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Abstract

It is frequently suggested that predictions made by gameryheould be improved by
considering computational restrictions when modelingiégie Under the supposition that
players in a game may desire to balance maximization of payithf minimization of strat-
egy complexity, Rubinstein and co-authors studied formdash equilibrium where strate-
gies are maximally simplified in that no strategy can be ferrimplified without sacrificing
payoff. Inspired by this line of work, we introduce a notigheguilibrium whereby strate-
gies are also maximally simplified, but with respect to a dification procedure that is
more careful in that a player will not simplify if the simpttion incents other players to
deviate. We study such equilibria in two-player machine ganm which players choose
finite automata that succinctly represent strategies foeated games; in this context, we
present techniques for establishing that an outcome isualita@gum and present results on
the structure of equilibria.

1 Introduction

A frequently raised criticism of game theory is that its peidns clash with empirical observations as
a consequence of being based on the assumption that agesesspand use unbounded computational
power. This criticism has motivated the introduction aneestigation of so-called models dgbunded
rationality [28], in which computational power considerations on ageme present. A number of different
approaches to the study of bounded rationality have beagested([2] [7, 17, 24, 26, P7]. One model that
has received considerable attention is a machine game ichvdtayers choose finite-state automata that
succinctly represent strategies for repeated games [1,848126, 1]; the model of finite-state automata
can be taken as a formalization of players having boundagl+siemory, and is well-studied in computer
science.

Rubinstein with co-authors Abreu and Piccione [26, 1, 25{he context of the machine game, proposed
and studied forms of Nash equilibrium under which strategiee maximally simplified in the sense that a
player’s strategy cannot be simplified without reducinggagoff. A supposition basic to this work is that
players desire to minimize the complexity of their stragsgiand hence in choosing strategies are concerned
with balancing the maximization of payoff with the minimiian of strategy complexity. Simplicity of
strategies may be valued for a number of reasons; for inst@oenplex strategies may be more expensive to
execute, more likely to break down, harder to learn, or gdstimaintain [22]. Following Rubinstein [26],
it can be suggested that such maximally simplified equdibdsemble phenomena observed in real life:


http://arxiv.org/abs/1002.4577v3

institutions, organizations, and human abilities may degate or be reduced if they contain unnecessary or
redundant components.

The Rubinstein-Abreu-Piccione line of work, more specificatudies Nash equilibria where the play-
ers have preference relations that increase in the paydff\ahen payoff is maintained, decrease in the
complexity. While one can study the equilibria they definamy game where there is a complexity measure
associated with the actions of each player, their work fesusn the mentioned machine game, and the
complexity measure studied is the number of states of amaaitm, which can be viewed as the memory
size of a strategy.

Inspired by this line of work, we introduce and study a newiarobf equilibrium intended to capture
maximally simplified strategies, but with respect to a maeetul, conservative simplification procedure.
The motivation for this new equilibrium notion stems frone thbservations that, in the Rubinstein model, a
player simplifies without considering whether or not the @ification may incent other players to deviate,
and that this liberal mode of simplification may spoil desieaoutcomes that are Nash equilibria in the
usual payoff sense. These observations can be illustrgtételfollowing example. Consider the so-called
grim trigger strategy in the infinitely repeated Prisonéilemma,; this strategy, which can be implemented
by a two-state automaton, is to cooperate until the othgrepls seen to have defected, and to then defect
indefinitely. While this strategy paired with itself is a Nasquilibrium in the payoff sense—no player
can unilaterally deviate and increase his payoff-it is mo¢quilibrium in the Rubinstein sense, since either
player could maintain payoff but reduce complexity by shiitig) to a strategy that always cooperates (which
is a strategy that can be implemented by a one-state autojnétotice, however, that such a switch would
in turn incent the other player to change to a strategy thedya defects against cooperation, thus spoiling
the cooperation. It can in fact be verified that no pair ofteggees that cooperate indefinitely form an
equilibrium in the Rubinstein sense.

Whereas in the Rubinstein model a player will simplify hieagtgy so long as he can maintain his
payoff, in our model each player is forward-looking, andlveily simplify his strategy if, in addition,
no other player can profitably deviate post-simplificatidrhat is, in considering simplifications, players
are averse to potential payoff-motivated deviations botilayers. Our notion of equilibrium, which we
call lean equilibrium is thus defined as an outcome of strategies at Nash equitibsiich that no player
can both individually simplify his strategsgind preserve the property of being at Nash equilibrium. The
described grim trigger strategy paired with itself doesstitute a lean equilibrium in the infinitely repeated
prisoner’s dilemma: the described strategy has two stebemny simplification must have one state; in order
for the result to be a Nash equilibrium, the player with ormestnust always cooperate in order to be a best
response to the other player; but, this is not a Nash equifibas the other player could then profitably
deviate by always defecting.

We present results on lean equilibria for two-player maelgames where each player chooses a finite-
state automaton representing a strategy in an infinitelgteghbgame. We study three complexity measures;
in addition to studying the “number of states” measure, weystwo measures that we introduce. One is
based on the number of states, but does not count threat, siatbthe other counts the number of transitions
to non-threat states; the precise definitions appear latérei paper. Our primary technical results are the
following.

¢ We give techniques for establishing that outcomes are atdqailibrium, and illustrate their use by a
number of examples (Sectibh 5).

e We present results on the structure of machines that araidibei@, and, with respect to the number-
of-transitions measure, give a precise description of thelieria structure. This description in fact



shows that the machine structure can be inferred from a-giarty observer that only views the
induced sequence of action pairs (Secfibn 6).

We believe that the developed theory evidences that thertinaduced complexity measures are natural and
mathematically robust.

While the present work focuses on machine games with finitenaata and was certainly inspired by
previous work on such games, we want to emphasize that tleraftlean equilibrium is defined in a very
general way (Sectidn 3) and can be applied to any game in vhézk is a notion of complexity associated
with the players’ actions. Indeed, our view is that one ofrtiest promising avenues for future work is to
analyze the lean equilibria in other types of games wherk auwotion of complexity is present or can be
naturally defined; in particular, it could be of interest tody games arising directly from real-life situations
and phenomena. We believe that the theory and results g@ekia this work vindicates the introduced
equilibrium notion as a tangible and robust mathematicatept of which one can hope to present analysis
in further games.

Related work. The present work is a contribution to the study of boundeidmatity; surveys and general
references include [27, 117, 3]. The present article caniitiqudar be taken as following a body of research
where players in games are represented using models of ¢atiopx here, we briefly describe some of this
research.

The study of machine games where players select automatsesping strategies in repeated games
was initiated early in the study of bounded rationality. Eheeady described work of Rubinstein, Abreu,
and Piccione studied Nash equilibria where players’ pegfees take into account strategy complexity in
addition to repeated game payoff. The paper of Rubinsté@hg®idied an equilibrium concept in the spirit
of subgame perfect equilibrium, obtaining structural hssan such equilibria. Abreu and Rubinstein [1]
gave general structural results on equilibria and studiedoayoff sets of certain 2-by-2 games; and, Pic-
cione and Rubinstein [25] studied equilibria in repeategr®sive games. Banks and Sundaram [4] studied a
equilibrium notion similar to that considered in these papbut focused on a “transitional” notion of strat-
egy complexity that accounts for the amount of opponent todng required, and can differentiate among
strategies with the same number of states. Kalai and Sthfif8] gave a characterization of the number-
of-states complexity measure for automata via an analdgedftyhill-Nerode theorem, and study subgame
perfect equilibria in infinitely repeated games from thewpeint of this measure. A number of works
studied repeated games played by finite automata where sammthe strategy complexity are imposed
exogenously, including the articles of Neyman|[20], Bema®w [6], Papadimitriou and Yannakaki(s [24],
and Neyman[21]; one focus of study is the set of payoffs suatée in equilibrium. Gilboa[13], Papadim-
itriou [23], and Ben-Porath [5] studied the computatior@mhplexity of problems involving the computation
of best response automata. Spiedlei [29, 30] presentelibeyun notions motivated by the idea that players
may need to justify their strategies; he modeled playersés-ftate automata.

Another line of work studies games where players must emptogputable strategies. Some of the
initial work explored basic consequences of this modelimgj iavokes notions and ideas from computabil-
ity theory, including the contributions of Binmorel [8, 9]a@ning [10], and Anderlini[2]. Megiddo and
Wigderson [[19] presented results on games played by Turiaghines where the number of states is re-
stricted. Howard([16], Tennenholtz [31], and Fortnow![1hpwed existence of equilibrium and folk the-
orem style results by making use of self-reference ideass@o [14] studied repeated games played by
polynomial-time Turing machines, invoking cryptograplissumptions to obtain results on the equilibria
achievable under public communication.



More recent work includes the following. A framework for gesnwhere the actions have associated
costs was proposed and studied by Ben-Sasson, Kalai, aadl [l Halpern and Pasks [15] presented and
studied a machine game on Turing machines where utilitiasbeaa function of machine complexities in
addition to the action profile; among other issues, theyystexistence of equilibria and notions of protocol
security. Fortnow and Santhanadm|[12] introduced and silali@achine game model where players’ actions
are probabilistic Turing machines that output actions iruaderlying game; the payoff associated with a
machine is discounted by the computation time used to pedations. Their results include connections
between the existence of Nash equilibria in the so-calletbfang game and the computatoinal complexity
of factoring, and general sufficient conditions for the tise of equilibria.

2 Preliminaries

In this section, we review some basic notions to be used. Gtation and terminology are standard, and for
the most part follow typical conventions such as those demstiin the text by Osborne and Rubinstein|[22].
A strategic games a tuple(N, (4;), (X;)) consisting of a selV = {1,...,n} of players, a nonempty set
A; of actions for each playerc IV, and a preference relatior; defined onA = x ;cy A; for each player

i € N. For the most part, we will focus on two-player strategic garwhere the preference relations are
specified by payoff functions; : A; — R. Recall that &Nash equilibriunof a strategic gameV, (4;), (=;

)) is a profilea* € A of actions such that for ail € N and for alla; € A;, it holds that(a* ;, a;) =<;
(aZ;,ay).

For our purposes in this papercanvex combinatioof vectorszy, . .., x4 € R™ is a vector of the form
oa1x1 + -+ + agrg Where they,, arerational coefficients withziz1 o, = 1 and0 < «,, <1 for eachn.

We will make use of the following payoff notions. Lé&t = (N, (4;), (u;)) be a strategic game. A
feasible payoff profil®f G is a convex combination of the vectofs(a) | a € A}. We define playei’s
minmax payoffdenotedv;, to be the lowest payoff that the other players can force ypayeri, that is,

v; = ming ,e4_, Maxgeca, ui(a—;,a;). A feasible payoff profilew € R™ of G is calledenforceableif
v; < w; for all ¢ € N, and is calledstrictly enforceablef v; < w; for all ¢ € N. See Osborne and
Rubinstein([[22, Section 8.5] for more information on thee@ans.

3 Lean equilibrium

We define a&complexity ordeon a set of actiongl; to be a binary relation ord;. We will consider games
where each playei € N has a complexity ordefd; associated to his set of action; the intended
interpretation is thab; <; a; if player ¢ considers the actiob; to have the same complexity as or lower
complexity than actiom;. In such games, fai;, b; € A;, we will write b; <1 a; to denote thab; < a; holds
anda; < b; does not hold. Also, foe,b € A, we will write b < a to denote that for all € N, it holds that

b; <; a;. We remark that in studying machine games, each complexitgrahat we consider arises from
associating machines with elements in a total order; hokvémebroadest applicability, the results in this
section (in particular, Propositidn_3.2) are presentedrfore general settings.

Definition 3.1 LetG = (N, (4;), (X)) be a strategic game with complexity ordéts;). A profilea™ € A
of actions is dean equilibriumof the gameG if a* is a Nash equilibrium, but for all € N and for all
a; € A;, if a; < af, then(a* ;, a;) is not a Nash equilibrium. O

We now present a basic property of lean equilibrium, namklyexistence of lean equilibria under the
assumption of the existence of Nash equilibria and a mildrapsion on the complexity orders.
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Proposition 3.2 Suppose thatr = (N, (4;), (<)) is a strategic game with complexity ord€ts;) that are
transitive and are well-founded in the sense that foriall N and for alla; € A;, there exists a bound on
the length of a chair; <; - - - <; ¢, <<; a;. Then for every Nash equilibriumar® of GG, there exists a lean
equilibriumb € A such thath < a*.

Proof. For an actior; from an action setl;, let C'(a;) denote the maximum lengthof a chainc; <; - - - <;
cr <; a;. For an action profile, ¢ A, defineC(a) = >,y C(a;). We prove the result by induction on
C(a*).

For the base case, whef§a*) = 0, the profilea* is a lean equilibrium, as for all € N and for all
a; € A;, itdoes not hold thai; <; a. For the inductive case, suppose thdt*) > 0. If the profilea™ is not
alean equilibrium, then there existe N and there exists; € A; such tha{a* ;, a;) is a Nash equilibrium
anda; <;a}. We have tha€(a* ;, a;) < C(a*); by applying the induction hypothesis t@* ,, a;), we obtain
a lean equilibriumb € A such that < (a*;,a;). We have(a* ;, a;) < a* and thus by transitivity ofd, it
holds thath < a*. O

One of the equilibrium notions studied by Abreu and Rubingi] is Nash equilibrium with respect to
the lexicographical ordering where payoff is prioritizeceocomplexity: one profile* is strictly preferred
by a player to another profile if * gives the player a strictly higher payoff thah or if «* gives the player
the same payoff ds' but the player has strictly lower complexitydri. We formalize this equilibrium notion
and show that each such equilibrium is a lean equilibriunfplmws.

Definition 3.3 LetG = (N, (4;), (X)) be a strategic game with complexity ordéts;). A profilea* € A

of actions is anAbreu-Rubinstein equilibriunof the gameG if for all ¢ € N and for alla; € A;, (1)

(a*;,a;) =i (a*;,ar) and (2)(a*;, a}) =i (a*;,a;) implies thata; <; o} does not hold. O
Condition (1) implies that the profile* is a Nash equilibrium, and condition (2) essentially say th

there is no deviation; for player: that yields the same utility and is simpler than

Proposition 3.4 LetG = (N, (A;), (=;)) be a strategic game with complexity ordgrs;). Every Abreu-
Rubinstein equilibrium is a lean equilibrium.

Proof. Let a* be an Abreu-Rubinstein equilibrium. Clearly, the profifeis a Nash equilibrium. Now
consider a player € N and an actior; € A;. We want to show that id; < a}, then(a* ;, a;) is not a Nash
equilibrium. By the definition of Abreu-Rubinstein equiiibm, if a; < af, then(a*;,a;) <; (a*;,a}),
implying, as desired, that* ,, ;) is not a Nash equilibrium]

In light of this proposition, all examples of Abreu-Rubigist equilibria are examples of lean equilibria.
For instance, the Abreu-Rubinstein equilibria of certai-player games are studied in [1, Section 5]; all
examples given there are examples of lean equilibria. Oattier hand, later in this paper, we will encounter

examples of lean equilibria that are not Abreu-Rubinstejiliria (for instance, in Examplés 5.5 and]5.9).

4 Machine games

In this section, we introduce the machine games whose leaifibei@ we will study, and some associated
notions. These games involve choosing machines which imgaé strategies for repeated games, and have
been previously studied, as discussed in the introductiam.more background on strategies as machines
and for some simple examples, we refer the reader to OsbathRabinstein[[22, Section 8.4 and Chapter
9].



Machines and machine games. Let G = (S, S2, u1, u2) be a two-person game in strategic form, where
S; is a finite set of actions for playérandu; : S; x So — R is the payoff function for playet.

A machinefor playeri is a four tupleM; = (Q;, q}, i, 8;) whereQ); is a finite set oftates q} € Q;ls
the start stateor initial state, \; : Q; — S; is theoutput functionandd; : @; x S; — Q; is thetransition
function here,S; denotes the action set of the other player. We emphasizéntkiais paper, we consider
only machines that conform to this definition, namely, maekiwhich have a finite number of states and
which are deterministic. We uskft; to denote the set of all machines for playerelative to a gamé&:. We
often use and; to denote the two different players.

A pair of machineg M, M) naturally induces a sequengg ;> of state pairs and a sequer(@é);>;
of action pairs (-outcomes), defined inductively as follows:

¢ = (41,9)

sto= (A(gh), Ma(dh) fort > 1
qt = (51(Q§_1785_1)752(Q§_1>S§_1)) fort>1

Each of the sequenceég’), (s') is ultimately periodic we say that a sequen¢® );>1 is ultimately periodic
if there exist numbers, p > 1 such that for alln > n, it holds thath™ = "7,

The payoff given to each machine is computed by the limit ofinse For a sequence of action pai,
we definer! (s!) to be the average payoff to playiover the firstl” elements of the sequence, that is, we de-
finer? (st) = £ ST, ui(s®). We definer;(s') to be the corresponding limit of the average payoffs, that is
ri(st) = limy_, 77 (s?); Note that we will make use of this function only on ultimgtpkriodic sequences
(s'), and so the limit will always exist. For a pair of machir(@d, M), we definer] (M, My) = ' (st)
andr;(My, My) = r;(s'), where herds) denotes the sequence of action pairs induced by the machines
(M, Ms). Our focus will be on the machine game defined®y = (M1, Mg, 1, 72).

Paths and cycles. With respect to a two-player gamepathin a machinels; is a sequencg; = p, 3

o I 1 Wherepy, ..., ppi1 € Q; are statesqy, ..., a,, € S; are actions, and;(py, ax) = pj11 for
eachk € {1,...,m}. A cycleis a path where; = p,,11, and is said to be aimple cyclef the states
p1,-..,Pm are pairwise distinct. For a path in M, the payoff to)M;, denoted by (P), is defined as
LS ur(Ai(pk), ax); and, the payoff tall,, denoted byro(P), is defined ast S°7; ua (M1 (px), ak).
For a pathP in My, the payoffsri(P) andry(P) are defined similarly. It is known and straightforward to
verify that, in the machine gan&,,, a payoff-maximizing response for playiio a machinel/; has payoff
equal to the maximum af;(C') over all cycles in the machin&/; reachable from the initial state, which is
equal to the maximum of;(C') over all such cycles in the machiré; that are simple.

Let us define aubcycleof a cyclep; %5 ps 3 -+ %8 p,..1 to be a cycle that has either the form
@psyq

Dn an Pt gt -+ p, or the formp,, I Dnig1 —> e & Pmtl = P1 2N D2 “® -+ py With n, n’/
satisfyingl < n <n’ < m.

Complexity measures. We will study three complexity measures on machines. Theidithe number of
states|@;| of a machineM;. We define the other two in the following way. We definéheeat stateof a
machinel; to be a state such thaty;(¢,s) = ¢ for all s € S; and wheremax,;c4; uj(Xi(q),a;) is the
minmax payoff of the other player, that is, where\;(q) forces the other playerto his minmax payoff. We
define anormal stateof a machinel/; to be a state that is not a threat state. WeRsto denote the set of
all normal states of a machind;, and we usg|j;|| to denote the number aformal transitions by which



we mean transitions between normal states:
16:]] = [{(q,s;) € Ri x Sj | 6i(qi, s5) € Ri}|-

The two other complexity measures that we will study are tiialver of normal states, denoted Ly,
and the number of normal transitions, denoted||by}. We will speak of lean equilibria with respect to,
for instance, the measuf&)|, by which we mean a lean equilibria where the complexity ofdeplayer:

is given by M; <; M/ if and only if |[R;| < |R}|; here,R; and R, denote the sets of normal states of the
machines\/; and M/, respectively.

Relative to a pair of machine&\/;, Ms), for eachi € {1,2}, we define the set gblayed statesor
playeri, denoted by?;, to be the sefq! | t > 1}; here,(¢") denotes the sequence of state pairs induced by
(Mq, Ms). We identify the following facts concerning played statebich we will sometimes use tacitly in
the sequel.

Proposition 4.1 Let (M, M) be a pair of machines having a strictly enforceable payddfif@. For each
playeri € {1,2}:

e Every played state is a normal state, and thus it holds tRgt< |R;|.

e The number of played states lower bounds the number of ndramalitions: | P;| < ||J;]|.

The first claim follows from the assumption that the payofifje is strictly enforceable, which implies that
neither player ever plays a threat state. The second cldlowf from the first and the observation that
every played state has at least one transition to anothgeglstate.

Equivalence relations. We now introduce a number of equivalence relations, eachhilwis defined
over the set of positive integers, that will be used in ouryais and description of lean equilibria. Let
(st) and(q') be the sequences of action pairs and state pairs, respgdimeticed by a pair of machines.
We define the equivalence relatien, by: ¢ =, ¢’ if and only if for all n > 0, it holds thats!t” = s+,
Similarly, we define the equivalence relatien, by: ¢t =, ¢’ if and only if for all n > 0, it holds that
¢'t" = ¢!+, However, from the determinism of the machines, it is stréi@gward to verify thatt =, t

if and only if ¢! = ¢'; we will make use of this simpler characterization. As thguemce(s') is equal
to the sequencé;’) mapped under the functiorfds, \2), it is clear that ift =, ¢/, thent =, ¢'; viewing
these equivalence relations as sets of pairs, we can wyite=,. We define the equivalence relatioss
fori € {1,2} byt =; t'ifand only if ¢ = ¢*'. Itis clear that =, t' if and only ift =, ¢’ andt =, t'. For a
valuet > 1, we will use[t], to denote the=,-equivalence class @f and similarly for the other equivalence
relations.

5 Establishing lean equilibrium: examples and theory

In this section, we give techniques for establishing that@mes of the machine game are at lean equi-
librium, and illustrate their use by presenting a numbenrxaineples. We begin by defining some notions;
the definitions and also the later results are relative tonaega = (51, Se, u1,u2) and its corresponding
machine gamé;,,,, although in what follows we will generally not mention thengesz andG,,, explicitly.

By afinite action sequencave mean a finite-length sequenge= o' ...c* of action pairs (elements
of S; x S3). For each playei € {1,2}, we define the payoff of a finite action sequenrcasr;(c) =



(ui(ah) + -+ + ui(a%))/k. We say that a finite action sequeneds strictly enforceableif its payoff
profile (r1(o),r2(0)) is strictly enforceable. Each strictly enforceable finitti@n sequence naturally
induces a pair of machingsg\/{, MJ), where for each player € {1,2}, the machinel/? is defined to
havek + 1 states:k normal states, which we denote s . . ., k}, and a threat state. The output function
A; is defined withA;(n) = o7 for alln € {1,...,k}. The transition function; hasd;(n,o}) = n + 1
forn € {1,...,k — 1}, andéi(k,af) = 1; all other transitions out of the normal states go to theahre
state. We uséo) to denote the infinite sequence obtained by repeatinipat is, the sequencer ... =
o1...0101...0%.... The sequence of action pairs generated ki, MJ) is clearly equal too). This
property is a motivation for the definition of the machindse transitions of the machines are designed so
that the machines together will generate the sequémgebut each machine will “punish” any deviation
from this sequence by moving to and settling upon its thregtes We call a machind/ a o-machine

if for any best respons@/’ to M, the pair(M, M') generates the sequenge); clearly, for any strictly
enforceable sequeneg the machined/y andM§ arec-machines.

We now present the first concepts and results that will allenaugive examples of lean equilibria.
Relative to a sequendg!) of action pairs we say that two time poirtts to > 1 arei-incompatibleif there
existsm > 0 such that (1) for alk with 0 < n < m, it holds thats;l*" = 33.2*", and (2)sit T £ skt
We say that two equivalence clasggsT, of =, arei-incompatibleif there existt; € T} andt; € 15 such
thatt; andty arei-incompatible; observe that, in fact, if equivalence @ad§ and7; arei-incompatible,
then for allt; € T1, to € Ts it holds thatt; andt, arei-incompatible.

Proposition 5.1 Let (¢'), (s!) be the state sequence and action sequence induced by a paacbines. If
two =;-equivalence classel , T; are i-incompatible, then for alt; € T, t5 € Ts, it holds thatqf1 #* q?.

This proposition follows immediately from the definitionf(@') and(s?).
We say that a finite action sequeneés i-irreducible if for any two distinct values,, t; € {1,...,k},
it holds thatt,]s and|t.], arei-incompatible with respect tG!) = (o).

Theorem 5.2 Leto be a strictly enforceable finite action sequence of lergthnd letA/; be ac-machine.
If o isi-irreducible, then then there arde=,-equivalence classef,)s, .. ., [k]s; and, for any best response
N; to M; with |P;| < k, the pair(N;, M;) has=; equal to=,.

Proof. By the definition ofi-irreducibility and the definition of;, we have that there ake=;-equivalence
classes[l]s, ..., [k];. Consider a best respondg to A;. SincelM; is aco-machine, the paitN;, M;)
must produce an action sequer{eé) equal to(s). By Propositio 5.1, né-state is played in two different
=,-equivalence classes. Since by hypothesis the numberte§ gitayed by is less than or equal tb, we
have thafl],, ..., [k]s must be the equivalence classes=f and hence that; is equal to=,. O

In this section, we will give a number of examples involvitg tPrisoner’'s Dilemma, which we take to
be the following game:

C D
Cl| (2,2 (1,3
D|(3-1)]| (0,0)

Note that, in this game, each of the two players has a minmgoffoaf 0. For an intege®vV > 0 and an action
pair (s1, s2), we will use the notationV - (s1, s2) to denote the finite action sequence containfMgopies
of the pair(sy, s2). Forinstance?2- (C, D) represents the sequen@e, D), (C, D) and2- (D, C),3-(C, D)
represents the sequen@e, C), (D, C), (C, D), (C, D), (C, D).
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Example 5.3 Let N¢, Np > 1 be constants, and consider the finite action sequenreeV¢ - (C,C), Np -
(D, D) in the Prisoner’s Dilemma. Clearly, the sequemncés strictly enforceable, and has length=
Nc + Np. We show that, with respect to the measurg$ and ||d||, the pair(M{, MJ) is an Abreu-
Rubinstein equilibrium, and hence a lean equilibrium (bydewsition 3.4), as follows.

First, we show that the sequeneeis both 1-irreducible and2-irreducible. We begin by arguingyr
irreducibility. Lettq,to € {1,...,k} be two distinct values, and assume without loss of gengrdit
t1 < t2. We show that; andt, are1-incompatible with respect t¢r). If ail #* a’f, then clearlyt; and
to are 1-incompatible. In the case thaﬁ1 = a:"f, by the definition ofo, there exists a minimum value
m > 1 such thatr}> # (o) observe thati' = (o){' ™. For alln with 0 < n < m, we have
(o)1 = (o)™ = ¢!, and so we have thai andt, are 1-incompatible. We thus have thatis 1-
irreducible; by an argument that is identical up to swappirggplayers, we also have thais 2-irreducible.

We now argue that the pain/{, MY ) is an Abreu-Rubinstein equilibrium with respect 9 and||4]].
Observe that for these machines, we h@vg = |Ra| = ||d1]| = ||02|| = k. We show by contradiction that
there is no playet best respons&/; to M$ having|R;| < k or ||01]| < k. Suppose that there is; then the
payoff profile of (N1, MS) must be(ri (o), r2(0)), which is strictly enforceable, and by Propositlon] 4.1,
it holds that|P;| < k. By the l-irreducibility of o and Theorem 512, it holds that; is equal to=, and
hence thatP;| = k, contradicting thatP;| < k. It can similarly be shown that there is no playebest
responseN, to M{ having|Rz| < k or ||d2]] < k. We have thus argued that the pai/{, MJ) is an
Abreu-Rubinstein equilibrium with respect t8| and||d||.

In the Prisoner’s Dilemma, it can similarly be shown thatdonstantsVep, Npe > 1, the finite action
sequence = Nep-(C, D), Npc- (D, C) is bothl-irreducible an@-irreducible, and that whemis strictly
enforceable, the pajiM{, MJ ) is an Abreu-Rubinstein equilibrium with respect to b and||||. More
generally, letG = (S1,S2,u1,us) be a game, let; : {1,...,b} — Sy andpBs : {1,...,b} — S be
injective mappings, and I€Yy, ..., N, > 1 be constants, with > 2. By arguments similar to those given
above, the finite action sequenee= N; - (51(1), 82(1)),..., Ny - (B1(b), B2(b)) can be shown to be both
1-irreducible and-irreducible, and whem is strictly enforceable, the paft\/{, Mg ) can be shown to be
an Abreu-Rubinstein equilibrium with respect|#®| and||d||. O

We now introduce another technique for establishing leailibtja. Let o be a finite action sequence.
Define arotationof o = ¢! ... ¢* to be a lengthk sequence of the form™c"*! ... okolo? ... o™ 1 forn
with 1 < n < k. Leti € {1, 2} be one of the players and IBtC S;. We say that is (i, B)-rigid if for every
rotationp of o and everyn with 1 < n < k, whenp}, p'** € B, it holds that(u; (p1) + - - - +u;(pn))/n #

ri(o).

Theorem 5.4 Leti € {1,2} and B C ;. Leto be a strictly enforceable finite action sequence of lerigth
let b be the number of elemeni$ of o with o]* € B, and let); be ac-machine. lio is (i, B)-rigid, then
for any machineV; with |{¢ € P; | X\i(¢) € B}| < b relative to(V;, M;), the pair (NN;, M;) is not a Nash
equilibrium.

Proof. Since M, is a o-machine, if(s') is not equal to(c), then N; is not a best response ff; and
(N;, M;) is not a Nash equilibrium, so we assume thd} = (o).
Consider the state pair sequer{qé”’“)dzl. By the finiteness of the state sets of the machines, some
state pair must occur infinitely often in this sequence. léeme can find time points , ¢, of the form1+dk
with ¢; < t, such thag’ = ¢*2. The sequence’', ¢''t1, ..., ¢'* determines a cycle
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in IV;. By our choice of, t; and the assumption thét') = (o), we haver;(C) = r;(N;, M7) = r;(o).

By the hypothesis o8 andb, among the sequence of staigs, ¢/ ™, ... ,qf”(k_l) there must be
two indicest’ < ¢” with ¢/ = ¢/" and(¢/') € B. The sequence of statg§, ¢’ ™', ..., ¢!" determine a

subcycleC”’ of C which, by (i, B)-rigidity, hasr;(C") # r;(C'). We can viewC' as the concatenation of the
subcycleC” with another subcycl€”. The valuer;(C) is the convex combination of;(C”) andr;(C");
sincer;(C") # r;(C), we haver;(C") # r;(C). It must hold that one of the values(C’),r;(C") is
strictly greater tham;(C'). This implies that N;, M/;) is not a Nash equilibrium, as playgrcould strictly
improve his payoff by deviating.]

Example 5.5 Consider, in the Prisoner’'s Dilemma, a strictly enforcegidyoffw that is the convex com-
bination of u(C,C) and u(C, D). We can writew = (Ncc/N)u(C,C) + (Nep/N)u(C, D) where
Ncco, Nop are integers, andN = Ngo + Nep. Since the payoffw is strictly enforceable, we have
Nce > 0. We can assume th&f-c, Nop do not share any prime factors, for if they do share one, we can
divide both of them by the factor while preserving the valieso Note that this assumption implies that
Ncce and N do not share any prime factors.

Leto = Nee - (C,C), Nep - (C, D). We will show that(M{, Mg ) is a lean equilibrium with respect
to |R| and||d||. Note that the first player could preserve payoff but redwrapiexity via a machine with
one state that always output§ a machine that hgs?| = 1 and|||| = 2. Hence this pair isiot an Abreu-
Rubinstein equilibrium with respect t&?| when N > 2, nor with respect td|j|| when N > 3. Along
these lines, observe that no twa-equivalence classes (fosr)) are1-incompatible, since in the sequence
o player1 always plays the same action.

We show that is (1, {C})-rigid. We show this by contradiction; lgtbe a rotation ot and letn be
such thatl < n < N and(uz(p1) + - -+ + u2(pn))/n = w. This implies that for integeracc, ncp with
0 <ncec <n,0<necp <n,andncc + ncp = n, we have(ncc /n)u(C,C) + (ncp/n)u(C, D) = w.
Sinceu(C, C) # u(C, D), we havencc/n = Noco /N, implying thatNeen = noeN. This implies that
N > 1 divides Ngon. SinceN and Noe do not share any prime factors, this implies thadividesn, a
contradiction ton < N. We have thus shown thatis (1, {C'})-rigid.

Consider any machin&/; with |R;| < N or ||61]] < N. Such a machine must hay®,;| < N, and
hence by Theorein 5.4, the p&i¥;, M) is not a Nash equilibrium. On the other hand, it is straightfrd
to verify that the sequenceis 2-irreducible. Thus, for any maching, with |Rs| < N or||ds|| < N, we
have|P,| < N and by Theorerh 512, the machifg is not a best response fdy. We conclude that the
pair (MY{, M3 ) is a lean equilibrium with respect t&| and||d||. O

Example 5.6 Consider, in the Prisoner’s Dilemma, a finite action seqaefthe formo = kcp-(C, D), kpp-
(D, D), kpc(D,C), wherekcp, kpp,kpc > 1 ando is strongly enforceable. We ugeto denote the
lengthkcp + kpp + kpc of o. We show that the paifM{, M) is a lean equilibrium with respect {&|
and||4]|.

Let N; be a machine for player. Suppose thad; is a best response f@y. Then the paif N, M3)
produces the action sequengé) = (o). We show that ifN; has|R;| < k or ||61|| < k, then the pair
(N1, M$) is not a Nash equilibrium.

Let Q¢ denote the states df; that outputC’, and letQQp denote the normal states 6f; that output
D. ltis straightforward to verify that for any two distintt, to € {1,...,kcp}, the classe§]s, [to]s are
1-incompatible, and hence, we ha¥g-| > kcp by Propositio 5]1. We next show thats (1, {D})-rigid.
Consider any rotatiop of ¢ and a valuex with 1 < n < k andp} = p?“ = D; in one of the sequences
P =p1...pns P’ = pns1- .. pr, playerl uses only the actio® and hence one of the valuesp’), r2(p”)
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is strictly below0. On the other hand:; (o) is strictly aboved and can be written as the convex combination
of ro(p") andrz(p”), and so neither ofz(p'), r2(p") is equal tory (o), and we have that is (1, { D})-rigid.
Now suppose thalV; has|R;| < k or ||61|| < k. It follows that|P;| < k; since|Qc| > kcp, this implies
that|@Qp| < kpp + kpc. By Theoreni 5.4, we have thad,, M) is not a Nash equilibrium.

In a similar way, it can be shown that for any best respa¥iséo M7, if Ny has|Rq| < k or ||d2]| < k,
then the paif M7, N2) is not a Nash equilibrium. We thus have ttaty, MJ) is a lean equilibrium with
respect tqR| and||d]]. O

So far, our discussion has focused on the complexity messRf@nd||d||. We now turn our attention
to the complexity measuré)|.

Example 5.7 As in the previous example, letbe a finite action sequence of the fosrm= kcp-(C, D), kpp-
(D, D), kpc(D,C) for the Prisoner’s Dilemma, whetg-p, kpp, kpc > 1 ando is strongly enforceable;
let £ denote the lengtkcp + kpp + kpc of o. We give a pair of machingd\/;, M) where each machine
hask states that is a lean equilibrium with respectdo.

We define the machine¥/; , M, as follows. Each machine has state@et= Q2 = {1,..., k}, initial
statesg; = ¢4 = 1, and has output function defined By(n) = o7 for all n € Q;. For the states € Q;
wheres? = D, we defined;(n, C) = d;(n, D) = n + 1, wherek + 1 is understood to represent the state
For the states € @); whereo? = C, we defined;(n,C') = n+ 1 andé;(n, D) = ¢ whereg is the first
state Wher@;? = C, thatis,qi = kcp + kpp + 1 andg; = 1. The stateg; can be thought of as “internal
threat” states. This construction is similar to that of [AgE 1276, Case B].

We now observe that in each machihg, the simple cycle”; that maximizes payoff to the other player
1 2 k

j is the cycle naturally correspondingdothat is,1 O TE QU e 1; this cycle has;(C;) = r;j(o). This
is clearly the unique payoff-maximizing simple cycle ofd#mk. Also, in all shorter simple cycles, player
i only defects, yielding playef a payoff strictly less thaf.

Let V; be a best response 1d;. By the observation in the previous paragraph, the seqL(e;ijm:must,
after some finite amount of time, be equal to the sequénce , k repeated infinitely. It is hence possible
to modify the machinéV;, by changing its initial state to a state that is played agahe stat@jl. = 1linthe
mentioned infinite repetition, to obtain a machiNg that, along withAZ;, generates the sequengs, and
has the same number of states\gs Now, if N/ andN; have strictly fewer thai states, then againat
they have strictly fewer thah played states, and then by arguing as in Exainple 5.6, th¢ aif/; ) is not
a Nash equilibrium, from which it follows that the pdiN;, M/;) is not a Nash equilibrium. We conclude
that (M, My) is a lean equilibrium with respect t@)|. O

We now establish a theorem that will help us to establish &grilibrium results with respect t@)|.
Let us say that is i-foolableif there exists a rotatiop = p' ... p* of o and an actiors’ € S; such that for
all n with 1 < n < k, it holds thatr; (p"p"*1... p*=1p') > r;(c), wherey' is the pair with playet action
equal top? and playerj action equal to'.

Theorem 5.8 Let o be a strictly enforceable finite action sequence, andWgtbe ac-machine. Ifo is
i-foolable (viap), and V; is a machine such that iWV;, M;) it holds thatP; = Q; (that is, all states inV;
are played), theriV;, M;) is not a Nash equilibrium.

Proof. If IV; is not a best response id;, we are done, so we assume thgtis a best response t, in
which case we haves') = (o). Letg; be any state of);. We claim that there is a patA in IV; from¢; to a
stateq; € Q; such that;(P) > r;(o). This suffices, since it implies that/; is not a best response 19,
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We reason as follows. By hypothesis, the statis played and hence there exi$ty 1 with ¢; = ¢!
Since(s) = (o), there exists: with 1 < n < k wherep"p"t! .. pF = ststtl. . st+(E=n) The desired
path P starts at; and has actiong’ ... p;?‘ls’, wheres’ € S; is the action from the definition affoolable;

by that definition, we have;(P) > r;(o). O

Example 5.9 We return to the class of sequences considered in our firshgea Exampld_5]3. Let
Nc,Np > 1 be constants, and consider the finite action sequenee N¢ - (C,C), Np - (D, D) in
the Prisoner’s Dilemma; the sequences strictly enforceable, and has lendgth= No + Np. We show that
the pair(M{, Mg ) is a lean equilibrium with respect t@)|. Note that this pair isiot an Abreu-Rubinstein
equilibrium with respect t¢Q)|, since each of the machines has a threat state that is neyedpland hence
each of the machines could be simplified without sacrificiaggff by removing this threat state.

To show that the described pair is a lean equilibrium, we sti@at for each playet, whenN; is a best
response td/7 with k or fewer states, the paitV;, MJ‘-’) is not a Nash equilibrium. By the argumentation
in Exampld 5.8, any such best respofgenust have at leadt played states. Hence in such a best response
N;, all states are played; by Theoréml5.8, it thus suffices tavghat the sequence is i-foolable. It is
straightforward to verify that is i-foolable via the rotatiop = Np - (D, D), N¢ - (C, C) and the action
D e Sj. O

Example 5.10 We reconsider the sequences treated in Example 5.5 kelN¢¢ - (C,C), Nop - (C, D),
whereN¢e > 0 andNee, Nep do not share any prime factors. We show that the @&if , M) is a lean
equilibrium with respect tdQ|. This pair is not an Abreu-Rubinstein equilibrium with respto|Q|: the
first machine could be simplified to a machine that only owputvithout giving up payoff, and the second
machine could eliminate its threat state without giving agaqgf.

We show that the sequeneeis both 1-foolable and2-foolable. We have -foolability by the rotation
(Nec—1)-(C,C),Nep - (C, D), (C,C) and the actiorD € Sy, and we have-foolability by the rotation
Nep - (C,D), Nece - (C, C) and the actiorD € 5.

We can now argue that the p&i¥/y, M) is a lean equilibrium with respect {@)|. The structure of the
argument is similar to that of the previous example. Consadglayer: and a best respons€; to M7 with
k or fewer states. It is shown in Example]5.5 thaVifhas strictly fewer thai played states, thefiV;, M 7 )
is not a Nash equilibrium. In the case théthas exactlyk played states, all of its states are played and then
(Ni, M7) is not a Nash equilibrium by Theorém 5.8. O

The results in the last three examples demonstrate diffeypas of payoffs that are sustainable by lean
equilibria with respect tdQ@| in the repeated Prisoner’s Dilemma. In particular, Exarfipleshows that
any strictly enforceable payoff profile in the interior othonvex hull of the points(C, D), u(D, D), and
u(D, (), is a payoff attainable by such a lean equilibrium. Thesalt®gan be contrasted strongly with
the results of Abreu and Rubinstein [1, Section 5] showirad the payoffs of Abreu-Rubinstein equilibria
in this context are the strictly enforceable payoffs that emnvex combinations of the diagonals, that is,
convex combinations af(C, C') andu(D, D) and convex combinations @fC, D) andu(D, C).

6 Structure of lean equilibria

In this section, we present results describing the stractifirlean equilibria in machine gamés,, =
(My, Mo, r1,72) with respect to the complexity measurég and||d||. Our first result demonstrates that
the sequencég’) begins with a sequence of state pairs where each state isoaednce, followed by a
state pair where each state is used infinitely often.
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Lemma 6.1 (1-co Lemma) Suppose théd/,, M) is a lean equilibrium of7,,, with respect to one of the
complexity measurg®?|, ||d|| having a strictly enforceable payoff profile. Let> 1 be the minimum value
such that one of the state¥, ¢% is used later in the sequen¢e’), that is, such that there existss {1,2}
such thatg € {q! | t > u}. Then, for each € {1,2}, the state;” appears infinitely often in the sequence

(4)-

Proof. We prove this by contradiction. Suppose one or both of theesi|', ¢5 appears finitely often in the
respective sequendg!). Let T;(q) denote the seft | ¢ = ¢!}, that is, the points in time where player
plays state;. Observe thaf (¢}') N T>2(¢%) = {u}, for if this intersection contains two distinct elements,
there must be infinitely many pointsuch thay’ = ¢“.

We claim that the players can be labelled’as” in such a way that: (1] (¢¥) is finite, and (2) there
existsv € Ti»(q},) such that > max Ty (qg}f).

We establish this claim as follows. If both s@tgq}'), T>(¢%) are finite, seb = max(71 (¢}) U T2(¢%))
and let;” be the unique element ifil, 2} such that € T;/(g}),). If one of the setd(¢}), T>(¢%) is finite
and the other is infinite, let be the player i 1, 2} such thatl; (¢}/) is finite; sinceT;~ (¢ ) is infinite, it is
possible to select a valuesatisfying condition (2).

For the sake of notation, we now assume that 1 andi” = 2. We want to show thatM/;, M) is not
a lean equilibrium. If(M;, Ms) is not a Nash equilibrium, we are done, so we assume that 8testing
from My, we define a new machin®/] as follows. We set} (¢¥~*, s5~1) = g7, or, in the case that = 1,
we set the initial state a¥/{ to beqgj. We then have that

—1

15 9 55 u—1%_
aqSag=dT S g

is a path inM7. We modify M/ so that, other than the transitions in this path, there ateamsitions to the
states;y, . . ., qI“‘l; we reroute the transitions to these states to a threat $tgt@lso eliminate the statg,
rerouting the transitions to it to a threat state. The statgience induced by the machine p@if;, Ms)

is gl ¢ ..., ¢, q%,q"tt, ¢"12, ... and hence the payoffs to each of the two players is the same as i
(My, My).

We show that( M7, M) is a Nash equilibrium by arguing that play2icannot obtain a strictly better
payoff. LetC be any cycle inM]. None of the statesi,...,q" can appear irC; since all modified
transitions involved these states, the cy€lé also a cycle of\f;. As M, was a best response Ady, itis a
best response tb/].

We now need only argue thaf] is simpler than\/;. In (M, M,), the statey}' is a played state o/,
so by Propositiof 4]1, we hay&]| < |R;|. Also, the statey}’ contributes at least to the value||d; ||, a
contribution not present in the calculation|pf, ||, so||07]| < ||é1]]. O

Lemma 6.2 Suppose thatM;, M,) is a lean equilibrium ofG,,, with respect to one of the complexity
measuresR|, ||d|| having a strictly enforceable payoff profile, and suppos# #h; is contained in=; (for
somei € {1,2}). Then, the equivalence relatiors,, =; are equal.

Proof. We prove this by contradiction. Suppose there are two gallie: ¢’ such that” =, ¢’ butt” #; ¢'.
Without loss of generality, we assume that 1, and so we have{" #* qf. We want to show thath/;, Mo)
is not a lean equilibrium; if M7, M) is not a Nash equilibrium, we are done, so we assume that it is.

Define M| to be the machine equal fd;, but where the statg" is eliminated and all transitions tg"
from states inR; \ {¢!" } are changed to transitions 46 .
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The machine) is simpler than)/; with respect to the complexity measut|, as it has one fewer
played state thaid/; (see Proposition 4l1). It is also simpler th&fA with respect td|d||: the number of
normal transitions out of states i is equal to that of?;, but the statqf' (in M) has at least one normal
transition, as it is played i\, Ms).

We claim that(M7, M>) is a Nash equilibrium of7,,,, which suffices. Defing ([t]s) as{¢}' € Q1 | u €
[t]s}- Let(g"), (8%) be the sequences induced by the machidé, M,). We prove by induction that for all
t > 1,itholds thag! € f([t]), ¢, = ¢4, ands® = s'. The base case is clear, so assume that the claim holds on
t > 1. Theng, = ¢!’ for somet’ =, t. As 3, = sb = s4, we havej' ™! = 6,(¢!, 85) = 61 (¢}, s5) = ¢/ *1.
This implies thatg! ™ ¢ f([t' + 1]s) = f([t + 1]s). As M\ (@) = Mi(d)) = Mi(¢h) = i, we have
qé—l-l — qé—i-l and hencgtt! = ¢t+1.

Thus, to show thatM/], M,) is a Nash equilibrium of7,,,, it suffices to show that/, cannot deviate to
obtain a strictly higher payoff. Suppose that™ ps =3 - p,, 2% py is aMj-cycle C giving M, a payoff
r > ro( My, Ma) = ro(M], My). By the choice of the value, ', there is a pattP in M; from ¢” to ¢*
whoseM,-payoff isro(M;, My). For each state-action péip;, a;) in the cycleC with &, (p;,a;) = i
(and hencey] (p;,a;) = q{'), replacepj;1 = q{' with the pathP. In this way, we obtain a/;-cycle
whose payoff is also strictly greater than(M;, Ms) = rqo(M;, M), contradicting thaiM;, Ms) is a
Nash equilibrium of&,,. O

With respect to a machine pdib/,, M-), we let P; denote the set of played statesidf.

Lemma 6.3 Suppose that)M;, M,) has a strictly enforceable payoff profile. (41, M>) is a lean equi-
librium with respect toR|, then|R,| = |Rz| = |P1| = |P»|, and if (M1, M>) is a lean equilibrium with
respect td|d|], then||d1|| = ||d2|| = |Pi| = | P2].

Proof. We claim that, starting from a Nash equilibrium/, , M>) with a strictly enforceable payoff profile,
playerj has a best respondé; to M; where(Mj, M;) is a Nash equilibrium and such thdt;| < || and
[16;]] < |P;|. This implies, in the case of a lean equlibrium with respedid], that|Ry| < [P < |Ry| <
|P>| < |R2|, and similarly, in the case of a lean equilibrium with resged|o||, that|Px| < ||62|| < |P1] <
[|01]] < |Pz|. The claim is argued as follows. The payofig M, M), 2 (M1, M) are equal to the payoffs
to the two players of a cycl€' in machineM;. The cycleC is not necessarily a simple cycle, but if it is
not simple, it can be viewed as the concatenation of two shoytcles. Each of the two shorter cycles must
give the same payoff to playgr(otherwise(M;, M) would not be a Nash equilibrium, as playecould
profitably deviate). We choose the cycle out of the two shayeles that gives the higher payoff to player
i. We then iterate this process until we obtain a simple cg€leThe simple cycle has;(C") = r;(C) and
r:(C') > r;(C). Itis possible to implement a playgmachine); that repeatedly walks the cyal€ in M;
satisfying the stated inequalities: this is done by takingeghine that simply walks a shortest path from the
initial state ofM; to a state in the cycl€”’, and then repeatedly walks the cy¢lé The pair(Mj’-, M;)isa
Nash equilibrium: the machin&/; obtains the same payoff as the machig, and the maching/; could
only profitably deviate by playing a threat state; but siniseplayoff is greater than or equal to his payoff in
(M;, M;), this is not beneficial as his payoff is strictly above his max payoff.[]

We now present our main structure theorem. This theoremmigtdescribes the structure of machines
at lean equilibrium with respect to the meas\ifg|, but shows that their structure can be derived solely
from the equivalence relatios,, and hence just from the action sequeii€®; this implies that a third-
party observer that only views the resulting action sega@an infer the structure of the machines. In order
to give the statement, we introduce the following notion fibearho-machineto be a machiné/ where
each normal state reachable from the initial state has exactly one outgoiagsition to a normal state;
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denote this successor state &y). We call the set of states occurring finitely often in the ssupeq’,
s(qY), s%(q"), ... thetail of the machine, and the other states (those occurring ielfjnitften) thehead of
the machine.

Theorem 6.4 Suppose that)M;, M) is a lean equilibrium ofG,,, with respect to the complexity mea-
sure||d|| having a strictly enforceable payoff profile. Then, the eglgince relations=s;, =,, =1, =; are
all equal, and for each € {1,2}, the machinel; is a rho-machine having exactly one stat¢|t],)
that is played at all time point§|, for each equivalence clagg]s of =;, whose structure is given by
di(qi([t]s), s5) = qi([t +1]5) forall t > 1.

Proof. By Lemmd6.8, in each of the machinkf, M,, each played state has exactly one outgoing normal
transition which is to another played state. Thus, eachehthchines is a rho-machine. By Lemima 6.1,
the machines have the same tail size and the same head slzbuarthe equivalence relatiors and=-
are the same, from which it follows (by definition &) that the equivalence relatiors;, =,, and=, are
all the same. Since:, is always contained ig;, we can invoke Lemmla 8.2 to obtain that and=, are
each equal tes;, and we have that all four of the equivalence relations avaleq

For eachi € {1,2}, by the equivalence of; and=,, the machinel/; has one played state for each
equivalence class at;. As already noted, each played state has exactly one ogtgaminmal transition
which is to another played state, and so the machine musthm®machine with the described structuire.

7 Discussion

We introduced and studied the notion of lean equilibrium,agtipular form of Nash equilibrium where
strategies cannot be further simplified according to a caatsimplification procedure: a player simplifies
only if post-simplification, the strategy vector will be a $teequilibrium. It is possible to consider similar
equilibrium notions relative to even more cautious simgdifion procedures: for instance, a player might
anticipate simplifications of other players, and only wansimplify if, in addition to preserving Nash
equilibrium, he will not lose payoff if other players simglifollowing his simplification. A variant of
this idea would have a player simplifying if he will not losayff in the case that other players change
best response following his simplification. We leave thegtigation of these equilibrium notions to future
work. The broad research direction that we hope to haveifaehin the present work is that of investigating
notions of equilibria where players prefer simple strategbut where the desire for simplicity is not wired
directly into the players’ payoffs.
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