . Go to Step 2.
Step 2 Find Uk+1 ⊂ Uk satisfying condition (5) with respect to game with permis-

sion structure (Uk, vk, Dk), i.e.,

τ(Uk+1, rk) = τ ∗(rk) and |Uk+1| = max
{U∈�Dk |τ(U,rk )=τ∗(rk )}

|U |,

where τ ∗(rk) = minU∈�Dk τ(U, rk) with τ(U, rk) = rk (Uk )−rk (U )
|Uk\U |+1 . Assign

y j = τ ∗(rk) to every player j ∈ Uk\Uk+1. Go to Step 3.
Step 3 If Uk+1 = {1} then Go to Step 4. If Uk+1 �= {1}, let ik+1 be the unique top-

player of the subgraph (Uk\Uk+1, Dk(Uk\Uk+1) of the digraph (Uk, Dk)

restricted to Uk\Uk+1. Define game (Uk+1, vk+1) by setting for every U ⊆
Uk+1,

vk+1(U ) =
{

vk(U ) if PDk (ik+1) ∩ U = ∅
vk(U ∪ (Uk\Uk+1)) − τ(Uk+1, rk)|Uk\Uk+1| else,

(6)

digraph (Uk+1, Dk+1) given by

(i, j) ∈ Dk+1 if

{
(i, j) ∈ Dk or
i ∈ PDk (ik+1) and j ∈ SDk (Uk\Uk+1) ∩ Uk+1,

(7)

and let rk+1 be the restricted game of (Uk+1, vk+1, Dk+1). Set k = k + 1. Go
to Step 2.

Step 4 Assign y1 = v(N ) − ∑
j∈N\{1} y j . Stop.
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In every step of the algorithm, for Uk+1 ⊂ Uk satisfying condition (5) with respect
to (Uk, vk, Dk), any player in Uk\Uk+1 receives payoff τ(Uk+1, rk). Observe that at
any iteration the new found set Uk+1 is essential in (Uk+1, rk+1). If not, there exists
an essential subset S of Uk+1 with rk+1(S) = rk+1(Uk), yielding payoff y j = 0 for
all j ∈ Uk+1\S. This contradicts that all players get positive payoff (because N is
essential). Since in any iteration the payoff of at least one player is determined, in at
most k = n − 1 iterations the algorithm stops with Uk+1 = {1} and player 1 getting
what is left from v(N ) after all other players received their payoffs as determined by
the algorithm. (Note that player 1 belongs to the player set of every game (Uk, Dk)

that appears in the algorithm.)

5.2 The algorithm finds the nucleolus

Let K be such that UK+1 = {1}. To show that the algorithm is well-defined, it is
needed that the results of Sect. 4 hold for every game (Uk, rk), k = 1, . . . , K . This is
shown in the next two lemmas. The first lemma states that for any k = 0, 1, . . . , K −1
the digraph (Uk+1, Dk+1) is acyclic and quasi-strongly connected with i = 1 as its
unique top-node.

Lemma 5.1 For every k = 0, 1, . . . , K − 1, the digraph (Uk+1, Dk+1) satisfies
property (i) of Assumption 3.1.

Proof Since (N , D) satisfies Assumption 3.1.(i), the statement is true for k = 0. We
now proceed by induction and suppose that the statement is true for j = 0, . . . , k, k <

K − 1. Then it remains to show that the statement is true for j = k + 1. By the
induction hypothesis we have that (Uk, Dk) is acyclic and quasi-strongly connected
and has i = 1 as its unique top node. So, for any j �= 1 in Uk+1 there is a directed path
(i1, . . . , im) in (Uk, Dk) with i1 = 1 and im = j . If any node ik, k = 2, . . . , m − 1
in this path is in Uk+1, then this path also exists in (Uk+1, Dk+1). Otherwise, for any
node ih on the path not in Uk+1, there exist two (not necessarily different) nodes ir , is

on the path with r ≤ h ≤ s such that ir−1, is+1 ∈ Uk+1 and ir , is �∈ Uk+1. Then
by (7) we have that (ir−1, is+1) ∈ Dk+1. Hence there is a directed path from i = 1
to i = j in (Uk+1, Dk+1), showing (Uk+1, Dk+1) is quasi-strongly connected with
node 1 as top node. Because in (Uk+1, Dk+1) there can only be a directed path from
node i to node j if there is a directed path from i to j in (Uk, Dk), the acyclicity of
(Uk+1, Dk+1) follows immediately from the fact that (Uk, Dk) is acyclic. ��

The next lemma shows that every game (Uk, vk, Dk), k = 0, 1, . . . , K , is weak
digraph monotone and weak digraph concave. Again the proof is by induction, where
Proposition 4.6 is used to show the weak digraph monotonicity.

Lemma 5.2 Let game with permission structure (N , v, D) satisfy weak digraph
monotonicity and weak digraph concavity. Then the game with permission structure
(Uk, vk, Dk) satisfies these conditions on the player set Uk for every k = 0, . . . , K .

Proof We prove the proposition by induction on k. For k = 0 both weak digraph
monotonicity and weak digraph concavity are satisfied by assumption. Proceeding by
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induction, assume that these conditions are satisfied for j = 0, . . . , k, k < K − 1.
By Lemma 5.1 the digraph (Uk, Dk) satisfies Assumption 3.1.(i). So, the game
(Uk, vk, Dk) satisfies all conditions of Proposition 4.6.

To show that weak digraph monotonicity holds for (Uk+1, vk+1, Dk+1), we have to
show that [U ⊆ Uk+1 and U feasible in (Uk+1, Dk+1)] ⇒ vk+1(U ) ≤ vk+1(Uk+1).
Since PDk (ik+1) ∩ Uk+1 �= ∅, we have that

vk+1(Uk+1) = vk(Uk+1 ∪ (Uk\Uk+1)) − τ(Uk+1, rk)|Uk\Uk+1|
= vk(Uk) − τ(Uk+1, rk)|Uk\Uk+1|.

Next, let U ⊆ Uk+1 be a feasible subset of Uk+1 in (Uk+1, Dk+1). We consider two
cases, either PDk (ik+1)∩U �= ∅ or PDk (ik+1)∩U = ∅. In the latter case we have that
(i) vk+1(U ) = vk(U ) and (ii) there is an arc between two nodes i and j of U in the
digraph (Uk+1, Dk+1) if and only if there is also an arc between i and j in (Uk, Dk).
Hence U is also feasible in (Uk, Dk) and thus vk+1(U ) = vk(U ) = rk(U ). More-
over, τ(U, rk) = rk (Uk )−rk (U )

|Uk\U |+1 ≥ τ(Uk+1, rk) and thus rk(Uk) − rk(U ) ≥ (|Uk\U | +
1)τ (Uk+1, rk). Hence

vk+1(U ) = rk(U ) ≤ rk(Uk) − (|Uk\U | + 1)τ (Uk+1, rk)

< vk(Uk) − |Uk\Uk+1|τ(Uk+1, rk) = vk+1(Uk+1).

In case PDk (ik+1)∩U �= ∅, we obtain from applying Proposition 4.6 to (Uk, vk, Dk),
that U ∪ (Uk\Uk+1) is feasible in (Uk, Dk). From this it follows that

vk+1(U ) = vk(U ∪ (Uk\Uk+1)) − τ(Uk+1, rk)|Uk\Uk+1|
≤ vk(Uk) − τ(Uk+1, rk)|Uk\Uk+1| = vk+1(Uk+1)

because weak digraph monotonicity holds for (Uk, vk, Dk).
Next we consider weak digraph concavity, i.e., we have to show that [S ∪ T =

Uk+1 and S, T feasible in (Uk+1, Dk+1)] ⇒ vk+1(S) + vk+1(T ) ≥ vk+1(S ∩ T ) +
vk+1(Uk+1). Since S∪T = Uk+1 we have that PDk (ik+1)∩S �= ∅or PDk (ik+1)∩T �= ∅
(or both). We first consider the case that both intersections are nonempty and thus also
PDk (ik+1)∩(S∩T ) �= ∅. Then S′ = S∪(Uk\Uk+1), T ′ = T ∪(Uk\Uk+1) are feasible
in (Uk, Dk) and S′ ∪ T ′ = Uk , and thus it follows from weak digraph concavity for
(Uk, vk, Dk) that

vk+1(S) + vk+1(T ) = vk(S′) + vk(T
′) − 2τ(Uk+1, rk)|Uk\Uk+1|

≥ vk(S′ ∩ T ′) + vk(Uk) − 2τ(Uk+1, rk)|Uk\Uk+1|
= vk((S ∩ T ) ∪ (Uk\Uk+1))+vk(Uk) − 2τ(Uk+1, rk)|Uk\Uk+1|
= vk+1(S ∩ T ) + vk+1(Uk+1),

where the last equality follows from the fact that vk+1(S ∩ T ) = vk((S ∩ T ) ∪
(Uk\Uk+1)) − τ(Uk+1, rk)|Uk\Uk+1| and vk+1(Uk+1) = vk(Uk) − τ(Uk+1, rk)|Uk\
Uk+1|. In case only one of the sets S and T has a nonempty intersection with PDk (ik+1)
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and thus PDk (ik+1) ∩ (S ∩ T ) = ∅, suppose without loss of generality that T ∩
PDk (ik+1)=∅. Then S′ = S ∪ (Uk\Uk+1) and T are feasible in (Uk, Dk), S′ ∪ T = N
and thus it follows from weak digraph concavity for (Uk, vk, Dk) that

vk+1(S) + vk+1(T ) = vk(S′) + vk(T ) − τ(Uk+1, rk)|Uk\Uk+1|
≥ vk(S′ ∩ T ) + vk(Uk) − τ(Uk+1, rk)|Uk\Uk+1|
= vk+1(S ∩ T ) + vk+1(Uk+1),

where the last equality follows from the fact that vk(S′∩T ) = vk(S∩T ) = vk+1(S∩T )

and vk(Uk) − τ(Uk+1, rk)|Uk\Uk+1| = vk+1(Uk+1). ��
We now show that for k = 1, . . . , K , the game (Uk+1, rk+1) is the Davis-Maschler

reduced game (Davis and Maschler 1965) of the game (Uk, rk) with respect to the
nucleolus. For a game (N , v), let T ⊂ N be a nonempty coalition and y ∈ IRn a
payoff vector. Then the Davis-Maschler reduced game on T at y is the game (T, v

y
T )

given by v
y
T (T ) = v(N )−x(N\T ) and v

y
T (S) = maxQ⊆N\T (v(S∪Q)− y(Q)), S ⊂

T, S �= N . Observe that in the definition of the reduced game only the values y j of
the players j ∈ N\T appear.

Property 5.3 (Davis-Maschler reduced game property) For a game (N , v), let x =
Nuc(N , v). Then for any nonempty T ⊂ N it holds that

Nuci (N , v) = Nuci (T, vx
T ), for all i ∈ T .

The Davis-Maschler reduced game property holds for the prenucleolus as shown
by Sobolev (1975). If we consider a game with nonempty core then the nucleolus and
the prenucleolus coincide and we can postulate property 5.3 for the nucleolus. Since
the restricted games (N , r) in this paper have a nonempty core, we can formulate and
use property 5.3.

In the following, let (Uk+1, r ′
k) denote the Davis-Maschler reduced game of the

game (Uk, rk) on the set Uk+1 at y with y j = τ ∗(rk) = τ(Uk+1, rk) for j ∈ Uk\Uk+1.
We first show the following lemma on the largest disjunctive feasible subset of a coa-
lition U in the digraph (Uk, Dk). In the sequel we denote this set by σk(U ). Observe
that for U ⊆ N we have that σ0(U ) = σ(U ).

Lemma 5.4 For the game with permission structure (Uk, vk, Dk), let Uk+1 ⊂ Uk and
ik+1 �∈ Uk+1 be the set and node as obtained in the iteration k of the algorithm. Then
for each U ⊆ Uk+1 we have that

(i) σk+1(U ) = σk(U ) if SDk (σk(U )) ⊂ Uk+1;
(ii) σk+1(U ) = σk(U ∪ (Uk\Uk+1))\(Uk\Uk+1) if ik+1 ∈ SDk (σk(U )).

Proof 1. Consider U ⊆ Uk+1 with SDk (σk(U )) ⊂ Uk+1. Clearly, then σk(U ) is
feasible in (Uk+1, Dk+1) and thus σk(U ) ⊆ σk+1(U ). Next, suppose that there
exists some player i ∈ σk+1(U )\σk(U ). Then there is path (a0, a1, . . . , al) such
that (i) a0 = 1, (ii) al = i , (iii) at ∈ U for all t = 1, . . . , l − 1, and (iv)
(at , at+1) ∈ Dk+1 for all t = 0, . . . , l − 1. If (at , at+1) ∈ Dk for all t =
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0, . . . , l − 1, then i ∈ σk(U ) and we get a contradiction with our assumption
that i ∈ σk+1(U )\σk(U ). So, there must exist a t ∈ {0, . . . , l − 1} such that
(at , at+1) �∈ Dk . By definition of digraph Dk+1 it holds that at ∈ PDk (ik+1),
which contradicts SDk (σk(U )) ⊂ Uk+1. Hence σk+1(U ) = σk(U ).

2. Consider U ⊆ Uk+1 with ik+1 ∈ SDk (σk(U )). If there is a player i ∈ σk+1(U )

then there is a path (a0, a1, . . . , al) such that (i) a0 = 1, (ii) al = i , (iii), at ∈ U
for all t = 1, . . . , l − 1, and (iv) (at , at+1) ∈ Dk+1 for all t = 0, . . . , l − 1. We
show that these four conditions also describe all elements of

σk(U ∪ (Uk\Uk+1))\(Uk\Uk+1)

If (at , at+1) ∈ Dk for all t = 0, . . . , l − 1, then i ∈ σk(U ). Since U ⊆ Uk+1,
it follows that i ∈ σk(U ∪ (Uk\Uk+1))\(Uk\Uk+1). Otherwise, if (at , at+1) ∈
Dk+1\Dk for some t , then at ∈ PDk (ik+1) and at+1 ∈ SDk (Uk\Uk+1). So there
is a path from at to at+1 which contains only elements from Uk\Uk+1. In the path
(a0, a1, . . . , al), replace the arc (at , at+1) by this path from at to at+1.
Continuing in this way, we can change each arc in the path (a0, a1, . . . , al)

that belongs to Dk+1\Dk by a path which consists only of elements from
Uk\Uk+1. So, we have a path from 1 to i which consists only of elements from
U ∪ (Uk\Uk+1), implying that i ∈ σk(U ∪ (Uk\Uk+1)). Since i �∈ Uk\Uk+1, we
conclude that i ∈ σk(U ∪ (Uk\Uk+1))\(Uk\Uk+1). So, in both cases we have that
i ∈ σk(U ∪ (Uk\Uk+1))\(Uk\Uk+1) and therefore we get

σk+1(U ) = σk(U ∪ (Uk\Uk+1))\(Uk\Uk+1).

��
The next lemma shows that the game (Uk+1, rk+1) is the Davis-Maschler reduced

game of the game (Uk, rk) with respect to the nucleolus.

Lemma 5.5 Let game with permission structure (N , v, D) satisfy weak digraph
monotonicity and weak digraph concavity. Then, for k = 0, . . . , K , the game (Uk+1,

rk+1) is equal to the Davis-Maschler reduced game (Uk+1, r ′
k) of the game (Uk, rk)

on Uk+1 at y with y j = τ ∗(rk) for j ∈ Uk\Uk+1.

Proof For coalition T ⊆ Uk+1, we consider two cases, namely whether or not
SDk (σk(T ))⊂ Uk+1.

In case SDk (σk(T )) ⊂ Uk+1, assertion 1 of Lemma 5.4 implies that σk+1(T ) =
σk(T ). Further, since PDk (ik+1) ∩ σk(T ) = ∅ we have by Eq. 6 in Step 3 of the algo-
rithm that vk+1(T ) = vk(T ) and thus rk+1(T ) = rk(T ) because σk+1(T ) = σk(T ).
On the other hand, for the Davis-Mashler reduced game (Uk+1, r ′

k) it holds for any
T ⊂ Uk+1 that

r ′
k(T ) = max

Q⊆Uk\Uk+1
(rk(T ∪ Q) − y(Q)) = rk(T ),

because for any Q ⊆ Uk\Uk+1 we have that
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rk(T ∪ Q) = vk(σk(T ∪ Q)) = vk(σk(T )) = rk(T ),

where the second equality follows since for any pair j ∈ (T \σk(T )∪Q) and i ∈ σk(T ),
it holds that (i, j) �∈ Dk and thus σk(T ∪ Q) = σk(T ). Hence r ′

k(T ) = rk(T ) =
rk+1(T ).

In case SDk (σk(T )) is not a subset of Uk+1 we have that PDk (ik+1) ∩ σk(T ) �= ∅,
because ik+1 is the unique successor of Uk+1 in Uk\Uk+1. So, by Eq. 6 in Step 3 of
the algorithm we have that

rk+1(T ) = vk+1(σk+1(T )) = vk(σk+1(T ) ∪ (Uk\Uk+1)) − τ(Uk+1, rk)|Uk\Uk+1|.

From Lemma 5.4 we have that σk+1(T ) ∪ (Uk\Uk+1) = σk(T ∪ (Uk\Uk+1)) and so

rk+1(T ) = vk(σk(T ∪ (Uk\Uk+1))) − τ(Uk+1, rk)|Uk\Uk+1|
= rk(T ∪ (Uk\Uk+1)) − τ(Uk+1, rk)|Uk\Uk+1|.

To show that rk+1(T ) = r ′
k(T ) it remains to prove that the right-hand term in the

equation

r ′
k(T ) = max

Q⊆Uk\Uk+1
(rk(T ∪ Q) − τ(Uk+1, rk)|Q|)

obtains its maximum for Uk\Uk+1. To do so, denote Q = Uk\Uk+1, V = T ∪ Q
and, for Q ⊆ Q, denote W = Uk+1 ∪ Q. Then (because of Lemma 5.4) the sets
σk(V ) = σk+1(T ) ∪ Q and σk(W ) = σk(Uk+1 ∪ Q) ⊇ Uk+1 are feasible and satisfy
σk(V )∪σk(W ) = Uk . By Lemma 5.2 the game with permission structure (Uk, vk, Dk)

satisfies weak digraph concavity and thus

rk(V ) + r(W ) = vk(σk(V )) + vk(σk(W )) ≥ vk(Uk) + vk(σk(V ) ∩ σk(W ))

= vk(Uk) + vk(σk(V ∩ W )) = rk(Uk) + rk(V ∩ W ),

where the second equality follows from the fact that σk(V ∩ W ) = σk(V ) ∩ σk(W )

because of the graph structure. With V ∩ W = (T ∪ Q) ∩ (Uk+1 ∪ Q) = T ∪ Q this
yields

rk(T ∪ Q) − rk(T ∪ Q) ≥ rk(Uk) − rk(Uk+1 ∪ Q)

>
rk(Uk) − r(Uk+1 ∪ Q)

|Q| − |Q| + 1
(|Q| − |Q|)

= τ(Uk+1 ∪ Q)(|Q| − |Q|) ≥ τ(Uk+1, rk)(|Q| − |Q|)

by definition of Uk+1. Hence

rk(T ∪ Q) − τ(Uk+1, rk)|Q| > rk(T ∪ Q) − τ(Uk+1, rk)|Q|,
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for all Q ⊆ Q, which shows that indeed

rk(T ∪ Q) − τ(Uk+1, rk)|Q| = max
Q⊆Uk\Uk+1

(rk(T ∪ Q) − τ(Uk+1, rk)|Q|) .

��
We now have the following proposition.

Proposition 5.6 Given game with permission structure (N , v, D) satisfying the weak
digraph monotonicity and weak digraph concavity, the algorithm described in Sect. 5.1
yields the nucleolus of (N , r).

Proof In iteration k = 0 the algorithm assigns in Step 2 the value τ ∗(r0) = τ(U1, r0) =
τ(U1, r) to any player j ∈ U0\U1 = N\U1. According to Lemma 4.4, τ ∗(r0) is the
nucleolus value of the players in N\U1. Applying Lemma 5.5 for k = 0, the game
(U1, r1) is the Davis-Maschler reduced game of the game (N , r) with respect to the
nucleolus values y j = τ ∗(r0) of the players not in U1. Since the nucleolus satisfies
the Davis-Maschler reduced game consistency property, the nucleolus values of the
reduced game (U1, r1) are equal to the nucleolus values of the players of U1 in the
game (N , r). In iteration k = 1 the algorithm assigns in Step 2 the value τ ∗(r1) to
any player j ∈ U1\U2. According to Lemma 4.4, τ ∗(r1) is the nucleolus value of the
players in U1\U2 in the game (U1, r1), and hence it is also the nucleolus value of these
players in the game (N , r). Continuing this reasoning we have that in any iteration k,
the algorithm assigns in Step 2 the value τ ∗(rk) to any player j ∈ Uk\Uk+1, which is
the nucleolus value of the players in Uk\Uk+1 in the game (N , r). At the final iteration
K we have that UK+1 = {1} and player 1 gets its nucleolus value in Step 4 of the
algorithm. ��

5.3 Example

In this subsection we illustrate the algorithm by an example of a game with a per-
mission structure on a set of five players. The player set is N = {A, B, C, D, E} and
(N , v) is an additive with the weights of players given by 1, 2, 0, 4 and 6 respectively.
The set D ⊂ N × N is given by

D = {(A, B), (A, C), (B, D), (C, D), (C, E)}.

Notice that (N , v, D) satisfies Assumption 3.1 (with player A the unique top player)
and is weak digraph monotone and weak digraph concave. The game is given in Fig. 1,
in which the numbers near the players are there weights.

In Step 2 at the first iteration with U0 = N and r0 = r we find that τ ∗(r0)= 1 and that
{B} is the unique set with τ({B}, r0)= τ ∗(r0). So in the first iteration of the algorithm
we set U1 = ({B}) and NucB(N , r)= 1. Next the Davis-Maschler reduced game on
N\U1 = {A, C, D, E} is constructed. This is again an additive game, given in Fig. 2.

In Step 2 of the second iteration we now have τ({E}, r1)= τ({C, E}, r1)= τ ∗(r1)=2
and U2 = {C, E} is chosen, because it is the unique maximal set with minimal
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Fig. 1 Example 5.3

Fig. 2 Example 5.3: first iteration

Fig. 3 Example 5.3: second iteration

value τ ∗(r1). So, NucC (U1, r1)= NucE (U1, r1)= 2. Next the reduced game on
U1\U2 = {A, D} is again an additive game given in Fig. 3. From this figure it fol-
lows straightforwardly that NucA(U2, r2)= 6 and NucD(U2, r2)= 2. As final result
we get Nuc(N , r)= (6, 1, 2, 2, 2).
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6 Complexity of the algorithm

For arbitrary veto-rich games the algorithm of Arin and Feltkamp (1997) to compute
the nucleolus is an exponential time algorithm of the order O(n.2n−1). Brânzei et al.
(2005) argue that applying the algorithm to the specific case of a peer group game
the complexity reduces to a polynomial time algorithm of order O(n3). They show
that the algorithm given in their paper to find the nucleolus of a peer group game is a
polynomial time algorithm of order O(n2). In this section we show that the algorithm
given in the previous section to find the nucleolus of the more general restricted game
of a game with disjunctive permission structure is a polynomial time algorithm of
order O(n4).

6.1 Good sets

To show the complexity of the algorithm, we first define the concept of a good set in
a digraph.

Definition 6.1 For a digraph (N , D) with D ∈ DN , a set T ⊂ N is a good set, when

(i) there is a unique top node in the subgraph (T, D(T )) of (N , D) and for any
other node i in T there is a path from this unique top node to node i that only
contains nodes in T ,

(ii) the set N\T is connected, and
(iii) the top node in (T, D(T )) is the only node in T that has predecessors in N\T .

We now have the following lemma.

Lemma 6.2 In any iteration k of the algorithm, the set Uk\Uk+1 is a good set.

Proof Applying Corollary 4.7 to (Uk, Dk) we have that the subgraph of (Uk, Dk)

restricted to Uk\Uk+1 is a quasi-strongly connected, acyclic directed graph with one
top node, so condition (i) holds. Next, denote Tk = Uk\Uk+1. Then Uk\Tk = Uk+1.
Therefore condition (ii) holds, because Uk+1 is feasible in (Uk, Dk) and thus con-
nected in (Uk, Dk). Further, by applying the second statement of Proposition 4.6 to
(Uk, Dk) we have that Uk+1 has only one successor in Tk = Uk\Uk+1. Let this only
successor be node j in Tk . Since the digraph (Uk, Dk) is acyclic and quasi-strongly
connected, there is a path from top node 1 in (Uk, Dk) to any other node in Uk , so
also to any node in Tk . Since j is the only successor of Uk+1 in Tk , any path from 1 to
some node h ∈ Tk must contain the node j . Moreover, the path from j to h can not
contain nodes not in Tk , otherwise Uk+1 has more than one successor in Tk . Hence j
is also a top node in Tk such that for any other node in Tk there is a path from j to this
node that only contains nodes in Tk . ��

Lemma 6.2 implies that in Step 2 of the algorithm the set Uk+1 that we must find
is such that its complement Uk\Uk+1 is a good set. Conversely, when Tk is the collec-
tion of all good sets in (Uk, Dk), then the search for Uk+1 can be restricted to sets in
the collection Uk\Tk, Tk ∈ Tk . The next lemma says that in a game with permission
structure (N , v, D) there is precisely one good set for any player j ∈ N . Applying
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this to (Uk, Dk) this means that at iteration k of the algorithm the number of good sets
is equal to |Uk |. Observe that j itself is a singleton good set if j has no successors.

Lemma 6.3 Let (N , D) be a digraph with D ∈ DN . Then for any node j ∈ N there
is exactly one good set T such that j is the unique top node in T .

Proof Recall from Sect. 2.3 that the set SD( j) of all complete subordinates of j is
the set of nodes i such that any path from top node 1 in (N , D) to node i contains
node j . It is straightforward to verify that SD( j) is a good set having node j as its
unique top node. Next, suppose that there are two good sets with j as their unique top
node, say T1 and T2 and, w.l.o.g., suppose that T1\T2 is non-empty. Consider some
node h ∈ T1\T2. By definition of a good set we know that any path from top player 1
to the player h contains the node j . However, N\T2 does not contain j and so there is
no path from top node 1 to h in N\T2, contradicting condition (ii) of Definition 6.1.

��

6.2 Complexity

We are now ready to consider the complexity of the algorithm.

Proposition 6.4 The complexity of the algorithm is of order O(n4).

Proof First, in iteration k we have to find all good sets in Uk . To find the good set
with some player j in Uk as its unique top node, delete player j from Uk . Then
the good set consists of player j and all nodes in Uk that are no longer connected
to player 1 when player j is deleted. Since Uk contains at most n − 1 nodes not
equal to 1, this requires at most O(n2) actions to find the good set of node j . So,
it requires at most O(n3) actions to find all n − 1 good sets of all players j �= 1.
Next, at each iteration k we need to calculate the number τ(Uk\T, rk) for any good
set T . For this we need at most O((n − 1)mk) actions, where mk is the number of
actions to find all values vk(U ), U ⊆ Uk in Step 3 of iteration k − 1. Clearly m0 = 1.
Further, from Eq. 6 in Step 3 of the algorithm it follows that we need mk−1 actions
to find vk(U ) if PDk (ik+1) ∩ U = ∅. Otherwise mk−1 actions are needed to calcu-
late vk(U ) = vk−1(U ∪ (Uk−1\Uk)) and O(1) actions are needed for calculating
τ(Uk, rk−1)|Uk−1\Uk | and for substraction, because τ(Uk, rk−1) was already found
before. Hence mk = mk−1 +O(1). Together with m0 = 1 this yields that mk ≤ O(n).
Since the number of iterations is at most equal to n, it follows that the complexity of
the algorithm is given by n · (O(n3) + O((n − 1)mk)) = O(n4). ��

7 Concluding remarks

In this paper we presented a polynomial time algorithm to compute the nucleolus of
restricted games induced by a class of games with a permission structure which gener-
alizes the class of peer group games. Whereas the hierarchical structure in peer group
games is a rooted tree and the game is additive, we allow for any acyclic quasi-strongly
connected digraph (so players are allowed to have more than one predecessor) and
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games that satisfy the so-called weak digraph monotonicity and weak digraph con-
cavity properties.

To show that the algorithm indeed yields the nucleolus of the restricted game in
polynomial time, we obtained several other interesting results that give insight into the
nucleolus for this class of games with restricted cooperation. In particular, we showed
that the modified game with permission structure in each iteration of the algorithm
satisfies the conditions of weak digraph monotonicity and weak digraph concavity
and, moreover, the digraph is acyclic and quasi-strongly connected. Also, we saw that
in every iteration of the algorithm, the set of players for which the nucleolus payoffs
are determined form a ‘good set’ meaning that (i) the restricted digraph on that set of
players is quasi-strongly connected, (ii) its complement is connected in the digraph,
and (iii) the top node is the only node in the ‘good set’ that has predecessors outside T .

We showed that the algorithm yields the nucleolus of the restricted game by showing
that the restricted game of the modified game with permission structure in each iteration
of the algorithm is equal to the Davis-Maschler reduced game of the restricted game
from the previous iteration. This then also implies that the Davis-Maschler reduced
game of a restricted game in the class that we consider satisfies weak digraph mono-
tonicity and weak digraph concavity. Whereas, the Davis-Maschler reduced game of
a disjunctive restricted game is always a disjunctive restricted game, the properties of
weak digraph monotonicity and weak digraph concavity might be lost. However, from
our results it follows that this does not happen for the reduced games that appear in
the algorithm.

Although our purpose is not to give an axiomatization of the nucleolus on this class
of restricted games, the properties that follow from the algorithm might be useful in
characterizing the nucleolus for the class of games considered here using a reduced
game property similar to that of Davis and Maschler. Although the kernel coincides
with the prekernel and with the nucleolus for every balanced game with a veto-player,
the converse consistency property does not hold for the prekernel on the class of
restricted games that is considered in this paper since we cannot delete an arbitrary
player.
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