Int J Game Theory (2011) 40:791-807
DOI 10.1007/s00182-010-0269-z

Lorenz comparisons of nine rules for the adjudication
of conflicting claims

Kristof Bosmans - Luc Lauwers

Accepted: 2 December 2010 / Published online: 5 January 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract Consider the following nine rules for adjudicating conflicting claims: the
proportional, constrained equal awards, constrained equal losses, Talmud, Piniles’,
constrained egalitarian, adjusted proportional, random arrival, and minimal overlap
rules. For each pair of rules in this list, we examine whether or not the two rules are
Lorenz comparable. We allow the comparison to depend upon whether the amount
to divide is larger or smaller than the half-sum of claims. In addition, we provide
Lorenz-based characterizations of the constrained equal awards, constrained equal
losses, Talmud, Piniles’, constrained egalitarian, and minimal overlap rules.
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1 Introduction

How should an amount of money be divided among a group of individuals if the amount
available falls short of the sum of the individuals’ claims? Several distribution prob-
lems take the form of this “claims problem.” Two typical examples are the problems
of bankruptcy and taxation. In the case of bankruptcy, the amount to divide is the lig-
uidation value of the firm that goes bankrupt, and the claims are the entitlements of the
creditors. In the case of taxation, the amount to divide is the difference between the
total pre-tax income and the tax revenue, and the claims are the pre-tax incomes.
The literature on the claims problem is largely devoted to the axiomatic study of rules,
which associate with each possible claims problem a division among the individuals. !

Different rules propose different divisions. We try to detect patterns behind these
differences. In particular, we use the Lorenz dominance criterion to check whether
a rule is more favourable to smaller claimants relative to larger claimants.> As an
illustration, let us consider a claims problem involving three individuals with claims
equal to 500, 2000, and 3500, and an amount to divide equal to 1500. Table 1 presents
the divisions proposed for this claims problem by the nine rules that we consider: the
proportional (P), constrained equal awards (CEA), constrained equal losses (CEL),
Talmud (T'), Piniles’ (Pin), constrained egalitarian (CE), adjusted proportional (A),
random arrival (RA), and minimal overlap (M O) rules. The final row of the table
presents totals, with the total claim equal to 6000 and the amount to divide equal to
1500.

As we move from left to right in Table 1, the award allocated to the smallest claimant
decreases, while the award allocated to the largest claimant increases. Hence, for each
pair of divisions in the table, the left division is obtained from the right division by
transferring money from larger claimants to smaller claimants. Equivalently, the left
division Lorenz dominates the right division. So for this specific claims problem we
may conclude, say, that the Talmud division is more favourable to smaller claimants
than the proportional division. The key question is whether this type of conclusion
holds in general or depends on the particular data.

The next theorem—which is proven in Sect. 3—summarizes a first set of results.
A rule R is said to Lorenz dominate a rule R’ if, for each claims problem, the division
proposed by R Lorenz dominates the division proposed by R’.

Theorem 1 The Lorenz dominance relation ranks the nine rules as follows:

RA
A\

MO —
CEA CE Pi CEL.
P

An arrow (or a sequence of arrows) from R to R’ indicates that R Lorenz dominates
R'. The absence of an arrow (or of a sequence of arrows) indicates the absence of a
Lorenz relationship.

I See Moulin (2002) and Thomson (2003) for surveys.

2 The Lorenz criterion is a key concept in the literature on income distribution. See, e.g., Sen (1973).
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Table 1 Example with an amount to divide of 1500

Claims CEA CE, Pin, T A RA, MO P CEL

500 500 250 214 167 125 0
2000 500 625 643 667 500 0
3500 500 625 643 667 875 1500
6000 1500 1500 1500 1500 1500 1500

Table 2 Example with an amount to divide of 4500

Claims CEA, CE Pin P RA A T MO CEL

500 500 500 375 333 286 250 167 0
2000 2000 1625 1500 1333 1357 1375 1417 1500
3500 2000 2375 2625 2833 2857 2875 2917 3000
6000 4500 4500 4500 4500 4500 4500 4500 4500

A comment on the interpretation of this result is in order. The fact that a given
rule Lorenz dominates another rule should not be regarded as implying that the rule is
superior or inferior to the other rule. How to treat larger claimants relative to smaller
claimants is a question open to ethical disagreement. Moreover, even the same observer
is likely to prefer a different treatment depending on the specific real-world context
of the claims problem, e.g., depending on whether it is a case of bankruptcy, taxation,
estate division, and so on.

Theorem 1 shows that some rules are Lorenz incomparable. This is the case, for
instance, for the proportional rule and the Talmud rule. To illustrate this point, we
consider a claims problem with claims as in Table 1, but with an amount to divide
of 4500 instead of 1500. The divisions proposed by the different rules are given in
Table 2.

While in Table 1 the Talmud division Lorenz dominates the proportional division,
the converse is true in Table 2. As some rules—viz., the Talmud, Piniles’, and con-
strained egalitarian rules—explicitly treat claims problems differently according to
whether the amount to divide is smaller or larger than the half-sum of claims, it seems
natural to consider restrictions of the Lorenz dominance relation on these two sub-
sets of claims problems. Considerably more rules are Lorenz comparable on these
restricted domains. For instance, for each claims problem with an amount to divide
smaller than the half-sum of claims, the Talmud division Lorenz dominates the pro-
portional division, whereas the converse relation holds if the amount available is larger
than the half-sum of claims. The results for the restricted domains are summarized in
Theorem 2, which is stated and proven in Sect. 4.

3 Questionnaire studies confirm that respondents propose different divisions for formally identical claims
problems (i.e., involving the same vector of claims and amount to divide) if they are framed in different
real-world contexts. For instance, Bosmans and Schokkaert (2009) report that respondents choose divisions
more favourable to smaller claimants in a context of pensions than in a context of savings in a firm.
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In addition to providing the Lorenz relationships between the nine rules, we charac-
terize six of them as maximal or minimal with respect to the Lorenz dominance relation,
i.e., as most or least favourable to smaller claimants: the constrained equal awards,
constrained equal losses, Talmud, Piniles’, constrained egalitarian, and minimal over-
lap rules. For instance, we show that the minimal overlap rule is Lorenz-minimal in
the set of rules satisfying order preservation of awards, order preservation of losses,
reasonable lower bounds on awards, limited consistency, and order preservation under
claims variations. The propositions in Sects. 3 and 4 formulate these characterization
results and Table 4 provides a summary.

Related results have been established in the literature.* Hougaard and Thorlund-
Petersen (2001) provide Lorenz rankings of the proportional, constrained equal awards,
constrained equal losses, and Talmud rules. Thomson (2002, 2011) further discusses
the interpretation of Lorenz-based results and ranks the members of the family of
increasing-constant-increasing rules, which includes the constrained equal awards,
constrained equal losses, Talmud, and minimal overlap rules. Moreno-Ternero and
Villar (2006) rank the family of TAL-rules—a subclass of the increasing-constant-
increasing family—which includes the constrained equal awards, constrained equal
losses, and Talmud rules. Our Lorenz-based characterizations of the constrained equal
awards, constrained egalitarian, and Talmud rules are closely related to results by
Schummer and Thomson (1997), Chun et al. (2001), and Hougaard and Thorlund-
Petersen (2001), respectively.

2 Nine rules and ten properties’

An amount E in R, has to be divided among a set N = {1, 2,...,n} of at least
two individuals with claims adding up to more than E. Let ¢; in Ry be individual i’s
claim and let ¢ = (cq, ¢2, ..., c,) be the claims vector. Claims are ordered so that
0<c1 <c» <---<c¢y.Thetotal claim ¢y + ¢ + - - - 4+ ¢, is assumed to be positive
and is denoted by C. A claims problem is an ordered pair (c, E) with C > E. The set
C collects all claims problems involving n individuals. A rule is a map from the set C
to the set R", , i.e.,

R:C— RY :(c, E) —> R(c, E),

that satisfies the conditions Ri(c, E) + Ry(c, E) + --- + Ry(¢c, E) = E and 0 <
R;i(c, E) < ¢; for each i in N. We refer to R;(c, E) as individual i’s award and to
R(c, E) as the awards vector. Sometimes we use R; as shorthand for R;(c, E). We
refer to the difference ¢; — R;(c, E) as individual i’s loss.

4 Thomson (2011) provides further references on the use of the Lorenz criterion in this literature.

5 For more details on the rules and properties defined in this section, see Thomson’s (2003) survey.

@ Springer



Lorenz comparisons 795

2.1 Nine rules

We list nine rules, starting with the four classical ones.® The most commonly used
rule in practice makes awards proportional to claims.

Proportional rule, P. For each (c, E) in C, we have P(c, E) = %c.

The next two rules both implement the idea of equality, albeit in different ways.
The constrained equal awards rule equalizes awards under the constraint that no indi-
vidual’s award exceeds her claim.

Constrained equal awards rule, CEA. For each (¢, E) in C and each i in N, we have
CEA(c, E) = min{c;, A}, where A is chosen so that >_7_, min{c;, A} = E.

The constrained equal losses rule equalizes losses under the constraint that no award
is negative.

Constrained equal losses rule, CEL. For ecach (c, E) in C and each i in N, we have
CEL;(c, E) = max{0, ¢; — A}, where A is chosen so that >, max{0,¢; — A} = E.

The fourth classical rule, known as the Talmud rule, specifies two regimes depend-
ing upon whether or not the amount to divide exceeds the half-sum of the claims. If
the amount available is less than the half-sum, then the Talmud rule coincides with
the constrained equal awards rule applied to the vector of half-claims. If the amount
available is larger than the half-sum, then the Talmud rule gives each individual her
half-claim and divides the remainder by applying the constrained equal losses rule to
the vector of half-claims.

Talmud rule, 7. For each (c, E) in C, we have that

(i) if C/2 > E, then T (c, E) = CEA (1¢, E),
(ii) if C/2 < E, then T(c, E) = ¢ + CEL (e, E —C)2).

Typical awards vector for the Talmud rule are (1c1, Sca, ..., Sex, A Ay oo 1) if
C/2 > E,and (%cl, %cz, R %ck, Ckt1—A, Ck42—Ay .o,y c,,—)») if C/2 < E.If the
amount to divide is equal to the half-sum of claims, then the awards vector coincides
with the vector of half-claims.

We continue with two rules that coincide with the Talmud rule whenever the amount
available is less than the half-sum of the claims. To illuminate the difference with the
Talmud rule, we present a typical awards vector for the case where the amount available
exceeds the half-sum of claims.

Piniles’ rule, Pin. For each (c, E) in C, we have that
(i) if C/2 = E, then Pin(c, E) = T(c, E) = CEA (%c, E),
(i) if C/2 < E, then Pin(c, E) = %c + CEA (%c, E — C/Z).

IfC/2 < E,then (cl, 2y ..., Chy %Ck+1 + A, %Ck.i,_z + A, ..., %cn + A) isatypical
awards vector for Piniles’ rule.

6 Herrero and Villar (2001) provide a comparative examination of these four rules.
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Constrained egalitarian rule, CE. For each (c, E) in C, we have that

(i) if C/2 > E,then CE(c, E) =T(c, E) = CEA (%c, E),
(i1) ifC/2 < E,then,foreachiin N,wehave CE;(c, E) = max{c; /2, min{c;, A}},
where A is chosen so that Z?:l max{c; /2, min{c;, A}} = E.

If C/2 < E, then (cl,cz,...,ck,k,k,...,k,%cz,%cu_l,...,%cn)
is a typical awards vector for the constrained egalitarian rule.

The final three rules coincide with the Talmud rule in the case of two individuals.
The adjusted proportional rule first allocates to each individual her minimal right,
i.e., the part of the amount to divide that is left after each other individuals is fully
compensated (such a minimal right might be zero). Next, the claims and the amount
to divide are revised (with the revised claims furthermore truncated by the revised
amount to divide) and the resulting problem is solved using the proportional rule. For-
mally, for the claims problem (c, E), individual i’s minimal right m; (¢, E) is defined
as max{0, E — C + ¢;} and m(c, E) = (m(c, E),ma(c, E),...,my(c, E)). The
adjusted amount to divide E — >";'_, m;(c, E) is denoted by E 4.

Adjusted proportional rule, A. For each (c, E) in C, we have
A(c, E) = m(c, E) + P ((minfc; —mi(c, E), Ea})ien, Ea).

To define the next rule, assume the individuals arrive one by one, each receiving
full compensation until the money runs out. By averaging the awards vectors obtained
in this way over all possible orders of arrival, we get the division proposed by the
random arrival rule. Let P collect the n! different orderings in the set N. For each
ordering 7 in P and for each individual i in N, the set 7 [i] collects the predecessors
of i with respect to the ordering 7.

Random arrival rule, RA. For each (c, E) in C and for each i in N, we have

1 .
RA;(c,E) = - Z min 1 ¢; , max{0, E — Z cj}
TeP jemnlil

For the definition of the minimal overlap rule, we follow Chun and Thomson (2005,
p. 138). The rule distinguishes two cases. In case (i), there exists an individual with a
claim larger than or equal to the amount to divide E. Each individual is regarded as
claiming an interval rather than an abstract amount. In particular, an individual i with
a claim smaller than E claims the interval [0, ¢;], and an individual with a claim larger
than or equal to E claims the interval [0, E]. Next, each part of the interval [0, E] is
divided equally among all individuals claiming it. For instance, the interval [0, c1] is
claimed by all individuals, and so each receives c1/n. The interval (c1, ¢2] is claimed
by all individuals except individual 1, and so each member of N — {1} receives in
addition (¢ — c1)/(n — 1). This process continues until the entire interval [0, E] is
distributed. In case (ii), all individuals have claims smaller than the amount to divide.

7 For example, let N = {1, 2, 3} and consider the ordering = = (1, 3, 2) in which individual 1 queues first,
followed by 3, and finally 2. In this case, 7[1] = &, 7[2] = {1, 3}, and 7[3] = {1}.
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We let ¢p = 0 and look for the largest k* in {0, 1, 2, ..., n — 2} for which there exists
at in R, that satisfies

e <t <cprqr and (g1 — 0O+ (Cprpr =D+ -+ (e —1) = E—1.5 (1)

Each individual i in the set {k* + 1,k* + 2, ..., n} receives a first share equal to
¢; —t, i.e., the part of the interval (¢, E] that i alone claims. The remaining part [0, #]
is divided as in case (i) with ¢ as the amount to divide.

Minimal overlap rule, MO. Let ¢y = 0. For each (¢, E) in C, we have the following.

(1) Letcyr < E < cpra1 < ¢y withk*in {0, 1,2,...,n — 1}. Then,
MO,~=C—1+C2_C1 R ~-~+Mforeachi=1,2,...,k*,
n n—1 n—2 n—i-+

MO;=MO + foreach j =k*+1, k*+2,...,n.

(i) Letc, < E.Letcpx <t < cprqq With k™ in {0,1,2,...,n — 2} and ¢ as in
(1). Then,
€l  C2—C  €3—C Ci

Mo;i=2 ¢ e+ ST freachi = 1,2, .. K,
n n—1 n—2 n—i+

t‘_
MO;=(c; — 1) + MO+ +

foreach j = k*+1,k*+2,...,n.

2.2 Ten properties

We consider ten properties. Table 3 indicates which of these properties are satisfied
by each of the nine rules defined in the previous subsection.

Order preservation of awards requires that awards are ordered as claims are.
Order preservation of awards. For each (¢, E) in C, we have thatif ¢; < ¢ j» then
Ri(c, E) < Rj(c, E).

Order preservation of losses demands that losses are ordered as claims are.
Order preservation of losses. For each (c, E) in C, we have that if ¢; < ¢;, then
¢i — Ri(¢, E) <cj — Rj(c, E).

Resource monotonicity holds that if the amount to divide increases, then each indi-
vidual should receive at least as much as she did initially.

Resource monotonicity. For each pair (c, E) and (c, E’) in C, we have that if E <
E' < C,then R(c, E) < R(c, E).

The next two properties describe responses of the awards vector to changes in the
amount available and in the claims vector, respectively. Super-modularity requires that
if the amount to divide increases, given two individuals, the one with the greater claim

8 If the claims happen to be feasible, i.e., c| +¢2 + -+ - + ¢4, = E, then k* = 0 and we allow 1 = ¢y = 0.
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Table 3 Rules and properties (for at least three individuals)

P CEA CEL T Pin CE A RA MO

Order preservation of awards Yes  Yes Yes Yes Yes Yes Yes Yes Yes
Order preservation of losses Yes  Yes Yes Yes Yes Yes Yes Yes Yes
Resource monotonicity Yes  Yes Yes Yes Yes Yes Yes Yes Yes
Super-modularity Yes  Yes Yes Yes Yes No Yes Yes Yes

Order preservation under claims vari-  Yes  Yes Yes Yes Yes No Yes Yes Yes
ations

Invariance under claims truncation No  Yes No Yes Yes Yes Yes Yes Yes
Self-duality Yes No No Yes No No Yes Yes No
Midpoint property Yes No No Yes Yes Yes Yes Yes No
Limited consistency Yes  Yes Yes Yes Yes Yes Yes Yes Yes
Reasonable lower bounds on awards No  Yes No Yes  Yes Yes Yes Yes Yes

experiences a larger gain than the other. Order preservation under claims variations
(Thomson 2006, p. 106) requires that if the claim of some individual decreases, given
two other individuals, the one with the greater claim experiences a larger gain than
the other.

Super-modularity. For each pair (¢, E) and (c, E’) in C with E < E’ < C, and for
each pair i and j in N with ¢; < ¢, we have R;(c, E') — Ri(c, E) < Rj(c, E") —
Rj (C, E)

We write (¢}, c—¢) for the claims vector obtained from ¢ by replacing ¢ with c}.

Order preservation under claims variations. For each k in N, for each pair (c, E)
and (¢’, E) in C with ¢’ = (¢}, c_¢) and ¢, < ¢, and for each pair i and j in N — {k}
with ¢; < ¢, we have R;(c/, E) — Ri(c, E) < Rj(c, E) — Rj(c, E).

We postpone the discussion of which rules satisfy order preservation under claims
variations to the end of this subsection.

The next property requires that truncating the claims at the level of the amount to
divide has no impact on awards.

Invariance under claims truncation. For each claims problem (c, E) in C, we have
R(c, E) = R((min{c;, E})jen, E).

A self-dual rule treats the problem of dividing the amount available and the problem
of dividing the shortfall (i.e., the difference between the total claim and the amount to
divide) in a symmetrical way.

Self-duality. For each (c, E) in C, we have R(c, E) = ¢ — R(c,C — E).

The adjusted proportional rule inherits self-duality from the proportional rule
(Thomson and Yeh 2006, Corollary 1).

The midpoint property requires the awards vector to coincide with the vector of
half-claims whenever the amount to divide coincides with the half-sum of claims.
Midpoint property. For each (c, E) in C with E = C/2, we have R(c, E) = %c.

Self-duality implies the midpoint property. Indeed, if R(c, E) + R(c,C — E) =c,
then, for a claims problem (c, E) with C = 2E, we have 2R(c, E) = c.
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Limited consistency states that adding an individual with a zero claim does not
change the awards of the individuals already present. Abusing notation, we let R
denote both the n-person and the (n + 1)-person version of a rule. Obviously, if

(c1,¢2,...,¢cn, E) is a claims problem involving »n individuals, then
O, ¢y, c2,...,cpn, E) is aclaims problem with n 4 1 individuals.
Limited consistency. For each (c, E) = (¢, ¢2, ..., ¢y, E) in C involving n individ-

uals, we have R(0, ¢y, ¢, ...,cu, E) = (0, R(cy, c2, ..., cn, E)).

Finally, reasonable lower bounds on awards (Moreno-Ternero and Villar 2004;
Dominguez and Thomson 2006) ensures that each individual receives at least the
minimum of (i) her claim divided by the number of individuals and (ii) the amount
available divided by the number of individuals.

Reasonable lower bounds on awards. For each (¢, E) in C and for each i in N, we
have R;(c, E) > min{c;, E}/n*, where n* denotes the number of individuals with a
positive claim.

We now turn to the question of which rules satisfy order preservation under claims
variations. First, it can easily be established that each consistent” rule satisfies super-
modularity if and only if it satisfies order preservation under claims variations. The
proportional, constrained equal awards, constrained equal losses, Talmud, and Piniles’
rules all satisfy consistency and super-modularity, and therefore satisfy order preser-
vation under claims variations. The constrained egalitarian rule, on the other hand,
is consistent but does not satisfy super-modularity. Hence, it does not satisfy order
preservation under claims variations.

We now consider the adjusted proportional rule. The larger the claim is, the larger
the minimal right. If one of the claims decreases, then the minimal rights of the other
individuals increase in an order preserving manner (the minimal right either stays at
the zero level, or becomes positive, or increases with the amount the particular claim
decreases). The proportional rule is applied to the adjusted claims problem, and its
proposal is added to the minimal rights vector. Since, moreover, the proportional rule
satisfies order preservation under claims variations, the adjusted proportional rule also
satisfies the property.

Next, we check whether the random arrival rule satisfies order preservation under
claims variations. Let (¢, E) be a claims problem, let c; decrease to c,’(, and leti and j
be two individuals different from k such that ¢; < c¢;. Consider an order of arrival 7
in which the decrease in ¢ generates an increase in individual i’s award (i.e., k € 7 [i]
and 0 < E _then[i] c¢ < ci). Switch the positions of i and j in 7 and obtain
the order r’. Then, k € 7’[jland 0 < E —Zkﬂ,m c¢ < cj. With respect to the
order 7/, individual j experiences at least the same increase as i does with respect to
. By consequence, the random arrival rule satisfies order preservation under claims
variations.

Finally, the minimal overlap rule also satisfies order preservation under claims
variations, as will become clear in the proof of Proposition 4.

9 See Thomson (2003, p. 279) for a definition of the consistency property.
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3 Lorenz comparisons on the full domain

In this section we prove Theorem 1. First, we define the Lorenz dominance relation.
Let R” be the set of nonnegative n-dimensional vectors x = (xp, xa, ..., x,) ordered
from small to large,i.e.,0 < x; <xp <--- <x,.Letx and y be in R”.. We say that
x Lorenz dominates y if we have -

x1+x2+--4+xk > y1+y2+---+y foreachk=1,2,...,n—1,

andx;+x2+---+x, = y1+y2+4---+y,. If x Lorenz dominates y and x # y, then
at least one of these n — 1 inequalities is a strict inequality. The following definition
extends the notion of Lorenz dominance to the domain of rules.

Definition Let R and R’ be two rules that satisfy order preservation of awards and let
D C C be a set of claims problems. Then, R Lorenz dominates R’ on the domain D
if R(c, E) Lorenz dominates R’(c, E) for each (¢, E) in D.

Since Lorenz dominance is applied to awards vectors, the restriction to rules sat-
isfying order preservation of awards is required to allow the interpretation of Lorenz
dominance in terms of favourability to smaller claimants. We shorten “Lorenz dom-
inance on the domain C” to “Lorenz dominance.” The transitivity and reflexivity of
the Lorenz dominance relation in the set R implies the transitivity and reflexivity of
the Lorenz dominance relation in the set of rules.

According to the next lemma, the duality operator reverses the Lorenz dominance
relation. The dual rule R? of R treats what is available for division in the same way
as R treats what is missing. Formally, for each (¢, E) in C, we have Rd(c, E) =
¢ — R(c, C — E). The claims problems (¢, C — E) and (c, E) are said to be dual.

Lemma 1 Let R and S be two rules that satisfy order preservation of awards and
order preservation of losses, and let D < C be a set of claims problems. Then, R
Lorenz dominates S on the domain D if and only if S¢ Lorenz dominates R on the
domain D? of dual claims problems.

Proof Let (c, E) be a claims problem in D. Then, (¢, C — E) belongs to e, Duality
implies

R(c,E)+ R (c,C—E)=c and S(c,E)+ S%c,C—E)=c.

Conclude that R(c, E) Lorenz dominates S(c, E) if and only if NG (¢, C — E) Lorenz
dominates R%(c, C — E). O

The rest of this section proves the Lorenz relationships indicated by the arrows
in Theorem 1 (see Sect. 1). We proceed from left to right and from top to bottom.
The examples in Tables 1 and 2 demonstrate the incomparabilities. A Lorenz-based
characterization of a rule is stated as a proposition.

(a) CEA — CE. This Lorenz comparison follows from the fact that the constrained
equal awards rule is Lorenz-maximal in the set of rules that preserve the order of
awards.
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Proposition 1 Let R be the set of rules that satisfy order preservation of awards. The

constrained equal awards rule is the only rule in R that Lorenz dominates each rule
: 10
inR.

Proof 1t suffices to show that CEA Lorenz dominates each rule in R. This is done
by contradiction. Let R in R and (c, E) in C be such that x = CEA(c, E) does
not Lorenz dominate y = R(c, E). Let k in N be the smallest number such that
x1+x2+--+xp < yit+y2+-+ Vi

Hence, x; < yr < ci. Therefore, x; = A (according to CEA the individuals that
receive less than A are fully compensated). As A < yg and yr < ykq1 < -+ < y, (the
rule R preserves the order of awards), the allocation y is not feasible. O

(b) CE — Pin. Recall that the constrained egalitarian and Piniles’ rules satisfy
resource monotonicity and the midpoint property. The Lorenz comparison of these
two rules is established by Chun et al. (2001, Theorem 3). We recall their result and
provide a different proof.

Proposition 2 Let R be the set of rules that satisfy order preservation of awards, the
midpoint property, and resource monotonicity. The constrained egalitarian rule is the
only rule in 'R that Lorenz dominates each rule in R.

Proof 1t suffices to show that CE Lorenz dominates each rule in R. This is done by
contradiction. Let R in R and (¢, E) in C be such that x = CE(c, E) does not Lorenz
dominate y = R(c, E).Letkin N be the smallest number such that x| +xo+- - -+x; <
yit+y2+--+ k.

Hence, x; < yx and x; > y; for some £ > k. The inequalities x;y < yx < ci
imply that either x;x = cx/2 or xx = A < ck. In addition, £ > k implies x; < ¢; (CE
fully compensates only—if any—the smaller claims). We distinguish C/2 > E from
C/2 < E. The midpoint property tackles the case C/2 = E.

Case 1, C/2 > E and x; = c/2. Then, y; > x; cannot hold because of resource
monotonicity and the midpoint property. Indeed, if E increases towards C/2,
then y, should increase towards ¢y /2, and a contradiction follows.

Case 2, C/2 > E and x; = A. Then, the inequalities A < yx < yr+1 < -+ < ¥, (R
preserves the order of awards) make the vector y infeasible.

Case 3, C/2 < E and y; < x¢y = c¢/2. Again, a contradiction follows: if E decreases
towards C/2, then y, should decrease towards cy /2.

Case 4, C/2 < E and y; < x; = A. We obtain the configuration x;y = xj4+1 = -+ =
x¢ = A. Then, the rule R does not preserve the order of awards: y; > X, while
Ve < A. O

(¢) Pin — {RA, A, T, P}.In the case where the half-sum of claims is larger than the
amount to divide, Piniles’ rule coincides with the constrained egalitarian and Talmud
rules. Proposition 2 implies that the constrained egalitarian rule Lorenz dominates the
Piniles’, random arrival, adjusted proportional, Talmud, and proportional rules. Hence,

10 Proposition 1 entails results by Schummer and Thomson (1997, Propositions 3 and 4).
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on the domain C; of claims problems (c, E) with C/2 > E, therule Pin =T = CE
Lorenz dominates the random arrival, adjusted proportional, and proportional rules.

We now focus on problems with a half-sum of claims less than the amount to divide.
Let Cy collect the problems (c, E) for which C/2 < E. Since the Piniles’, random
arrival, adjusted proportional, Talmud, and proportional rules all satisfy the properties
required, the next lemma simultaneously tackles the relationships on the restricted
domain Cy.

Lemma 2 Restrict the domain to Cy. Let R be the set of rules that satisfy order preser-
vation of awards, the midpoint property, and super-modularity. Piniles’ rule ( Pin|¢,)
is the only rule in R that Lorenz dominates each rule in R on the domain Cy.

Proof 1Tt suffices to show that Pin Lorenz dominates each rule in R. This is done
by contradiction. Let R in R and (c, E) in Cy be such that x = Pin(c, E) does
not Lorenz dominate y = R(c, E). Let k in N be the smallest number such that
Xp+x2+--+x < yi+y2+-0-+ Yk

Hence, x;y < yr < cx and y¢ < x¢ < c¢ for some £ > k. The definition of Pin
implies thatxy = cx /24X andx, = c¢¢/2+A. Astherule R satisfies the midpoint prop-
erty, we have Ry (c, E)— Ry (c, C/2) = yx—ck/2 > A, while Ry(c, E)—Ry(c, C/2) =
ye¢ — c¢/2 < A. This contradicts the fact that R satisfies super-modularity (recall that
Ck < cp). a

The combination of Lemma 2 and Proposition 2 entails a Lorenz-based character-
ization of Piniles’ rule.

Proposition 3 Let R be the set of rules that satisfy order preservation of awards,
resource monotonicity, the midpoint property, and super-modularity. Piniles’ rule is
the only rule in R that Lorenz dominates each rule in 'R.

(d) {RA, A, T} — MO. If there are only two individuals, then the random arrival,
adjusted proportional, Talmud, and minimal overlap rules coincide (with the concede-
and-divide rule; see Thomson 2003). The next proposition provides a Lorenz-based
characterization of the minimal overlap rule.

Proposition 4 Let R be the set of rules that satisfy order preservation of awards,
order preservation of losses, order preservation under claims variations, limited con-
sistency, and reasonable lower bounds on awards. The minimal overlap rule is the
only rule in 'R that is Lorenz dominated by each rule in R.

Proof By induction on the number of individuals.
Proof for n = 2. Let (c, E) be a claims problem with two individuals. If k* = 0, then
either (i) E < cyand MO(c, E) = (E/2, E/2),0r (ii)) MO(c, E) = (c] — s,¢2 — )
with s = (C — E)/n. Since each rule R in R satisfies (i) reasonable lower bounds
and (ii) order preservation of losses, the awards vector R(c, E) Lorenz dominates
MO(c, E).

Ifk* = 1,i.e.,,c; < E < ¢, then the minimal overlap rule proposes x = (c¢1/2, E—
c1/2). Each rule that satisfies reasonable lower bounds on awards proposes a division
that Lorenz dominates x.
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Inductive step. Suppose that the proposition holds for claims problems with at most
n — 1 individuals. We have to show that the proposition holds for claims problems
with n individuals. Consider a rule R—defined for each number of individuals—in
R.

Let (¢, E) be a claims problem with n individuals. If k* = 0, then either (i) E < ¢
andMO(c, E) = (E/n,E/n, ..., E/n),or(ii))MO(c, E) = (c1—S,c2—S, ..., Cn—
s) with s = (C — E)/n. Since each rule R in R satisfies (i) reasonable lower bounds
on awards and (ii) order preservation of losses, the awards vector R(c, E) Lorenz
dominates M O(c, E).

Ifk* > 0,thency +c34+---+¢, > E and (0, 2, ¢3, ..., ¢, E) is a claims prob-

lem. In addition, the k* for problem (0, 3, c3, ..., ¢;, E) coincides with the original
k* for problem (c, E).
The inductive hypothesis implies that the (n — 1)-dimensional vector

R(co,c3,...,cn, E) Lorenz dominates M O (cp,c3, ..., ¢y, E). Since R and MO
satisfy limited consistency, we have

0, R(c2,¢3,...,¢cn, E)) Lorenz dominates (0, MO(ca2,c3,...,¢n, E)),
I I
R(0,cp,c3,...,cy, E) Lorenz dominates MO0, ¢y, c3,...,cp, E).

Start from (0, ¢2, ¢3, ..., ¢y, E) and let the claim of individual 1 increase from O to
c1. The minimal overlap rule transfers an amount ¢ /[n(n — 1)] from each individual
i =2,3,...,ntoindividual 1, who obtains an award equal to ¢ /n. Because the rule
R satisfies reasonable lower bounds on awards, it allocates at least ¢ /n to individual
1. Furthermore, the rule R satisfies order preservation under claims variations. Hence,
when the claim of individual 1 increases from O to ¢, the decrease in the award R;
of individual i # 1 is increasing in i. Conclude that R(cy, c2, ..., ¢y, E) Lorenz
dominates M O(cy, c2, ..., cn, E). |

(e) {M O, P} — CEL. The constrained equal losses rule is the dual of the constrained
equal awards rule (see, e.g., Herrero and Villar 2001). Whereas the constrained equal
awards rule is Lorenz-maximal, the constrained equal losses rule is Lorenz-minimal.

Proposition 5 Let R be the set of rules that satisfy order preservation of awards and
order preservation of losses. The constrained equal losses rule is the only rule in R
that is Lorenz dominated by each rule in 'R.

Proof Note that if a rule satisfies order preservation of awards, then its dual satisfies
order preservation of losses. Proposition 1 implies that CEA Lorenz dominates each
rule that satisfies order preservation of awards and order preservation of losses. Take
the dual of this implication and apply Lemma 1. O

This completes the proof of Theorem 1.
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4 Lorenz comparisons on restricted domains

Theorem 1 presents an incomplete ranking: theset{RA, A, T, P} and the pair {P, M O}
are not ranked. In this section, we focus on both these sets of rules and study their rela-
tionships on the restricted domains Cy 5(C/2 = E), Co(C/2 < E),and C;(C/2 > E).
As already mentioned, the position of the amount to divide against the half-sum of
claims is crucial. We formulate our second theorem.

Theorem 2 On the restricted domains Cy s, Co, and Cy, the Lorenz dominance relation
ranks the nine rules as follows:

Cos (c/2=B): CEA CE=Pin=RA=A=T=P—— MO —— CEL,

P—A\
RA/
P\

A
Cy (c/22E): CEA —— CE = Pin=T < \
RA yo—"

An arrow (or a sequence of arrows) from rule R to R’ indicates that R Lorenz domi-
nates R’ on the relevant restricted domain. The absence of an arrow (or of a sequence
of arrows) indicates the absence of a Lorenz relationship.

Co (¢/2<E):  CEA — CE — Pin T — MO — CEL,

CEL.

We subsequently discuss the domains C s, Cp, and Cy, and prove the relationships
not covered by Theorem 1. We distinguish the Lorenz relations by denoting the domain

. .. C
in stack position, e.g., P = A.

(a) The domain Cp 5. The arrows involving the constrained equal awards, minimal
overlap, and constrained equal losses rules are implied by Theorem 1. The equalities
CE = Pin = RA = A =T = P follow from the midpoint property. O

We now consider the domains Cy (C/2 < E) and C; (C/2 > E). Observe that
several rankings reverse over these domains: we have P &) A & Tand T i)

A i> P,as well as RA &) T and T i) RA.M Since the domains Cy and C; are
dual and the proportional, adjusted proportional, Talmud, and random arrival rules are
self-dual, these reversals are a consequence of Lemma 1.

(b) P ﬂ) A and A i) P. By Lemma 1 and self-duality of the proportional and
adjusted proportional rules, we need only consider the second statement. Let (c, E)
be a claims problem with C/2 > E. If the minimal right m; of individual i is positive,
then either E — C +¢; > 0,or E +¢; > C > 2E, or ¢; > E. By consequence, at
most one individual has a positive minimal right. We distinguish two cases.

C C
11 The switch from P —% Ato A —> P is especially noteworthy because the proportional and adjusted
proportional rules—in contrast to, for instance, the Talmud rule—do not have different recipes for claims
problems according to whether the half-sum of claims is larger or smaller than the amount available.
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Case 1, my(c, E) = 0. Then, each individual has a minimal right equal to 0. The
definition of A implies

A(c, E) = A(c, E) = P(c, E) with ¢ = (min{c;, E})ien-

Only the larger claims are truncated. Therefore, the vector P(c, E) Lorenz
dominates P(c, E).

Case 2, my(c, E) > 0. The minimal rights vector reads m = (0,0,...,0, E — C +
¢n). The adjusted amount to divide E4 is equal to E — m, = C — ¢,. Also,
cy—my > E—m,. Next, we determine P(cy, ¢, ...,cn—1,C—cp, C—cy).
As the claims add up to 2(C —¢,,), we obtain P(cy, c2, ..., cy—1, C—cy, C—
cn) =(c1/2, ¢2/2,...,cn-1/2, (C — c;)/2). By consequence,

A(c, E) =(c1/2, c2/2, ..., cn—1/2, E — (C—cp)/2).

On the other hand, E/C < 1/2 implies P(c, E) < %c. The Lorenz domi-
nance result follows. O

(¢) {A, RA} & Tand T i> {A, RA}. The second statement already appeared
in the previous section (see (c), first paragraph). Self-duality transforms the second
statement into the first by Lemma 1. In addition, we provide the next Lorenz-based
characterization of the Talmud rule.

Proposition 6 Restrict the domain to Cy. Let R be the set of rules that satisfy order
preservation of awards, order preservation of losses, resource monotonicity, and the
midpoint property. The Talmud rule (T |¢,) is the only rule in R that is Lorenz domi-
nated by each rule in R on the domain Co."?

Proof Resource monotonicity and the midpoint property are self-dual properties: if a
rule R satisfies these properties, then so does R (Thomson 2003). Also, the domains
Co and Cy are dual. Proposition 2 implies that, on the domain C;, T Lorenz dominates
each rule that satisfies order preservation of awards, order preservation of losses,
resource monotonicity, and the midpoint property. Take the dual of this implication
and apply Lemma 1. O

Table 4 presents an overview of the propositions.

We conclude by illustrating the incomparabilities. In each case, we present an
example in the domain C;. If the incomparability also holds in the domain Cp, then
the duals provide an illustration. Each example involves a small number of individ-
uals. To increase this number, just add individuals with zero claims and use limited
consistency.

(d) RA and P are incomparable in Cp and in C;. The problems in Tables 1 and 5
illustrate that the random arrival rule and the proportional rule are incomparable in
C. O

12 gee Hougaard and Thorlund-Petersen (2001, Theorem 2) for a related result.
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Table 4 A summary of the Lorenz-based characterizations

Proposition

1 2 3 4 5 6
Lorenz-maximal CEA CE(T IC1 ) Pin
Order preservation of awards ° ° ° ° ° °
Midpoint property ° ° °
Resource monotonicity ° ° °
Super-modularity °
Order preservation under claims
variations .
Reasonable lower bounds on awards °
Order preservation of losses ° ° °
Lorenz-minimal MO CEL Tlc,
Table 5 Example with .
¢ = (1000, 2500, 2500) and Claims P Ra Mo
E =2700 1000 450 400 333
2500 1125 1150 1183
2500 1125 1150 1183
6000 2700 2700 2700

(e) RA and A are incomparable in Cp and in Cy. The problem in Table 1 and the prob-
lem (c, E) = (10, 10, 10, 20, 20) show that the random arrival rule and the adjusted
proportional rule are incomparable in C;. Indeed, RA(c, E) = (4.2,4.2,4.2,7.5)
Lorenz dominates A(c, E) = (4,4, 4, 8). O

(f) MO and P are incomparable in C;. The problems in Tables 1 and 5 show that the
minimal overlap rule and the proportional rule are incomparable in Cj. O

This completes the proof of Theorem 2.
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