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Abstract

We study a sequential auction of two objects with two bidders, where the winner of the package

obtains a synergy from the second object. If reselling after the two auctions occurs, it proceeds

as either monopoly or monopsony take-it-or-leave-it offer. We find that a post-auction resale

has a significant impact on bidding strategies in the auctions: Under the monopoly offer, there

does not exist an equilibrium (symmetric or asymmetric) where bidders reveal their types with

positive probability. Under the monopsony offer, however, we can identify symmetric increasing

equilibrium strategies in auctions for both items. While allowing resale always improves efficiency,

we demonstrate that the effect of resale on expected revenue and the probability of exposure are

both ambiguous.

Keywords: Auctions, auctions with synergy, resale

JEL Classification: D44, D80, D82, D40

1 Introduction

In auctions with multiple objects, obtaining more than one object often makes the value of a package

larger than the sum of the stand-alone values. This superadditivity is referred to as synergy in the

auction literature. Synergies can arise for a variety of reasons: they can be due to the complemen-

tarity derived from a subset of objects auctioned, the geographic advantage in cost saving among
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nationwide companies, or skills learning from previous objects, etc.1

Mainly motivated by the spectrum auctions conducted all over the world in the past decade, there

is a growing literature on auctions with synergies. Rosenthal and Wang (1996) study a simultaneous-

auction model with synergies and common values. They construct strategies in which bidders of dif-

ferent types randomize over different bid intervals and provide conditions under which such strategies

form symmetric equilibria. Krishna and Rosenthal (1996) find that global bidders (e.g. nationwide

companies) bid less aggressively than local bidders when there are more competitors. However,

Rothkopf et al. (1998) argue that, though attractive, package bidding may create new problems such

as the huge complexity in determining the optimal bids for the most interested package when the

objects auctioned are numerous. Ausubel and Milgrom (2002) propose proxy bidding in ascending

package auctions and show that even when goods are complementary, ascending proxy auction equi-

libria lie in the core with respect to the true preferences. Kagel and Levin (2005) experimentally

compare open outcry and sealed-bid uniform-price auctions with synergies. They identify two forces

behind the bidding behavior, one due to demand reduction and the other due to the “exposure prob-

lem” (bidders may win only part of a package and earn negative profits). Their results show that

bidding outcomes are closer to equilibrium in clock compared to sealed-bid auctions. Cantillon and

Pesendorfer (2006) conduct an empirical analysis on London bus route auctions and conclude that

the benefits of allowing package bidding is ambiguous.

Synergies also arise in sequential auctions. Branco (1997) modified Krishna and Rosenthal (1996)

into a sequential auction of two identical items to a global bidder and two local bidders, where one

local bidder only wants the first item, while the other only wants the second item. In this setting he

identifies a decline in the price trend. Menezes and Monteiro (2003, 2004) modify Branco (1997) in

that local bidders (with a single demand) have equal valuations for both items. They show that with

this modification, bidding price may not necessarily decline because local bidders bid less aggressively

in the first auction. Jeitshko and Wolfstetter (2002) analyze a model with two bidders and two

non-identical items in a sequential setting. Evaluations for both items are drawn from a Bernoulli

distribution with the same support. However, they introduce the synergy with the assumption that

the probability of getting a higher valuation for the second item is higher for the winner of the first

1For example, Ausubel, Cramton and McAfee (1997) provide some evidence for synergies in wireless telephone from

the broadband PCS auctions.
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item. They show that the positive synergy intensifies competition in the first auction and causes a

decline in the price trend.

While a common approach to modeling synergy is to add a constant value to the sum of the

stand-alone values of the package, Menezes and Monteiro (2003, 2004) argue that it is unrealistic

to assume that a package of relatively small value will yield the same synergy as a package with a

relatively high value. Leufkens et al. (2006, 2007) consider both theoretically and experimentally a

sequential auction of two projects where the synergy factor appears as a multiplier on the stand-alone

value of the second project. They model the sequential auctions as second-price sealed bid and show

that the presence of synergies induces more competitive bidding, leading to lower expected profit

to the bidders and higher expected revenue for the seller. The presence of synergies also leads to a

decreasing price trend.

The contribution of this paper is to introduce resale into auctions with synergy. More specifically,

we model resale in the framework adopted by Leufkens et al. (2006, 2007) described above. As is well

known, one undesirable feature caused by synergies (in both simultaneous and sequential auctions)

is that the auction outcome is typically inefficient. In the sequential auction setting, Leufkens et al.

(2006) identify three types of inefficient outcomes: 1) the first-item winner has the highest valuation

of the package but does not win the second item, 2) the second-item winner has the highest valuation

of the package but does not win the first-item, and 3) a third bidder has the highest valuation of

the package but does not win any item. A natural way to restore efficiency is to allow for post-

auction resale. However, as the previous literature on resale has pointed out, the possibility of resale

changes bidder behavior substantially, and the existence of a monotonic equilibrium is nontrivial.

Haile (2003) considers a setup in which bidders only have noisy signals at the auction stage, where

the motive for resale arises when the true value of the auction winner turns out to be low. Garratt

and Tröger (2006) consider a model with a speculator who can only benefit from participating in the

auction when she can resell the item to the other bidder. Garratt et al. (2009) prove the existence

of a seemingly collusive equilibrium in a standard English auction with resale, and this equilibrium

Pareto dominates the “bid your value” equilibrium. Hafalir and Krishna (2008) analyze auctions

with resale in an asymmetric independent private value auction environment and show that the

expected revenue is higher under a first-price auction than under a second-price auction. Hafalir

and Krishna (2009) further demonstrate that for three distribution families, allowing resale in the
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first-price asymmetric auction environment can lead to higher revenue. However, there exist some

cases where allowing resale may decrease efficiency.

By explicitly taking into account post-auction resale, we demonstrate that the specific resale

mechanism matters for the existence of an equilibrium in the bidding stage. More specifically, if the

post-auction resale takes the form of a monopoly offering (i.e., the seller makes the take-it-or-leave-it

offer), we fail to identify any equilibrium (symmetric or asymmetric) in which a bidder has to reveal

her type over some range of values with positive probability. When the resale takes the form of a

monopsony offering (i.e., the buyer makes the take-it-or-leave-it offer), however, we can construct

a perfect Bayesian equilibrium (PBE) in which bidders follow a symmetric strictly increasing bid

function in the first auction. In this PBE, we show that while bidders bid higher for the second

item when resale is available, the effect of resale on the bidding in the first auction is ambiguous.

Thus, while allocative efficiency always improves with resale, the expected revenue to the seller can

either increase or decrease with resale, and we identify some sufficient conditions for either case

to happen. Moreover, we demonstrate that the “exposure” problem (i.e., over-paying for one item

without winning both items) can be either more or less severe when resale is allowed; if the synergy

effect is sufficiently large, however, allowing resale will unambiguously lead to a lower probability of

exposure.

The rest of the paper is organized as follows. Section 2 introduces the model, Section 3 considers

the monopoly offering mechanism in resale, Section 4 considers the monopsony offering mechanism

in resale, Section 5 discusses our modeling restrictions and the robustness of our results, and Section

6 concludes.

2 The Model

We consider a private and independent value auction with two risk neutral bidders. Two items are

auctioned sequentially using the second-price sealed bid format. The stand-alone value of the first

item (xi) is distributed according to the differentiable CDF F (·) with a positive density function

f(·) over [0, 1]. The stand-alone value of the second item (yi) follows a Bernoulli distribution, taking

value 1 (High) with probability p ∈ (0, 1), and 0 (Low) with probability 1 − p. If a bidder only

obtains a single item, the value is the stand-alone value; if a bidder obtains both items, the value is
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xi + θyi, where the synergy factor θ ∈ (1,+∞).

We consider post-auction resale so that after the completion of both auctions, resale may take

place in the form of either a monopoly offer or a monopsony offer. In a monopoly mechanism, the

seller, who won at least one item from the auctions, makes a take-it-or-leave-it offer to the other

bidder; in a monopsony mechanism, the buyer, who won at most one item from the auctions and

wants to buy one or two items from the other bidder, makes a take-it-or-leave-it offer to the other

bidder. Without loss of generality, we assume that offers are accepted whenever the other bidder is

weakly better off by taking the offer.2

As is standard in auction analysis, we assume that ties are announced and are broken at random.

When resale is absent or banned,3 it is easily verified that the symmetric equilibrium for the first

auction is given by

β(xi) = xi + p(θ − 1).

Note that bidders only bid their values when there is no synergy between the two items for sale

(i.e., when θ = 1).

In the second auction, the bidding strategies of the first-item winner and loser are different

because of the synergy: in equilibrium, the winner bids θyi and the loser bids yi.

In the symmetric equilibrium described above, it can be easily seen that when the first-item

loser obtains signal 1, while the winner obtains signal 0, the outcome is not efficient when resale

is banned. Both bidders can be better off if the first-item winner can resell the first item to the

loser. However, when resale is allowed, the option value and additional profit induced by resale will

affect bidding strategies in the initial auctions. Moreover, the resale mechanism matters for the final

allocation. In this paper, we analyze two mechanisms in the resale stage: the monopoly case, where

the seller of the item makes a take-it-or-leave-it offer, and the monopsony case, where the buyer

makes a take-it-or-leave-it offer.

2A bidder is allowed to buy or to sell simultaneously. However, in the equilibrium we are going to construct, buying

and selling simultaneously will not occur.

3This is the case analyzed by Leufkens et al. (2006), except that they assume the first and second item value

distributions are the same.
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3 Resale with Monopoly Offer

When resale takes the form of monopoly offers, we can rule out any equilibrium in which at least

one bidder reveals her first-auction value over some non-degenerate interval.

Proposition 1 There does not exist any equilibrium in which at least one bidder reveals her first-

auction value with positive probability.

Proof. See the appendix.

In particular, Proposition 1 implies that there does not exist an equilibrium in which both bidders

bid according to a common symmetric strictly increasing function in the first auction.

The proof is tedious, but the idea is straightforward. We start with the assumption, contrary

to the claim of the proposition, that there exists an equilibrium in which at least one bidder (say,

bidder 1) bids according to a strictly increasing function over a non-degenerate interval in the first

auction. We then show that in such an equilibrium, there must exist a non-degenerate value interval

over which some bidder (bidder 1 or bidder 2) follows a strictly increasing bid function; moreover,

when this bidder loses over this interval, resale will occur with positive probability (Lemma 2 in the

appendix). The implication of this result is that as long as a bidder fully reveals her type, with

positive probability she will get hurt in the resale stage as resale proceeds with monopoly offer. Thus

intuitively, anticipating this consequence, a bidder would not follow a strictly increasing bid function

over any non-degenerate interval. The rest of the proof is to formalize this intuition. First, we derive

a bidder’s expected payoff as a function of her type and reported type (in the associated direct game,

and given that the other bidder truthfully reports her type). We then demonstrate that truthful

reporting over the interval characterized in Lemma 2 does not even guarantee a local maximum of

the payoff: the payoff as a function of the reported type x̂, though continuous, has a smaller left

derivative than its right derivative. This implies that reporting truthfully is never optimal. Thus

incentive compatibility never holds, which rules out the existence of the proposed equilibrium (that

reveals someone’s type with positive probability) in the original game. The discontinuity of the

marginal benefit when varying the reported type x̂ around one’s true type is caused by the following

feature of the monopoly resale mechanism: if a bidder underbids in a strictly increasing segment

and loses, she will accept the offer in resale because the reseller underestimates her type; if she

overbids in a strictly increasing segment and loses, she will reject the offer in resale because the
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reseller overestimates her type.

Our result is consistent with Krishna (2002, pp. 55-57) and Hafalir and Krishna (2008), who

demonstrate that the auctioneer needs to be careful about the design of the auction. More specifically,

in an asymmetric first-price auction with two bidders, they show that there does not exist any

equilibrium with resale (monopoly mechanism) in which the outcome of the auction completely

reveals the values (when the losing bid is announced).4 The intuition is, to establish a strictly

increasing equilibrium for the initial auction, the reseller should not be able to infer the buyer’s exact

value. Put differently, a player would be willing to fully reveal her type only when this information

cannot be used to fully extract her surplus in a later stage. This insight is also consistent with

Garratt and Tröger (2006), who consider a second-price sealed bid auction between a speculator and

a regular bidder with resale. They show that the bidder will bid her true value only when that value

is above some cutoff value such that the speculator does not find it profitable to overbid her (and

hold a resale subsequently).

4 Resale with Monopsony Offer

We now consider the case in which the buyer makes the offer to the seller (monopsony offer). Again

we consider second-price sealed bid auctions.

Suppose there exists a symmetric increasing equilibrium bidding strategy β(x) for the first item.

Then, the first-item loser, who makes a bid b, infers that the first-item winner’s type (her first signal)

follows the truncated distribution F [β−1(b), 1]. We will first solve for the candidate β(x) and then

verify that no one has an incentive to deviate when the opponent follows this β(x).

We assume that the regularity condition holds for F (·), that is, (c− F (x)) /f(x) is decreasing in

x for any constant c ∈ [0, F (x)].

In the equilibrium we are going to construct below, the only event in which resale occurs is when

the first-item loser gets signal 1 in the second stage while her rival (the first-item winner) gets signal

0. If the first-item loser does not follow the equilibrium strategy in the first stage, resale may occur

in other events. We will work backward.

4The losing bid does not need to be announced to establish the non-existence result in our case since we consider

second-price auctions and the loser’s value can be inferred from the payment.
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4.1 The Resale

Suppose that in the resale stage, the first-item loser makes an offer r to buy the first item from the

first-item winner. The optimal offer should solve:

max
F (r)− F (β−1(b))

1− F (β−1(b))
(x+ θ − r) +

1− F (r)

1− F (β−1(b))

s.t. r ∈ [β−1(b), 1], x+ θ − r ≥ 1 .

Let π(x, β−1(b), θ) denote the value of the objective function when r is offered optimally. That

is, π(x, β−1(b), θ) is the expected payoff to the first-item loser, who possesses first signal x and bids

b in the first stage, conditional on resale.

It is easily seen that when r is unconstrained, its optimal value should satisfy

x+ θ − 1 = r +
F (r)− F (β−1(b))

f(r)
. (1)

Given the regularity condition, the right hand side of the above equation is increasing in r. Hence

the solution is unique. It is easily verified that as long as r ≥ β−1(b), then x + θ − r ≥ 1. So the

buyer can only be better off with resale.

Let r(x, β−1(b)) be the solution to the unconstrained FOC. It can be verified that r(x, β−1(b)) is

increasing in both x and β−1(b). Let r∗(x, β−1(b)) denote the solution with constraints. Then

r∗(x, β−1(b)) = min{1,max{r(x, β−1(b)), β−1(b)}}.

Given x, the LHS of equation (1) is increasing in θ. This implies that there exists a θ̂ such that

when θ ≥ θ̂,

x+ θ − 1 > r +
F (r)− F (β−1(b))

f(r)
,

since r cannot exceed 1. Therefore r∗(x, β−1(b)) = 1 for any x and β−1(b) when θ ≥ θ̂. By setting

r = 1, x = 0,and β−1(b) = 0, it can be shown that

θ̂ = 2 +
1

f(1)
. (2)
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When θ < θ̂ and β−1(b) ≥ g(x, θ), where g(x, θ) solves x+θ−1 = 1+ 1−F (g(x,θ))
f(1) , r∗(x, β−1(b)) = 1.

When θ < θ̂,and β−1(b) < g(x, θ), r∗(x, β−1(b)) = max{r(x, β−1(b)), β−1(b)}.

To save notation, let r(x) = r∗(x, x) denote the optimal reserve price when the first-item loser

follows equilibrium β(·) in the first auction (β−1(b) = x). When β−1(b) = x, the condition β−1(b) ≥

g(x, θ) can be rewritten as x ≥ g(θ), where g(θ) solves g(θ) + θ − 1 = 1 + 1−F (g(θ))
f(1) .

When we check deviations, we will consider off-equilibrium resales and assume that the potential

seller comes to resale whenever the potential buyer holds the item. To consider the perfect Bayesian

equilibrium (PBE), we also assume that the potential buyer’s beliefs follow the Bayesian rule off the

equilibrium path whenever it applies.

4.2 The Second Auction

We will consider the following strategies and beliefs in the second auction:

If the second signal is y = 1, then the first-item winner bids θ, and the first-item loser bids

π(x, β−1(b), θ).5 If the second signal is y = 0, then both the first-item winner and loser bid 0.

The first-item loser’s belief is that when the first-item winner loses the second item or wins it in

a tie at price 0, the first-item winner’s second signal is 0; when the first-item loser, with a second

signal 1, loses against the first-item winner, she believes that the first-item winner’s second signal

is 1. The first-item winner’s belief does not matter (since she does not make offers in the resale

stage). The first-item loser holds a resale when her expected net gain from resale is positive and the

potential seller accepts the offer whenever she is weakly better off.

Note that when β−1(b) = x or close to x, π(x, β−1(b), θ) < θ. So when the first-item winner and

loser both have second signal 1, the first-item winner will obtain the second item in equilibrium.

There seems to be an incentive for deviation where the first-item winner with y = 0 may overbid

the first-item loser when the latter has y = 1 in order to resell the whole package back to the first-

item loser. However, assuming that the first-item loser follows the equilibrium strategy, the first-item

winner does not expect the loser to hold a resale in this case so there is no gain for the first-item

winner to overbid.

5Note that the first-item winner’s payment equals the first-item loser’s bid in the first auction, and thus she can

infer the loser’s first signal in equilibrium.
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4.3 The First Auction

We consider a bidder with a first signal x who makes a bid b for the first item. Suppose her rival

has a first signal z and follows the equilibrium strategy. For illustration purpose we assume that

x ≤ r(z), which implies that r−1(x) ≤ z. When z ∈ [r−1(x), β−1(b)], the offer r(z) will be accepted

by the reseller (the bidder in question) when she loses the second item. Since x ≤ r(x) implies

r−1(x) ≤ x, in equilibrium where x = β−1(b), we cannot have β−1(b) < r−1(x). Also note that the

first-item winner can infer the first-item loser’s type; thus she knows whether or not she will accept

the buyer’s offer in resale (if any) immediately after the first auction.

Proposition 2 The strategies and beliefs specified in the previous two subsections for the resale

and the second auction, and the following symmetric bid function for the first auction, constitute a

Perfect Bayesian Equilibrium:

β(x) = p2(x+ θ) + (1− p)2x+ 2p(1− p)r(x)− p2π(x, x, θ), (3)

where

r(x) =

⎧⎨⎩ 1,when θ ≥ θ̂, or θ < θ̂ and x ≥ g(θ)

the unique solution of x+ θ − 1 = r + F (r)−F (x)
f(r) , otherwise

, and

π(x, x, θ) =

⎧⎨⎩ x+ θ − 1,when θ ≥ θ̂, or θ < θ̂ and x ≥ g(θ)

F (r(x))−F (x)
1−F (x) (x+ θ − r(x)) + 1−F (r(x))

1−F (x) , otherwise
.

Proof. See the appendix.

From the proof, one can see that β(x) is the difference between the expected contingent payoff

of winning the first item and that of losing the first item (which is the opportunity cost of winning).

Therefore, in the equilibrium characterized in Proposition 2, a bidder bids her “effective value” of

the first item in the first auction. This is analogous to a “bid-your-value” equilibrium in a standard

second-price sealed bid auction, where the expected contingent payoff of winning is the value of the

item while the expected contingent payoff of losing is zero.

The proof of Proposition 2 is tedious, so it is relegated to the appendix. Basically, given the

strategies and beliefs in the resale and the second auction specified in the previous subsections, we

first identify a candidate symmetric equilibrium bid function β(·) for the first item, and then proceed

with the following steps. First, we show that if both bidders follow the proposed equilibrium bidding
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strategy in the first auction, no bidder has an incentive to deviate in the second auction and the

resale stage. We then show that no bidder has an incentive to deviate from β(·) in the first auction

and plays optimally, conditional on this deviation, in the subsequent stages (the second auction and

the resale). The first step is straightforward to show, and our proof in the appendix focuses on the

second step.

Note that there are multiple equilibria in this new setting with monopsony offers. For example,

based on the PBE proposed in Proposition 2, one can obtain infinitely many other PBE’s by per-

turbing the first-item winner’s strategy, so that when her second signal is 0, she bids any positive

amount less than π(x−i, x−i, θ) rather than 0 in the second auction, where x−i is her competitor’s

first signal inferred from the first auction payment. It follows immediately that she does not have

an incentive to deviate from this strategy, given that the other bidder follows the strategy specified

in Proposition 2. Similarly, when the first-item loser’s second signal is 0, she can bid any amount

between 0 and θ as long as the first-item winner bids 0 for the second item when her second signal is

0. Note, however, this multiple equilibria problem is caused by the discreteness of the second auction

signals.

In Proposition 2, we focus on the equilibrium in which both bidders bid 0 when their second

signal is 0.6 In the proof, when we consider the events off equilibrium path, we utilize the fact that

as long as the first-item loser follows the proposed strategy and wins the second item when her second

signal is 1, she believes that the first-item winner’s second signal is 0 regardless of her payment for

the second item.

4.4 Resale vs. Non-resale: A Comparison

First, although the first-item loser bids more aggressively when her second signal is 1, which results

in a higher revenue for the seller in the second auction, the resale effect imposed on the bidding

function for the first auction is ambiguous. The equilibrium bid functions in the first auction under

the cases without resale (NR) and with resale (R) are as follows:

βNR(x) = x+ p(θ − 1),

βR(x) = p2(x+ θ) + (1− p)2x+ 2p(1− p)r(x)− p2π(x, x, θ). (4)

6Again, this corresponds to the “bid-your-value” strategy in the one-shot counterpart of the second-price sealed bid

auction.
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In the appendix (Lemma 3), we show that there is no general ranking between βNR(x) and βR(x).

This suggests that the revenue comparison is also ambiguous, although the allocation efficiency is

apparently higher when resale is allowed. To see this more specifically, let RNR and RR denote

the original seller’s expected revenues without and with resale, respectively. Then the auctioneer’s

expected revenue is the sum of the expected revenues from the two auctions.7

Let X(2) denote the second order statistic of the first signals. Its cumulative distribution function

and density function are denoted by F(2)(x) and f(2)(x), respectively. It can be shown that

RNR =

Z 1

0
[x+ p(θ − 1) + p2]f(2)(x)dx,

RR =

Z 1

0
[p2(x+ θ) + (1− p)2x+ 2p(1− p)r(x)]f(2)(x)dx,

where f(2)(x) = 2f(x)[1 − F (x)]. For comparison purposes, we define the difference in expected

revenues between the two cases as follows:

DR = RNR −RR.

Despite the absence of a general ranking of expected revenue generated under the resale and the

non-resale cases, we are able to identify some sufficient conditions in which one case dominates the

other.

Proposition 3 When θ ≥ θ̂, RNR ≥ RR if EX(2) ≥ (3− θ) /2, and RNR < RR if EX(2) <

(3− θ) /2; When θ < θ̂, RNR > RR if θ ≥ g−1[F−1
(2)
(1/2)] or if f(x) is a decreasing function.8

Proof. See the appendix.

When θ is sufficiently large, EX(2) ≥ (3− θ) /2 is also more likely to hold (it holds trivially when

θ ≥ 3). Thus expected revenue is higher when resale is banned, as long as the synergy factor is

sufficiently large. A rough intuition is as follows. Based on the comparison of bidding functions with

and without resale, allowing resale lowers the first auction revenue for most cases, but raises the

second auction revenue for all of the cases. When θ is sufficiently large and resale is not allowed, the

effect from the first auction dominates the effect from the second auction, mainly because the second

7Since no reserve prices are imposed, the auctioneer earns positive revenue from the second auction if and only if

both bidders have second signal 1.

8Note that f 0(x) < 0 implies that F (r)−F (x)
f(r)

is increasing in r, which is our regularity condition.
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auction revenue is positive only when both bidders obtain 1 as the second signal. Thus in this case

expected revenue is higher when resale is banned. On the other hand, when f 0(x) < 0, first-item

values would be low in a statistical sense. The first-auction equilibrium bid functions (4) suggest that

when x is small and θ is not large, bidders behave more aggressively with resale. This effect increases

the first auction revenue with resale and makes the difference in the first-auction revenue with and

without resale smaller. When x is small, however, the difference between the second-auction losers’

bids would also be small, which suggests that the difference in the second-auction revenue with and

without resale would also be small. The effect from the second auction dominates the effect from

the first auction, giving rise to the result that RNR > RR when θ is not sufficiently large and f(·) is

decreasing.

Our result is different from Hafalir and Krishna (2009), who show that allowing resale increases

the original seller’s expected revenue unambiguously in a first-price auction with asymmetric bidders.

This difference suggests that the effect of resale possibility on revenue may depend on a variety of

factors, including the auction format, the symmetry of bidders, or the presence of synergy, etc.

To further understand the ambiguous nature of the general revenue ranking, we examine the

generalized uniform distribution family F (x) = xα, α > 0. When θ ≥ θ̂ = 2 + 1
α , DR = p(1 −

p)2α
3−α2+2α+1

α(α+1)(2α+1) > 0. Therefore, for any generalized uniform distribution, the seller’s expected revenue

is higher without resale when θ ≥ 2 + 1
α . When θ < θ̂, f 0(·) ≤ 0 if and only if α ≤ 1; when α > 1,

θ ≥ g−1[F−1(2) (
1
2)] if and only if α(2− θ− g(θ)) ≤ −

√
2
2 . It can be shown that g(θ) is decreasing in α.

Therefore, RNR > RR unless EX(2) <
3−θ
2 for θ ≥ θ̂.

We next turn to the comparison of probabilities of the exposure problem. When resale is not

allowed, the exposure problem arises when the first-item winner’s second signal is 0, while her

payment for the first item is higher than her stand-alone value for the first item. When resale is

allowed, the exposure problem arises when the first-item winner ends up overpaying for the first item

when both bidders’ second signals are 0, or when her expected payoff from resale is less than her

payment for the first item.

We define PNR
exp (x) and P

R
exp(x) to be the probabilities of exposure for the cases without and with

resale, respectively, given the bidder’s first signal x. Let z be the other bidder’s first signal. These
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two probabilities can be expressed as

PNR
exp (x) = (1− p) · P (z < x, βNR(z) > x),

PR
exp(x) = (1− p)2 · P (z < x, βR(z) > x) + p(1− p) · P (z < x, βR(z) > max{x, r(z)}).

While it is complicated to make a general comparison, we can relate the comparison of exposure

probabilities to the bidding functions in the first stage:

Proposition 4 If βNR(z) ≥ βR(z) for z ∈ [0, x), PNR
exp (x) > PR

exp(x); In particular, when the

synergy effect is sufficiently large (θ sufficiently large), the probability of exposure is higher when

resale is banned.

Proof. See the appendix.

The intuition is straightforward. The exposure problem occurs when the first-item winner’s

overall payoff is negative. If a bidder’s value is such that whenever she wins the first item her

payment is higher without resale, then whenever her overall payoff is negative with resale, it will

also be negative without resale because the first-item winner has the option of reselling the item

when resale is allowed. When the synergy effect is sufficiently strong, βNR(·) > βR(·). Hence the

probability of exposure is higher when resale is not allowed.

It turns out that the condition θ + p ≥ 3 is “tight” in the sense that when θ + p < 3, we can

identify conditions under which PNR
exp (x) ≤ PR

exp(x). To see this, we consider θ > θ̂ = 2 + 1
f(1) and

θ + p < 3. In this case we have

PNR
exp (2p− p2) = (1− p)[F (2p− p2)− F (2p− p2 − p(θ − 1))],

PR
exp(x) = (1− p)2F (2p− p2).

Clearly, when p is very close to 0, there exist θ and f such that θ > θ̂ = 2 + 1
f(1) and θ + p < 3.

Meanwhile, it is trivial to show that if p = 0, there is no exposure problem because there is no chance

of getting second signal 1, which means PNR
exp (0) = 0 = PR

exp(0). We can also demonstrate that

lim
p→0+

PNR
exp (p) = (θ − 1)f(0) < 2f(0) = lim

p→0+
PR
exp(p),

since θ+ p < 3 implies that θ < 3. Thus PNR
exp (p) < PR

exp(p) when p is sufficiently close to 0, and that

θ > θ̂ and θ + p < 3.
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To help understand our comparison results, we next focus on the special case in which the first-

item value is distributed uniformly over [0, 1].

Example: The Uniform Distribution Case

When the first signal follows U [0, 1], it can be verified that θ̂ = 3, g(θ) = 3−θ
2 , and r(x) and π(x, x, θ)

are given below.

r(x) =

⎧⎨⎩ 1,when θ ≥ 3 or θ < 3 & x ≥ 3−θ
2

x+ θ−1
2 , otherwise

π(x, x, θ) =

⎧⎨⎩ x+ θ − 1,when θ ≥ 3 or θ < 3 & x ≥ 3−θ
2

1 + (θ−1)2
4(1−x) , otherwise

Therefore, the equilibrium bid function for the first item is:

βR(x) =

⎧⎨⎩ (1− p)2x− p2 + 2p, when θ ≥ 3 or θ < 3 & x ≥ 3−θ
2

x+ p(θ − 1)− p2 (θ−1)
2

4(1−x) , otherwise

Since βNR(x) = x+ p(θ− 1), it can be easily verified that βR(x) < βNR(x) for any p ∈ (0, 1) and

θ > 1, which means that with the opportunity of resale, bidders bid less aggressively for the first

item. From Proposition 4, it follows that the exposure probability is lower when resale is allowed.

Note that with the uniform distribution, we do not require θ to be sufficiently large in order for the

probability of exposure to be lower with resale.

Define πNR(x) and πR(x) to be the expected payoff for a bidder with the first signal x under the

no-resale and resale scenarios. With some derivations, it can be shown that:

πNR(x) =

Z x

0
(x− z)dz + p(1− p)

πR(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1− 2p+ 2p2)

R x
0 (x− z)dz + p(1− p)(x+ θ − 1), θ ≥ θ̂

(1− p+ p2)x
2

2 + p(1− p)(3− θ)x2 + p(1− p)θ
2+1
4 , θ < θ̂ and x ≥ g(θ)

x2

2 + p(1− p)(38θ
2 − 3

4θ +
11
8 ), otherwise

It can be verified that πNR(x) < πR(x) holds for any x ∈ [0, 1].
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For the uniform distribution, bidders always bid less aggressively for the first item. However,

bidders bid more aggressively for the second item. With some derivations, we can show that

RNR = pθ + p2 − p+
1

3
,

RR =

⎧⎨⎩ p2θ + −4p2+4p+1
3 ,when θ ≥ 3

−p(1−p)θ3
12 + p(1−p)θ2

4 + (p2+3p)θ
4 + 11p2−11p+4

12 , when θ < 3
.

Thus, we have

RNR −RR =

⎧⎨⎩ p(1− p)(θ − 5
3), if θ ≥ 3

p(1−p)
12 (θ − 1)3, if 1 < θ < 3

So RNR−RR > 0, which implies that in the uniform distribution case, the effect of underbidding

for the first item dominates the effect of overbidding for the second item, and the revenue comparison

is unambiguous.

5 Discussion

Our model is stylized, and our results hinge on several important assumptions. This section is thus

devoted to a discussion on the restrictions of our modeling and the robustness of our results.

First, in our model, the synergy enters the value of a package as a multiplier to the value of

the second item, while the previous literature in general assumes that synergies enter the value of a

package as a term to be added to the stand-alone value of a package. However, we do not think that

our major results would be altered if we adopt the “summation” version instead: Inefficiency would

still persist when resale was banned, and in the resale stage, the seller or buyer would still make an

optimal offer, taking into account the synergy.

Second, in our model, we assume that the value for the second item is a binary variable drawn

from a Bernoulli distribution. This is for ease of tractability. If we assume that the second signal,

like the first signal, is also a continuous variable distributed according to the distribution function

F (·), our analysis would become too complicated. First, the events of resale would be too tedious to

identify, and second we will have to work with the convolution of two continuous distributions, which

is simply intractable. With the Bernoulli distribution, however, the need for resale (in equilibrium)
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has an intuitive interpretation: resale occurs if the winner of the first item has no value for the second

item, and the loser of the first auction has a positive value for the second item. Moreover, since the

equilibrium probability of resale is p(1 − p), to some extent, different probabilities of resale can be

obtained by varying p. Thus, though restrictive, our special value structure captures the essence of

the resale opportunity in auctions with synergy.

Finally, our analysis focuses on two bidders only. If we extend our analysis to the general case

with n bidders, the analysis for the monopoly case turns out to be quite involved. With Y = 0,

a bidder will bid 0 in equilibrium regardless of winning the first auction or not. With Y = 1, the

winner of the first item will bid θ as in the two-bidder case, but for the losers of the first item, they

would not bid according to a strictly increasing bid function in equilibrium. The reason is that the

winner of the first item may want to resell the whole package if the allocation of the first item is

inefficient. So pooling or partial pooling would occur in the second auction for bidders who lost the

first auction with Y = 1. Thus after two auctions, it might be the case that neither of the two items

is owned by a bidder who values the package the most. So it is possible that the second item owner

would try to buy the first item, then resell the whole package to a third party, a complication that is

absent with n = 2. Given this complication, it is very difficult to analyze the cases in which resale

occurs with n > 3.9 This complication, however, is absent in the symmetric increasing equilibrium

in which all bidders follow a (common) strictly increasing bid function in the first auction. It can be

established that as long as there is positive probability in which full extraction in resale may occur,

the non-existence result continues to hold.

For the monopsony case with n > 3, the analysis becomes intractable as the second-item winner’s

expected payoff from resale depends on her payment for the second item. The intuition is that when

n > 3 and the second-item winner makes a positive payment for the second item, it does not mean

that she has the highest first signal among all the first-auction losers since some loser with a higher

first signal might have obtained second signal 0. Therefore, the payment is positively correlated with

the first-item winner’s first signal, making the analysis intractable. This is different from the case

n = 3, where a positive payment always indicates that the second-item winner has the highest first

signal between both losers. Basically we can show that our equilibrium analysis can be extended

9To the best of our knowledge, the similar non-existence result in auctions with monopoly resale has only been

established in the context of two bidders (Krishna, 2002; Hafalir and Krishna, 2008; and Garratt and Tröger, 2006).
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to the case n = 3 when the synergy factor, θ, is sufficiently large. When θ is not sufficiently

large, however, some additional conditions are needed to support the same equilibrium structure as

constructed in the two-bidder case.

To summarize, extending our analysis with two bidders to the general case with n bidders presents

some technical challenges. While specific results may be subject to change, we believe that the general

features of the equilibrium, should it exist, remain the same.

6 Conclusion

This paper offers the first analysis of auctions with synergies by explicitly considering the post-

auction resale opportunity, which is arguably more natural if we believe that secondary markets

cannot always be banned.

Our analysis suggests that when the initial auctions take the form of second-price sealed bids,

there is a potential problem of information revelation, even if bids are not announced. In particular,

a monopoly mechanism in resale can destroy any equilibrium in which a bidder has to fully reveal

her type over some range with positive probability. Since typically an auctioneer cannot control the

selling mechanism in the resale stage, our results have some immediate policy implication for how

secondary markets should be regulated.

When resale proceeds with a monopsony offer, we are able to identify symmetric increasing

equilibrium strategies in auctions for both items. While allowing resale always improves efficiency,

the effect of resale on expected revenue and the probability of exposure are both ambiguous. We

identify sufficient conditions under which allowing resale leads to higher expected revenue or lower

probability of exposure.

Our model is one of the simplest that captures essentials of auctions with synergy and resale.

Despite our modeling restrictions, we believe that the main insights of our results are robust, as

discussed in the previous section. Nevertheless, working out a more general framework to study the

interactions between auctions with synergy and resale should be a direction for future research.
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Appendix

Proof of Proposition 1: To show this non-existence result, we will need to rule out any equilibrium

in which at least one bidder follows a first-auction bid function that is strictly increasing over a non-

degenerate interval (so that when she loses with a value in this interval, she fully reveals her type).

Formally, we start with the assumption that there exist a pair of equilibrium bidding strategies in

the first auction, which are represented by βi(·) : [0, 1]→ R+, i = 1, 2. Suppose βi(xi) is a piecewise

function over disjoint intervals [xi,n−1, xi,n), n = 1, 2, ..., N − 1, and [xi,N−1, 1], where xi,0 = 0; and

that βi(xi) is weakly increasing over [0, 1].
10 Without loss of generality, we assume that β1(·) is

strictly increasing over some non-degenerate interval (v1, v̄1) and β1(v̄1) ≤ β2(1). Our non-existence

proof will be based on two lemmas.

Our first lemma establishes that in such an equilibrium, there exists an interval (v2, v̄2) over which

β2(·) is strictly increasing and β1(v1, v̄1) ∩ β2(v2, v̄2) is a non-degenerate interval, where βi(vi, v̄i) =

(βi(vi), βi(v̄i)); in other words, there exists some non-degenerate overlap bid interval that can be

mapped back onto some subsets over which each bidder’s bidding function is strictly increasing.

Lemma 1 There exists (b1, b̄1) ⊂ β1(v1, v̄1), such that β
−1
2 (b1, b̄1) is a non-degenerate interval and

β2(·) is strictly increasing over this interval.

Proof. Suppose not. Then, either bidder 2 never bids over the interval β1(v1, v̄1), or all types of

bidder 2 who bid over this interval are pooling or partial pooling (i.e., this part of the bidding function

is a step-wise function). In the first case, bidder 1 will be at least weakly better off by pooling at

β1(v1) because it does not switch her from winning to losing or vice versa, but she benefits from

hiding her first signal. In the second case, by a similar argument, bidder 1 with a type in (v1, v̄1)

has an incentive to pool, a contradiction.

Based on lemma 1, let (x1, x̄1) be a sub-interval of (v1, v̄1) such that β2(·) is strictly increasing

over β−12 (β1(x1), β1(x̄1)). Redefine β−12 (β1(x1), β1(x̄1)) = (x2, x̄2). We will next prove that there

exists a bidder k, k = 1, 2, such that when she follows βk(·) and loses with a first signal lying within

some subinterval of (xk, x̄k), she expects the resale to be held with positive probability.

10Our analysis should apply to other possible cases, i.e., one bidder follows a weakly increasing bidding function

while the other bidder follows a weakly decreasing bidding function.
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Lemma 2 For bidder k, k = 1, 2, there exists an interval (xk∗, xk∗) ⊂ (xk, x̄k) such that when she

follows βk(·) and loses with xk ∈ (xk∗, xk∗), she expects a resale held by the other bidder with positive

probability.

Proof. We consider the two intervals (x1, x̄1) and (x2, x̄2). We examine three possibilities in order:

1. x̄1 ≤ x2. In this case, if bidder 2 with the first signal in β−12 (β1(x1), β1(x̄1)) loses, she knows

there is a positive probability that bidder 1’s first signal is below hers; thus she expects that

there will be a resale with positive probability. Therefore, k = 2 and (xk∗, xk∗) = (x2, x̄2).

2. x1 ≥ x̄2. In this case, k = 1 and (xk∗, xk∗) = (x1, x̄1).

3. Otherwise, (x1, x̄1) ∩ (x2, x̄2) is a non-degenerate interval. Without loss of generality, assume

that x̄2 ≤ x̄1.

(a) If x1 = x2, x̄1 = x̄2 and there does not exist an x̌ ∈ (x1, x̄1) such that β1(x̌) 6= β2(x̌), we

know these two bidding functions coincide on this interval. In this case, when bidder 1

loses, there is a positive probability for bidder 2 to hold a resale in the event that bidder

1 obtains second signal 1 while bidder 2 obtains second signal 0. Therefore, k = 1 and

(xk∗, xk∗) = (x1, x̄1).

(b) When there exists an x̌ ∈ (x1, x̄1) such that β1(x̌) 6= β2(x̌), without loss of generality, we

assume that β1(x̌) < β2(x̌). By continuity, there exists a sufficiently small ξ > 0, such

that β1(x) < β2(x) for x ∈ (x̌−ξ, x̌+ξ).When bidder 1 with a first signal in (x̌−ξ, x̌+ξ)

loses, there is a positive probability that she loses to bidder 2 with a first signal lower

than hers; thus she expects a resale with positive probability. Therefore, k = 1 and

(xk∗, xk∗) = (x̌− ξ, x̌+ ξ).

(c) In all the other cases, at least one of the equality does not hold. Without loss of generality,

we assume that x̄2 < x̄1. Clearly, when bidder 1 with a first signal in (x̄2, x̄1) loses, she

expects the resale to occur with positive probability. Therefore, k = 1 and (xk∗, xk∗) =

(x̄2, x̄1).

So in all the cases, the conclusion of the lemma is true.
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We are now ready to show the non-existence result. Without loss of generality we will consider

the following strategies and beliefs for the second auction and the resale stages: the first-item winner

bids θ when her second signal is 1 and bids δ, a sufficiently small positive amount, when her second

signal is 0; the first-item loser bids 1 when her second signal is 1 and 0 otherwise. The first-item

winner’s beliefs about the first-item loser’s second signal are that it is 0 if she wins the second item

at zero price, and 1 otherwise. In the resale, the first-item winner’s offer is a vector of the item(s)

offered for resale and the corresponding optimal price(s).11 She does not offer the second item for

resale when she believes that the first-item loser’s second signal is 0. The first-item loser’s beliefs

about the first-item winner’s signals do not matter and she accepts any offer in resale as long as

she is weakly better off. It can be verified that the above pair of the strategy profile and belief

system constitutes a perfect Bayesian equilibrium (PBE) for the second auction and resale stages.

Moreover, in such a PBE, the first-item loser plays a pure and separating strategy so that after the

second auction, the first-item winner can infer the first-item loser’s second-item signal.12

Without loss of generality, we let k = 1 in Lemma 2 and consider the case in which, conditional

on losing the first auction, bidder 1 expects resale to occur with positive probability only when her

second signal is 1 and bidder 2’s signal is 0. We follow this case for ease of illustration; the logic of

our analysis below should go through for all the other cases discussed in the proof of Lemma 2.

Suppose bidder 1, with the first signal x, plays as if her type is x̂ in the first auction, but

plays optimally, conditional on x and x̂, in the following two stages (i.e., the second auction and

the resale). For resale, this means that if bidder 1 underbids in a strictly increasing segment and

loses, she will accept the offer in resale (if any) because the reseller underestimates her type; if she

overbids in a strictly increasing segment and loses, she will reject the offer in resale because the

11Because of the asymmetry in the first auction bid functions, it is possible that even if both bidders’ second signals

are the same, there is a potential gain from resale. Taking this into account, the first-item winner calculates the optimal

offer vector given her beliefs about the first-item loser’s two signals.

12There are other equilibria in which the first-item winner can infer the first-item loser’s second signal after the

second auction. Using backward induction, one can verify that the contingent payoffs in resale for the first-item winner

and loser when their second signals are 1’s are at least θ and 1, respectively. Moreover, we do not require the first-item

winner to infer the loser’s second signal in cases where conditional on winning the first auction and her beliefs about

the loser’s first signal, the winner does not find it profitable to hold a resale for all possible subsequent events (in these

cases, the first-item winner can bid 0 when her second signal is 0). Working with those equilibria will not alter our

analysis.
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reseller overestimates her type. Clearly, for β1(·) to be an equilibrium bidding strategy, we require

that x̂ = x for x ∈ (x1∗, x1∗), where the existence of an interval (x1∗, x1∗) is established in Lemma 2.

Below we only consider local deviations so that x̂ is sufficiently close to x. By continuity, Lemma 2

implies that with a sufficiently small deviation, conditional on losing the first auction, bidder 1 still

expects bidder 2 to hold a resale with positive probability.

Given that bidder 2 follows the proposed equilibrium, bidder 1 solves the following problem:

max
x̂∈(x1∗,x1∗)

Z β−12 (β1(x̂))

0
[w(x, y)− β2(y)]f(y)dy +

Z 1

β−12 (β1(x̂))
l(x, y, x̂)f(y)dy,

where w(x, y) is bidder 1’s contingent payoff if she obtains the first item given her first signal x and

her rival’s first signal y, and l(x, y, x̂) is bidder 1’s contingent payoff if she loses the first item in the

first auction given that she mimics type x̂.

By backward induction, l(x, y, x̂) = p(1−p)[(x− x̂)I{x>x̂}I{y≤x̂+θ−1}+1− δ], where y ≤ x̂+θ−1

represents the event where bidder 2 finds it profitable to hold a resale when her second signal is 0,

bidder 1’s second signal is 1, and x̂+ θ − 1 is the optimal offer given her beliefs.

Now we consider the case in which bidder 1 mimics type x̂, which is sufficiently close to x.When

this deviation is downward (i.e., x > x̂), we haveZ 1

β−12 (β1(x̂))
l(x, y, x̂)f(y)dy =

Z min{x̂+θ−1,1}

β−12 (β1(x̂))
p(1−p)[x−x̂+1−δ]f(y)dy+

Z 1

min{x̂+θ−1,1}
p(1−p)f(y)(1−δ)dy.

If this deviation is upward (i.e., x < x̂), we haveZ 1

β−12 (β1(x̂))
l(x, y, x̂)f(y)dy =

Z 1

β−12 (β1(x̂))
p(1− p)f(y)(1− δ)dy.

Define FOCdown (FOCup) to be the derivative w.r.t x̂ in the downward (upward) deviation case.

Letting x̂ ↑ x in the downward case and x̂ ↓ x in the upward case, we can verify that

lim
x̂↑x

FOCdown = lim
x̂↓x

FOCup − p(1− p)

Z min{x̂+θ−1,1}

β−12 (β1(x))
f(y)dy.

Thus FOCdown(x̂ ↑ x) < FOCup(x̂ ↓ x) for p ∈ (0, 1).

It can be easily verified that the objective function is continuous at x̂ = x. For the left derivative

to be smaller than the right derivative of a continuous function, it is either FOCdown < FOCup ≤ 0,

0 ≤ FOCdown < FOCup, or FOCdown < 0 < FOCup. For all these cases, it can be easily verified that

x̂ = x cannot even be a local maximum. This suggests that the incentive compatibility condition
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x̂ = x fails. Hence, the proposed equilibrium in which at least one bidder reveals her type with

positive probability does not exist.

Proof of Proposition 2: Suppose that bidding for the second item follows the proposed equilibrium

strategies. We will first compute the candidate equilibrium bid function for the first item (β(·)) and

then verify that it is indeed the equilibrium bid function for the first item.

Case 1: θ ≥ θ̂ , or θ < θ̂ and β−1(b) = x ≥ g(θ), which implies that the offer made by this bidder

in resale should be 1.

When she wins and θ ≥ θ̂, her rival will make an offer r(z) = 1 in resale if resale occurs, where

z is the rival’s first auction signal;

When she wins and θ < θ̂, we haveZ β−1(b)

0
E(payoff|winning the first item)f(z)dz

=

Z g(θ)

0
E(payoff|winning the first item)f(z)dz +

Z β−1(b)

g(θ)
E(payoff|winning the first item)f(z)dz.

However, to derive FOCs we only need to consider the event z ≥ g(θ), since the term
R g(θ)
0 E(payoff|winning

the first item)f(z)dz does not contain b. When z ≥ g(θ), she accepts the offer since r(z) = 1.

The expected gross payoff upon winning is given by

p2[x+ θ − (z + θ − 1)] + (1− p)p(x+ θ) + p(1− p) + (1− p)2x,

and the expected payoff upon losing is given by

p(1− p)(x+ θ − 1).

It can be easily verified that the implication of the FOCs in this case is that a bidder bids an

amount equal to her maximal willingness to pay, which is the difference between the expected

payoffs conditional on winning and not winning the item when a tie occurs.

Straightforward calculations lead to

β(x) = (1− p)2x− p2 + 2p. (5)

Clearly, in this case, β0(x) > 0.
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Case 2: θ < θ̂ and β−1(b) = x < g(θ).

In this case, the first-item loser will make an offer less than 1 in resale. Again, when a bidder

with x < g(θ) wins, the only event that is relevant for the FOCs is when her rival’s signal z

satisfies r(z) ≥ x.

The gross contingent payoff upon winning for the relevant event is given by

p2[x+ θ − π(z, z, θ)] + (1− p)p(x+ θ) + p(1− p)r(z) + (1− p)2x.

The expected payoff upon losing is given by

p(1− p)π(x, β−1(b), θ).

Taking the derivative of the expected payoff w.r.t b and evaluating this derivative at β−1(b) = x,

we have

β(x) = p2(x+ θ) + (1− p)2x+ 2p(1− p)r(x)− p2π(x, x, θ), (6)

and hence

β0(x) = p− p(1− p) + (1− p)2 + 2p(1− p)r0(x)

−p2F (r(x))− F (x)

1− F (x)

∙
− f(x)

f(r(x))

1− F (r(x))

1− F (x)
+ 1

¸
.

Note that 1−F (v)f(v) decreases in v and x ≤ r(x) implies that

f(x)

f(r(x))

1− F (r(x))

1− F (x)
∈ [0, 1],

which further implies

F (r(x))− F (x)

1− F (x)

∙
− f(x)

f(r(x))

1− F (r(x))

1− F (x)
+ 1

¸
∈ [0, 1].

Therefore,

β0(x) ≥ p− p(1− p) + (1− p)2 + 2p(1− p)r0(x)− p2

= (1− p)2 + 2p(1− p)r0(x)

> 0.

We can thus summarize (5) and (6) into (3), which is the candidate equilibrium bid function

in the first auction.
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Next, we prove that no bidder can deviate from the proposed equilibrium profitably. We will

proceed in two steps. The first step is to show that if both bidders follow the proposed bidding

strategy in the first auction, no bidder has an incentive to deviate in the second auction or in the

resale stage. The second step is to show that no bidder has an incentive to deviate in the first auction

and plays optimally subsequently. The first step is straightforward to verify, hence we will focus on

the second step below.

Denote V (x, x̂) to be the expected payoff for a bidder of type (first signal) x who mimics type x̂

in the first auction and plays optimally in the second auction and the resale stage.

We first consider off-equilibrium events. Again, we assume that the potential seller shows up in

the resale and accepts the offer when she is weakly better off by doing so. The potential buyer makes

an offer in resale when her expected net payoff is positive. Off-equilibrium resales might involve

selling both items.

If the bidder overbids and wins while x < z, where z is her rival’s first signal (she knows z

conditional on winning), she may want to pretend that her second signal is 0 when it is actually 1

in order to resell the first item to her rival when her rival also has a second signal of 1. She can do

this by bidding ε, which is close to 0, when her second signal is 1; thus she wins against a rival with

signal 0, but loses against a rival with signal 1 (her rival still believes her second signal is 0 even if

the rival pays ε for the second item). Note that when both bidders have a signal 1, if she bids θ

and wins, her rival does not hold a resale and her payoff is x+ θ − π(z, z, θ); if she loses the second

item, she accepts r(z) in resale because z > x > r−1(x). Therefore, when x+ θ − π(z, z, θ) < r(z),

she will bid ε when her second signal is 1. Also note that x+ θ − π(z, z, θ) > r(z) when x is just a

little below z, since z + θ − π(z, z, θ) > r(z). When both bidders get second signal 0, although the

overbidding bidder wants to sell the first item to her rival, the rival does not hold a resale.

Therefore, when x < x̂, the gross winning payoff is given by

p2max{x+ θ − π(z, z, θ), r(z)}+ p(1− p)(x+ θ) + p(1− p)max{r(z), x}+ (1− p)2x.

The expression for the losing payoff remains unchanged.

On the other hand, if the bidder underbids and loses, she holds a resale even when they both have

the same second signal, because it might be the case that x > z, and hence her expected net payoff

from resale is positive. Note that when they both have second signal 1, the bidder who underbids

in the first auction would prefer to buy the whole package in the resale rather than win the second
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item. In the case with underbidding, the expression for the gross winning payoff is the same as

before, which is given by

p2[x+ θ − π(z, z, θ)] + p(1− p)(x+ θ) + p(1− p)max{r(z), x}+ (1− p)2x.

However, the losing payoff is now

p2l1(x, x̂, θ) + p(1− p)π(x, x̂, θ) + (1− p)2l0(x, x̂, θ),

where l1(x, x̂, θ) and l0(x, x̂, θ) denote the off-equilibrium payoffs when she holds a resale, knowing

that both bidders have the same second signal 1 and 0, respectively. It is easy to verify that in these

two off-equilibrium events, if r0(x, x̂) (r1(x, x̂)) denotes the optimal resale offer when they both have

a 0(1) second signal, r1(x, x̂) = r0(x, x̂) + θ. Also, r0(x, x̂) ∈ [x̂, x].

We now show that neither overbidding nor underbidding is profitable.

Overbidding case: x < x̂.

When x+ θ − π(z, z, θ) < r(z) (overbids by a relatively large amount),

∂V (x, x̂)

∂x̂
= f(x̂)[p2r(x̂) + (1− p)p(x+ θ) + p(1− p)r(x̂)

+(1− p)2x− β(x̂)− p(1− p)(x+ θ − r(x, x̂)]

= f(x̂){(1− p)2(x− x̂) + p(1− p)[r(x, x̂)− r(x̂)] + p2[r(x̂) + π(x̂, x̂, θ)− x̂− θ]}

< 0.

The inequality results from the fact that x < x̂, r(x, x̂) ≤ r(x̂, x̂) = r(x̂) and π(x̂, x̂, θ) ≤

x̂+ θ − r(x̂).

When x+ θ − π(z, z, θ) ≥ r(z) (overbids by a relatively small amount),

∂V (x, x̂)

∂x̂
= f(x̂){(1− p)2(x− x̂) + p(1− p)[r(x, x̂)− r(x̂)] + p2(x− x̂)}

< 0

Therefore, overbidding is not a profitable deviation.
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Underbidding case: x > x̂.

∂V (x, x̂)

∂x̂
= f(x̂){p2[x+ θ − π(x̂, x̂, θ)] + (1− p)p(x+ θ)

+p(1− p)max{r(x̂), x}+ (1− p)2x− β(x̂)− p2[x+ θ − r1(x, x̂)]

−p(1− p)[x+ θ − r(x, x̂)]− (1− p)2[x− r0(x, x̂)]}

= f(x̂){p(1− p)r(x, x̂)− 2p(1− p)r(x̂) + [p+ (1− p)2][r0(x, x̂)− x̂]

+p(1− p)max{r(x̂), x}}

When r(x̂) ≥ x,

∂V (x, x̂)

∂x̂
= f(x̂){p(1− p)[r(x, x̂)− r(x̂)] + [p+ (1− p)2][r0(x, x̂)− x̂]} > 0

The inequality results from the fact that r(x, x̂) ≥ r(x̂, x̂) = r(x̂) and r0(x, x̂) > x̂.

When r(x̂) < x,

∂V (x, x̂)

∂x̂
= f(x̂){p(1− p)[r(x, x̂)− 2r(x̂) + x] + [p+ (1− p)2][r0(x, x̂)− x̂]} > 0 ,

because r(x, x̂)− 2r(x̂) + x = r(x, x̂)− r(x̂) + x− r(x̂) > 0 and r0(x, x̂) > x̂.

Therefore, underbidding is not a profitable deviation either.

Lemma 3 The ranking between the equilibrium bid functions for the first auction with and without

resale is ambiguous.

Proof. The equilibrium bid functions in the first auction under the cases without resale (NR) and

with resale (R) are as follows:

βNR(x) = x+ p(θ − 1),

βR(x) = p2(x+ θ) + (1− p)2x+ 2p(1− p)r(x)− p2π(x, x, θ).

Denote βR1 (x) for the case θ < θ̂ and x < g(θ), and βR2 (x) for all the other cases. We will compare

βNR(x) and βR(x) in order.

Case 1: θ ≥ θ̂.
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Since βNR(x) and βR2 (x) are linear, if they have one intersection, it must be unique; thus it

suffices to check the low and high ends of these functions. At the high ends,

βNR(1) = 1 + p(θ − 1) > 1 = βR2 (1).

When p ≤ 1− 1
f(1) , 3− p ≥ θ̂. If θ ∈ (3− p,+∞), then βNR(0) > βR2 (0); thus β

NR(x) > βR2 (x)

for x ∈ [0, 1].

If θ ∈ [θ̂, 3 − p], then βNR(0) ≤ βR2 (0); thus there exists a unique x∗ ∈ [0, 1) such that

βNR(x∗) = βR2 (x
∗).

When p > 1− 1
f(1) , 3− p < θ̂. For θ ∈ [θ̂,+∞), βNR(x) > βR2 (x) for x ∈ [0, 1].

Case 2: θ < θ̂.

In this case,

βR(x) =

⎧⎨⎩ βR2 (x), x ≥ g(θ)

βR1 (x), x < g(θ)

Note that when x < g(θ), r(x) < 1 and π(x, x, θ) > x + θ − 1. The first inequality follows

immediately and the second inequality results from the fact that π(x, x, θ) is the contingent

resale payoff for the first-item loser when she offers r(x) in resale, and x+θ−1 is the contingent

resale payoff when she offers 1 instead. That she prefers to offer r(x) indicates that π(x, x, θ) >

x+ θ − 1.

Therefore, βR1 (x) < βR2 (x) for x < g(θ). For the first order comparison, we have shown earlier

that β0R1 (x) > β0R2 (x). However, it is generally impossible to compare β
0R
1 (x) with β

0NR(x) = 1

based only on explicit restrictions of parameters and the distribution F (·).

When p ≤ 1 − 1
f(1) , 3 − p ≥ θ̂. We have βNR(0) ≤ βR2 (0) and there exists a unique x

∗ ∈ [0, 1)

such that βNR(x∗) = βR2 (x
∗).

If x∗ ≥ g(θ) and βNR(0) ∈ [βR1 (0), βR2 (0)], there exists at least one x̃ < g(θ) such that βNR(x̃) =

βR1 (x̃). Or equivalently, there exist at least two intersections between βNRand βR.

If x∗ ≥ g(θ) and βNR(0) ∈ (0, βR1 (0)), there exists at least one intersection, which is x∗.

If x∗ < g(θ) and βNR(0) ∈ [βR1 (0), βR2 (0)], there is ambiguity.
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If x∗ < g(θ) and βNR(0) ∈ (0, βR1 (0)), there exists at least one x̃ < g(θ) such that βNR(x̃) =

βR1 (x̃).

When p > 1− 1
f(1) , 3− p < θ̂.

If θ ∈ [3− p, θ̂),then βNR(0) ≥ βR2 (0), β
NR(x) > βR(x) for x ∈ [0, 1].

If θ ∈ (1, 3− p),then βNR(0) < βR2 (0) and the cases are similar to those under p ≤ 1− 1
f(1) .

It is thus clear that there is no general ranking between the bidding functions for the first auction

with and without resale.

Proof of Proposition 3: DR = RNR −RR is a piecewise function:

DR =

⎧⎨⎩ p(1− p)
R 1
0 (θ + 2x− 3)f(2)(x)dx, when θ ≥ θ̂

p(1− p)
hR 1
0 (θ + 2x− 3)f(2)(x)dx+

R g(θ)
0 (2− 2r(x))f(2)(x)dx

i
,when θ < θ̂

Clearly, when θ ≥ θ̂, DR = p(1− p)
£
(θ − 3) + 2EX(2)

¤
; thus RNR ≥ RR if EX(2) ≥ (3− θ) /2,

and RNR < RR if EX(2) < (3− θ) /2.

When θ < θ̂, we consider ∂DR
∂θ . Note that when θ = 1, there is no synergy so there is no resale

on equilibrium path, and the bidding functions for both auctions should be the same as in the no

resale benchmark. Therefore, when θ = 1, DR = 0. If we can identify conditions under which ∂DR
∂θ

is positive, then DR > 0 for all θ < θ̂.

When x = g(θ), since r(x) = 1, we have

∂DR

∂θ
= p(1− p)

"
1− 2

Z g(θ)

0
f(2)(x)

∂r(x)

∂θ
dx

#
,

where ∂r(x)
∂θ = 1

2− f0(r(x))[F (r(x))−F (x)]
f2(r(x))

. The denominator can also be expressed as 1+1−f 0(r(x))[F (r(x))−F (x)]
f2(r(x))

,

where 1− f 0(r(x))[F (r(x))−F (x)]
f2(r(x)) is the derivative of F (r)−F (x)f(r) w.r.t r evaluated at r(x). By the regularity

assumption, this term should be positive; thus ∂r(x)
∂θ ∈ (0, 1).

If F(2)[g(θ)] ≤ 1
2 , or equivalently if θ ≥ g−1[F−1(2) (

1
2)] (since g(θ) decreases in θ),

R g(θ)
0 f(2)(x)

∂r(x)
∂θ dx <R g(θ)

0 f(2)(x)dx = F(2)[g(θ)] ≤ 1
2 ; thus

∂DR
∂θ > 0.

If f(x) is a decreasing function, the term f 0(r(x))[F (r(x))−F (x)]
f2(r(x)) ≤ 0; thus ∂r(x)

∂θ ≤
1
2 and

R g(θ)
0 f(2)(x)

∂r(x)
∂θ dx ≤

1
2

R g(θ)
0 f(2)(x)dx < 1

2

R 1
0 f(2)(x)dx =

1
2 . In this case, we also have

∂DR
∂θ > 0.
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Proof of Proposition 4: From the definition of PR
exp(x), we know that since P (z < x, βR(z) >

max{x, r(z)}) < P (z < x, βR(z) > x), we have PR
exp(x) < (1− p) ·P (z < x, βR(z) > x). If βNR(z) ≥

βR(z) for z ∈ [0, x), P (z < x, βR(z) > x) < P (z < x, βNR(z) > x), hence PR
exp(x) < PNR

exp (x). As

shown in the proof of Lemma 3, a sufficient condition for βNR(·) > βR(·) is θ+p ≥ 3. Thus, when θ is

sufficiently large, PNR
exp (x) > PR

exp(x) for all x ∈ [0, 1], which also implies that ex ante, the probability

of exposure is higher when resale is not allowed.
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