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Abstract

It is frequently suggested that predictions made by game theory could be improved by
considering computational restrictions when modeling agents. Under the supposition that
players in a game may desire to balance maximization of payoff with minimization of strat-
egy complexity, Rubinstein and co-authors studied forms ofNash equilibrium where strate-
gies are maximally simplified in that no strategy can be further simplified without sacrificing
payoff. Inspired by this line of work, we introduce a notion of equilibrium whereby strate-
gies are also maximally simplified, but with respect to a simplification procedure that is
more careful in that a player will not simplify if the simplification incents other players to
deviate. We study such equilibria in two-player machine games in which players choose
finite automata that succinctly represent strategies for repeated games; in this context, we
present techniques for establishing that an outcome is at equilibrium and present results on
the structure of equilibria.

1 Introduction

A frequently raised criticism of game theory is that its predictions clash with empirical observations as
a consequence of being based on the assumption that agents possess and use unbounded computational
power. This criticism has motivated the introduction and investigation of so-called models ofbounded
rationality [28], in which computational power considerations on agents are present. A number of different
approaches to the study of bounded rationality have been suggested [2, 7, 17, 24, 26, 27]. One model that
has received considerable attention is a machine game in which players choose finite-state automata that
succinctly represent strategies for repeated games [18, 21, 24, 26, 1]; the model of finite-state automata
can be taken as a formalization of players having bounded-size memory, and is well-studied in computer
science.

Rubinstein with co-authors Abreu and Piccione [26, 1, 25], in the context of the machine game, proposed
and studied forms of Nash equilibrium under which strategies are maximally simplified in the sense that a
player’s strategy cannot be simplified without reducing hispayoff. A supposition basic to this work is that
players desire to minimize the complexity of their strategies, and hence in choosing strategies are concerned
with balancing the maximization of payoff with the minimization of strategy complexity. Simplicity of
strategies may be valued for a number of reasons; for instance, complex strategies may be more expensive to
execute, more likely to break down, harder to learn, or costly to maintain [22]. Following Rubinstein [26],
it can be suggested that such maximally simplified equilibria resemble phenomena observed in real life:
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institutions, organizations, and human abilities may degenerate or be reduced if they contain unnecessary or
redundant components.

The Rubinstein-Abreu-Piccione line of work, more specifically, studies Nash equilibria where the play-
ers have preference relations that increase in the payoff and, when payoff is maintained, decrease in the
complexity. While one can study the equilibria they define inany game where there is a complexity measure
associated with the actions of each player, their work focuses on the mentioned machine game, and the
complexity measure studied is the number of states of an automaton, which can be viewed as the memory
size of a strategy.

Inspired by this line of work, we introduce and study a new notion of equilibrium intended to capture
maximally simplified strategies, but with respect to a more careful, conservative simplification procedure.
The motivation for this new equilibrium notion stems from the observations that, in the Rubinstein model, a
player simplifies without considering whether or not the simplification may incent other players to deviate,
and that this liberal mode of simplification may spoil desirable outcomes that are Nash equilibria in the
usual payoff sense. These observations can be illustrated by the following example. Consider the so-called
grim trigger strategy in the infinitely repeated Prisoner’sdilemma; this strategy, which can be implemented
by a two-state automaton, is to cooperate until the other player is seen to have defected, and to then defect
indefinitely. While this strategy paired with itself is a Nash equilibrium in the payoff sense–no player
can unilaterally deviate and increase his payoff–it is not an equilibrium in the Rubinstein sense, since either
player could maintain payoff but reduce complexity by switching to a strategy that always cooperates (which
is a strategy that can be implemented by a one-state automaton). Notice, however, that such a switch would
in turn incent the other player to change to a strategy that always defects against cooperation, thus spoiling
the cooperation. It can in fact be verified that no pair of strategies that cooperate indefinitely form an
equilibrium in the Rubinstein sense.

Whereas in the Rubinstein model a player will simplify his strategy so long as he can maintain his
payoff, in our model each player is forward-looking, and will only simplify his strategy if, in addition,
no other player can profitably deviate post-simplification.That is, in considering simplifications, players
are averse to potential payoff-motivated deviations by other players. Our notion of equilibrium, which we
call lean equilibrium, is thus defined as an outcome of strategies at Nash equilibrium such that no player
can both individually simplify his strategyand preserve the property of being at Nash equilibrium. The
described grim trigger strategy paired with itself does constitute a lean equilibrium in the infinitely repeated
prisoner’s dilemma: the described strategy has two states,so any simplification must have one state; in order
for the result to be a Nash equilibrium, the player with one state must always cooperate in order to be a best
response to the other player; but, this is not a Nash equilibrium as the other player could then profitably
deviate by always defecting.

We present results on lean equilibria for two-player machine games where each player chooses a finite-
state automaton representing a strategy in an infinitely repated game. We study three complexity measures;
in addition to studying the “number of states” measure, we study two measures that we introduce. One is
based on the number of states, but does not count threat states, and the other counts the number of transitions
to non-threat states; the precise definitions appear later in the paper. Our primary technical results are the
following.

• We give techniques for establishing that outcomes are at lean equilibrium, and illustrate their use by a
number of examples (Section 5).

• We present results on the structure of machines that are at equilibria, and, with respect to the number-
of-transitions measure, give a precise description of the equilibria structure. This description in fact
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shows that the machine structure can be inferred from a third-party observer that only views the
induced sequence of action pairs (Section 6).

We believe that the developed theory evidences that the two introduced complexity measures are natural and
mathematically robust.

While the present work focuses on machine games with finite automata and was certainly inspired by
previous work on such games, we want to emphasize that the notion of lean equilibrium is defined in a very
general way (Section 3) and can be applied to any game in whichthere is a notion of complexity associated
with the players’ actions. Indeed, our view is that one of themost promising avenues for future work is to
analyze the lean equilibria in other types of games where such a notion of complexity is present or can be
naturally defined; in particular, it could be of interest to study games arising directly from real-life situations
and phenomena. We believe that the theory and results developed in this work vindicates the introduced
equilibrium notion as a tangible and robust mathematical concept of which one can hope to present analysis
in further games.

Related work. The present work is a contribution to the study of bounded rationality; surveys and general
references include [27, 17, 3]. The present article can in particular be taken as following a body of research
where players in games are represented using models of computation; here, we briefly describe some of this
research.

The study of machine games where players select automata representing strategies in repeated games
was initiated early in the study of bounded rationality. Thealready described work of Rubinstein, Abreu,
and Piccione studied Nash equilibria where players’ preferences take into account strategy complexity in
addition to repeated game payoff. The paper of Rubinstein [26] studied an equilibrium concept in the spirit
of subgame perfect equilibrium, obtaining structural results on such equilibria. Abreu and Rubinstein [1]
gave general structural results on equilibria and studied the payoff sets of certain 2-by-2 games; and, Pic-
cione and Rubinstein [25] studied equilibria in repeated extensive games. Banks and Sundaram [4] studied a
equilibrium notion similar to that considered in these papers, but focused on a “transitional” notion of strat-
egy complexity that accounts for the amount of opponent monitoring required, and can differentiate among
strategies with the same number of states. Kalai and Stanford [18] gave a characterization of the number-
of-states complexity measure for automata via an analog of the Myhill-Nerode theorem, and study subgame
perfect equilibria in infinitely repeated games from the viewpoint of this measure. A number of works
studied repeated games played by finite automata where bounds on the strategy complexity are imposed
exogenously, including the articles of Neyman [20], Ben-Porath [6], Papadimitriou and Yannakakis [24],
and Neyman [21]; one focus of study is the set of payoffs sustainable in equilibrium. Gilboa [13], Papadim-
itriou [23], and Ben-Porath [5] studied the computational complexity of problems involving the computation
of best response automata. Spiegler [29, 30] presented equilibrium notions motivated by the idea that players
may need to justify their strategies; he modeled players as finite-state automata.

Another line of work studies games where players must employcomputable strategies. Some of the
initial work explored basic consequences of this modeling and invokes notions and ideas from computabil-
ity theory, including the contributions of Binmore [8, 9], Canning [10], and Anderlini [2]. Megiddo and
Wigderson [19] presented results on games played by Turing machines where the number of states is re-
stricted. Howard [16], Tennenholtz [31], and Fortnow [11] showed existence of equilibrium and folk the-
orem style results by making use of self-reference ideas. Gossner [14] studied repeated games played by
polynomial-time Turing machines, invoking cryptographicassumptions to obtain results on the equilibria
achievable under public communication.
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More recent work includes the following. A framework for games where the actions have associated
costs was proposed and studied by Ben-Sasson, Kalai, and Kalai [7]. Halpern and Pass [15] presented and
studied a machine game on Turing machines where utilities can be a function of machine complexities in
addition to the action profile; among other issues, they study existence of equilibria and notions of protocol
security. Fortnow and Santhanam [12] introduced and studied a machine game model where players’ actions
are probabilistic Turing machines that output actions in anunderlying game; the payoff associated with a
machine is discounted by the computation time used to produce actions. Their results include connections
between the existence of Nash equilibria in the so-called factoring game and the computatoinal complexity
of factoring, and general sufficient conditions for the existence of equilibria.

2 Preliminaries

In this section, we review some basic notions to be used. Our notation and terminology are standard, and for
the most part follow typical conventions such as those described in the text by Osborne and Rubinstein [22].
A strategic gameis a tuple(N, (Ai), (�i)) consisting of a setN = {1, . . . , n} of players, a nonempty set
Ai of actions for each playeri ∈ N , and a preference relation�i defined onA = ×j∈NAj for each player
i ∈ N . For the most part, we will focus on two-player strategic games where the preference relations are
specified by payoff functionsui : Ai → R. Recall that aNash equilibriumof a strategic game(N, (Ai), (�i

)) is a profilea∗ ∈ A of actions such that for alli ∈ N and for allai ∈ Ai, it holds that(a∗−i, ai) �i

(a∗−i, a
∗
i ).

For our purposes in this paper, aconvex combinationof vectorsx1, . . . , xd ∈ R
m is a vector of the form

α1x1 + · · ·+ αdxd where theαn arerational coefficients with
∑d

n=1 αn = 1 and0 ≤ αn ≤ 1 for eachn.
We will make use of the following payoff notions. LetG = (N, (Ai), (ui)) be a strategic game. A

feasible payoff profileof G is a convex combination of the vectors{u(a) | a ∈ A}. We define playeri’s
minmax payoff, denotedvi, to be the lowest payoff that the other players can force uponplayer i, that is,
vi = mina−i∈A−i

maxai∈Ai
ui(a−i, ai). A feasible payoff profilew ∈ R

n of G is calledenforceableif
vi ≤ wi for all i ∈ N , and is calledstrictly enforceableif vi < wi for all i ∈ N . See Osborne and
Rubinstein [22, Section 8.5] for more information on these notions.

3 Lean equilibrium

We define acomplexity orderon a set of actionsAi to be a binary relation onAi. We will consider games
where each playeri ∈ N has a complexity orderEi associated to his set of actionsAi; the intended
interpretation is thatbi Ei ai if player i considers the actionbi to have the same complexity as or lower
complexity than actionai. In such games, forai, bi ∈ Ai, we will write bi ⊳ ai to denote thatbi E ai holds
andai E bi does not hold. Also, fora, b ∈ A, we will write bE a to denote that for alli ∈ N , it holds that
bi Ei ai. We remark that in studying machine games, each complexity order that we consider arises from
associating machines with elements in a total order; however, for broadest applicability, the results in this
section (in particular, Proposition 3.2) are presented formore general settings.

Definition 3.1 LetG = (N, (Ai), (�i)) be a strategic game with complexity orders(Ei). A profile a∗ ∈ A
of actions is alean equilibriumof the gameG if a∗ is a Nash equilibrium, but for alli ∈ N and for all
ai ∈ Ai, if ai ⊳ a∗i , then(a∗−i, ai) is not a Nash equilibrium. �

We now present a basic property of lean equilibrium, namely,the existence of lean equilibria under the
assumption of the existence of Nash equilibria and a mild assumption on the complexity orders.
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Proposition 3.2 Suppose thatG = (N, (Ai), (�i)) is a strategic game with complexity orders(Ei) that are
transitive and are well-founded in the sense that for alli ∈ N and for all ai ∈ Ai, there exists a bound on
the length of a chainc1 ⊳i · · · ⊳i ck ⊳i ai. Then for every Nash equilibriuma∗ of G, there exists a lean
equilibriumb ∈ A such thatbE a∗.

Proof. For an actionai from an action setAi, letC(ai) denote the maximum lengthk of a chainc1⊳i · · ·⊳i

ck ⊳i ai. For an action profilea ∈ A, defineC(a) =
∑

i∈N C(ai). We prove the result by induction on
C(a∗).

For the base case, whereC(a∗) = 0, the profilea∗ is a lean equilibrium, as for alli ∈ N and for all
ai ∈ Ai, it does not hold thatai⊳ia

∗
i . For the inductive case, suppose thatC(a∗) > 0. If the profilea∗ is not

a lean equilibrium, then there existsi ∈ N and there existsai ∈ Ai such that(a∗−i, ai) is a Nash equilibrium
andai⊳ia

∗
i . We have thatC(a∗−i, ai) < C(a∗); by applying the induction hypothesis to(a∗−i, ai), we obtain

a lean equilibriumb ∈ A such thatb E (a∗−i, ai). We have(a∗−i, ai) E a∗ and thus by transitivity ofE, it
holds thatbE a∗. �

One of the equilibrium notions studied by Abreu and Rubinstein [1] is Nash equilibrium with respect to
the lexicographical ordering where payoff is prioritized over complexity: one profilea∗ is strictly preferred
by a player to another profileb∗ if a∗ gives the player a strictly higher payoff thanb∗, or if a∗ gives the player
the same payoff asb∗ but the player has strictly lower complexity ina∗. We formalize this equilibrium notion
and show that each such equilibrium is a lean equilibrium, asfollows.

Definition 3.3 LetG = (N, (Ai), (�i)) be a strategic game with complexity orders(Ei). A profile a∗ ∈ A
of actions is anAbreu-Rubinstein equilibriumof the gameG if for all i ∈ N and for allai ∈ Ai, (1)
(a∗−i, ai) �i (a

∗
−i, a

∗
i ) and (2)(a∗−i, a

∗
i ) �i (a

∗
−i, ai) implies thatai ⊳i a

∗
i does not hold. �

Condition (1) implies that the profilea∗ is a Nash equilibrium, and condition (2) essentially says that
there is no deviationai for playeri that yields the same utility and is simpler thana∗i .

Proposition 3.4 LetG = (N, (Ai), (�i)) be a strategic game with complexity orders(Ei). Every Abreu-
Rubinstein equilibrium is a lean equilibrium.

Proof. Let a∗ be an Abreu-Rubinstein equilibrium. Clearly, the profilea∗ is a Nash equilibrium. Now
consider a playeri ∈ N and an actionai ∈ Ai. We want to show that ifai ⊳ a∗i , then(a∗−i, ai) is not a Nash
equilibrium. By the definition of Abreu-Rubinstein equilibrium, if ai ⊳ a∗i , then(a∗−i, ai) ≺i (a∗−i, a

∗
i ),

implying, as desired, that(a∗−i, ai) is not a Nash equilibrium.�

In light of this proposition, all examples of Abreu-Rubinstein equilibria are examples of lean equilibria.
For instance, the Abreu-Rubinstein equilibria of certain two-player games are studied in [1, Section 5]; all
examples given there are examples of lean equilibria. On theother hand, later in this paper, we will encounter
examples of lean equilibria that are not Abreu-Rubinstein equilibria (for instance, in Examples 5.5 and 5.9).

4 Machine games

In this section, we introduce the machine games whose lean equilibria we will study, and some associated
notions. These games involve choosing machines which implement strategies for repeated games, and have
been previously studied, as discussed in the introduction.For more background on strategies as machines
and for some simple examples, we refer the reader to Osborne and Rubinstein [22, Section 8.4 and Chapter
9].
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Machines and machine games. Let G = (S1, S2, u1, u2) be a two-person game in strategic form, where
Si is a finite set of actions for playeri, andui : S1 × S2 → R is the payoff function for playeri.

A machinefor playeri is a four tupleMi = (Qi, q
1
i , λi, δi) whereQi is a finite set ofstates, q1i ∈ Qi is

thestart stateor initial state, λi : Qi → Si is theoutput function, andδi : Qi × Sj → Qi is thetransition
function; here,Sj denotes the action set of the other player. We emphasize thatin this paper, we consider
only machines that conform to this definition, namely, machines which have a finite number of states and
which are deterministic. We useMi to denote the set of all machines for playeri, relative to a gameG. We
often usei andj to denote the two different players.

A pair of machines(M1,M2) naturally induces a sequence(qt)t≥1 of state pairs and a sequence(st)t≥1

of action pairs (G-outcomes), defined inductively as follows:

q1 = (q11 , q
1
2)

st = (λ1(q
t
1), λ2(q

t
2)) for t ≥ 1

qt = (δ1(q
t−1
1 , st−1

2 ), δ2(q
t−1
2 , st−1

1 )) for t > 1

Each of the sequences(qt), (st) is ultimately periodic; we say that a sequence(bt)t≥1 is ultimately periodic
if there exist numbersn, p ≥ 1 such that for allm ≥ n, it holds thatbm = bm+p.

The payoff given to each machine is computed by the limit of means. For a sequence of action pairs(st),
we definerTi (s

t) to be the average payoff to playeri over the firstT elements of the sequence, that is, we de-
finerTi (s

t) = 1
T

∑T
k=1 ui(s

k). We defineri(st) to be the corresponding limit of the average payoffs, that is,
ri(s

t) = limT→∞ rTi (s
t); note that we will make use of this function only on ultimately periodic sequences

(st), and so the limit will always exist. For a pair of machines(M1,M2), we definerTi (M1,M2) = rTi (s
t)

andri(M1,M2) = ri(s
t), where here(st) denotes the sequence of action pairs induced by the machines

(M1,M2). Our focus will be on the machine game defined byGm = (M1,M2, r1, r2).

Paths and cycles. With respect to a two-player game, apath in a machineMi is a sequencep1
a1→ p2

a2→
· · ·

am→ pm+1 wherep1, . . . , pm+1 ∈ Qi are states,a1, . . . , am ∈ Sj are actions, andδi(pk, ak) = pk+1 for
eachk ∈ {1, . . . ,m}. A cycle is a path wherep1 = pm+1, and is said to be asimple cycleif the states
p1, . . . , pm are pairwise distinct. For a pathP in M1, the payoff toM1, denoted byr1(P ), is defined as
1
m

∑m
k=1 u1(λ1(pk), ak); and, the payoff toM2, denoted byr2(P ), is defined as1

m

∑m
k=1 u2(λ1(pk), ak).

For a pathP in M2, the payoffsr1(P ) andr2(P ) are defined similarly. It is known and straightforward to
verify that, in the machine gameGm, a payoff-maximizing response for playeri to a machineMj has payoff
equal to the maximum ofri(C) over all cycles in the machineMj reachable from the initial state, which is
equal to the maximum ofri(C) over all such cycles in the machineMj that are simple.

Let us define asubcycleof a cyclep1
a1→ p2

a2→ · · ·
am→ pm+1 to be a cycle that has either the form

pn
an→ pn+1

an+1

→ · · · pn′ or the formpn′

an′

→ pn′+1

an′+1

→ · · ·
am→ pm+1 = p1

a1→ p2
a2→ · · · pn with n, n′

satisfying1 ≤ n ≤ n′ ≤ m.

Complexity measures. We will study three complexity measures on machines. The first is the number of
states|Qi| of a machineMi. We define the other two in the following way. We define athreat stateof a
machineMi to be a stateq such thatδi(q, s) = q for all s ∈ Sj and wheremaxaj∈Aj

uj(λi(q), aj) is the
minmax payoff of the other playerj, that is, whereλi(q) forces the other playerj to his minmax payoff. We
define anormal stateof a machineMi to be a state that is not a threat state. We useRi to denote the set of
all normal states of a machineMi, and we use||δi|| to denote the number ofnormal transitions, by which
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we mean transitions between normal states:

||δi|| = |{(qi, sj) ∈ Ri × Sj | δi(qi, sj) ∈ Ri}|.

The two other complexity measures that we will study are the number of normal states, denoted by|R|,
and the number of normal transitions, denoted by||δ||. We will speak of lean equilibria with respect to,
for instance, the measure|R|, by which we mean a lean equilibria where the complexity order for playeri
is given byMi Ei M

′
i if and only if |Ri| ≤ |R′

i|; here,Ri andR′
i denote the sets of normal states of the

machinesMi andM ′
i , respectively.

Relative to a pair of machines(M1,M2), for eachi ∈ {1, 2}, we define the set ofplayed statesfor
playeri, denoted byPi, to be the set{qti | t ≥ 1}; here,(qt) denotes the sequence of state pairs induced by
(M1,M2). We identify the following facts concerning played states,which we will sometimes use tacitly in
the sequel.

Proposition 4.1 Let (M1,M2) be a pair of machines having a strictly enforceable payoff profile. For each
playeri ∈ {1, 2}:

• Every played state is a normal state, and thus it holds that|Pi| ≤ |Ri|.

• The number of played states lower bounds the number of normaltransitions: |Pi| ≤ ||δi||.

The first claim follows from the assumption that the payoff profile is strictly enforceable, which implies that
neither player ever plays a threat state. The second claim follows from the first and the observation that
every played state has at least one transition to another played state.

Equivalence relations. We now introduce a number of equivalence relations, each of which is defined
over the set of positive integers, that will be used in our analysis and description of lean equilibria. Let
(st) and(qt) be the sequences of action pairs and state pairs, respectively, induced by a pair of machines.
We define the equivalence relation≡s by: t ≡s t′ if and only if for all n ≥ 0, it holds thatst+n = st

′+n.
Similarly, we define the equivalence relation≡q by: t ≡q t′ if and only if for all n ≥ 0, it holds that
qt+n = qt

′+n. However, from the determinism of the machines, it is straightforward to verify thatt ≡q t′

if and only if qt = qt
′

; we will make use of this simpler characterization. As the sequence(st) is equal
to the sequence(qt) mapped under the functions(λ1, λ2), it is clear that ift ≡q t′, thent ≡s t′; viewing
these equivalence relations as sets of pairs, we can write≡q⊆≡s. We define the equivalence relations≡i

for i ∈ {1, 2} by t ≡i t
′ if and only if qti = qt

′

i . It is clear thatt ≡q t
′ if and only if t ≡1 t

′ andt ≡2 t
′. For a

valuet ≥ 1, we will use[t]s to denote the≡s-equivalence class oft, and similarly for the other equivalence
relations.

5 Establishing lean equilibrium: examples and theory

In this section, we give techniques for establishing that outcomes of the machine game are at lean equi-
librium, and illustrate their use by presenting a number of examples. We begin by defining some notions;
the definitions and also the later results are relative to a gameG = (S1, S2, u1, u2) and its corresponding
machine gameGm, although in what follows we will generally not mention the gamesG andGm explicitly.

By a finite action sequence, we mean a finite-length sequenceσ = σ1 . . . σk of action pairs (elements
of S1 × S2). For each playeri ∈ {1, 2}, we define the payoff of a finite action sequenceσ asri(σ) =
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(ui(σ
1) + · · · + ui(σ

k))/k. We say that a finite action sequenceσ is strictly enforceableif its payoff
profile (r1(σ), r2(σ)) is strictly enforceable. Each strictly enforceable finite action sequenceσ naturally
induces a pair of machines(Mσ

1 ,M
σ
2 ), where for each playeri ∈ {1, 2}, the machineMσ

i is defined to
havek + 1 states:k normal states, which we denote as{1, . . . , k}, and a threat state. The output function
λi is defined withλi(n) = σn

i for all n ∈ {1, . . . , k}. The transition functionδi hasδi(n, σn
j ) = n + 1

for n ∈ {1, . . . , k − 1}, andδi(k, σk
j ) = 1; all other transitions out of the normal states go to the threat

state. We use〈σ〉 to denote the infinite sequence obtained by repeatingσ, that is, the sequenceσσ . . . =
σ1 . . . σkσ1 . . . σk . . .. The sequence of action pairs generated by(Mσ

1 ,M
σ
2 ) is clearly equal to〈σ〉. This

property is a motivation for the definition of the machines: the transitions of the machines are designed so
that the machines together will generate the sequence〈σ〉, but each machine will “punish” any deviation
from this sequence by moving to and settling upon its threat state. We call a machineM a σ-machine
if for any best responseM ′ to M , the pair(M,M ′) generates the sequence〈σ〉; clearly, for any strictly
enforceable sequenceσ, the machinesMσ

1 andMσ
2 areσ-machines.

We now present the first concepts and results that will allow us to give examples of lean equilibria.
Relative to a sequence(st) of action pairs we say that two time pointst1, t2 ≥ 1 arei-incompatibleif there
existsm ≥ 0 such that (1) for alln with 0 ≤ n < m, it holds thatst1+n

j = st2+n
j , and (2)st1+m

i 6= st2+m
i .

We say that two equivalence classesT1, T2 of ≡s arei-incompatibleif there existt1 ∈ T1 andt2 ∈ T2 such
that t1 andt2 arei-incompatible; observe that, in fact, if equivalence classesT1 andT2 arei-incompatible,
then for allt1 ∈ T1, t2 ∈ T2 it holds thatt1 andt2 arei-incompatible.

Proposition 5.1 Let (qt), (st) be the state sequence and action sequence induced by a pair ofmachines. If
two≡s-equivalence classesT1, T2 are i-incompatible, then for allt1 ∈ T1, t2 ∈ T2, it holds thatqt1i 6= qt2i .

This proposition follows immediately from the definitions of (qt) and(st).
We say that a finite action sequenceσ is i-irreducible if for any two distinct valuest1, t2 ∈ {1, . . . , k},

it holds that[t1]s and[t2]s arei-incompatible with respect to(st) = 〈σ〉.

Theorem 5.2 Letσ be a strictly enforceable finite action sequence of lengthk, and letMj be aσ-machine.
If σ is i-irreducible, then then there arek ≡s-equivalence classes,[1]s, . . . , [k]s; and, for any best response
Ni toMj with |Pi| ≤ k, the pair(Ni,Mj) has≡i equal to≡s.

Proof. By the definition ofi-irreducibility and the definition of≡s, we have that there arek ≡s-equivalence
classes,[1]s, . . . , [k]s. Consider a best responseNi to Mj . SinceMj is aσ-machine, the pair(Ni,Mj)
must produce an action sequence(st) equal to〈σ〉. By Proposition 5.1, noi-state is played in two different
≡s-equivalence classes. Since by hypothesis the number of states played byi is less than or equal tok, we
have that[1]s, . . . , [k]s must be the equivalence classes of≡i, and hence that≡i is equal to≡s. �

In this section, we will give a number of examples involving the Prisoner’s Dilemma, which we take to
be the following game:

C D
C (2, 2) (-1, 3)
D (3, -1) (0, 0)

Note that, in this game, each of the two players has a minmax payoff of 0. For an integerN ≥ 0 and an action
pair (s1, s2), we will use the notationN · (s1, s2) to denote the finite action sequence containingN copies
of the pair(s1, s2). For instance,2 ·(C,D) represents the sequence(C,D), (C,D) and2 ·(D,C), 3 ·(C,D)
represents the sequence(D,C), (D,C), (C,D), (C,D), (C,D).
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Example 5.3 LetNC , ND ≥ 1 be constants, and consider the finite action sequenceσ = NC · (C,C), ND ·
(D,D) in the Prisoner’s Dilemma. Clearly, the sequenceσ is strictly enforceable, and has lengthk =
NC + ND. We show that, with respect to the measures|R| and ||δ||, the pair(Mσ

1 ,M
σ
2 ) is an Abreu-

Rubinstein equilibrium, and hence a lean equilibrium (by Proposition 3.4), as follows.
First, we show that the sequenceσ is both 1-irreducible and2-irreducible. We begin by arguing1-

irreducibility. Let t1, t2 ∈ {1, . . . , k} be two distinct values, and assume without loss of generality that
t1 < t2. We show thatt1 andt2 are1-incompatible with respect to〈σ〉. If σt1

1 6= σt2
1 , then clearlyt1 and

t2 are1-incompatible. In the case thatσt1
1 = σt2

1 , by the definition ofσ, there exists a minimum value
m ≥ 1 such thatσt2

1 6= 〈σ〉t2+m
1 ; observe thatσt1

1 = 〈σ〉t1+m
1 . For all n with 0 ≤ n < m, we have

〈σ〉t1+n
2 = 〈σ〉t2+n

2 = σt2
1 , and so we have thatt1 and t2 are1-incompatible. We thus have thatσ is 1-

irreducible; by an argument that is identical up to swappingthe players, we also have thatσ is 2-irreducible.
We now argue that the pair(Mσ

1 ,M
σ
2 ) is an Abreu-Rubinstein equilibrium with respect to|R| and||δ||.

Observe that for these machines, we have|R1| = |R2| = ||δ1|| = ||δ2|| = k. We show by contradiction that
there is no player1 best responseN1 to Mσ

2 having|R1| < k or ||δ1|| < k. Suppose that there is; then the
payoff profile of(N1,M

σ
2 ) must be(r1(σ), r2(σ)), which is strictly enforceable, and by Proposition 4.1,

it holds that|P1| < k. By the1-irreducibility of σ and Theorem 5.2, it holds that≡1 is equal to≡s and
hence that|P1| = k, contradicting that|P1| < k. It can similarly be shown that there is no player2 best
responseN2 to Mσ

1 having |R2| < k or ||δ2|| < k. We have thus argued that the pair(Mσ
1 ,M

σ
2 ) is an

Abreu-Rubinstein equilibrium with respect to|R| and||δ||.
In the Prisoner’s Dilemma, it can similarly be shown that forconstantsNCD, NDC ≥ 1, the finite action

sequenceσ = NCD ·(C,D), NDC ·(D,C) is both1-irreducible and2-irreducible, and that whenσ is strictly
enforceable, the pair(Mσ

1 ,M
σ
2 ) is an Abreu-Rubinstein equilibrium with respect to both|R| and||δ||. More

generally, letG = (S1, S2, u1, u2) be a game, letβ1 : {1, . . . , b} → S1 andβ2 : {1, . . . , b} → S2 be
injective mappings, and letN1, . . . , Nb ≥ 1 be constants, withb ≥ 2. By arguments similar to those given
above, the finite action sequenceσ = N1 · (β1(1), β2(1)), . . . , Nb · (β1(b), β2(b)) can be shown to be both
1-irreducible and2-irreducible, and whenσ is strictly enforceable, the pair(Mσ

1 ,M
σ
2 ) can be shown to be

an Abreu-Rubinstein equilibrium with respect to|R| and||δ||. �

We now introduce another technique for establishing lean equilibria. Let σ be a finite action sequence.
Define arotation of σ = σ1 . . . σk to be a lengthk sequence of the formσnσn+1 . . . σkσ1σ2 . . . σn−1 for n
with 1 ≤ n ≤ k. Let i ∈ {1, 2} be one of the players and letB ⊆ Si. We say thatσ is (i, B)-rigid if for every
rotationρ of σ and everyn with 1 ≤ n < k, whenρ1i , ρ

n+1
i ∈ B, it holds that(uj(ρ1)+ · · ·+uj(ρn))/n 6=

rj(σ).

Theorem 5.4 Let i ∈ {1, 2} andB ⊆ Si. Letσ be a strictly enforceable finite action sequence of lengthk,
let b be the number of elementsσn of σ with σn

i ∈ B, and letMj be aσ-machine. Ifσ is (i, B)-rigid, then
for any machineNi with |{q ∈ Pi | λi(q) ∈ B}| < b relative to(Ni,Mj), the pair(Ni,Mj) is not a Nash
equilibrium.

Proof. SinceMj is a σ-machine, if(st) is not equal to〈σ〉, thenNi is not a best response toMj and
(Ni,Mj) is not a Nash equilibrium, so we assume that(st) = 〈σ〉.

Consider the state pair sequence(q1+dk)d≥1. By the finiteness of the state sets of the machines, some
state pair must occur infinitely often in this sequence. Hence we can find time pointst1, t2 of the form1+dk
with t1 < t2 such thatqt1 = qt2 . The sequenceqt1 , qt1+1, . . . , qt2 determines a cycle

C = qt1i
s
t1
j
→ qt1+1

i

s
t1+1

j
→ · · · qt2i
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in Ni. By our choice oft1, t2 and the assumption that(st) = 〈σ〉, we haverj(C) = rj(Ni,M
σ
j ) = rj(σ).

By the hypothesis onB and b, among the sequence of statesqt1i , qt1+1
i , . . . , q

t1+(k−1)
i there must be

two indicest′ < t′′ with qt
′

i = qt
′′

i andλ(qt
′

i ) ∈ B. The sequence of statesqt
′

i , q
t′+1
i , . . . , qt

′′

i determine a
subcycleC ′ of C which, by(i, B)-rigidity, hasrj(C ′) 6= rj(C). We can viewC as the concatenation of the
subcycleC ′ with another subcycleC ′′. The valuerj(C) is the convex combination ofrj(C ′) andrj(C ′′);
sincerj(C ′) 6= rj(C), we haverj(C ′′) 6= rj(C). It must hold that one of the valuesrj(C ′), rj(C

′′) is
strictly greater thanrj(C). This implies that(Ni,Mj) is not a Nash equilibrium, as playerj could strictly
improve his payoff by deviating.�

Example 5.5 Consider, in the Prisoner’s Dilemma, a strictly enforceable payoffw that is the convex com-
bination of u(C,C) and u(C,D). We can writew = (NCC/N)u(C,C) + (NCD/N)u(C,D) where
NCC , NCD are integers, andN = NCC + NCD. Since the payoffw is strictly enforceable, we have
NCC > 0. We can assume thatNCC , NCD do not share any prime factors, for if they do share one, we can
divide both of them by the factor while preserving the value of w. Note that this assumption implies that
NCC andN do not share any prime factors.

Let σ = NCC · (C,C), NCD · (C,D). We will show that(Mσ
1 ,M

σ
2 ) is a lean equilibrium with respect

to |R| and||δ||. Note that the first player could preserve payoff but reduce complexity via a machine with
one state that always outputsC, a machine that has|R| = 1 and||δ|| = 2. Hence this pair isnot an Abreu-
Rubinstein equilibrium with respect to|R| whenN ≥ 2, nor with respect to||δ|| whenN ≥ 3. Along
these lines, observe that no two≡s-equivalence classes (for〈σ〉) are1-incompatible, since in the sequence
σ player1 always plays the same action.

We show thatσ is (1, {C})-rigid. We show this by contradiction; letρ be a rotation ofσ and letn be
such that1 ≤ n < N and(u2(ρ1) + · · · + u2(ρn))/n = w. This implies that for integersnCC , nCD with
0 ≤ nCC ≤ n, 0 ≤ nCD ≤ n, andnCC + nCD = n, we have(nCC/n)u(C,C) + (nCD/n)u(C,D) = w.
Sinceu(C,C) 6= u(C,D), we havenCC/n = NCC/N , implying thatNCCn = nCCN . This implies that
N > 1 dividesNCCn. SinceN andNCC do not share any prime factors, this implies thatN dividesn, a
contradiction ton < N . We have thus shown thatσ is (1, {C})-rigid.

Consider any machineN1 with |R1| < N or ||δ1|| < N . Such a machine must have|P1| < N , and
hence by Theorem 5.4, the pair(N1,M

σ
2 ) is not a Nash equilibrium. On the other hand, it is straightforward

to verify that the sequenceσ is 2-irreducible. Thus, for any machineN2 with |R2| < N or ||δ2|| < N , we
have|P2| < N and by Theorem 5.2, the machineN2 is not a best response toMσ

1 . We conclude that the
pair (Mσ

1 ,M
σ
2 ) is a lean equilibrium with respect to|R| and||δ||. �

Example 5.6 Consider, in the Prisoner’s Dilemma, a finite action sequence of the formσ = kCD·(C,D), kDD ·
(D,D), kDC(D,C), wherekCD, kDD, kDC ≥ 1 andσ is strongly enforceable. We usek to denote the
lengthkCD + kDD + kDC of σ. We show that the pair(Mσ

1 ,M
σ
2 ) is a lean equilibrium with respect to|R|

and||δ||.
Let N1 be a machine for player1. Suppose thatN1 is a best response toMσ

2 . Then the pair(N1,M
σ
2 )

produces the action sequence(st) = 〈σ〉. We show that ifN1 has|R1| < k or ||δ1|| < k, then the pair
(N1,M

σ
2 ) is not a Nash equilibrium.

Let QC denote the states ofN1 that outputC, and letQD denote the normal states ofN1 that output
D. It is straightforward to verify that for any two distinctt1, t2 ∈ {1, . . . , kCD}, the classes[t1]s, [t2]s are
1-incompatible, and hence, we have|QC | ≥ kCD by Proposition 5.1. We next show thatσ is (1, {D})-rigid.
Consider any rotationρ of σ and a valuen with 1 ≤ n < k andρ11 = ρn+1

1 = D; in one of the sequences
ρ′ = ρ1 . . . ρn, ρ′′ = ρn+1 . . . ρk, player1 uses only the actionD and hence one of the valuesr2(ρ′), r2(ρ′′)
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is strictly below0. On the other hand,r2(σ) is strictly above0 and can be written as the convex combination
of r2(ρ′) andr2(ρ′′), and so neither ofr2(ρ′), r2(ρ′′) is equal tor2(σ), and we have thatσ is (1, {D})-rigid.
Now suppose thatN1 has|R1| < k or ||δ1|| < k. It follows that |P1| < k; since|QC | ≥ kCD, this implies
that |QD| < kDD + kDC . By Theorem 5.4, we have that(N1,M

σ
2 ) is not a Nash equilibrium.

In a similar way, it can be shown that for any best responseN2 toMσ
1 , if N2 has|R2| < k or ||δ2|| < k,

then the pair(Mσ
1 , N2) is not a Nash equilibrium. We thus have that(Mσ

1 ,M
σ
2 ) is a lean equilibrium with

respect to|R| and||δ||. �

So far, our discussion has focused on the complexity measures |R| and||δ||. We now turn our attention
to the complexity measure|Q|.

Example 5.7 As in the previous example, letσ be a finite action sequence of the formσ = kCD·(C,D), kDD ·
(D,D), kDC(D,C) for the Prisoner’s Dilemma, wherekCD, kDD, kDC ≥ 1 andσ is strongly enforceable;
let k denote the lengthkCD + kDD + kDC of σ. We give a pair of machines(M1,M2) where each machine
hask states that is a lean equilibrium with respect to|Q|.

We define the machinesM1,M2 as follows. Each machine has state setQ1 = Q2 = {1, . . . , k}, initial
statesq11 = q12 = 1, and has output function defined byλi(n) = σn

i for all n ∈ Qi. For the statesn ∈ Qi

whereσn
j = D, we defineδi(n,C) = δi(n,D) = n+ 1, wherek + 1 is understood to represent the state1.

For the statesn ∈ Qi whereσn
j = C, we defineδi(n,C) = n + 1 andδi(n,D) = q∗i whereq∗i is the first

state whereσn
j = C, that is,q∗1 = kCD + kDD + 1 andq∗2 = 1. The statesq∗i can be thought of as “internal

threat” states. This construction is similar to that of [1, Page 1276, Case B].
We now observe that in each machineMi, the simple cycleCi that maximizes payoff to the other player

j is the cycle naturally corresponding toσ, that is,1
σ1
j

→ 2
σ2
j

→ · · · k
σk
j
→ 1; this cycle hasrj(Ci) = rj(σ). This

is clearly the unique payoff-maximizing simple cycle of length k. Also, in all shorter simple cycles, player
i only defects, yielding playerj a payoff strictly less than0.

LetNi be a best response toMj . By the observation in the previous paragraph, the sequence(qtj) must,
after some finite amount of time, be equal to the sequence1, . . . , k repeated infinitely. It is hence possible
to modify the machineNi, by changing its initial state to a state that is played against the stateq1j = 1 in the
mentioned infinite repetition, to obtain a machineN ′

i that, along withMj, generates the sequence〈σ〉, and
has the same number of states asNi. Now, if N ′

i andNi have strictly fewer thank states, then againstMj

they have strictly fewer thank played states, and then by arguing as in Example 5.6, the pair(N ′
i ,Mj) is not

a Nash equilibrium, from which it follows that the pair(Ni,Mj) is not a Nash equilibrium. We conclude
that(M1,M2) is a lean equilibrium with respect to|Q|. �

We now establish a theorem that will help us to establish leanequilibrium results with respect to|Q|.
Let us say thatσ is i-foolableif there exists a rotationρ = ρ1 . . . ρk of σ and an actions′ ∈ Sj such that for
all n with 1 ≤ n ≤ k, it holds thatrj(ρnρn+1 . . . ρk−1ρ′) > rj(σ), whereρ′ is the pair with playeri action
equal toρki and playerj action equal tos′.

Theorem 5.8 Let σ be a strictly enforceable finite action sequence, and letMj be aσ-machine. Ifσ is
i-foolable (viaρ), andNi is a machine such that in(Ni,Mj) it holds thatPi = Qi (that is, all states inNi

are played), then(Ni,Mj) is not a Nash equilibrium.

Proof. If Ni is not a best response toMj , we are done, so we assume thatNi is a best response toMj , in
which case we have(st) = 〈σ〉. Let qi be any state ofQi. We claim that there is a pathP in Ni from qi to a
stateq′i ∈ Qi such thatrj(P ) > rj(σ). This suffices, since it implies thatMj is not a best response toNi.

11



We reason as follows. By hypothesis, the stateqi is played and hence there existst ≥ 1 with qi = qti .
Since(st) = 〈σ〉, there existsn with 1 ≤ n ≤ k whereρnρn+1 . . . ρk = stst+1 . . . st+(k−n). The desired
pathP starts atqi and has actionsρnj . . . ρ

k−1
j s′, wheres′ ∈ Sj is the action from the definition ofi-foolable;

by that definition, we haverj(P ) > rj(σ). �

Example 5.9 We return to the class of sequences considered in our first example, Example 5.3. Let
NC , ND ≥ 1 be constants, and consider the finite action sequenceσ = NC · (C,C), ND · (D,D) in
the Prisoner’s Dilemma; the sequenceσ is strictly enforceable, and has lengthk = NC +ND. We show that
the pair(Mσ

1 ,M
σ
2 ) is a lean equilibrium with respect to|Q|. Note that this pair isnot an Abreu-Rubinstein

equilibrium with respect to|Q|, since each of the machines has a threat state that is never played, and hence
each of the machines could be simplified without sacrificing payoff by removing this threat state.

To show that the described pair is a lean equilibrium, we showthat, for each playeri, whenNi is a best
response toMσ

j with k or fewer states, the pair(Ni,M
σ
j ) is not a Nash equilibrium. By the argumentation

in Example 5.3, any such best responseNi must have at leastk played states. Hence in such a best response
Ni, all states are played; by Theorem 5.8, it thus suffices to show that the sequenceσ is i-foolable. It is
straightforward to verify thatσ is i-foolable via the rotationρ = ND · (D,D), NC · (C,C) and the action
D ∈ Sj. �

Example 5.10 We reconsider the sequences treated in Example 5.5. Letσ = NCC · (C,C), NCD · (C,D),
whereNCC > 0 andNCC , NCD do not share any prime factors. We show that the pair(Mσ

1 ,M
σ
2 ) is a lean

equilibrium with respect to|Q|. This pair is not an Abreu-Rubinstein equilibrium with respect to|Q|: the
first machine could be simplified to a machine that only outputsC without giving up payoff, and the second
machine could eliminate its threat state without giving up payoff.

We show that the sequenceσ is both1-foolable and2-foolable. We have1-foolability by the rotation
(NCC − 1) · (C,C), NCD · (C,D), (C,C) and the actionD ∈ S2, and we have2-foolability by the rotation
NCD · (C,D), NCC · (C,C) and the actionD ∈ S1.

We can now argue that the pair(Mσ
1 ,M

σ
2 ) is a lean equilibrium with respect to|Q|. The structure of the

argument is similar to that of the previous example. Consider a playeri and a best responseNi to Mσ
j with

k or fewer states. It is shown in Example 5.5 that ifNi has strictly fewer thank played states, then(Ni,M
σ
j )

is not a Nash equilibrium. In the case thatNi has exactlyk played states, all of its states are played and then
(Ni,M

σ
j ) is not a Nash equilibrium by Theorem 5.8. �

The results in the last three examples demonstrate different types of payoffs that are sustainable by lean
equilibria with respect to|Q| in the repeated Prisoner’s Dilemma. In particular, Example5.7 shows that
any strictly enforceable payoff profile in the interior of the convex hull of the pointsu(C,D), u(D,D), and
u(D,C), is a payoff attainable by such a lean equilibrium. These results can be contrasted strongly with
the results of Abreu and Rubinstein [1, Section 5] showing that the payoffs of Abreu-Rubinstein equilibria
in this context are the strictly enforceable payoffs that are convex combinations of the diagonals, that is,
convex combinations ofu(C,C) andu(D,D) and convex combinations ofu(C,D) andu(D,C).

6 Structure of lean equilibria

In this section, we present results describing the structure of lean equilibria in machine gamesGm =
(M1,M2, r1, r2) with respect to the complexity measures|R| and||δ||. Our first result demonstrates that
the sequence(qt) begins with a sequence of state pairs where each state is usedonly once, followed by a
state pair where each state is used infinitely often.
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Lemma 6.1 (1-∞ Lemma) Suppose that(M1,M2) is a lean equilibrium ofGm with respect to one of the
complexity measures|R|, ||δ|| having a strictly enforceable payoff profile. Letu ≥ 1 be the minimum value
such that one of the statesqu1 , qu2 is used later in the sequence(qt), that is, such that there existsi ∈ {1, 2}
such thatqui ∈ {qti | t > u}. Then, for eachi ∈ {1, 2}, the statequi appears infinitely often in the sequence
(qti).

Proof. We prove this by contradiction. Suppose one or both of the statesqu1 , qu2 appears finitely often in the
respective sequence(qti). Let Ti(q) denote the set{t | q = qti}, that is, the points in time where playeri
plays stateq. Observe thatT1(q

u
1 ) ∩ T2(q

u
2 ) = {u}, for if this intersection contains two distinct elements,

there must be infinitely many pointst such thatqt = qu.
We claim that the players can be labelled asi′, i′′ in such a way that: (1)Ti′(q

u
i′) is finite, and (2) there

existsv ∈ Ti′′(q
u
i′′) such thatv > maxTi′(q

u
i′).

We establish this claim as follows. If both setsT1(q
u
1 ), T2(q

u
2 ) are finite, setv = max(T1(q

u
1 )∪ T2(q

u
2 ))

and leti′′ be the unique element in{1, 2} such thatv ∈ Ti′′(q
u
i′′). If one of the setsT1(q

u
1 ), T2(q

u
2 ) is finite

and the other is infinite, leti′ be the player in{1, 2} such thatTi′(q
u
i′) is finite; sinceTi′′(q

u
i′′) is infinite, it is

possible to select a valuev satisfying condition (2).
For the sake of notation, we now assume thati′ = 1 andi′′ = 2. We want to show that(M1,M2) is not

a lean equilibrium. If(M1,M2) is not a Nash equilibrium, we are done, so we assume that it is.Starting
from M1, we define a new machineM ′

1 as follows. We setδ′1(q
u−1
1 , su−1

2 ) = qv1 , or, in the case thatu = 1,
we set the initial state ofM ′

1 to beqv1 . We then have that

q11
s12→ q21

s22→ · · · qu−1
1

su−1
2→ qv1

is a path inM ′
1. We modifyM ′

1 so that, other than the transitions in this path, there are notransitions to the
statesqv1 , . . . , q

u−1
1 ; we reroute the transitions to these states to a threat state. We also eliminate the statequ1 ,

rerouting the transitions to it to a threat state. The state sequence induced by the machine pair(M ′
1,M2)

is q1, q2, . . . , qu−1, qv, qv+1, qv+2, . . . and hence the payoffs to each of the two players is the same as in
(M1,M2).

We show that(M ′
1,M2) is a Nash equilibrium by arguing that player2 cannot obtain a strictly better

payoff. LetC be any cycle inM ′
1. None of the statesq11, . . . , q

u
1 can appear inC; since all modified

transitions involved these states, the cycleC is also a cycle ofM1. AsM2 was a best response toM1, it is a
best response toM ′

1.
We now need only argue thatM ′

1 is simpler thanM1. In (M1,M2), the statequ1 is a played state ofM1,
so by Proposition 4.1, we have|R′

1| < |R1|. Also, the statequ1 contributes at least1 to the value||δ1||, a
contribution not present in the calculation of||δ′1||, so||δ′1|| < ||δ1||. �

Lemma 6.2 Suppose that(M1,M2) is a lean equilibrium ofGm with respect to one of the complexity
measures|R|, ||δ|| having a strictly enforceable payoff profile, and suppose that ≡i is contained in≡s (for
somei ∈ {1, 2}). Then, the equivalence relations≡s, ≡i are equal.

Proof. We prove this by contradiction. Suppose there are two values t′′ < t′ such thatt′′ ≡s t
′ but t′′ 6≡i t

′.
Without loss of generality, we assume thati = 1, and so we haveqt

′′

1 6= qt
′

1 . We want to show that(M1,M2)
is not a lean equilibrium; if(M1,M2) is not a Nash equilibrium, we are done, so we assume that it is.

DefineM ′
1 to be the machine equal toM1, but where the stateqt

′′

1 is eliminated and all transitions toqt
′′

1

from states inR1 \ {q
t′′

1 } are changed to transitions toqt
′

1 .
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The machineM ′
1 is simpler thanM1 with respect to the complexity measure|R|, as it has one fewer

played state thanM1 (see Proposition 4.1). It is also simpler thanM1 with respect to||δ||: the number of
normal transitions out of states inR′

1 is equal to that ofR1, but the stateqt
′′

1 (in M1) has at least one normal
transition, as it is played in(M1,M2).

We claim that(M ′
1,M2) is a Nash equilibrium ofGm, which suffices. Definef([t]s) as{qu1 ∈ Q1 | u ∈

[t]s}. Let (q̂t), (ŝt) be the sequences induced by the machines(M ′
1,M2). We prove by induction that for all

t ≥ 1, it holds that̂qt1 ∈ f([t]), q̂t2 = qt2, andŝt = st. The base case is clear, so assume that the claim holds on
t ≥ 1. Thenq̂t1 = qt

′

1 for somet′ ≡s t. As ŝt2 = st2 = st
′

2 , we haveq̂t+1
1 = δ1(q̂

t
1, ŝ

t
2) = δ1(q

t′

1 , s
t′

2 ) = qt
′+1
1 .

This implies thatq̂t+1
1 ∈ f([t′ + 1]s) = f([t + 1]s). As λ1(q̂

t
1) = λ1(q

t′

1 ) = λ1(q
t
1) = st1, we have

q̂t+1
2 = qt+1

2 and hencêst+1 = st+1.
Thus, to show that(M ′

1,M2) is a Nash equilibrium ofGm, it suffices to show thatM2 cannot deviate to
obtain a strictly higher payoff. Suppose thatp1

a1→ p2
a2→ · · · pm

am→ p1 is aM ′
1-cycleC giving M2 a payoff

r > r2(M1,M2) = r2(M
′
1,M2). By the choice of the valuest′′, t′, there is a pathP in M1 from qt

′′

1 to qt
′

1

whoseM2-payoff isr2(M1,M2). For each state-action pair(pj, aj) in the cycleC with δ1(pj , aj) = qt
′′

1

(and henceδ′1(pj , aj) = qt
′

1 ), replacepj+1 = qt
′

1 with the pathP . In this way, we obtain aM1-cycle
whose payoff is also strictly greater thanr2(M1,M2) = r2(M

′
1,M2), contradicting that(M1,M2) is a

Nash equilibrium ofGm. �

With respect to a machine pair(M1,M2), we letPi denote the set of played states ofMi.

Lemma 6.3 Suppose that(M1,M2) has a strictly enforceable payoff profile. If(M1,M2) is a lean equi-
librium with respect to|R|, then|R1| = |R2| = |P1| = |P2|, and if (M1,M2) is a lean equilibrium with
respect to||δ||, then||δ1|| = ||δ2|| = |P1| = |P2|.

Proof. We claim that, starting from a Nash equilibrium(M1,M2) with a strictly enforceable payoff profile,
playerj has a best responseM ′

j toMi where(M ′
j ,Mi) is a Nash equilibrium and such that|Rj | ≤ |Pi| and

||δj || ≤ |Pi|. This implies, in the case of a lean equlibrium with respect to |R|, that |R2| ≤ |P1| ≤ |R1| ≤
|P2| ≤ |R2|, and similarly, in the case of a lean equilibrium with respect to ||δ||, that|P2| ≤ ||δ2|| ≤ |P1| ≤
||δ1|| ≤ |P2|. The claim is argued as follows. The payoffsr1(M1,M2), r2(M1,M2) are equal to the payoffs
to the two players of a cycleC in machineMi. The cycleC is not necessarily a simple cycle, but if it is
not simple, it can be viewed as the concatenation of two shorter cycles. Each of the two shorter cycles must
give the same payoff to playerj (otherwise(M1,M2) would not be a Nash equilibrium, as playerj could
profitably deviate). We choose the cycle out of the two shorter cycles that gives the higher payoff to player
i. We then iterate this process until we obtain a simple cycleC ′. The simple cycle hasrj(C ′) = rj(C) and
ri(C

′) ≥ ri(C). It is possible to implement a playerj machineM ′
j that repeatedly walks the cycleC ′ in Mi

satisfying the stated inequalities: this is done by taking amachine that simply walks a shortest path from the
initial state ofMi to a state in the cycleC ′, and then repeatedly walks the cycleC ′. The pair(M ′

j ,Mi) is a
Nash equilibrium: the machineM ′

j obtains the same payoff as the machineM ′
j , and the machineMi could

only profitably deviate by playing a threat state; but since his payoff is greater than or equal to his payoff in
(Mj ,Mi), this is not beneficial as his payoff is strictly above his minmax payoff.�

We now present our main structure theorem. This theorem not only describes the structure of machines
at lean equilibrium with respect to the measure||δ||, but shows that their structure can be derived solely
from the equivalence relation≡s, and hence just from the action sequence(st); this implies that a third-
party observer that only views the resulting action sequence can infer the structure of the machines. In order
to give the statement, we introduce the following notion. Define arho-machineto be a machineM where
each normal stateq reachable from the initial state has exactly one outgoing transition to a normal state;
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denote this successor state bys(q). We call the set of states occurring finitely often in the sequenceq1,
s(q1), s2(q1), . . . the tail of the machine, and the other states (those occurring infinitely often) theheadof
the machine.

Theorem 6.4 Suppose that(M1,M2) is a lean equilibrium ofGm with respect to the complexity mea-
sure ||δ|| having a strictly enforceable payoff profile. Then, the equivalence relations≡s, ≡q, ≡1, ≡2 are
all equal, and for eachi ∈ {1, 2}, the machineMi is a rho-machine having exactly one stateqi([t]s)
that is played at all time points[t]s for each equivalence class[t]s of ≡s, whose structure is given by
δi(qi([t]s), s

t
j) = qi([t+ 1]s) for all t ≥ 1.

Proof. By Lemma 6.3, in each of the machinesM1, M2, each played state has exactly one outgoing normal
transition which is to another played state. Thus, each of the machines is a rho-machine. By Lemma 6.1,
the machines have the same tail size and the same head size, and thus the equivalence relations≡1 and≡2

are the same, from which it follows (by definition of≡q) that the equivalence relations≡1, ≡2, and≡q are
all the same. Since≡q is always contained in≡s, we can invoke Lemma 6.2 to obtain that≡1 and≡2 are
each equal to≡s, and we have that all four of the equivalence relations are equal.

For eachi ∈ {1, 2}, by the equivalence of≡i and≡s, the machineMi has one played state for each
equivalence class of≡s. As already noted, each played state has exactly one outgoing normal transition
which is to another played state, and so the machine must be a rho-machine with the described structure.�

7 Discussion

We introduced and studied the notion of lean equilibrium, a particular form of Nash equilibrium where
strategies cannot be further simplified according to a cautious simplification procedure: a player simplifies
only if post-simplification, the strategy vector will be a Nash equilibrium. It is possible to consider similar
equilibrium notions relative to even more cautious simplification procedures: for instance, a player might
anticipate simplifications of other players, and only want to simplify if, in addition to preserving Nash
equilibrium, he will not lose payoff if other players simplify following his simplification. A variant of
this idea would have a player simplifying if he will not lose payoff in the case that other players change
best response following his simplification. We leave the investigation of these equilibrium notions to future
work. The broad research direction that we hope to have identified in the present work is that of investigating
notions of equilibria where players prefer simple strategies, but where the desire for simplicity is not wired
directly into the players’ payoffs.
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