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Abstract

We study the performance of Fictitious Play, when used asuaidtie for finding an approximate Nash
equilibrium of a 2-player game. We exhibit a class of 2-ptayeames having payoffs in the ranfe 1] that show
that Fictitious Play fails to find a solution having an additapproximation guarantee significantly better than
1/2. Our construction shows that far x n games, in the worst case both players may perpetually haxedmi
strategies whose payoffs fall short of the best responseadeditive quantityl /2 — O(1/n'~?) for arbitrarily
smalld. We also show an essentially matching upper bounid/df— O(1/n).

1 Introduction

Fictitious Play is a very simple iterative process for cotmmiequilibria of games. A detailed motivation for it is
given in [8B]. When it converges, it necessarily converges iash equilibrium. For 2-player games, it is known to
converge for zero-sum gamés [10], or if one player has juste?egies[[2]. On the other hand, Shapley exhibited a
3 x 3 game for which it fails to convergel[9, 11].

Fictitious Play (FP) works as follows. Suppose that eacguldnas a number ddictions or pure strategies.
Initially (at iteration 1) each player starts with a singtgian. Thereafter, at iteratioh) each player has a sequence
of t — 1 actions which is extended withath action chosen as follows. Each player makes a best resgora
distribution consisting of the selection of an opponentategy uniformly at random from his sequence. (To make
the process precise, a tie-breaking rule should also béfiggetowever, in the games constructed here, there will
be no ties.) Thus the process generates a sequence of niiatztyg profiles (viewing the sequences as probability
distributions), and the hope is that they converge to ailmgitistribution, which would necessarily be a Nash
equilibrium.

The problem of computingpproximateequilibria was motivated by the apparent intrinsic hardridscomputing
exact equilibrial[8], even in the 2-player caseé [4]. ANash equilibrium is one where each player’s strategy has
a payoff of at most less than the best response. Formally, for 2 players with purategy setd/, N and payoff
functionsu; : M x N — R fori € {1,2}, the mixed strategy is ane-best-responsagainst the mixed strategy
7, if for any m € M, we haveu;(o,7) > uj(m,7) — €. A pair of strategiew, 7 is ane-Nash equilibrium if they
aree-best responses to each other. Typically one assumes ¢hpayloffs of a game are rescaled to lig(nl], and
then a general question is: for what valueg dbes some proposed algorithm guarantee todiN@sh equilibria?
Previously, the focus has been on various algorithms thmainrpolynomial time. Our result for FP applies without
any limit on the number of iterations; we show that a kind aflmal behavior persists.

A recent paper of Conitzer|[5] shows that FP obtains an apmation guarantee of = (¢ + 1)/2¢t for 2-player
games, where is the number of FP iterations, and furthermore, if both @fayhave access to infinitely many
strategies, then FP cannot do better than this. The intulighind this upper bound is that an action that appears
most recently in a player's sequence hascaralue close to O (at most/t); generally a strategy that occurs a
fraction~ back in the sequence has amalue of at most slightly more than (it is a best response to slightly less
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thanl — ~ of the opponent’s distribution), and thesalue of a player's mixed strategy is at most the overaltaye,
i.e., (t +1)/2t, which approaches$/2 ast increases.

However, as soon as the number of available pure strategeeseeded by the number of iterations of FP, various
pure strategies must get re-used, and this re-usage meaesaimple, that every previous occurrence of the most
recent action all have-values ofl /t. This appears to hold out the hope that FP may ultimatelyaguee a signif-
icantly better additive approximation. We show that unfoetely that is not what results in the worst case. Our
hope is that this result may either guide the design of marelligent” dynamics having a better approximation
performance, or alternatively generalize to a wider cldisslated algorithms, for example the ones discussed in [6].

In Sectior{2 we give our main result, the lower bound ¢ — O(1/n'~°) for anyé > 0, and in Sectiof]3 we
give the corresponding upper boundig — O(1/n).

2 Lower Bound
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Figure 1: The gamg; belonging to the class of games used to prove the lower bound.

We specify a class of games with parametgwhose general idea is conveyed in Figure 1, which showsotlve r
player's matrix forn = 5; the column player’s matrix is its transpose. A blank entwicates the value zero; let
a=1+ ﬁ ands =1 — ﬁ for 6 > 0. Both players start at strategy 1 (top left). Generallydgtbe a
4n x 4n game in which the column player's payoff matrix is the travsp of the row player’'s payoff matrig,
which itself is specified as follows. Forj € [4n] we have

If 1 € [2 : n], Ri,i—l =1.1f7¢ [n+ 1: 4n], Ri,i =1.

Ifie€n+1:4n), R; i1 = a. Also, Rayy1.4n = .

Otherwise, ifi > j andj < 2n, R; j = f5.

Otherwise, ifi > jandi —j <n,R;j =p.IfjeB3n+1:4n|,i € 2n+1:j—n], R;; = B.
Othel’Wise,Rij =0.



For ease of presentation we analyze FRGgnthe obtained results can be seen to apply to a versid), afith
payoffs rescaled int@, 1] (cf. the proof of Theorerfl2).

2.1 Overview

In this section we give a general overview and intuition owfwur main result works, before embarking on the
technical details. Number the strategies. . 4n from top to bottom and left to right, and assume that bothgiay
start at strategy 1. Fictitious Play proceeds in a sequehseeps, which we index by positive integerso that
stept consists of both players adding th¢h element to their sequences of length 1. We have the following
observation:

Observation 1 Since the column player’'s payoff matrix is the transposehefrow player’s, at every step both
players play the same action.

This simplifies the analysis since it means we are analyzisiggle sequence of numbers (the shared indices of the
actions chosen by the players).

A basic insight into the behavior of Fictitious Play on thengs in question is provided by Lemina 1, which tells
us a great deal about the structure of the players’ sequérte; be the action played at stepWe sets; = 1.

Lemma 1 For any time step, if s; # s;41 thens;.1 = s, + 1 (0r 541 = 2n + 1 if 5, = 4n).

Proof. The firstn steps are similar td [5]. For step> n, suppose the players play # 4n (by Observation
[, the two players play the same strategy).is a best response at stepand sinceR,, 1, > Rs,s, > Rjs,
(J ¢ {st, st +1}), strategys; + 1 is the only other candidate to become a better responsesafteplayed. Thus, if
St11 # st, thensg 1 = s¢ + 1. Similar arguments apply to the cage= 4n. O

The lemma implies that the sequence consists of a block afemutive 1's followed by some consecutive 2’s,
and so on through all the actions in ascending order until i@ a block of consecutivén’s. The blocks of
consecutive actions then cycle through the actighs+ 1, ..., 4n} in order, and continue to do so repeatedly.

As it stands, the lemma makes no promise about the lengthsesétblocks, and indeed it does not itself rule
out the possibility that one of these blocks is infinitelydofvhich would end the cycling process described above
and cause FP to converge to a pure Nash equilibrium). Thesgqubat results say more about the lengths of the
blocks. They show that in fact the process never convergegdies infinitely often) and furthermore, the lengths
of the blocks increase in geometric progression. The paesweand/ in G, govern the ratio between the lengths
of consecutive blocks. We choose a ratio large enough thatres that the: strategies most recently played,
occupy all but an exponentially-small fraction of the sagree At the same time the ratio is small enough that the
corresponding probability distribution does not allocaiiech probability to any individual strategy.

As an aside, we conclude with the following observation, clihis not hard to check from the structure of the
game.

Observation 2 The game has a mixed Nash equilibrium in which both playeestiis uniform distribution over
strategies{2n + 1,...,4n}. The equilibrium has payoff approximate}yto each player. There are no pure Nash
equilibria, although if both players use the same strategyhie range{n + 1,...,4n} then they would receive
payoff 1. Recall that > 1, so a payoff of 1 to each player does not imply an equilibrium.

2.2 The proof

We now identify some properties of probabilities assigredttategies by FP. We [éf(:) be the number of times
that strategyi is played by the players until time stewf FP. Letp;(:) be the corresponding probability assigned



by the players to strategyat stept, also for any subset of actiorfswe usep;(S) to denote the total probability of
elements ofS. So it is immediate to observe that

(i) _ 0 (i) .
Z?Zl () t

pi(i) =

The next fact easily follows from the FP rule.

Lemma 2 For all strategiesi < n, p:(i) = % and therefore/;(i) = 1 for any time step > i.

Proof. At step 1, each player sets(1) = 1 andp;(i) = 0 for i > 1. Asin [5], for ¢ < n the sequence chosen
by both players ig1,2,...,t), sop;(i) = % for i < ¢t and0 otherwise. Lemma&l1 implies that none of the fitst

strategies will be a best response subsequently, thusimgpiye claim. O

By Lemmall, each strategy is played a number of consecutivestiin order, until the strategy: is played; at
this point, this same pattern repeats but only for the giresein{2n + 1,...,4n}. We lett* be the length of the
longest sequence containing all the strategies in asagrmuader, that is¢* is the last step of the first consecutive
block of 4n’s. We also lett; be the last time step in whichis played during the first* steps, i.e.f; is such that
O (1) = by, —1(3) + 1 andly (i) = b (i) fort € {t;, ..., t*}.

Lemma 3 For all strategiesn + 1 < i < 3n and allt € {¢;,...,t*}, it holds:

a—p8 . ) 1 a—p8 .
-1 < < Z _
i) =m0 s o+ —— (i - 1)
and therefore,
=B <ai) <1+ =Loi-1)
a—ltZ =0 = 04—1tZ ’

Proof. By definition of¢;, strategyi is played at step;. This means thatis a best response for the players given
the probability distributions at stefp — 1. In particular, the expected payoff dfs better than the expected payoff
of 7 + 1, that is,

i—2
B> p-1(j) +apy1(i = 1) +py 1 (i) >
j=1
i—2
ﬁ Zpti—l(j) + 5pti—1(i - 1) + apti—l(i)'
j=1
Sincea > 1, the above implies that;, _;(z) < z;_fpti_l(z‘ — 1). By explicitly writing the probabilities, we get

gti—l(i) < o — ,Beti_l(l. — 1)
ti—l T a-—1 ti—l

Kti(i)—lgz:fﬁti(i—l) = )
Etl(l) < l_|_a_ﬁgti(z_1)

[Z B 7 a—1 t;
P < 1+ L) @



At stept; + 1 strategyi is not a best response to the opponent’s strategy. Then,raynlzgl ; +1 is the unique best
response and so the expected payoff-pfl is better than the expected payoffigiven the probability distributions
at stept;, that is,

ﬁ}jm )+ ape, (i — 1) + py, (i) <

/szt ) + Bpe; (i — 1) + apy, (i).

Sincea > 1, the above implies that

peli) = S0, i), @
and then that
(i) 2 2= Le, - @

By definition oft; actions will not be played anymore until time steép. Similarly, Lemmal shows that— 1 will
not be a best response twice in the time intefvat*] and so will not be played until step. Therefore, the claim

follows from (1), [2), [B) and.(4). O
Lemma 4 For all strategiesi € {3n+1,...,4n — 1} and allt € {¢;,...,t*}, it holds:
oa—f 1 a—p8 . B .
—_ < < — — —_
- 1pt(z 1) <p(3) < ri 1pt(z 1)+ — 1pt(z n)
and therefore,
a—pfp . . a—p . B .
-1 < < — —n).
a—let(z 1) <) <1+ a—let(z 1)+a_1€t(z n)

Proof. By definition oft;, strategy: is played at time step. This means thatis a best response for the players
aftert; — 1 steps. In particular, the expected payoffi @ better than the expected payoffiof 1, that is,

(Zpt -1 Z Pti—-1(J ) +apy,—1(i — 1)+

j=i—n

i—2
pr—1(i) = B8 (Zpt -1(J) + Z ptil(j)) +

j=i—n+1

Bpi—1(i = 1) + apy, (i)

Sincea > 1, the above implies that, 1 (i) < 2Lp,, (i — 1) + Lopi,—1(i — n). Similarly to the proof of
Lemmd 3 above this can be shown to imply

pui) < 3+ - )+ Lpi - ), ©
0,() <1+ a:fﬁti(i—l)—l—%ﬁti(i—n). (6)



At time stept; + 1 strategy: is not a best response to the opponent’s strategy. By Lemhria 1,is the unique
best response and so the expected payaffiol is better than the expected payoffipthus implying that

P2 =01+ Lopi )

> Z:fpti(i—lh (7)
0, (i) > Z:fﬁti(i—l)—i-afl&i(i—n)

> Z:f&i(z‘—l). ®)

Similarly to LemmdB, the claim follows fronb{(5}1(6).1(7) aif@), the definition of; and the fact that, by Lemma
[, a strategy belonging t8n +1,...,4n — 1} is never twice in time a best response in the time intefval]. O

The next lemma shows that we can “forget” about the firsactions at the cost of paying an exponentially small
addend in the payoff function.

Lemma 5 Foranyd >0, =1+ = andf = 1 — 7, Z?let*(j) < 2"’

Proof. We first rewrite and upper bound the sum of the probabilitiesave interested in:

-8 R Ne) ] Y e ()
;pt = ; [zﬁzlﬁﬁ 0] T G)
1 1

- 4n TS :
> jmoni1 b (7) b (4n — 1)

Note that by Lemmat@a 2] 3 ahél 4 we have that

Sy > 2@
a—1 t*(4n—2) = < > t*(4n—3)

Oé—,@ 3n—1 Q_B 3n—1
2<04—1> gﬁ(n)z(a—l) '

By plugging in the values o and given in the hypothesis we have that

a—p

a—1

Et* (4n — 1) >

2n 1 1
Z;pt*(]) < N = 23"6_7%5
i= (+7)"")

<1
S ons

where the penultimate inequality follows from the obseorathat the function(1 + 1/z)* > 2 for z > 2. O

The theorem below generalizes the above arguments to thesdpat FP visits in the last block of the game, i.e.,
the block which comprises strategifs= {2n + 1,...,4n}. Since we focus on this part of the game, to ease the
presentation, our notation uses circular arithmetic oretements ofS. For example, the action+ 2 will denote
action2n + 2 for j = 4n and the actiory — n will be the strategy3n + 1 for j = 2n + 1. Note that under this
notationj — 2n = j + 2n = j for each actiory in the block.



Theorem 1 Foranys > 0, a = 1 4+ —= and 8 = 1 — —+—, n sufficiently large, any > * we have

. 1 .
L(z) > 14 ——=forall i € Swithi # s¢,s¢ + 1,
pe(i — 1) nl=9o

pe(7) 3 )
L4 — .
= 1) 1 15 forallie S
Proof. The proof is by induction ok

Base. For the base of the induction, consides t* and note that at that poist = 4n ands; + 1 = 2n + 1.
Therefore we need to show the lower bound for any strategy2n + 2, ...,4n — 1}. From Lemmat&l3 arld 4 we
note that fori # 4n, 2n + 1,
(1) S a- B _ 1
pr(i—1) — a—1 ni=o’

As for the upper bound, we first consider the case8f4n, 2n + 1. LemmaB implies that foi = 2n + 2, ..., 3n,

pe() 1 a-p
pr(i—1) — t*  a-—1

while Lemmd#% implies that for = 3n + 1,...,4n — 1,

I

pt*(i) < 1 Q—B /8 pt*(i —n)
e + :
pr(i—1) —t* a—1 a—1pu(i—1)

1 a—5+ B (i —n)
St a—1 a—1/4p(i—1)

To give a unique upper bound for both cases, we only focus @allove (weaker) upper bound and next are going
to focus on the rati Z*((Z:’f)) We use Lemmafd 3 adl 4 and get

a—p

O (i — 1) > 1£t*(¢—2)2<0‘_5

T,

o —

n—1
> <Z:/13> (i — n).

By settinga and3 as in the hypothesis and noticing that> n > n'~ we then obtain that

pe(i) b2 (! 1=n p2(1-0) _q
p(i—1) = nl-9 nl-o nl-d

We end this part of the proof by showing that the last addentth@mnight-hand side of the above expression is upper
bounded byﬁm}—,é. To do so we need to prove

1\ 1 n!-0
<1 ™ n1—5> S it 28 ©)

which is equivalent to
& 1

1 nl—9 n Iy
2(1-6




We now lower bound the left-hand side of the latter inequalit

<1+ 1 >n15 "‘5—nllé> on® >2n6
=0 o 2

where the first inequality follows from the fact that the ftion (1+1/x)” is greater thag for z > 2 and the second

one follows from the fact that=i=5 < 2 for n1—% > 1. Then, since for > *"~Y/4, 5n2(170) > 4(n2(1-9) — 1),
to prove [9) is enough to show

27" > 2(5n2079) <= nd > 2(1 — &) log, (10n).

To prove the latter, sincé > 0, it is enough to observe that the functief is certainly bigger than the function
2log,(10n) > 2(1 — 0) log,(10n) for n large enough (e.g., far = 1/2, this is true forn > 639).
The following claim concludes the proof of the base of theauitibn.

Claim 1 The upper bound holds at time stepfor ¢ = 4n, 2n + 1.

Proof. We first show the claim foi = 4n. At time stept* FP prescribes to playn. This in particular means that
the strategyln achieves a payoff which is at least as much as that of agtion 1 aftert* — 1 time steps. We write
down the inequality given by this fact focusing only on thstn strategies (we will consider the first strategies
below) and obtain:

pr—1(4n) + app—1(4n — 1) + Bpp—_1(3n) >
Ozpt*_l(éln) —I—pt*_1(2n + 1) —|— ﬁpt*_l(éln — 1) (10)
and then sincer > 1
peai(dn)  _a—B 5 pea(n)
pr—1(dn—1) "a—-1 a—1pp_1(dn—1)

1 pea(ntl)
a—1pp_1(4n —1)

Similarly to the proof of LemmB]3 above this can be shown talymp

per(4n) <i a—5+ p pex(3n)
pr(An—1) 7t  a—-1 a—1px(dn—1)
1 pe(2n+ 1)
a—1pp(dn —1)
Ll a=B 8 peBn)
“t* a—-1 a—1pp(dn—1)

(11)

We now upper bound the ratio{?iLl pit(ﬁﬁ)n- By repeatedly using Lemmdta 3 ddd 4 we have that

> (O‘ - 5>n_1pﬁ(3n).

a—1

2
ﬁi§>zmun—m

v

This yields

n—1
B pe(3n) < B a—1 < 1_7
a—1pp(dn—1) " a—-1\a-4 ~ 4nl-o

8



where the last inequality is proved above ($ée (9)). Thegefincet > n' 9, (1) implies

e (4n) 21
—<1
To conclude this part of the proof we must now consider theridmrtion to [(10) of the actiong, . .., 2n that are

not in the last block. However, Lemrha 5 shows that all thos®eme are played with probability/2”5 at timet*.
Thus the overall contribution of these strategies is uppentbed byﬁ(a -B) < 2% Similarly to the above,
we observe that, for sufficiently largen® > logy(4n) > (1 — 6) logy(4n) which implies that# < 4. This
concludes the proof of the upper bound at tithéor i = 4n.

Consider now the case= 2n + 1. Attime stept* + 1, 4n is not played by FP, which means thiat is not a best
response after* time steps. By Lemmid 1, the best responsnis- 1; then, in particular, the payoff dfn + 1 is
not smaller than the payoff @i at that time. We write down the inequality given by this famtdsing only on the
last2n strategies (we will consider the first strategies below) alot@in

pr-(4n) + apy (4n — 1) + Bpp(3n) <
app(4n) + pr(2n + 1) + Bpy (4n — 1)
and then since: > 1
p(4n) Sa— B p pr=(3n)
pr(dn—1) "a—-1 a—1pp(dn—1)
1 pe(2n+1)

— . 12
a—1pp(dn —1) (12)
We next show th'—*ﬂ”g;(g”)) tf{;ff"f)rl) > — 1 or equivalently that% > 5 - %. To prove
this it is enough to show tha% > 4. We observe that
pe=(3n)  pe(3n) pe(3n—1) P (2n + 2)

pee(2n+1)  per(Bn—1)pe(3n —2)  pe(2n+1)

- a—f3 n_1> 1
_<a—1> k

where the first inequality follows from Lemrh& 3 and the secimedjuality follows from the observation (similar to
the above) that fon, sufficiently largen’ > 2log,(2n). Then to summarize, fax and3 as in the hypothesid,_(112)
implies that

pe= (4n) 1 1
peldn —1) =1 T T T apis
As above we consider actiorls. .., 2n and observe that their contribution to the payoffs is uppmrmided by
—i—s. Now to conclude the proof of the claim for the case- 2n + 1 we simply notice that the above implies
pe=(4n — 1) < pp(4n) and Lemmat&l3 arld 4 imply that- (2n + 1) < pi(4n — 1) which together prove the
claim. O

Inductive step. Now we assume the claim is true until time step 1 and we show it for time step By inductive
hypothesis, the following is true, with# s;_1,s.-1 + 1

1 pt—l(j) 3
1 < <14+ —— 13
T s p—1(i—1) ~ T (13)
Pt—l(St—l) <1+ 135’
pt—l(St—l - 1) n-
_ _ 1
pi—1(st-1 + )§1+ 135' (14)
Pt—l(St—l) n-—



We first consider the case in whiech # s;_;. By Lemmall, the strategy played at timés s, | + 1, i.e.,
st = s¢—1+1. Lets;_y = i and then we have, = i+ 1. By inductive hypothesis, for all the actions? i,i+1,i+2

we have G)
a—f3 1 pe(J 3
=1 < <14 —. 15
a—1 +711_5_1%(]'—1)_ +n1—5 (15)

Indeed, for these actiong ¢;—1(j) = ¢(j) and?;—1(j — 1) = 4(j — 1). Therefore the probabilities gf and
j — 1 at timet are simply those at time— 1 rescaled by the same amount and the claim follows fforh (18 T

upper bound on the rati%% easily follows from the upper bound if(13) 4s1(i + 2) = ¢:(: + 2) and

l1(i+1) < l(i+1) =4¢,_1(i+ 1) + 1. However, as; = i + 1 here we need to prove lower and upper bound

also for the ratiol% and the upper bound for the raﬁ%(f;g—)l).

Claim2 1+ Ly < 2 <94 3

Proof. To prove the claim we first focus on the last block of the ganee, the block in which players have strategies
in {2n + 1,...,4n}. Recall that our notation uses circular arithmetic on theber of actions of the block.
The fact that action + 1 is better than actionaftert — 1 time steps implies that

pe—1(i) +api—1(i — 1) + Bp—1(i —n) <
api—1(8) + pe—1(i +1) + Bpr1 (i — 1)

and then sincer > 1

pr—1(4) S B B pi-1(i—n)
pe-1(i—1) "a—-1 a—-1pa(i—1)
1 pa(i—2n+1)
Ca-1 pe—1(i—1) (19

pre—1(i—n)—pi—1(i—2n4+1) - 1 ; pe—1(i—n) 1 (a=1)ps—1(i—1)
We next show that= (a—Tpe 1 0=T) > — 1= Or equivalently thatm > 3 4ﬁn1*5ptj1(i—2n+1)'

To prove this it is enough to show tha%*?fw > L. We observe that
Pi—1(i—2n+1) B

p—1(i—n)  pa(i—n) _ pe—1(i —2n +2)

pi—1(i—2n+1) pi(i—n—-1) p1(i—2n+1)
n—1
o il > l,
“\a-1 - j
where the first inequality follows from inductive hypotreg$ive can use the inductive hypothesis as all the actions
involved above are different froirandi+ 1) and the second inequality follows from the aforementiooleskervation

that, for sufficiently larger, n’ > 2log,(2n). Then to summarize, far and 3 as in the hypothesis_(1L6) implies
that

P (4) Pi—1(4) 1 1
- >1a4 - -
pe(i—1) pa(i—1) + nl=0  4pl-96’

where the first equality follows frorfy_; (i) = ¢;(i) and¢;_; (i — 1) = ¢,(i — 1), which are true because = i + 1.
Since action + 1 is worse than strategyat time stepg — 1 we have that

pe—1(i) +apr—1(i — 1) + Bp—1(i — n) >
api—1(2) + pe—1(i + 1) + Bpe—1(i — 1)

10



and then sincer > 1

) _a=B 8 pali—n)

p—1(i—1) Ta—1 a—1p1(i—1)
1 pa(i—2n+1)
a—1 p1(i—1)

Similarly to the proof of Lemm@]3 above this can be shown tolymp

i (1) 1 a-p B pi(i—n)
pt(¢—1)§2+a—1+a—1pt(z’—1)
1 p(i—2n+1)
a—1 p(i—1)
1 a-p B pi(i—n)
§¥+a—1+a—1pt(i—1)'

17)

We now upper bound the rau& pli—n) By repeatedly using the inductive hypothe§is (15) we hiase t

1 pe(i—1)
o o 2
pii — 1) za_fpm‘—m > (Z_f) peli — 3)

> <z : f)n_lpt(i —n).

(Note again that we can use the inductive hypothesis as rfdhe actions above isor i + 1.) This yields

B pt(i—n)< B <0—1>n_1< 1

a—1p(i—1) " a—1\a-p ~ 4pl-d’
where the last inequality is proved above ($8e (9)). Thezefincet > n'—9, (I7) implies the following
pe(i) 2 1
pe(i—1) — 1+ =5 s

To conclude the proof we must now consider the contributmithe payoffs of the actions,. .., 2n that are
not in the last block. However, Lemna 5 shows that all thog®mag are played with probability/2"‘5 at time
t*. Since we prove above (see Lemiia 1) that these actions aptayetd anymore after time step this implies
that E] 1 pe( ') < 23n1pt*( j) < 2" Thus the overall contribution of these strategies is ufymemded by

( —-0) < 2n6 < i —L__ where the last bound follows from the aforementioned faat, thor . sufficiently large,

27L
> (1 — 0)logy(4n). This concludes the proof of this claim. O

Claim 3 2:U+h) <
Pt (1)

Proof. From [18) (and subsequent arguments) wepgé) > p. (i — 1) and from [Ib) we get, (i — 1) > p(i—2) >
. >p(i —2n+1) = p(i + 1). Thereforep,(i) > p:(i + 1) thus proving the upper bound. O

Finally, we consider the case in whigh.; = s;. In this case, for the actionys# s;, s;+1itholds¢;_,(j) = ¢:(j)
and/;_1(j — 1) = £,(j — 1). Therefore, similarly to the above, for these actigrke claim follows from[(IB). The

upper bound for the ratiéM easily follows from [T#) ag,_1(s; + 1) = £,(s; + 1) andé,_1(s;) < ly(s;) =

¢;—1(s¢) + 1. The remaining case to analyze is the upper bound on thea%ﬁﬁféf To prove this we can use
mutatis mutandishe proof of the upper bound contained in Claim 2 with= . O

11



The claimed performance of Fictitious Play, in terms of thpraximation to the best response that it computes,
follows directly from this theorem.

Theorem 2 For any value of > 0 and any time step, Fictitious Play returns ar-NE withe > 1 — O (ﬁ)

Proof. Fort < n the result follows since the game is similar [to [5]. In detafbr¢ < n the payoff associated to
the best response, which in this case;is- 1, is upper bounded by. On the other hand, the payoff associated to
the current strategy prescribed by FP is lower bounde;@ @;;}] j wherei = s;. Therefore, the regret of either

player normalized to th®, 1] interval satisfiese > 1 — 221, Since’z! < 1/2, the fact thatl — 5 — § + -2 >0
(which is true given the values ef and 3) yields the claim. For < ¢* the result follows from Lemmatfa 3 and
[; while the current strategy; (for ¢t < t*) has payoff approximately 1, the players’ mixed stratetiage nearly
all their probability on the recently played strategied, Wwith no pure strategy having very high probability, so that
some player is likely to receive zero payoff; by symmetryreplayer has payoff approximategl. This is made
precise below, where it is applied in more detail to the cdseot*.

We now focus on the cage> t*. Recall that for a set of strategies p;(S) = > ;cqpi(i). LetS; be the
set{2n + 1,...,s:} U {s; +n,...,4n} if s, < 3n, or the set{s; — n,..., s} in the case that; > 3n. Let
Sp={2n+1,...,4n} \ S;. Also, lets{"™ = arg max;c (9n+1,... 4n} (Pt(7)); NOte that by Theorei ;" is equal
to eithers, or s, , wheres, = s; — 1if s, > 2n, ordn if s, = 2n.

We start by establishing the following claim:

Claim 4 For sufficiently largen, p,(S;) > 1 — 2251,

27L6
Proof. To see this, note that for all € SJ, by p;(s{"**) > p.(si*** — 1) and Theoreril1 we have

max)

pe(si™™) (™) p(st 1) px+1)
pe(z)  pe(SP = 1) pe(s = 2) pi(z)

1 k—1
> |1+ ——=
(ret)

wherek is the number of factors on the right-hand side of the equabbve, i.e., the number of strategies between
x ands®®*. Thus, as > n,

B nl=d ) )
Hencepy(S!) < (2n)4—m/('™") — nall" 20 \where the last inequality follows from the fact that, for

n? 2n
largen, 41/~ < 2. Thenp,(S;) > 1 — pi(S}) — pi({1,...,2n}), which establishes the claim, since Lenima 5
establishes a strong enough upper boung;6fl, ..., 2n}). O

Claim 5 s, the current best response at timéias payoff at least (1 — M)

gn?

Proof. s, receive a payoff of at leagt when the opponent plays any strategy fr8mthe claim follows using Claim
4. O

Let F; denote the expected payoff to either player that would téktiiey both select a strategy from the mixed
distribution that allocates to each strategyhe probabilityp,(z). The result will follow from the following claim:

2n

Claim 6 For sufficiently largen, E; < § + ' + 2.

12



Proof. The contribution taF; from strategies i1, ..., n}, together with strategies ifi/, may be upper-bounded
by o times the probability that any of that strategies get play@tis probability is by Lemma&a]5 and Claifd 4
exponentially small, namel;’/n/2”5.

Suppose instead that both players play figmif they play different strategies, their total payoff wik at mosty,
since one player receives payoff 0. If they play the saméegjyathey both receive payoff 1. We continue by upper-
bounding the probability that they both play the same gisaté his is upper-bounded by the largest probability
assigned to any single strategy, namelfs"*>).

Suppose for contradiction that(s™*) > 6/n'~°. At this point, note that by Theorelm 1, for any strategy S;,

we have i
pe(si"™) 3
< |1+ ——=

Pi(s) —< )

wherek is the distance betweenands}***. Therefore, denoting = (1 + nf’:a)_l, we obtain

st—1

pe(S) =Y pels) = pelse) + D puli)

SESt i=8t—n
n—1
> pt(smax) Z k.
k=0

Applying the standard formula for the partial sum of a gegineeries we have
6 1—7r"
pe(Se) > = ( 1—7">

Noting thatl — 7" > § we havep;(S5;) > —= - (3) - (%) which is greater than 1, a contradiction.
The expected payoff’; to either player, is, by symmetry, half the expected totgloffaso we haver; < (1 —

22:; — —55)9 + -5 + 2% o which yields the claim. O

We now show that Fictitious Play never achieves-amlue better tha% -0 (nll,é ) From the last two claims the
regret of either player normalized [0, 1] is

1 6 2n
2 nl=041 o
1 n'=0 41 n'0+1 2n-—1
T2 200 fpl-6  p2(1-0) 4 pl-d  ond
6 2n
K
1 1
=50 (W) :
This concludes the proof. O
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3 Upper bound

In this section;n denotes the number of pure strategies of both playersa lletlenote the FP sequences of pure
strategies of length, for players 1 and 2 respectively. Lef.,, denote the subsequenag, ..., a,. We overload
notation and use to also denote the mixed strategy that is uniform on the spoeding sequence.

Letm™ be a best response agaihsand lete denote the smallestfor which a is ane-best-response againstTo
derive a bound om, we use the most recent occurence of pure strategyfork € {1,...,t}, let f(k) denote the
last occurrence aiy in the sequence, that is,

f(k) = max l.

Z€{177t}7 ag=ag

We have the following.

e =up(m*,b) — uy(a,b)

=23 (nm*,8) — s (a1,1)
1=1

14 N1 ) 1
=72 [f(Z)t (ur (m”, bp: p(iy-1)) = w(@is b piy-11)) + GRS big (i) — wn (@i, bsciyg )]
i=1
t .
= % ) [t_ﬂ#(”l(m*» bisciya) — wa(ai b)) (18)
i=1
t .
< % Z # (19)
i=1
t
:1+%—ti22f(z‘) (20)

Inequality [18) holds since; is a best response againgt s(;)—1), by definition. Inequality((19) holds since payoffs
are in the rangé, 1]. To provide a guarantee on the performance of FP, we find theesee: that maximizes the
RHS of [20), i.e., that minimize¥_"_, f(i).

Definition 1 For a FP sequence, let S(a) := 3_'_, f(a;) and leta = arg min, S(a).
The following three lemmata allow us to characteriz¢he sequence that minimizé$a).
Lemma 6 The entries of; take on exactly: distinct values.

Proof. The entries of an FP sequence can take on at masttinct values. Suppose for the sake of contradiction
that the entries ofi take on strictly less than distinct values. Then there is a pure strategy, saythat does
not appear i and a pure strategy:’ that appears more tharin times. Obtainz from a by replacing a single
occurrence ofn’ in a with m. ThenS(a) < S(a), a contradiction. O

We now define a transformation of an FP sequenteo a new sequenc€ so thatS(a’) < S(a) if a # d'.

Definition 2 Suppose the entries aftake ond distinct values. We definey, ..., x4 to be the last occurrences,
{f(a;) | i € [t]}, in ascending order. Formally, let; := a; and fork < d let z; := a; be such that

i:= argj@laxtaj ¢ {Tki1,. .., g}

ey
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Fori=1,...,d,let
#(x;) == {a; | j € [t], a5 = 2},
which is the number of occurrencesagfin a. Definea’ as

/._
A = T1yeee 3 L1y L2ye ey X2y 3 Ldyew.yLd -

#(z1) #(w2) #(za)

Lemma 7 For any FP sequence, leta’ be as in DefinitionR. I&’ # a thenS(a’) < S(a).

Proof. Foralli = 1,...,t we havef(a}) < f(a;), and sinced’ # a there is at least onesuch thatf(a}) <

f(ai). O
Lemma 8 Letn,t € N be such that|t. Leta be a sequence of lengtlof the form

a=1,...,1,2,...,2,--- n,...,n.

—— —— N——
c1 c2 Cn
ThenS(a) is minimized ifand only if; = --- = ¢, = t/n.

Proof. We refer to the maximal length subsequence of entries witlevac {1,...n} asblocku. Consider two
adjacent blocks andu + 1, where blocku starts at and blocku + 1 starts atj and finishes ak. The contribution
of these two blocks t&'(a) is

j—1

k
DG =D+ k=g (kD) + (k).

i J

If k + i is even, this contribution is minimized when= £ If & + 4 is odd, this contribution is minimized for
both valuesi = | | andj = [£1.

Now suppose for the sake of contradiction ti$gt:) is minimized whery; = --- = ¢, = t/n does not hold.
There are two possibilities. Either there are two adjacémtks whose lengths differ by more than one, in which
case we immediately have a contradiction. If not, then ittnbesthe case that all pairs of adjacent blocks differ in
length by at most one. In particular, there must be a blockmdtht /n + 1 and another of lengttyn — 1 with all
blocks in between of lengttyn. Flipping the leftmost of these blocks with its right neighlwill not change the
sumS(a). Repeatedly doing this until the blocks of lengtfia + 1 and¢/n — 1 are adjacent, does not changjg:).
Then we have two adjacent blocks that differ in length by ntbas one, which contradicts the fact th#) was
minimized. O

Theorem 3 If n|t, the FP strategiesa, b) are ane*-equilibrium, where

€ = —

.11
2 ¢

L
2n
Proof. By symmetry, it suffices to show thatis ane*-best-response agairistApplying Lemmd®6, Lemm@] 7 and

Lemmd8, we have that
d:m17"'7m1am27"'7m27”' y My v vy M,

t/n t/n t/n
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wherem, ..., m,, is an arbitrary labeling of player 1's pure strategies. g{&0), we have that

€< 1t =5 fla)
i=1
1 1t~i-t
= 14+-__Z -
+ t tzn;( n )
B 1+1 n+1
N t 2n
111
2t o
This concludes the proof. O

Fort superlinear im, we asymptotically achieve(gl — %)—Nash equilibrium.

4 Discussion

Daskalakis et al.[]7] gave a very simple algorithm that agsean approximation guarantee %):f subsequent
algorithms e.g.[[3,_12] improved on this, but at the experfskeing more complex and centralized, commonly
solving one or more derived LPs from the game. Our result sstgghat further work on the topic might address
the question of whethe% is a fundamental limit to the approximation performanceaoiztble by certain types
of algorithms that are in some sense simple or decentralizda question of specifying appropriate classes of
algorithms is itself challenging, and is also considerefb]rin the context of algorithms that provably fail to find
Nash equilibria without computational complexity thearetssumptions.
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