
Computing solutions for matching games?

Péter Biró1, Walter Kern2, and Daniël Paulusma3

1 Institute of Economics, Hungarian Academy of Sciences,
H-1112, Budaörsi út 45, Budapest, Hungary

birop@econ.core.hu∗∗

2 Faculty of Electrical Engineering, Mathematics and Computer Science,
University of Twente, P.O.Box 217, NL-7500 AE Enschede

w.kern@math.utwente.nl
3 Department of Computer Science, University of Durham,

Science Laboratories, South Road, Durham DH1 3EY, England.
daniel.paulusma@durham.ac.uk? ? ?

Abstract. A matching game is a cooperative game (N, v) defined on
a graph G = (N,E) with an edge weighting w : E → R+. The player
set is N and the value of a coalition S ⊆ N is defined as the maximum
weight of a matching in the subgraph induced by S. First we present an
O(nm+n2 logn) algorithm that tests if the core of a matching game de-
fined on a weighted graph with n vertices and m edges is nonempty and
that computes a core member if the core is nonempty. This algorithm im-
proves previous work based on the ellipsoid method and can also be used
to compute stable solutions for instances of the stable roommates prob-
lem with payments. Second we show that the nucleolus of an n-player
matching game with a nonempty core can be computed in O(n4) time.
This generalizes the corresponding result of Solymosi and Raghavan for
assignment games. Third we prove that is NP-hard to determine an impu-
tation with minimum number of blocking pairs, even for matching games
with unit edge weights, whereas the problem of determining an imputa-
tion with minimum total blocking value is shown to be polynomial-time
solvable for general matching games.

Keywords. matching game; nucleolus; cooperative game theory.

1 Introduction

Consider a group N of tennis players that will participate in a doubles tennis
tournament. Suppose that each pair of players can estimate the expected prize
money they could win together if they form a pair in the tournament. Also
suppose that each player is able to negotiate his share of the prize money with
his chosen partner, and that each player wants to maximize his own prize money.

?? Supported by EPSRC grant EP/E011993/1, by OTKA grant K69027 and by the
Hungarian Academy of Sciences under its Momemtum Programme (LD-004/2010).

? ? ? Supported by EPSRC grant EP/G043434/1.
? A preliminary version of this paper has been presented at TAMC 2010.

Can the players be matched together such that no two players have an incentive
to leave the matching in order to form a pair together? This is the example
Eriksson and Karlander [7] used to illustrate the stable roommates problem
with payments.

We consider the situation in which groups of possibly more than two players
in a doubles tennis tournament can distribute their total prize money among
each other. Now the question is whether the players can be matched together
such that no group of players will be better off when leaving the matching. For
instance, suppose that (i1, i2) and (i3, i4) are pairs in the matching. Then players
i1, i2, i3, and i4 may decide to leave the matching if (i1, i3) forms a better pair
than (i1, i2). They may even decide to do so if i2 and i4 cannot play together (for
whatever reason). Contrary to the previous setting, i1 and i3 may compensate i2
and i4 for their loss of income. This scenario is an example of a matching game.
Matching games are well studied within the area of Cooperative Game Theory.
In order to explain these games and how they are related to the first problem
setting, we first state the necessary terminology and formal definitions.

1.1 Cooperative game theory: definitions and terminology

A cooperative game (N, v) is given by a set N of n players and a value function
v : 2N → R with v(∅) = 0. A coalition is any subset S ⊆ N . We refer to v(S)
as the value of coalition S, i.e., the maximal profit or the minimal costs that
the players in S achieve by cooperating with each other. The v-values of many
cooperative games are derived from solving an underlying discrete optimization
problem (cf. Bilbao [3]). It is often assumed that the grand coalition N is formed,
because in many games the total profit or costs are optimized if all players work
together. The central problem is then how to allocate the total value v(N) to the
individual players in N . An allocation is a vector x ∈ RN with x(N) = v(N),
where we adopt the standard notation x(S) =

∑
i∈S xi for S ⊆ N . A solution

concept S for a class of cooperative games Γ is a function that maps each game
(N, v) ∈ Γ to a set S(N, v) of allocations for (N, v). These allocations are called
S-allocations.

The choice of a specific solution concept S not only depends on the notion
of “fairness” specified within the decision model but also on certain computa-
tional aspects, such as the computational complexity of testing nonemptiness
of S(N, v), or computing an allocation in S(N, v). Here we take the size of the
underlying discrete structure as the natural input size, instead of the 2n v-values
themselves.

We will now define two solution concepts that are well known and that have
been studied for matching games. We assume that profits must be maximized,
because this is the case for matching games. We refer to Owen [19] for a general
survey. First, the core of a game (N, v) consists of all allocations x with x(S) ≥
v(S) for all S ∈ 2N . Core allocations are fair in the sense that every nonempty
coalition S receives at least its value v(S). Therefore, players in a coalition S
do not have any incentive to leave the grand coalition (recall the doubles tennis

2

tournament). However, for many games, the core might be empty. Therefore,
other solution concepts have been designed, such as the nucleolus, defined below.

Let (N, v) be a cooperative game. The excess of a nonempty coalition S (N
regarding an allocation x ∈ RN expresses the satisfaction of S with x and is
defined as e(S, x) := x(S) − v(S). We order all excesses e(S, x) into a non-
decreasing sequence to obtain the excess vector θ(x) ∈ R2n−2. The nucleolus of
(N, v) is then defined as the set of allocations that lexicographically maximize
θ(x) over all imputations, i.e., over all allocations x ∈ RN with xi ≥ v({i})
for all i ∈ N . The nucleolus is not defined if the set of imputations is empty.
Otherwise, it consists of exactly one imputation as shown by Schmeidler [21].
Note that, by definition, the nucleolus lies in the core if the core is nonempty.
The standard procedure for computing the nucleolus proceeds by solving up to
n linear programs, which have exponential size in general. We refer to Maschler,
Peleg and Shapley [15] for more details.

Matching games. In a matching game (N, v), the underlying discrete structure
is a finite undirected graph G = (N,E) that has no loops and no multiple edges
and that is weighted, i.e., on which an edge weighting w : E → R+ has been
defined. The players are represented by the vertices of G, and for each coalition S
we define v(S) = w(M) =

∑
e∈M w(e), where M is a maximum weight matching

in the subgraph of G induced by S. If w ≡ 1, then v(S) is equal to the size of
a maximum matching and we call (N,E) a simple matching game. Matching
games defined on a bipartite graph are called assignment games.

1.2 Existing results on matching games

The core of a matching game can be empty. In order to see this, consider a simple
matching game (N, v) on a triangle with players a, b, c. An allocation x in the
core must satisfy xa + xb ≥ 1, xa + xc ≥ 1, and xb + xc ≥ 1, and consequently,
x(N) = xa +xb +xc ≥ 3

2 . However, this is not possible due to x(N) = v(N) = 1.
Shapley and Shubik [22] show that the core of an assignment game is always
nonempty.

We will now discuss complexity aspects of solution concepts for matching
games. First we recall a result of Gabow [10] which we will need later on.

Theorem 1 ([10]). A maximum weight matching of a weighted graph on n
vertices and m edges can be computed in O(nm+ n2 log n) time.

The following observation is easy to verify and can be found in several papers,
see e.g. [5, 7, 20]. Here, a cover of a graph G = (N,E) with edge weighting w is a
vertex mapping c : N → R+ such that c(u)+c(v) ≥ w(uv) for each edge uv ∈ E.
The weight of c is defined as c(N) =

∑
u∈N c(u). Note that c(N) ≥ v(N) for the

corresponding matching game (N, v), while c(N) > v(N) is possible. Hence, a
cover does not have to be an allocation of (N, v).

Observation 1 Let (N, v) be a matching game on a weighted graph G = (N,E).
Then x ∈ RN is in the core of (N, v) if and only if x is a cover of G with weight
v(N).

3

Observation 1 and Theorem 1 imply that testing core nonemptiness can be
done in polynomial time for matching games by using the ellipsoid method for
solving linear programs [13]. Deng, Ibaraki and Nagamochi [5] characterize when
the core of a simple matching game is nonempty. In this way they can compute
a core allocation of a simple matching game in polynomial time, without having
to rely on the ellipsoid method. Eriksson and Karlander [7] characterize the
extreme points of the core of a matching game.

We will briefly survey the existing work on the nucleolus of a matching game.
Note that an allocation x of a matching game (N, v) is an imputation if and only
if x is nonnegative, because v({i}) = 0 for all i ∈ N . This means that the set
of imputations is nonempty, because it contains the n allocations that assign
v(N) to exactly one player and 0 to all the other players. Consequently, every
matching game has a nucleolus.

Observation 1 implies that the size of the linear programs involved in the
procedure of Maschler, Peleg and Shapley [15] is polynomial in the case that the
matching game has a nonempty core [20]. Hence the nucleolus of such matching
games can be computed in polynomial time by using the ellipsoid method at
most n times.

Solymosi and Raghavan [24] compute the nucleolus of an assignment game
without making use of the ellipsoid method. We state their result below, as
we need it later on. For computing the nucleolus of assignment games defined
on bipartite graphs that are unbalanced, a faster algorithm has been given by
Matsui [16].

Theorem 2 ([24]). The nucleolus of an n-player assignment game can be com-
puted in O(n4) time.

It is known [12] that the nucleolus of a simple matching game can be com-
puted in polynomial time by using the standard procedure of Maschler, Peleg
and Shapley [15], after reducing the size of the involved linear programs to be
polynomial. This result has been extended to node matching games [20], i.e.,
matching games defined on a graph G = (N,E) with an edge weighting w that
allows a weighting w∗ : N → R+ such that w(uv) = w∗(u) + w∗(v) for all
uv ∈ E; note that every simple matching game is a node matching game by
choosing w∗ ≡ 1

2 .

Determining the computational complexity of finding the nucleolus for gen-
eral matching games is an outstanding open problem, although there is still some
hope for an efficient algorithm. This hope stems from the observation that the
minimum excess of a matching game can be computed in polynomial time. This
condition is sufficient to compute the nucleolus of a cooperative game in polyno-
mial time if the core is nonempty [9]. It also stems from the result that an impu-
tation in the nucleon can be computed in polynomial time for matching games,
as shown by Faigle et al. [8]. The nucleon is a solution concept similar to the
nucleolus. It is obtained by taking multiplicative excesses e′(S, x) = x(S)/v(S)
instead of additive excesses e(S, x) = x(S)− v(S).

4

Connection to the stable roommates problem. We refer to a survey [4] for
more on this problem. Here, we only define the variant with payments. Let G =
(N,E) be a graph with edge weighting w. We say that a pair of adjacent vertices
(u, v) is a blocking pair of a vector x ∈ RN if xu + xv < w(uv), and we define
their blocking value with respect to x as ex(u, v)+ = max{0, w(uv)− (xu +xv)},
which is to be interpreted as follows. If (u, v) is not blocking x then its blocking
value ex(u, v)+ is zero. Otherwise, its blocking value expresses to which extent
(u, v) is blocking x. Let B(x) = {(u, v) | xu + xv < w(uv)} denote the set of
blocking pairs of a vector x ∈ RN and let b(x) =

∑
uv∈E ex(u, v)+ denote the

total blocking value of x.
A vector p ∈ RN with pu ≥ 0 for all u ∈ N is said to be a payoff with

respect to a matching M in G if pu + pv = w(uv) for all uv ∈ M , and pu = 0
for each u that is not incident to an edge in M . Note that p(N) ≤ v(N) for the
corresponding matching game (N, v), while p(N) < v(N) is possible. Hence, a
payoff does not have be an allocation of (N, v).

The problem Stable Roommates with Payments tests if a weighted
graph allows a stable solution, i.e., a pair (M,p), where p is a payoff with respect
to matching M such that B(p) = ∅, or equivalently, b(p) = 0. We also call such
a pair stable. This problem is polynomially solvable by the following observation
which is well known (cf. Eriksson and Karlander [7]) and easy to verify.

Observation 2 A vector x is a core allocation of the matching game defined
on a weighted graph G if and only if there exists a matching M in G such that
(M,x) is stable.

1.3 Our results

In Section 2, we give a new characterization of the core of a matching game.
We also present an O(nm + n2 log n) time algorithm that tests if the core of a
matching game on a weighted n-vertex graph with m edges is nonempty and
that computes a core allocation if it exists. By Observation 2 we can use our
algorithm to find a stable solution for instances of Stable Roommates with
Payments in O(nm+ n2 log n) time if such a solution exists.

Like the algorithm of Deng, Ibaraki and Nagamochi [5] for simple matching
games, our algorithm for general matching games does not rely on the ellipsoid
method. Instead it is based on the linear programming relaxation of the standard
integer programming formulation for finding a maximum weight matching in a
graph. Deng, Ibaraki and Nagamochi [5] show that the core of a matching game
is nonempty if and only if the integrality gap is zero. Solving the dual of the
relaxation yields a minimum weight cover. A classic result of Egerváry [6] shows
that the maximum weight of a matching in a bipartite graph G is equal to
the minimum weight of a cover of G. Consequently, the integrality gap is zero
for bipartite graphs, and matching games on bipartite graphs, i.e., assignment
games have a nonempty core as shown already by Shapley and Shubik [22]. In
particular, minimum weight covers are core allocations in the case of assignment
games due to Observation 1. Our approach for matching games is to make a

5

translation from general graphs to bipartite graphs by using the well-known
duplication technique of Nemhauser and Trotter [18].

In Section 3 we use the aforementioned duplication technique to show that
the nucleolus of an n-player matching game with a nonempty core can be com-
puted in O(n4) time. This generalizes the corresponding result of Solymosi and
Raghavan [24] on computing the nucleolus of assignment games (Theorem 2).

We note that Klaus and Nichifor [14] investigate the relation of the core
with other solution concepts for matching games. In particular, they express the
need of a comparison of matching games with a nonempty core to assignment
games and ask to which extent properties of assignment games are carried over
to matching games with a nonempty core. As the results in Sections 2 and 3 are
based on a duplication technique yielding bipartite graphs, our paper gives such
a comparison with regards to computing a core allocation and the nucleolus.

Every core allocation of a matching game is an imputation with no blocking
pairs, or equivalently, with total blocking value zero. In the final two sections of
our paper, we consider matching games with an empty core. There, we try to
minimize the number of blocking pairs and the total blocking value, respectively.
This leads to the following two decision problems, which are trivially solvable
for assignment games, because these games have a nonempty core [22]. For both
problems we are only interested in imputations. This is justified by the fact that
no player i will accept an allocation x with xi < 0 = v{i}.

Blocking Pairs
Instance: a matching game (N, v) and an integer k ≥ 0.
Question: does (N, v) allow an imputation x with |B(x)| ≤ k?

Blocking Value
Instance: a matching game (N, v) and a rational number k ≥ 0.
Question: does (N, v) allow an imputation x with b(x) ≤ k?

Our results on these two problems are as follows. In Section 4 we show that
the Blocking Pairs problem is NP-complete, even for simple matching games.
We note that, in the context of stable matchings without payments, minimizing
the number of blocking pairs is NP-hard as well [1]. This problem setting is quite
different from ours, and we cannot use the proof of this result for our purposes.
On the positive side, we show in Section 5 that the Blocking Value problem
is solvable in polynomial time for general matching games.

2 The core of a matching game

As mentioned in the previous section, Shapley and Shubik [22] showed that
every assignment game has a nonempty core. However, they did not analyze
the computational complexity of finding a core allocation. In this section we
consider this question but in a broader setting, namely for matching games after
presenting a new characterization of their core, which may be empty. First we
introduce some terminology.

6

Let G = (N,E) be a graph with edge weighting w : E → R+. We write
v ∈ e if v is an end vertex of edge e. A fractional matching is an edge mapping
f : E → R+ such that

∑
e:v∈e f(e) ≤ 1 for each v ∈ N . The weight of a

fractional matching f is defined as w(f) =
∑

e∈E w(e)f(e). We call f a matching
if f(e) ∈ {0, 1} for all e ∈ E, and we call f a half-matching if f(e) ∈ {0, 12 , 1}
for all e ∈ E. In this context, the integrality gap is defined as as the difference
between the maximum weight of a fractional matching and the maximum weight
of a matching.

2.1 The characterization

Solving the linear programming relaxation of the standard integer programming
formulation for finding a maximum weight matching in a graph yields a max-
imum weight fractional matching. Solving the dual of the relaxation yields a
minimum weight cover. These well-known observations lead us to two lemmas,
both of which we need to prove our characterization. The first lemma is an appli-
cation of the Duality Theorem (cf. Schrijver [23]). The second lemma is a special
case of Theorem 1 from Deng, Ibaraki and Nagamochi [5]. It shows that the core
of a matching game is nonempty if and only if the integrality gap is zero.

Lemma 3. Let G = (N,E) be a graph with edge weighting w. Let f be a frac-
tional matching of G and let c be a cover of G. Then w(f) ≤ c(N), with equality
if and only if f has maximum weight and c has minimum weight.

Lemma 4 ([5]). Let (N, v) be a matching game on a weighted graph G =
(N,E). Then the core of (N, v) is nonempty if and only if the maximum weight
of a matching in G equals the maximum weight of a fractional matching in G.

For our core characterization we also make use of the following theorem,
which is a straightforward consequence of a result by Balinski [2]. In Section 2.2
we explain how his result can also be obtained by using the duplication technique
of Nemhauser and Trotter [18].

Theorem 3 ([2]). Let G be a weighted graph. Then the maximum weight of a
half-matching of G is equal to the minimum weight of a cover of G.

Lemma 3 and 4 together with Theorem 3 characterize the core of a matching
game.

Proposition 1. Let (N, v) be a matching game on a weighted graph G = (N,E).
The core of (N, v) is nonempty if and only if the maximum weight of a matching
in G is equal to the maximum weight of a half-matching in G.

Eriksson and Karlander [7] characterize stable solutions for instances of the
problem Stable Roommates with Payments in terms of forbidden minors.
By Observation 2 we can apply Proposition 1 to find an alternative character-
ization, namely that a weighted graph G has a stable solution if and only if
the maximum weight of a matching in G is equal to the maximum weight of a
half-matching in G.

7

2.2 The algorithm

Proposition 1 tells us that we can decide whether the core of a matching game is
nonempty by checking if the maximum weight of a matching equals the maximum
weight of a half-matching. Due to Theorem 1 we can compute a maximum weight
matching of a weighted n-vertex graph with m edges in O(nm+ n2 log n) time.
What about computing the maximum weight of a half-matching? We will explain
how to combine results from the literature in order to find an O(nm+ n2 log n)
running time for computing the maximum weight of a half-matching and for
computing a core allocation if the core is nonempty. The approach for doing
this is based on a natural translation from general graphs to bipartite graphs
introduced by Nemhauser and Trotter [18]. This translation is motivated by the
following result of Egerváry [6].

Theorem 4 ([6]). Let G be a weighted bipartite graph. Then the maximum
weight of a matching in G is equal to the minimum weight of a cover of G.

Theorem 4 is immediately useful for bipartite graphs. Combining it with
Lemma 3 yields that the integrality gap is zero for bipartite graphs. As a matter
of fact, combining it with Observation 1 yields that every minimum weight cover
is a core allocation in the case of an assignment game.

Theorem 4 is useful for general graphs as well. It is well known how to use
it for computing the maximum weight of a half-matching in O(n3) time for
weighted graphs on n vertices (cf. Theorem 30.3 of Schrijver [23]). Nevertheless
we explain this in detail below, because we need the arguments for improving
the running time to O(nm+n2 log n) and for computing a core allocation in the
same time if the core is nonempty. We also need the arguments in the proof of
Lemma 5 of Section 3.

Let (N, v) be a matching game defined on a graph G = (N,E) with an
edge weighting w. Let n and m denote the number of vertices and edges of
G, respectively. First we construct a bipartite graph from G according to the
duplication technique introduced by Nemhauser and Trotter [18] for finding a
maximum weight independent set in a graph. We replace each vertex u by two
copies u′, u′′ and each edge e = uv by two edges e′ = u′v′′ and e′′ = u′′v′. We
define edge weights wd(e′) = wd(e′′) = 1

2w(e) for each e ∈ E. This yields a
weighted bipartite graph Gd = (Nd, Ed) with 2n vertices and 2m edges. We call
Gd the duplicate of G. Note that Gd can be constructed in O(n+m) time.

We now compute a maximum weight matching fd of Gd. Because Gd has 2n
edges and 2m vertices, this takes O(2n · 2m+ (2n)2 log 2n) = O(nm+ n2 log n)
time due to Theorem 1. Given fd, we compute a minimum weight cover cd of
Gd in the same time (cf. Theorem 17.6 from Schrijver [23]). We compute the

half-matching f in G defined by f(e) := fd(e′)+fd(e′′)
2 for each e ∈ E in O(m)

time and note that

w(f) =
∑
e∈E

w(e)f(e) =
∑
e∈E

(
wd(e′)fd(e′) + wd(e′′)fd(e′′)

)
= wd(fd).

8

We define c : N → R+ in O(n) time by c(u) := cd(u′) + cd(u′′) for all u ∈ N and
deduce that c(u)+c(v) = cd(u′)+cd(u′′)+cd(v′)+cd(v′′) ≥ wd(u′v′′)+wd(u′′v′) =
1
2w(uv)+ 1

2w(uv) = w(uv). This means that c is a cover ofG with c(N) = cd(Nd),
and by Theorem 4, we deduce that

w(f) = wd(fd) = cd(Nd) = c(N). (1)

Then f is a maximum weight half-matching due to Lemma 3, as desired. It took
us O(nm+n2 log n) time in total to compute f . As a side effect, we observe that
equation (1) implies Theorem 3.

Recall that by Theorem 1 we can compute a maximum weight matching
f∗ of G in O(nm + n2 log n) time, and that by Proposition 1 we just need to
check whether w(f∗) = w(f) in order to determine whether the core of (N, v) is
nonempty.

Suppose that the core of (N, v) is nonempty, so w(f∗) = w(f). Because
w(f) = c(N) and w(f∗) = v(N), we obtain that

c(N) = v(N). (2)

Hence, c is a core member due to Observation 1. It costed O(nm+n2 log n) time
in total to compute c. Summarizing, we have obtained the following result.

Theorem 5. There exists an O(nm+ n2 log n) time algorithm that tests if the
core of a matching game on a graph with n vertices and m edges is nonempty
and that computes a core allocation in the case that the core is nonempty.

For a simple matching game (N, v) defined on a n-vertex graph G = (N,E)
with m edges, we can improve the running time of the algorithm in Theorem 5
as follows. We use the O(

√
nm) time algorithm of Micali and Vazirani [17] to

compute a maximum matching f∗ of G instead of using Theorem 1. We observe
that every edge weight in the duplicate Gd of G is equal to 1

2 . This means that
every maximum matching of Gd is a maximum weight matching of Gd. Hence,
we can compute a maximum weight matching fd of Gd in O(

√
nm) time by

using the algorithm of Micali and Vazirani [17] again. Given fd we can compute
the required cover cd in O(m) time (cf. Theorem 16.6 of Schrijver [23]). The rest
of the algorithm stays the same.

The above leads to the following. If G has no isolated vertices, then m =
Ω(n) and the overall running time becomes O(

√
nm). Otherwise, we first remove

every isolated vertex from G. In the case that we find a core allocation x of
the remaining game, we can extend x by setting xv := 0 for every isolated
vertex v that we removed. We may do so because of the following. Let S be a
coalition of players forming a maximum weight matching M of G. This means
that v(N) = w(M). Let x be a core allocation of (N, v). Then x(N) = v(N) and
x(S) ≥ w(M) = v(N) imply that xu = 0 for every u ∈ N \ S.

9

3 The nucleolus of a matching game with a nonempty
core

We start with some extra terminology. For a matching game (N, v) defined on
a weighted graph G = (N,E) we define its duplicate as the assignment game
(Nd, vd) defined on Gd with edge weights wd. The duplicate of a vector x ∈ RN

is the vector x given by xu′ = xu′′ = 1
2xu for all u ∈ N .

Lemma 5. Let (N, v) be a matching game with a nonempty core. Then a vector
x ∈ RN is an imputation of (N, v) if and only if x is an imputation of (Nd, vd).

Proof. By definition, xu ≥ 0 if and only if xu′ = xu′′ = 1
2xu ≥ 0 for all u ∈ N .

Hence, we are left to show that x(N) = v(N) if and only if x(Nd) = vd(Nd).
Because x(N) = x(Nd) by the definition of x, this means that we must show
that v(N) = vd(Nd).

Because Gd is bipartite, (Nd, vd) is an assignment game. This means that
(Nd, vd) has a nonempty core [22]. Let yd be a core allocation of (Nd, vd). Obser-
vation 1 implies that yd is a cover of Gd with weight yd(Nd) = vd(Nd) = wd(fd),
where fd is a maximum weight matching of Gd. We apply Lemma 3 and find
that yd is a minimum weight cover of (Nd, vd). Then the vector y ∈ RN

+ given by
yu = ydu′ + ydu′′ for all u ∈ N satisfies y(N) = v(N) due to equation (2). By the
definition of y, we have that y(N) = yd(Nd). Because yd(Nd) = vd(Nd), we then
obtain that v(N) = v(Nd), as desired. This completes the proof of Lemma 5. ut

Lemma 6. Let (N, v) be a matching game with a nonempty core. Then the
nucleolus of (Nd, vd) is the duplicate of the nucleolus of (N, v).

Proof. Let ηd be the nucleolus of (Nd, vd). Define η∗ by η∗u′ = ηdu′′ and η∗u′′ =
ηdu′ for all u ∈ N . Then θ(ηd) = θ(η∗). Because ηd is unique as shown by
Schmeidler [21], we find that ηdu′ = ηdu′′ for all u ∈ N . This makes it possible to
define the vector η with η = ηd.

By the definition of the nucleolus, ηd is an imputation of (Nd, vd). We apply
Lemma 5 and find that η is an imputation of (N, v). Let x be an arbitrary
imputation of (N, v). Suppose that θ(x) � θ(η), i.e., θ(x) is lexicographically
greater than θ(η). By Lemma 5, we find that x is an imputation of (Nd, vd).
However, θ(x) � θ(η) implies that θ(x) � θ(η) = θ(ηd). This is not possible,
because ηd is the nucleolus of (Nd, vd). Hence, θ(η) � θ(x). This means that η
is the nucleolus of (N, v). This completes the proof of Lemma 6. ut

Theorem 6. The nucleolus of an n-player matching game with a nonempty core
can be computed in O(n4) time.

Proof. Let (N, v) be an n-player matching game with a nonempty core that is
defined on a graph G with edge weighting w. We create Gd and wd in O(n2) time.
Note that |Nd| = 2n. By Theorem 2 we compute the nucleolus ηd of (Nd, vd) in
O((2n)4) = O(n4) time. Let η be the nucleolus of (N, v). By Lemma 6 we find
that ηd = η. This means that we can construct η in O(n2) time from ηd. Hence,
the total time that we used is O(n4). This finishes the proof of Theorem 6. ut

10

4 Blocking pairs in a matching game

Fixing parameter k makes the Blocking Pairs problem polynomially solvable.
This can be seen as follows. We choose a set B of k blocking pairs. Then we
use the ellipsoid method to check in polynomial time whether there exists an
imputation x with xu + xv ≥ w(uv) for all pairs uv /∈ B. Because k is fixed, the
total number of choices is bounded by a polynomial in n. What happens when
k is part of the input? Before we present our main result, we start with a useful
lemma.

Lemma 7. Let K be a complete graph with vertex set {1, . . . , `} for some odd
integer ` and with unit edge weights. Let x ∈ RK

+ . If x(K) < `
2 then |B(x)| ≥ `−1

2 .

Proof. Write ` = 2q + 1 and use induction on q. If q = 0 the statement holds.
Suppose q ≥ 1. We assume without loss of generality that x1 ≤ x2 ≤ · · · ≤ x2q+1.
Because x(K) < `

2 , we have that x1 <
1
2 . If x1 + x2q+1 < 1 then x1 + xi < 1 for

2 ≤ i ≤ 2q+1. Hence, we have at least 2q blocking pairs. Suppose x1+x2q+1 ≥ 1.
Then x2 + · · ·+ x2q <

2q−1
2 . By induction this yields q − 1 blocking pairs. Note

that x2 <
1
2 . Hence x1 + x2 < 1, and we have at least q blocking pairs. ut

Theorem 7. Blocking Pairs is NP-complete, even for simple matching games.

Proof. Clearly, this problem is in NP. To prove NP-completeness, we reduce from
Independent Set, which is to test whether a graph G = (V,E) contains an
independent set of size at least k, i.e., a set U (with |U | ≥ k) such that there is
no edge in G between any two vertices of U . Garey, Johnson and Stockmeyer [11]
show that the Independent Set problem is already NP-complete for the class
of 3-regular connected graphs, i.e., graphs in which all vertices are of degree
three. So we may assume that G is 3-regular and connected. Let n = |V |.

From G we construct the following graph. First, we introduce a set Y of np
new vertices for some integer p, the value of which we will determine later. We
denote the vertices in Y by yu1 , . . . , y

u
p for each u ∈ V . We connect each yui (only)

to its associated vertex u. This yields a graph G∗, in which all vertices of G now
have degree 3 + p, and all vertices of Y have degree one. The vertices of Y form
“pendant stars”, and we have added them to the vertices of G for the following
two reasons. The first reason is to make it easier to compute the value of the
grand coalition, as G∗ has a maximum matching of size n. The second reason is
that by choosing p sufficiently large we can ensure that we do not have to assign
fractions to the vertices in G when minimizing the number of blocking pairs.

Now let K be a complete graph on ` vertices where ` is some odd integer larger
than np, the value of which will be made clear later on. We add 2(n− k) copies
K1, . . . ,K2(n−k) of K to G∗ without introducing any further edges. This results
in a graph G′ = (N,E′), which consists of 2(n− k) + 1 connected components,
namely G∗ and the 2(n − k) complete graphs K1, . . . ,K2(n−k). We need these
complete graphs for the following reason. By choosing ` large enough, no Ki will
contain a blocking pair when we try to minimize the number of blocking pairs
(cf. Lemma 7). Because ` is odd, each Ki will have to take away 1

2 from what

11

is available for distribution to the vertices of G∗. Consequently, what remains
for G∗ drops down from n to k. Because each vertex in G gets allocated either
0 or 1 due to the pendant stars, we can show that the number of blocking pairs
is below a certain threshold if and only if the vertices that get allocated 1 unit
form an independent set of size k. We explain this in detail below.

We denote the simple matching game on G′ by (N, v). We observe that
{uyu1 | u ∈ V } is a maximum matching in G∗ of size n. Because of this and
because ` is odd, we obtain that v(N) = 1

2 (`− 1)2(n−k) +n = `(n−k) +k. We
show that the following statements are equivalent for suitable choices of ` and
p, thereby proving Theorem 7.

(i) G has an independent set U of size |U | ≥ k.
(ii) |B(x)| ≤ (n− k)p+ 3

2n− 3k for some imputation x of (N, v).

“(i) ⇒ (ii)” Suppose G has an independent set U of size |U | ≥ k. We define an
imputation x as follows: x ≡ 1

2 on each Kh, x ≡ 1 on U ′ for some subset U ′ ⊆ U
of size |U ′| = k and x ≡ 0 otherwise. Then the set of blocking pairs is

B(x) = {(u, yui) | u ∈ V \U ′, 1 ≤ i ≤ p} ∪ {(u, v) | u, v ∈ V \U ′ and uv ∈ E}.

We now determine |B(x)|. By construction, |{(u, yui) | u ∈ V \U ′, 1 ≤ i ≤ p}| =
(n − k)p. Because G is 3-regular, |E| = 3

2n. Because U ′ ⊆ U is an independent
set, we then find that |{(u, v) | u, v ∈ V \U ′ and uv ∈ E}| = 3

2n − 3k. Hence,
|B(x)| = (n− k)p+ 3

2n− 3k, as desired.

“(ii) ⇒ (i)” Suppose |B(x)| ≤ (n − k)p + 3
2n − 3k for some imputation x of

(N, v). We may without loss of generality assume that x has minimum number
of blocking pairs. We start by proving a number of claims to show that x can
be taken to be of the same form as the imputation that we constructed in the
proof of the implication “(i) ⇒ (ii)”.

Claim 1. We may assume without loss generality that xy = 0 for each y ∈ Y .

We prove Claim 1 as follows. Suppose xy > 0 for some y ∈ Y . Let u be the
(unique) neighbor of y. We set xy := 0 and xu := xu + xy. The resulting impu-
tation has a smaller or equal number of blocking pairs. This proves Claim 1.

Claim 2. We may assume without loss of generality that x(
⋃

j K
j) = `(n− k).

We prove Claim 2 as follows. First suppose x(
⋃

j K
j) > `(n − k). Then we set

xi := 1
2 for each i ∈

⋃
j K

j and redistribute the remainder over V . The resulting
imputation has a smaller or equal number of blocking pairs. Hence, we may
assume that x(

⋃
j K

j) ≤ `(n− k) holds.

Suppose x(
⋃

j K
j) < `(n − k). Then there is some Kj with x(Kj) < `

2 . By

Lemma 7, there are at least `−1
2 blocking pairs in Kj . We choose ` = 2np +

2|E| + 2. Recall that |E| = 3
2n, because G is 3-regular. Then we obtain that

|B(x)| ≥ `−1
2 > np+ |E| = np+ 3

2n. Because |B(x)| ≤ (n− k)p+ 3
2n− 3k, this

is not possible. Hence, we have proven Claim 2.

12

Combining Claims 1 and 2 leads to

x(V) = x(N)−x
(2(n−k)⋃

j=1

Kj

)
−x(Y) = v(N)−`(n−k) = `(n−k)+k−`(n−k) = k.

Claim 3. We may assume without loss of generality that xu ≤ 1 for all u ∈ V .

We prove Claim 3 as follows. Suppose that xu = 1 + α for some α > 0 for
some u ∈ V . We set xu := 1 and redistribute α over all vertices v ∈ V with
xv < 1. When doing this we ensure that we do not increase the value of some xv
with more than 1 − xv. This is possible, because x(V) = k < n. The resulting
imputation has a smaller or equal number of blocking pairs. This proves Claim 3.

Claim 4. We may assume without loss of generality that xu ∈ {0, 1} for all u ∈ V .

We prove Claim 4 as follows. By Claim 3, xu ≤ 1 for all u ∈ V . Suppose that
0 < xu < 1 for some u ∈ V . Recall that x(V) = k, which is an integer. This
means that there exist one or more vertices in V \ {u} that are each allocated a
fraction between 0 and 1 such that we can give their allocation to u in order to
set xu := 1. By Claim 1, xy = 0 for each y ∈ Y . Then the only extra blocking
pairs that we introduce in this way are formed by the edges of G. Recall that
|E| = 3

2n. Hence, we get at most 3
2n new blocking pairs. However, we lose the p

blocking pairs (u, yuh) for h = 1, . . . , p. Then, by choosing p > 3
2n, the resulting

imputation has a smaller number of blocking pairs, which is not possible. This
proves Claim 4.

We now continue with the proof. Let U consist of all vertices u ∈ V with xu = 1.
Recall that x(V) = k. Then, by Claim 4, we find that |U | = k, and that xv = 0
for all v ∈ V \ U . Recall that |E| = 3

2n. Then B(x) ≥ (n − k)p + 3
2n − 3|U | =

(n−k)p+ 3
2n−3k, with equality only if U is an independent set. However, equality

must hold because we assume that B(x) ≤ (n − k)p + 3n
2 − 3k. Hence, U is an

independent set of size k, as desired. This completes the proof of Theorem 7. ut

5 The total blocking value

We show the following result.

Proposition 2. The Blocking Value problem can be solved in polynomial
time.

Proof. Let (N, v) be a matching game defined on a graph G = (N,E) with edge
weighting w. Recall that ex(u, v)+ = max{0, w(uv) − (xu + xv)} and b(x) =∑

ij∈E ex(i, j)+ for an imputation x. Hence, an optimal solution of the linear
program

13

(BV) min
∑
uv∈E

zuv

s.t. xu + xv + zuv ≥ w(uv) (uv ∈ E)
x(N) = v(N)
xu ≥ 0 (u ∈ N)
zuv ≥ 0 (uv ∈ E)

is a solution (x, z) such that x is an imputation with minimum total blocking
value b(x). Because (BV) can be solved in polynomial time by the ellipsoid
method [13], we find that the Blocking Value problem is polynomial-time
solvable. ut

The minimum blocking value of an imputation x can be interpreted as the
total utility that a higher power must supply to pairs of players in order to elim-
inate all blocking pairs. From this viewpoint, we could also try to minimize the
total utility that such a power must supply to the individual players instead. We
call this problem the Blocking Pairs Elimination problem. For a matching
game (N, v) defined on a graph G = (N,E) with edge weighting w, it can be
formulated as the linear program

(BPE) min
∑
u∈N

yu

s.t. xu + xv + yu + yv ≥ w(uv) (uv ∈ E)
x(N) = v(N)
xu ≥ 0 (u ∈ N)
yu ≥ 0 (u ∈ N).

Consequently, Blocking Pairs Elimination can be solved in polynomial time
as well by the ellipsoid method [13]. Alternatively, we can compute an optimal
solution of (BPE) as follows. First we compute a minimum weight cover c of G.
Then we choose an imputation x∗ ≤ c, and we take y∗ = c− x∗. We claim that
(x∗, y∗) is an optimal solution of (BPE) with

∑
u∈N y∗u = (x∗+y∗)(N)−x∗(N) =

c(N)− v(N). In order to see this, let (x, y) be a solution of (BPE). Then x+ y
is a cover by definition, which means that (x + y)(N) ≥ c(N). As a result we
find that

∑
u∈N yu = (x+ y)(N)−x(N) ≥ c(N)− v(N) =

∑
u∈N y∗u, as desired.

Note that
∑

u∈N y∗u = c(N)− v(N) is the integrality gap due to Lemma 3.
In order to show the difference between the two problems, we show that

for optimal solutions (x, z) and (x′, y) of (BV) and (BPE), respectively, the
difference

min
∑
uv∈E

zuv −min
∑
u∈N

yu

can be made arbitrarily large. For this purpose, we consider the simple matching
game (N, v) defined on the graph that consists of two connected components,
namely a complete graph K2q+1 on vertices v1, . . . , v2q+1 for some integer q and
a star K1,r with center u0 and leaves w1, . . . , wr for some integer r. We choose
q and r such that q > r

2 . Below we explain this in detail.

14

Let (x, z) be an optimal solution of (BV). Recall that x is an imputation of
(N, v) that has minimum total blocking value b(x) =

∑
uv∈E zuv. We will show

that b(x) = 1
2r for x defined as x ≡ 1

2 on V (K2q+1), xu0 = 1
2 and x ≡ 0 on

V (K1,r) \ {u0}.
First, we may assume without loss of generality that xw = 0 for all w ∈

V (K1,r)\{u0}; if not then we could increase xu0 and decrease xw without decreas-
ing the total blocking value. Second, we may assume without loss of generality
that xu0

≤ 1; if not then we redistribute xu0
− 1 over x(K2q+1) without decreas-

ing the total blocking value. Third, we may assume without loss of generality
that x(K2q+1) ≤ q+ 1

2 ; if not then we assign 1
2 to each vi and redistribute what

is left from x(K2q+1) over xu0 without decreasing the blocking value. Note that
we can do this without making xu0 larger than 1, because x(N) = v(N) = q+ 1.
Because of this, we find that there exists an ε ∈ R with 0 ≤ ε ≤ 1

2 such that
x(K2q+1) = q + ε, xu0

= 1 − ε and xw = 0 for all w ∈ V (K1,r) \ {u0}. By
definition, zuv ≥ 1− xu − xv for every edge uv, and we deduce that

b(x) =
∑

uv∈E zuv =
∑

uv∈E(K2q+1)

zuv +
∑

w∈V (K1,r)\{u0}

zu0w

≥
∑

uv∈E(K2q+1)

(1− (xu + xv)) +
∑

w∈V (K1,r)\{u0}

ε

= (2q + 1)q − 2qx(K2q+1) + εr

= (2q + 1)q − 2q(q + ε) + εr

= q − 2qε+ εr

= q + (r − 2q)ε.

Recall that q > r
2 . Then r − 2q < 0, and consequently, b(x) = q + (r − 2q)ε is

minimized for ε = 1
2 , which yields that the minimum b(x) = 1

2r is achieved by x
given by x ≡ 1

2 on V (K2q+1), xu0 = 1
2 and xw ≡ 0 on V (K1,r)\{u0}, as desired.

In contrast, the solution (x, y) of (BPE) that consists of the same imputation x
and the vector y defined by yu = 1

2 and y ≡ 0 on N \{u} leads to
∑

u∈N yu = 1
2 ,

which is a constant, and thus independent of q and r.

We leave the problem of finding a combinatorial proof for Proposition 2 as
an open problem.

Acknowledgements. We would like to thank David Manlove and the two anony-
mous reviewers for their useful suggestions that helped us to improve the read-
ability of our paper.

15

References

1. D.J. Abraham, P. Biró and D.F. Manlove, “Almost stable” matchings in the Room-
mates problem, In: Proceedings of WAOA 2005, LNCS 3879 (2006) 1–14.

2. M.L. Balinski, Integer programming: Methods, uses, computation, Management
Science 12 (1965) 253–313.

3. J.M. Bilbao, Cooperative games on combinatorial structures, Kluwer Academic,
Norwell, Massachusetts, 2000.

4. P. Biró, The stable matching problem and its generalizations: an algorithmic and
game theoretical approach, PhD Thesis, Budapest University of Technology and
Economics, Budapest, Hungary, 2007.

5. X. Deng, T. Ibaraki and H. Nagamochi, Algorithmic aspects of the core of combi-
natorial optimization games, Math. Oper. Res. 24 (1999) 751–766.

6. J. Egerváry, Matrixok kombinatorius tulajdonságairól, Matematikai és Fizikai
Lapok 38 (1931) 16–28.

7. K Eriksson and J. Karlander, Stable outcomes of the roommate game with trans-
ferable utility, Internat. J. Game Theory 29 (2001) 555–569.

8. U. Faigle, W. Kern, S. Fekete, and W. Hochstättler, The nucleon of cooperative
games and an algorithm for matching games, Math. Program. 83 (1998) 195–211.

9. U. Faigle, W. Kern, and J. Kuipers, On the computation of the nucleolus of a
cooperative game, Internat. J. Game Theory 30 (2001) 79–98.

10. H.N. Gabow, Data structures for weighted matching and nearest common ancestors
with linking, In: Proceedings of SODA 1990 (1990) 434–443.

11. M.R. Garey, D.S. Johnson, and L. Stockmeyer, Some simplified NP-complete graph
problems, Theoret. Comput. Sci. 1 (1976) 237–267.

12. W. Kern and D. Paulusma, Matching games: the least core and the nucleolus,
Math. Oper. Res. 28 (2003) 294–308.

13. L.G. Khachiyan, A polynomial algorithm in linear programming, Soviet Mathe-
matics Doklady 20 (1979) 191–194.

14. B. Klaus and A. Nichifor, Consistency for one-sided assignment problems, Social
Choice and Welfare 35 (2010) 415–433.

15. M. Maschler, B. Peleg and L.S. Shapley, Geometric properties of the kernel, nu-
cleolus, and related solution concepts, Math. Oper. Res. 4 (1979) 303–338.

16. T. Matsui, A note on the nucleolus of assignment games, In: 5th International Con-
ference on Nonlinear Analysis and Convex Analysis, World Scientific, Singapore
(1998) 253–260.

17. S. Micali and V.V. Vazirani, An O(
√
|V | · |E|) algorithm for finding maximum

matching in general graphs, In Proceedings of FOCS 1980 (1980) 17–27.
18. G.L. Nemhauser and L.E. Trotter, Vertex packings: structural properties and al-

gorithms, Math. Program. 8 (1975) 232–248.
19. G. Owen, Game theory, Academic Press, San Diego, California, 1995.
20. D. Paulusma, Complexity aspects of cooperative games, PhD Thesis, University of

Twente, Enschede, the Netherlands, 2001.
21. D. Schmeidler, The nucleolus of a characteristic function game, SIAM J. Appl.

Math. 17 (1969) 1163–1170.
22. L.S. Shapley and M. Shubik, The assignment game I: the core, Internat. J. Game

Theory 1 (1972) 111–130.
23. A. Schrijver, Combinatorial optimization. Polyhedra and efficiency. Vol. A, Algo-

rithms and Combinatorics 24, Springer-Verlag, Berlin, 2003.
24. T. Solymosi and T.E.S. Raghavan, An algorithm for finding the nucleolus of as-

signment games, Internat. J. Game Theory 23 (1994) 119–143.

16

