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Abstract

We study the bilateral exchange of information in the context of linear quadratic games.
An information structure is here represented by a non directed network, whose nodes are
agents and whose links represent sharing agreements. We first study the equilibrium use of
information in any given sharing network, finding that the extent to which a piece of informa-
tion is ”public” affects the equilibrium use of it, in line with previous results in the literature.
We then study the incentives to share information ex-ante, highlighting the role of the elas-
ticity of payoffs to the equilibrium volatility of one’s own strategy and of one’s opponents’
strategies. For the case of uncorrelated signals we fully characterize pairwise stable networks
for the general linear quadratic game. For the case of correlated signals, we study pair-
wise stable networks for three specific linear quadratic games - Cournot oligopoly, Keynes’
beauty contest and Public good provision - in which strategies are substitute, complement
and orthogonal, respectively. We show that signals’ correlation favors the transmission of
information, but may also prevent all information form being transmitted.
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1 Introduction

Linear quadratic games have played a key role in the analysis of games of incomplete informa-
tion in economics. The implied linear best reply functions allow for the existence of a Bayesian
equilbrium in affine strategies (see Radner 1962, Angelitos and Pavan, 2007). Specific examples
include linear Cournot oligopoly, Keynes’ Beauty Contest and public good games with linear
benefits and quadratic costs. The analytical tractability of linear quadratic games has motivated
an extensive theoretical effort to understand the use of information in environment with funda-
mental uncertainty, tracing such use to strategic features of the game such as complementarity
and substitutability, and drawing welfare and policy implications (see Morris and Shin, 2002
and Angelitos and Pavan, 2007). Recently, linear quadratic games have been shown to allow
for a precise characterization of equilibrium behavior when the patterns of strategic interaction
between players is represented by a network, in which each pair of agents interact with a given
intensity and sign (see Ballester et al. 2006).

One issue that is strictly related to the equilibrium used of private information is the possi-
bility that agents share their private information before engaging in non cooperative behavior.
In the framework of imperfect market competition, this issue has spurred an extensive debate
that dates back to the seminal contributions of Novshek and Sonnenschein (1982) and Vives
(1985). Understanding the incentives of firms to share information before engaging in market
competition is important since it can help draw a line between collusive market behavior (which
is suboptimal) and pure sharing of information prior to competition (which is socially desirable).
One main insight from this body of literature is that incentives to share are associated with either
strategic complementarity or weak substitutability, be it induced by products differentiation, by
cost convexity or by price competition (see Vives,1985, Kirby, 1988 and Raith, 1996). While
certainly of great relevance for policy and for welfare, these conclusions rest on the specifics
of the imperfect competition model, and little is known about the incentives to share in other
instances of the linear quadratic game, possibly reflecting different incentives and different types
of economic interactions, such as the beauty contest or public good games. Moreover, while the
traditional approach has mainly studied the incentives of firms to jointly and universally disclose
all private information1, in many economic contexts agents may agree to share information in
smaller groups or in pairs, by means of private agreements of various degrees of commitment.

These consideration motivate the present analysis of information sharing in general linear
quadratic games. We approach information sharing from a bilateral perspective, assuming that
each pair of agents can commit (ex-ante) to mutually (and truthfully) disclose their own private
information to each other. The ex-ante assumption allows us to dismiss all strategic consider-
ations that relate to the inference of other agents’ information from their sharing behavior. In
this context, an information structure is well represented by a non directed network, in which an
agent’s private information consists of the signals observed by her ”neighbors” in the network.
Compared to previous literature where each agent observes a ”private” signal (only revealed
to her) and a ”public” signal (observed by all) (see Morris and Shin, 2002 and Angelitos and
Pavan, 2007), here each signal is public to a specific subset of agents - the neighbourhood.

Agents decide whether to engage in sharing agreements prior to observing their own private
signal. Once agreements are made and signals are observed, players play a linear quadratic
game of incomplete information, in which information sets are given by the network. We first
characterize the equilibrium use of information in the network. We find that the sensitivity of
each player’s strategy to each observed signal in the network depends on the strategic nature of

1With the exception of Kirby (1988) and Malueg and Tsutsui (1996)
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the underlying game. In line with previous works in the literature, strategic complementarities
induce agents to use more intensively those signals that are more public, by this meaning those
that are observed and used more intensively by other agents in the network. Opposite conclusions
apply to games with strategic substitutes. As we will see, this implies that more public signals
are less attractive to acquire when actions are substitutes and more attractive when actions are
complements.

In section 4 we study the incentives to share information. Our focus is on ”pairwise stable”
networks, providing no two agents with the incentive to form a new link, and no agent with
the incentive to unilaterally sever an existing link (see Jackson and Wolinsky, 1996). Differently
from all previous works on information sharing in oligopolies, our analysis cannot exploit the
symmetry of agents equilibrium strategies even when the underlying game and the statistical
structure are in all respects symmetric. In fact, the gains accruing to an agent severing a
link or to two agents forming a new one are assessed by evaluating the (expected) change
in payoffs due to a local change in the existing network. Lacking symmetry, the analysis of
incentives becomes soon too complex for a comprehensive characterization of stable networks
for all statistical models. Most of the complexity is due to the widespread interrelation of agents’
equilibrium use of information, due to the inherent correlation of signals (unconditional and,
possibly, conditional).

In section 4.1, as a first tractable benchmark, we study the case of independent signals.
This limit case is obtained by setting a conditional correlation which exactly offset the natural
signals’ correlation induced by the state of the world. This artificial case, first suggested in Raith
(1996), generates a model which is formally equivalent to the model of imperfect competition
with i.i.d. signals used in Gal-Or (1985), to which some of our results apply. This approach is
quite standard in common value problems such as auctions (see Bulow and Klemperer, 2002,
Levin, 2004 and Tan, 2012), and has been employed by Hagenbach and Koessler (2010) in their
analysis of strategic information transmission in networks (see below for a discussion of the
differences between their approach and the present paper). Using this case as a benchmark will
also prove useful in section 4.2 to understand the role of correlation in shaping the incentives to
share information. For this case we provide a full characterization of pairwise stable networks in
the general linear quadratic problem. We find that the incentives to share, and the architecture
of stable networks, crucially depend on how sensitive payoffs are to the volatility of one’s own
action, on aggregate volatility, and to the correlation between opponents’ actions and the state
of the world. When payoffs mostly depend on one’s own equilibrium volatility (as in the Cournot
case), stable architectures are made of fully connected components of increasing sizes (possibly
including singletons); when strategies are complements, only the complete network survives
among such structures. When payoffs are also sensitive to aggregate volatility, then incomplete
stabe structures may emerge, even when strategies are complements. In particular, we show that
regular incomplete networks can be stable when aggregate volatility is detrimental to one’s own
payoff. This is somewhat contrary to the common perception that strategic complementarities
should provide agents to share all of their available information. This perception is correct in
the specific case of Keynes’ Beauty Contest, where the effect of aggregate volatility is bounded
in magnitude, but not in more general frameworks. Finally, we study the case in which payoffs
are also sensitive to the correlation of opponents strategies and the state of the world. Here
we focus on games in which strategies are orthogonal, and focus on the interplay of the various
parameters on incentives to share and stability. We fully characterize pairwise stable networks,
show that such networks can have incomplete architecture, and may fail to exist for certain
ranges of parameters.
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In Section 4.2 we finally turn to the case of correlated signals. Here, we focus on three
specific cases of the linear quadratic game, each stressing the role of one of the components of
the general model. For the Cournot game, where only one’s own equilibrium volatility is payoff
relevant, we show that two firms may find it profitable to share information when no other firms
do. In particular, incentives to share build up when signals are conditionally correlated, and one
extra signals provides better inference on the other, unobserved, signals. This ”global” improved
inference comes without the disclosure of one’s own signal to any other firms except for the new
sharing partner. When signals’ correlation is not too weak, these incentives are sufficient to
rule out the pairwise stability of the empty network, for any level of products’ differentiation.
Moreover, the complete network is pairwise stable for all levels of signals’ correlation. We further
study how signals’ correlation affects the incentives to share information in the contest of a four-
firm example with perfect substitutes, for which we fully characterize pairwise stable networks
as a function of signals’ correlation. We find that while correlation creates additional incentive
to share information, such incentives decrease with the number of observed signals, and may
disappear before all information is shared. Finally, we show that in the Beauty Contest the
complete network is always pairwise stable, while the empty network never is. For the public
good game we show that the complete is the unique pairwise stable information structure.

We finish by commenting on some recent literature on information transmission on networks.
Galeotti, Ghiglino and Squintani (2009) study the ”many sender - many receivers” game of cheap
talk, interpreting the flows of truthful information as directed links in a network. The focus is
there on the incentives to truthfully report the observed information, and while in their model
all agents would benefit from the disclosure of all available information, this may not be feasible
in equilibrium. Hagenbach and Koessler (2010) enrich this basic cheap talk model by adding a
coordination motive as in Keynes’ Beauty Contest of our section 4.1. They keep the analysis
tractable by assuming that the state of the world takes the form of the sum of agents’ independent
signals, essentially ruling out correlation as we do in section 4.1. Our proposition 5 (showing that
the complete network is the unique pairwise stable structure in the Beauty Contest) can indeed
be viewed as a corollary of their proposition 2, where it is shown that agents always benefit from
disclosing or receiving additional information. Our proposition 8 (showing that the complete
network is a pairwise stable structure), instead, extends the analysis of the Beauty Contest to
correlated signals, while the rest of our analysis, where we study other classes of linear quadratic
games, is less related to theirs and closer in spirit to the quoted literature on oligopolies. As
a general comment, our focus is on the incentives to share information at the ex-ante stage,
as they result from the gains from acquiring and the possible losses from disclosing. Since we
assume identical preferences, truth-telling is not an issue in the Beauty contest, while there is
no truth-telling equilibrium in the Cournot game (as shown in Zen).

The paper is organized as follows: section 2 presents the economic and statistical models.
Section 3 studies how agents use the available information in the network. Section 4 studies
information sharing with and without correlation of signals. Section 5 concludes the paper.

2 The Model

We consider a set of n agents, each agent i choosing an action ai ∈ <. Agent i′s utility is given
as a function of her action ai, the sum of other agents’ actions Ai =

∑
j 6=i aj and a parameter θ

denoted as the “state of the world”:
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ui(ai, A−i, θ) =

 λa
λA
λθ


′ ai

Ai
θ

+

 ai
Ai
θ


′ γa γaA γaθ

γaA γA γAθ
γaθ γAθ γθ

 ai
Ai
θ

 (1)

where the γ coefficients in the interaction matrix measure the quadratic relations between agents’
utilities, agents’ actions and the state of the world, while the λ coefficient measure the linear
relations between agents’ utilities, agents’ actions and the state of the world.

The state of the world θ is assumed to be a random variable of the form

θ = µθ + ε

where ε ∼ N(0, t) and µθ is a constant and its value is common knowledge. Agents’ information
is structured as follows. Each agent i receives a private noisy signal yi about ε, with

yi = ε+ ηi

where ηi ∼ N(0, u) for all i, and where cov(ηi, ηj) = un for all i, j. We also assume that
cov(ηi, ε) = 0 for all i. For notational convenience, we will denote by ps = (t + u) the variance
of signals and by pn = (t+ un) the covariance of signals.

We will consider the possibility that agents share their information by means of bilateral
and truthful sharing agreements; this means that agent i is allowed to observe agent j’s signal
if and only if he reveals his own signal to agent j. Sharing agreements may be non transitive, in
the sense that information sharing between agents i and j and between agents j and k need not
imply information sharing between agents i and k. Formally, the information structure induced
by such agreements is represented by a non directed network g, in which each link ij denotes a
bilateral agreement between agents i and j. We denote by Ni(g) ≡ {j : ij ∈ g} ∪ {i} the set of
neighbours of i in g (including i) and we denote by ngi = |Ni(g)| the number of such neighbors.
In other words, ngi is the number of signals observed by i in g. The information available to
agent i in the information structure g is therefore Ii(g) ≡ {yj : j ∈ Ni(g)}, that is the set of
signals observed by the neighbors of i. We will use the notation g + ij to denote the network
obtained by adding to g the link ij /∈ g, and g − ij to denote the network obtained by severing
the link ij ∈ g from g.

This model of linear quadratic utility and information sharing has many application in
different fields of economic analysis. Here a three such examples.

Beauty Contest (Morris and Shin (2002), Howerbach and Kossner (2010)). There are n
agents, each setting an action ai. Each agent i suffers a loss which increases quadrati-
cally in the distance between her action and the average action chosen by the opponents,
and a loss which increases quadratically with the distance between ai chosen action and
the realization of a random state of the world θ:

ui(ai, Ai, θ) = −v(ai − θ)2 − (1− v)(ai −
Ai
n− 1

)2.

Using the notation of the present paper, we have: γa = −1; γθ = −v; γaθ = 2v; γA =
− (1−v)

(n−1)2 ; γaA = 2(1−v)
n−1 . All other coefficients are zero.

Cournot Oligopoly (Vives, 1985, Kirby, 1988, Raith, 1996). There are n agents competing
in a common market with inverse demand function:

p = θ − ai − εAi
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where ai denotes agent i’s output, Ai denotes the aggregate output of i’s competitor, and
ε captures product differentiation. Firms produce with no costs. Using the notation of the
present paper, we have: γa = −1; γaθ = 1; γaA = −ε. All other coefficients are zero.

Public goods (Ray and Vohra, 1999). Each agent i contributes the amount ai to a global
public good, and has utility function:

ui(Ai, ai) = θ(Ai + ai)− ba2i .

The actual value of the public good in a random variable θ about which each agent receives
a noisy signal. evaluations Ai of the public good. Using the notation of the present paper,
we have: γa = −b; γAθ = 1; γaθ = 1. All other coefficients are zero.

3 Use of Information in the Network

With each possible information structure g we associate the Bayesian Nash Equilibrium of the
game in which each agent i sets her action ai in order to maximize her expected payoff (see (1)),
given the available information - determined by i’s links in g - and given the optimal decisions
of the other agents. Formally, a Bayesian Nash equilibrium associated with g is a family of
functions agi mapping, for each i ∈ N , the available information Ii(g) into a choice agi (Ii(g)),
and solving for each agent i the following problem:

agi (Ii(g)) = arg max
ai∈<

E [ui (ai, A
g
i (I−i(g)) , θ|Ii(g)] , (2)

where we have denoted by Agi (I−i(g)) the sum of strategies of all agents but i. Note that the
terms γA, γAθ, λA, λθ, γθ do not affect the equilibrium strategies; they however affect welfare,
and will be therefore relevant in determining agents’ incentives to form links.
The optimal choice of agent i as a function of i’s information is obtained maximizing (1) with
respect to ai. The first order condition is:

agi (Ii(g)) = −
λa + γaθE [θ|Ii(g)] + γaAE [Agi |Ii(g)]

2γa
(3)

As in Angeletos and Pavan (2007), we will assume γa < 0 and γa+(n−1)γaA < 0. Standard
results (see Radner, 1962 and Angeletos and Pavan, 2007) can be used to establish the existence
of a unique Bayesian Nash Equilibrium for all information structures g, with the equilibrium
strategies affine in the observed signals, i.e.:

agi (Ii(g)) = αgi +
∑

yj∈Ii(g)

βgijyj , i = 1, 2, ...n. (4)

The following proposition derives the system defining the equilibrium αgi and βgij coefficients
in the Bayesian game with information structure g.

Proposition 1 The Bayesian Nash equilibrium of the game with payoff functions (1) and in-
formation structure described by the network g is characterized by the following system:

αgi = − 1

2γa

λa + γaθµθ + γaA
∑
j 6=i

αgj

 (5)
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βgih = − 1

2γa

γaθkig1 + γaA

 ∑
j∈Nh\i

βgjh +
∑
z /∈Ni

∑
j∈Nz

kig2 β
g
jz

 , ∀h ∈ Ni; (6)

where

kig1 =
t

ps + (ngi − 1) pn
; kig2 =

pn
ps + (ngi − 1) pn

are the updating coefficients that agent i applies to each yj ∈ I(gi) to take the following expec-
tation on the state θ and of the signals yh, for h /∈ Ni(g), respectively:

E [θ|Ii(g)] = µθ + kig1
∑
j∈Ni

yj ; (7)

E [yh|Ii(g)] = kig2
∑
j∈Ni

yj . (8)

From proposition 1 we obtain a first insight in how the information structure g affects the
way in which agents use their available information. First, from (5) it is directly verifiable that
coefficients αgi are the same in all networks and for all agents, which allows to denote αgi = α.

Condition (6) describes the way in which information is used in equilibrium as a function
of the whole network. To fix ideas, assume that γaθ > 0, so that agents choices move together
with the state of the world. The coefficient that i applies to signal yh ∈ Ii(g) is equal to the
sum of the term (− γaθ

2γa
kig1 ) and of the two summations in the second bracket. Both summations

amplify the effect of the first term if actions are strategic complements (γaA > 0), and weakens
the effect of the first term if strategies are strategic substitutes (γaA < 0). Both summations
measure the reactions of i’s opponents that are correlated to signal yh ∈ Ii(g); the first refers to
the reaction of the opponents that observe yh ∈ Ii(g), the second to the opponents’ reactions to
signals that agent i does not observe, but that are correlated to signal yh ∈ Ii(g). Both terms
tend to amplify the use of signal yh ∈ Ii(g) by agent i when there is an incentive to correlate
with other agents (complements), and to reduce the use of signal yh ∈ Ii(g) when the incentive
is to diversify from the other agents (substitutes). In the terms used by previous works in the
literature (e.g., Morris and Shin, 2002), these summations refer to how ”public” the signal yh is
in the system, that is, how much that signal is used by other agents to set equilibrium actions.
Formally, conditions (5)-(6) directly imply the following proposition.

Proposition 2 For all ih ∈ g and ij ∈ g:

βgih − β
g
ij =

γaA
2γa

 ∑
k∈Nj\i

βgkj −
∑

k∈Nh\i

βgkh

 . (9)

Proposition 2 describes the following equilibrium effect: under strategic substitutes, agents
react more to those signals to which, in aggregate, other agents react less, while the opposite
holds under strategic complements. The next example illustrates equilibrium use of information
in a network where agents’ position present stark differences - the star.
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Example 1 We consider the star network gs with 4 agents, where the central agent i receives
a signal which is observed by all agents, and each other signal is observed by the receiving agent
h and by the central agent. Equilibrium coefficients solve the following system of equations:

βg
s

ii = − 1

2γa

(
γAθk

ig
1 + γaA3βg

s

ih

)
(10)

βg
s

ih = − 1

2γa

(
γAθk

ig
1 + γaAβ

gs

hh

)
(11)

βg
s

hh = − 1

2γa

(
γAθk

hg
1 + γaA(βg

s

ih (1 + 2khg2 ) + 2khg2 βg
s

hh)
)

(12)

βg
s

hi = − 1

2γa

(
γAθk

hg
1 + γaA(βg

s

ii + βg
s

ih2khg2 + 2βg
s

hi + 2khg2 βg
s

hh)
)

(13)

where we have used symmetry where possible. We obtain the following coefficients for cases
of strategic complements (γaA = .1) and substitutes (γaA = −1), and for different levels of
signals’ correlation:

pn = .6 ; γaA = −1 pn = .8 ; γaA = −1 pn = .6 ; γaA = .1 pn = .8 ; γaA = .1

βgii .014 .009 .117 .099

βgih .047 .037 .097 .081

βghh .083 .071 .171 .153

βghi .050 .042 .191 .171

We see that signals which are more public (yi) are used less intensively than more private ones
(yh) under strategic substitutes, and more intensively under complements. Moreover, periphery
agents, who are endowed with fewer pieces of information, use information more intensevely.
Signals’ correlation has a negative impact under both substitutes (as expected) and complements.

4 Information Sharing

We study the incentives to share information at the ex-ante stage. For each network g, we denote
by uei (g) the ex-ante expected utility for agent i, given that g describes the information structure
of the Bayesian game played at the interim stage. The utility uei (g) is obtained by taking the
expectation of the interim utility E [ui|Ii(g)] over all possible realizations of i’s information Ii(g).
The interim utility is given by:

E [ui|Ii(g)] = λaa
g
i (Ii(g)) + λAE [Agi |Ii(g)] + λθE [θ|Ii(g)] + γaa

g
i (Ii(g))2 +

+γAE
[
(Agi )

2|Ii(g)
]

+ γθE
[
θ2|Ii(g)

]
+ γaAa

g
iE [Ai|Ii(g)] +

+γaθa
g
i (Ii(g))E [θ|Ii(g)] + γAθE [Agi θ|Ii(g)] . (14)

Together with the first order condition (3), (14) yields the following expression:

E [ui|Ii(g)] = −γa · agi (Ii(g))2 + λA · E [Agi |Ii(g)] + λθE [θ|Ii(g)] +

+γA · E
[
(Agi )

2|Ii(g)
]

+ γθ · E
[
θ2|Ii(g)

]
+ γAθ · E [Agi θ|Ii(g)] . (15)
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Note now that, given the linear specification of equilibrium strategies in (4), we can express
the variances and covariance of equilibrium strategies as follows:

var(agi ) =
∑
h∈Ng

i

(βgih)2ps + 2
∑
h∈Ni

∑
k<h

βgihβ
g
ikpn; (16)

var(Agi ) = ps ·

∑
j

(Bg
ij)

2

+ pn ·

2 ·
∑
j

∑
k<j

Bg
ij ·B

g
ik

 ; (17)

cov (Agi , θ) = t ·
∑
j

Bg
ij . (18)

where Bg
ij ≡

∑
h∈Nj\i β

g
hj denotes the aggregate reaction to signal j by i’s opponents.

We now use the above expressions to derive the ex-ante equilibrium utility in any given
network g:

uei (g) = λA · (n− 1) · α+ α2 ·
(
γA · (n− 1)2 − γa

)
+ (λθ + γθµθ)µθ + γAθ · (n− 1) · α · µθ

+ γθ · var (θ) + γA · var (Agi ) + γAθ · cov (Agi , θ)− γa · var (agi ) . (19)

We can now express the difference [uei (g
′) − uei (g)] in agent i’s expected utility in g and

g′. This difference is measured in (20) as the sum of three terms, expressing the change, when
passing from g to g′, in the variance of other agents actions, of i’s action and in the covariance
between other agents’ actions and the state of the world:

γA ·
[
var

(
Ag
′

i

)
− var (Agi )

]
+γAθ ·

[
cov

(
Ag
′

i , θ
)
− cov (Agi , θ)

]
−γa ·

[
var

(
ag
′

i

)
− var (agi )

]
(20)

Inspection of condition (20) provides insights in the sources of the incentives that a generic
agent i has to induce a given network g′ from a network g. The first term measures the effect of
the change in the variance of the aggregate actions of other agents, keeping all other things equal.
This effect is measured by the parameter γA, the coefficient that measures the effect on utility of
the square of other agents’ actions. This term is null in public good games and Cournot games,
and is negative in beauty contest games with complements, where larger differences between
one’s own action and average opponents’ actions are weighted more due to the quadratic loss
function. The second term measures the effect of a change in the covariance of other agents’
actions and the state of the world: this effect is measured by the coefficient controlling for the
interaction effect of i’s opponents actions and the state of the world, and is non null only in
public good example. The last term measures the incentives coming from a change in agent i’s
variance in equilibrium, and is measured by the own quadratic coefficient γa < 0, implying that
increased variance of one’s own action is desirable in all linear quadratic games.

We will study the structure of pairwise stable networks (see Jackson and Wolinsky (1996)),
in which no pair of agents has an incentive to form a new link and no agent has an incentive to
unilaterally sever an existing link:

Definition 1 The network g is pairwise stable at the ex-ante stage if: a) uei (g+ij) > uei (g)⇒
uej(g + ij) < uej(g) for all ij /∈ g; b) uei (g) ≥ uei (g − ij) for all ij ∈ g.
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A pairwise stable network is here interpreted as an information structure that results from
long-run information sharing arrangements, with the property that no additional arrangement
occurs and no existing arrangement is discontinued.

4.1 Information Sharing with Uncorrelated Signals

We start by studying the case of uncorrelated signals, i.e. of pn = 0. Formally, this requires
that signal errors are negatively correlated, and that this correlation exactly outweighs the
correlation induced by the state of the world: un = −t. Although this is a special case of
signal’s correlation, it is of interest here for two reasons. First, it allows us to better understand
in the next section the role of signals’ correlation, and of the associate strategic inference, on link
formation. Second, uncorrelated signals are of interest in a model where the state of the world
is the sum (or the average) of agents’ signals, as in Gal-Or (1983), Hagenbach and Koessner
(2010) and most papers dealing with common value problems in auctions, as, for instance, Levine
(2004).

Uncorrelated signals imply that kig1 = t
ps

and kig2 = 0. Equilibrium coefficients simply as
follows:

α = − λa + γaθµθ
2γa + γaA(n− 1)

; (21)

βgih = −
γaθ

t
ps

2γa + γaA(ngh − 1)
, ∀i ∈ Ng

h . (22)

The difference [uei (g
′)− uei (g)] in (20) simplifies as follows:

γAps

[∑
k∈N

(Bg′

ik)
2 −

∑
k∈N

(Bg
ik)

2

]
+ γAθt

[∑
k∈N

Bg′

ik −
∑
k∈N

Bg
ik

]
− γaps

∑
h∈Ng

i

(βg
′

ih)2 −
∑
h∈Ng

i

(βgih)2


(23)

Since the notion of pairwise stability is defined link-wise, we are interested in the incentives
to either form or sever a given link ij. This leads us to study the change in expected payoff
when moving from a network g to a network g′ = g + ij. Using (22), we note that for such

networks we have Bg′

ik = Bg
ik for all k 6= i, j, since ng

′

k = ngk. This implies that:∑
k∈N

(Bg′

ik)
2 −

∑
k∈N

(Bg
ik)

2 = (Bg′

ii )
2 − (Bg

ii)
2 + (Bg′

ij )
2 − (Bg

ij)
2 (24)

and ∑
k∈N

Bg′

ik
−
∑
k∈N

Bg
ik = Bg′

ii −B
g
ii +Bg′

ij −B
g
ij . (25)

Also, using the fact that ng
′

i − 1 = ngi and ng
′

j − 1 = ngj from (22) we obtain:

Bg′

ii = −
ngi γaθ

t
ps

2γa + γaAn
g
i

(26)

Bg
ii = −

(ngi − 1)γaθ
t
ps

2γa + γaA(ngi − 1)
(27)
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Bg′

ij = −
ngjγaθ

t
ps

2γa + γaAn
g
j

(28)

Bg
ij = −

(ngj )γaθ
t
ps

2γa + γaA(ngj − 1)
(29)

Condition (23) can now be written as:

γ2aθ
t2

ps
γA

[
(ngi )

2

(2γa + γaAn
g
i )

2
−

(ngi − 1)2

(2γa + γaA(ngi − 1))2
+

(ngj )
2

(2γa + γaAn
g
j )

2
−

(ngj )
2

(2γa + γaA(ngj − 1))2

]

+ γaθ
t2

ps
γAθ

[
−

ngi
2γa + γaAn

g
i

+
ngi − 1

2γa + γaA(ngi − 1)
−

ngj
2γa + γaAn

g
j

+
ngj

2γa + γaA(ngj − 1)

]
−

γ2aθ
t2

ps
γa

[
1

(2γa + γaAn
g
i )

2
+

1

(2γa + γaAn
g
j )

2
− 1

(2γa + γaA(ngi − 1))2

]
. (30)

We will study pairwise stable networks in different classes of games, corresponding to different
assumptions on the four key parameters in (30): γA, γa, γaA and γAθ. These classes include the
classical games outlined in our examples: Cournot competition, Beauty contest, Public good
contribution game. We start with the case γA = γAθ = 0, covering Cournot competition as a
special case. From now on we will denote by µ ≡ γaA

γa
the relative strategic interdependence in

the game.

Proposition 3 Let pn = 0 and γA = γAθ = 0. If µ < 0 the unique pairwise stable network is the
complete network. For 1 > µ > 2

1+
√
2
, then the set of pairwise stable networks is characterized

as follows: for all S ⊆ N , all networks in which nodes in S are isolated, and all other nodes
are organized in fully connected components of increasing sizes. For 0 < µ < 2

1+
√
2

all pairwise

stable networks contain at most one isolated node (|S|≤ 1 in the above characterization).

Proof. We first note that if µ < 0, that is if γaA > 0, direct inspection of (30) shows that under
our assumption that γa+(n−1)γaA < 0, each agent has an incentive to link with all other agents
independently of their degree. This implies that the complete network is the unique pairwise
stable architecture. Let us then consider the case µ > 0. We will show that each component
in a pairwise stable network g must be fully connected, and then that components of equal size
are incompatible with pairwise stability. We need to prove the following preparatory lemma.

Lemma 1 Let pn = 0. Let also γA = γAθ = 0 and γaA < 0. Let g and g′ be such that g′ = g+ij.
Then:

1) if ngj < ngi then uei (g
′) > uei (g);

2) if ngi = ngj ≥ 2 then uei (g
′) > uei (g);

3) if ngi = ngj = 1 then uei (g
′) > uei (g) iff µ < 2(

√
2− 1);

4) there exists degree levels fµ(ngi ) and Fµ(ngi ) such that: ngj > fµ(ngi ) ⇐⇒ uei (g
′) < uei (g) and

ngj < Fµ(ngi ) ⇐⇒ uei (g
′) > uei (g). Moreover, f(m) < F (m) for all m ≥ 2.
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Proof of Lemma 1. Using (26-29) we see that uei (g
′)− uei (g) > 0 iff

1

(2 + µ(ngi − 1))2
<

1

(2 + µ(ngi ))
2

+
1

(2 + µ(ngj ))
2
. (31)

Since ngj < ngi implies ngj ≤ ni − 1, the above condition is always satisfied for ngj < ngi . Let us
then study the case ngi = ngj = m. Using again (26-29)we obtain

Bg′

ii = Bg′

ij =
mγaθ

t
ps

2γa + γaAm
(32)

Bg
ii = Bg

ij =
(m− 1)γaθ

t
ps

2γa + γaA(m− 1)
(33)

and we can write the difference uei (g
′)− uei (g) as follows:

γ2aθ
t2

p2s
γAps

[
2m2

(2γa + γaAm)2
− 2m2 − 2m+ 1

(2γa + γaA(m− 1))2

]
+ γ2aθ

t2

p2s
γAθt

[
2m

(2γa + γaAm)
− 2m− 1

(2γa + γaA(m− 1))

]
−

γ2aθ
t2

p2s
γaps

[
2

(2γa + γaAm)2
− 1

(2γa + γaA(m− 1))2

]
. (34)

Assuming γA = γAθ = 0, the above expression is strictly positive iff:

2(2γa + γaA(m− 1))2 > (2γa + γaAm)2. (35)

Assuming γaA < 0, dividing both sides by γ2a and letting µ = γaA
γa

, we obtain:

2(2 + µ(n− 1))2 − (2 + µn)2 > 0.

The two roots of the LHS of the above inequality are:

4µ(µ− 1)±
√

8µ4

2µ2
,

yielding the following larger root:

4(µ− 1) + 2µ2
√

2

2µ2
.

The larger root is smaller than n for:

(m−
√

2)µ2 − 2µ+ 2 > 0,

which is always satisfied for m ≥ 2.
When m = 1, from condition (35) we obtain that the difference uei (g

′) − uei (g) is positive if
and only if µ < 2(

√
2− 1) < 1.

Finally, we look at the incentives for i to link with j when ngj > ngi . Let

12



gµ(m) ≡ 1

(2 + µm)2
.

We define the function fµ(m) as follows:

fµ(m) = g−1µ (gµ(m− 1)− gµ(m)).

The value fµ(m) is the maximal degree that a node k can have for a node of degree m to wish
to form a link with k. Similarly, we define a function Fµ(m) that identifies the maximal degree
that a node k can have in order for a node of degree m to maintain a link with k:

Fµ(m) = g−1µ (gµ(m− 2)− gµ(m− 1)) + 1.

Algebraic computations show that fµ(m) > Fµ(m) for all m > 2(µ−1)
µ . Since the condition

m > 2(µ−1)
µ is always satisfied when m ≥ 2, this concludes the proof of the Lemma.

We are now ready to prove proposition 3. We proceed by contradiction, assuming that two
agents i and j who are not connected and belong to the same component. By the previous
lemma, stability requires that ngi > ngj . This implies that there exist an agent k such that ik ∈ g
and ij /∈ g. The proof goes by showing that stability of g requires that ngk > ngi . By the preioua
lemma, pairwise stability requires that ngi ≤ F (ngj ), or equivalently that ngi − 1 ≤ Fµ(ngj ) − 1.
Since ngk ≤ ngi − 1, we obtain ngk ≤ Fµ(ngj ) − 1 < fµ(ngj ), where we have used the previous
lemma for the last inequality. In words, this means that j has an incentive to link to k. Let us
now show that also k wants to link to j. Pairwise stability applied to the link ik implies that
ngi ≤ Fµ(ngk). Also, from the previous lemma we have Fµ(ngk)−1 < fµ(ngk). These, together with
the fact that ngj ≤ ngi − 1 imply that ngj < f(ngk), which means that k has a strict incentive to
link to j, contradicting stability of g. If ngk = ngi , then agent j wants to form a link with k, since
ngk = ngi ≤ Fµ(ngj ) < fµ(ngj ), where the last inequality comes from lemma 1. We have therefore
proved that dk > ngi . Applying the same steps to the new pair i and k, we conclude that there
must exist some other agent l such that ngl > ngk. Since the network is finite, this recursive
argument implies a contradiction. The fact that components must have increasing sizes, and
that these sizes are determined by the function fµ, comes directly from lemma 1, while the fact
that only one singleton can appear in a stable network when µ < 2

1+
√
2

comes from the fact that

in this range of values two isolated agents have mutual incentives to form a link.

It is worth commenting on the way in which incentives to link vary with the degrees of the
involved nodes, as described by the two functions fµ and Fµ in Lemma 1. In particular, we have
found that both fµ and Fµ are increasing, meaning that the more connected a node i is, the
larger the maximal degree of a node j that i would accept to link to. It is also immediate to check
that the incentives of i to link with j are decreasing in the degree of j. Thus, the requirement
of increasing sizes of the fully components of stable networks has the scope of discouraging
members of the smaller component to link to members of the larger components.

The next corollary applies proposition 3 to the model of Cournot Oligopoly with i.i.d. signals
(as the one studied in Gal-Or (1985)).

Corollary 1 In a Cournot Oligopoly with i.i.d. signals about the demand intercept, information
sharing is organized in groups of firms, and within each group all information is universally
disclosed. Groups have increasing sizes, and size differences increase with the degree of products
differentiation.
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While the results in Gal-Or (1985) indicate that in the unique equilibrium firms do not
exchange private information we find that full or at least some level of information sharing is
consistent with equilibrium. This difference mainly arises from the different technology of infor-
mation sharing that we adopt in our model and that allows for bilateral agreements. Moreover
whenever information is shared in equilibrium this happens in very specific form, with groups
of firms sharing all their information within the group and not share information with firms
outside of the group. In the next proposition we turn to the case in which payoffs depend di-
rectly on the variance of opponents’ actions in equilibrium. It shows that when such variance is
beneficial, then the complete network is still the unique pairwise stable network under strategic
complementarity.

Proposition 4 Let γA > 0, γAθ = 0 and − γa
n−1 > γaA > 0. Then the complete network is the

unique pairwise stable network.

Proof. From direct inspection of (30) we see that both terms in squared brackets are positive,
which, together with the assumptions that γa < 0 and γA > 0 imply that all links form.

The above result is explained by the fact that when complementarities are small in the sense
of the range assumed for γa, then an additional link formed by player i always increases the
volatility of her own equilibrium strategy and of the aggregate of all other players’ equilibrium
strategies. When this increased volatility has a positive effect on i’s payoff (γA > 0), then these
two positive effect sums up with the positive effect of i’s own increased variability (the last term
of (30)).

Let us now turn to the case γA < 0, in which opponents’ volatility is detrimental to an agent’s
payoffs . Here, an additional link ij resulting in increased variance in opponents’ strategies may
not always increase i’s payoff even if strategies are complements. One class of games in which
strategies are complements and γA < 0 is Keynes’ Beauty Context, where if v < 1 we have

γaA =
2(1− v)

n− 1
> 0 and γA = − 1− v

(n− 1)2
< 0. The next proposition shows that in this game,

the negative effect of opponents’ increased volatility never outweighes one’s own, and all links
form in equilibrium.

Proposition 5 Consider the Beauty Context with 0 < v < 1. The complete network is the
unique pairwise stable information structure.

Proof. A node of degree x has an incentive to link to a node of degree y iff the following
expression is positive (see (30)):

γA

[
x2

(2γa + γaAx)2
− (x− 1)2

(2γa + γaA(x− 1))2
+

y2

(2γa + γaAy)2
− y2

(2γa + γaA(y − 1))2

]
−

γa

[
1

(2γa + γaAx)2
+

1

(2γa + γaAy)2
− 1

(2γa + γaA(x− 1))2

]
> 0. (36)

with the following expression for the various parameters of the payoff function: γa = −1;
γA = − (1−v)

(n−1)2 ; γaA = 2(1−v)
n−1 . Note first that for x = 1 and y = 1 incentives are positive iff:
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(n2 − 2n+ v)(n2 − 2 + 4v − 2nv − v2)
(4(n− 1)2(n+ v − 2)2)

> 0. (37)

It can be checked that for 0 < v < 1 (37) holds for all values of 0 < x < n and 0 < y < n.
We then compute the derivative of expression (36) with respect to x and to y. Both derivatives
are positive. This implies that a node of degree x has an incentive to link to a node of link y
for all x, y < n, which implies the result. Exact computations of the derivatives involve long
expressions and are available upon request.

Although the restrictions imposed by the Beauty Contest on the parameters (2γA = − γaA
n−1)

ensure that the incentives to form a new link always remain positive, once such restrictions are
dropped (and, in particular, γA can grow in magnitude fixing the other parameters) incomplete
networks may arise even in the presence of strategic complementarities. In the next example
we study a variation of Keynes’ Beauty contest , in which agents try to match the state of the
world and to exceed the average of their opponents’ strategies by a factor k. For this game we
show that incomplete networks arise in equilibrium.

Example 2 Consider an economy with 10 agents, each having the following payoff function:

ui(ai, Ai, θ) = −v(ai − θ)2 − (1− v)(ai − k
Ai
n− 1

)2.

Set µ = − 2

19
and γa = −1, so that our condition γa + (n − 1)γaA < 0 holds. These

assumptions imply v = 0.53 and γA = −0.0058. Computations based on condition (36) show
that for k = 1, any two any nodes with arbitrary degree x < 10 always have an incentive to form
a link. This is simply a consequence of proposition 5 where the complete network is shown to be
the unique pairwise stable network in the Beauty Contest.

Consider now values of k > 1, setting all other parameters as above, we obtain v = 19k−9
19k and

then γA = −0.0058 · k2. Computations show that for k large enough, incomplete networks can
be pairwise stable. For example, when k = 5 we obtain that 1) a regular network with average
degree of 8 is pairwise stable; 2) networks with one fully connected component of 9 nodes and
one isolated node or two fully connected components of two and eight nodes are pairwise stable.

We finally turn the case in which both parameters γA and γAθ are possibly non null. Here
we will only focus on games with orthogonal strategies (γaA = 0), and and concentrate on the
interplay of the parameters γA, γaθ and γAθ. As a specific case we have the public good game
with linear benefits and quadratic costs, where γAθ is equal to 1 and γA = 0.

Proposition 6 Let γaA = 0 and γaθ > 0.

1. When γA = 0, the unique pairwise stable network is either the complete network (iff
2γAθ + γaθ > 0) or the empty network (iff 2γAθ + γaθ < 0).

2. When γA > 0, then:

(a) if 2γAθ+γaθ > 0 then the complete network is the unique pairwise stable architecture;

(b) if 2γAθ + γaθ < 0 then there exists m ≤ n such that the set of all pairwise stable
networks consists of all networks made of a fully connected component of size q and
n− q isolate nodes, with q ≥, together with the empty network.
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3. When γA < 0, then:

(a) if 2γAθ +γaθ > 0, either 1 < 2γAθ+γaθ
γaθ

, in which case the empty network is the unique
pairwise stable architecture, or otherwise no pairwise stable network exists;

(b) if 2γAθ + γaθ < 0, only the empty network is pairwise stable.

Proof. From condition (30) we obtain that agent i finds it profitable to form link ij /∈ g if and
only if the following condition holds:

γaθγA
4γ2a

(2ngi − 1)− γaA
2γa
− γAθ

4γa
> 0

where we have used the assumption that γaθ > 0. This yells the following:

γA
γa

(2ngi − 1) <
2γAθ + γaθ

γaθ
.

It is immediate that when γA > 0 and 2γAθ+γaθ
γaθ

> 0 the above is always satisfied. When γA > 0

and 2γAθ+γaθ
γaθ

< 0 web have that the above is satisfied for ngi >
2γAθ+γaθ

γaθ

γa
γA
≡ m > 0. In this

case the empty network is trivially stable, as is the complete network. The only other stable
architecture must have all nodes with positive degree with degree larger than m, and all such
nodes must be linked to each other.

When γA < 0, we ins tread have that the above condition is never satisfied when 2γAθ+γaθ
γaθ

< 0

(from which the mprty network as unique pairwise stable one), while if 2γAθ+γaθ
γaθ

> 0 the relevant
condition for agent i to form a link is the following:

(2ngi − 1) <
2γAθ + γaθ

γaθ

γa
γA
.

Here, only agents with a low enough degree would form a link. If the threshold degree m is less
than zero, then the empty network is the unique pairwise stable network; if not, no pairwise
stable network exists. To see this, note that two nodes who are linked in a stable network must
have degree less than m. But in this case they wish to form a link to the agents to which they
are not linked. If these agents have degree less than m they also want to link, then we contradict
the stability of the network. If they do not wish to link, then they must have a degree which is
larger than m, in which case they wish to sever a link. Finally, the empty network is not stable
since two nodes of degree zero wish to form a link.

The parameter γA measures the effect on payoffs of a change in the variability of opponents’
strategies. In the class of games covered by proposition 6, this change is always positive as a
result of one additional link, and increasing in the degree of the agent forming the new link.
Note also that when γAθ > 0, then the effect on expected utility of a new link is always positive.
This means that if an agent benefits from the covariance of opponents’ strategies and the state
of the world (γAθ > 0, then the complete network always forms. In contrast, if such covariance
is detrimental to utility, then links form only if the (positive) effect of the increased opponents’
volatility is large enough, that is for large enough degrees. As an illustration of this second case,
the next example studies a game in which agents wish to guess the state of the world, with a
reward that increases the worse is the opponents’ guess.
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Example 3 Each agent i has the following utility from her guess ai and the opponents’ guess
Ai:

ui = −(ai − θ) + v(
Ai
n− 1

− θ).

We have γa = −1, γAθ = −2 v
(n−1) , γaθ = 2, and γA = v

(n−1)2 . From condition (30) and the fact

that γaA = 0, agent i forms a link ij if and only if the following condition holds:

− v

(n− 1)2
(2ngi − 1) < 1− 2

v

(n− 1)

or

(2ngi − 1) > 2(n− 1)− (n− 1)2

v

For v = 2 and n = 3 we have that agent i wishes to form the link ij if and only if ngi > 1.5. This
implies that there are three pairwise stable architectures in this example: the empty network, the
complete network, and a component of two connected nodes and one isolated node. For v = 4
the complete network remains the unique stable network, together with the empty network. If v
increases further, the empty network remains the unique stable architecture.

Proposition 6 has the following corollary for the case of the public good game, in which
γA = 0 and 2γAθ + γaθ = 3.

Corollary 2 In the public good game with linear benefits and quadratic costs, the unique pair-
wise stable network is the complete network.

4.2 Information Sharing with Correlated Signals

We now turn to the case of correlated signals, that is pn > 0. Here equilibrium computations
become quite complex due to the potential asymmetry of network structures and of the associated
Bayesian Nash equilibria. For this reason we will not provide a full characterization of pairwise
stable networks, but rather investigate the effect of signals’ correlation, and in particular of
conditional correlation, on the incentives to share information. In particular we will show that
enough correlation guarantees that some positive amount of information is always shared in
equilibrium - in the present terminology, that the empty network fails to be pairwise stable.
As we shall see, this is due to the strategic advantage that the bilateral information sharing
provides in the form of a better inference of other firms’ actions.

We start with the case of strategic substitutes (µ > 0), assuming that only the volatility of
one’s own strategy is payoff relevant. This includes Cournot competition as a special case.

Proposition 7 Let γA = γAθ = 0 and µ > 0. Then:
1) The complete network is always pairwise stable;
2) The empty network is not pairwise stable under the following conditions: i) µ < 2

3 ; ii)
2
3 < µ < 2

1+
√
2

and either pn < p∗∗n or pn > p∗∗n and n > n∗∗, where both p∗∗n and n∗∗ are finite

and positive; iii) µ > 2
1+
√
2
, pn > p∗n and n > n∗(pn), where both p∗n and n∗(pn) are finite and

positive.

Proposition 7 is to be interpreted as a result about the occurrence of information sharing in
equilibrium. First, the universal sharing of all available information is stable against revisions
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by any pair of players, even when strategies are substitutes and independently of signals’ corre-
lation. Second, all stable networks involve some amount of information sharing, provided both
signals’ correlation and the number of players are not too small. This is in striking contrast with
traditional conclusions about information sharing in Cournot oligopolies, where market compe-
tition is found incompatible with sharing unless goods are strongly differentiated (that is, unless
strategies are weakly substitutes or complements - see seminal works by Novshek and Sonnen-
schein, 1982, Vives, 1985, Kirby, 1988, Li, 1995). The intuition behind the result of proposition
7 is as follows: even when the game is one of strategic substitutes, still two agents may have
incentives to share their own information if this provides them with a substantial refinement
about opponents’ behaviour. The key to the result is that this refinement (due to signals’ con-
ditional correlation) comes with a limited increase in the equilibrium covariance of strategies,
since it does not imply the transmission of one’s own signal to more than one other agent (the
other end of the new link). The effect of such refinement on the incentive to share increases
with the number of agents, from which the requirement on n in the proposition. Proposition 7
is rephrased in the I.O. terminology in the following corollary.

Corollary 3 In the Cournot Oligopoly with demand uncertainty, some amount of information
sharing, in the form of bilateral agreements between firms, is consistent with non cooperative
market competition, even when products are perfect substitutes and costs are linear, and is a
feature of all equilibria when a large (but finite) number of firms receive strongly correlated
signals.

Understanding the effect of correlation in general is, however, hard. More correlation will
in fact improve both the precision on unobserved signals before and after the additional link
is formed. Intuitively, when an agent has little information, the gains (in terms of refined
expectations) from one additional piece is substantial, leading to point 2) of proposition 7.
However, as the stock of one’s information builds up, the incentives to access more information
may decrease. There may be therefore cases in which some information, but not all, is shared in
equilibrium. The next four-player example fully characterize the set of pairwise stable networks,
and provides some clearer insight on how correlation affects the incentives to share information
in different networks.

Example 4 Let n = 4, µ = 1 and ps = 1. The pairwise stable networks in the various ranges
of the correlation parameter pn are:

• pn < 0.62: the complete network, the empty network and one complete component of 3
nodes;

• 0.62 < pn < 0.71: the complete and the empty networks.

• 0.71 < pn < 0.75: the complete network, the empty network and one complete component
of 3 nodes;

• pn > 0.75: the complete network and one complete component of 3 nodes;

For low levels of signals’ correlation (pn < 0.62), the architecture of pairwise stable networks
is in accordance with our proposition 3, dealing with the case of no correlation: fully connected
components and, possibly, isolated nodes. Here the following incentives are at work: two players
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Complete Network 3-Node Component 

Empty Network 

Figure 1: Pairwise Stable Networks with 4 nodes.

do not form a link when isolated, and form a link when they share the same degree. These
incentives result in the empty and the complete network being stable. Moreover, players in the
3-node component have an incentive to form a link with the remaining isolated player who, in
contrast, does not have such incentive. This is consistent with our discussion of proposition 3,
where we argued that the incentive for i to link with j increase with I’s degree and decrease
with j’s degree. As correlation increases (0.62 < pn < 0.71), so does the incentive of the isolated
player to gain information about the opponents’ behaviour by forming one additional link, and
thus leads to the instability of the network containing the 3-node component. However, further
increases of correlation (0.71 < pn < 0.75) decrease the incentive of each members of the 3-node
component to link with the isolated node, whose behavior is now predicted with high precision
thanks to the high conditional correlation of signals. The isolated players remains thereby
excluded from sharing. For large enough levels of correlation (pn > 0.75), even single isolated
players would form a link, and all pairwise stable networks display some amount of information
sharing, consistently with point 2) in proposition 7. Summing up, signals’ correlation creates
incentives to share information, but only up to the point at which well connected (and informed)
agents find it profitable not to further reveal their own private information in exchange for
unobserved signals on which their already have a very precise expectation.

We then turn to the Beauty Contest, where strategies are complements and payoffs also
depend on the volatility of opponents’ equilibrium strategies. We prove a partial counterpart of
proposition 3, showing that the universal sharing of information is always pairwise stable, and
that all stable networks involve some amount of information sharing.

Proposition 8 In the Beauty context game with strategic complements (0 < v < 1):

1. the complete network is pairwise stable;

2. the empty network is not pairwise stable.
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Finally, we study the case in which also the covariance of equilibrium strategies with the
state of the world affects payoffs. We focus here on the public good game with linear benefits,
for which we provide a full characterization of pairwise stable networks. The intuition is similar
to the one behind corollary 2: both one’s own equilibrium variance and opponents’ covariance
with the state of the world are beneficial, and both increase as a result of one additional link,
resulting in the universal sharing of all information.

Proposition 9 In the public good game with linear benefits and quadratic costs the complete
network is the unique pairwise stable architecture.

5 Conclusions

We have studied the incentives to bilaterally share information of agents playing a linear
quadratic game, and which stable networks result from these incentives. Our main contri-
bution compared to previous literatures has been to frame the sharing problem in the general
linear quadratic model, and to allow agents to bilaterally share information. In our contest with
identical agents, we have focused on the ex-ante commitment to truthfully reveal information,
and we have studied under which conditions agents make such commitments. As we have shown,
the general linear quadratic formulation is rich enough to generate non trivial network structures
even in games with strategic complements, where incentives to share are strong. Our analysis
has particularly focused on the role of signals’ correlation in shaping incentives to share, and
how and when incomplete network structure may arise in equilibrium. Our analysis of sharing
has demanded a characterization of the equilibrium use of information in networks, which ex-
tends previous work on Bayesian equilibrium in linear quadratic games to the case of networked
information structures.
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APPENDIX

Proof of Proposition 7
Proof of point 1 : The proof is organized in several steps, and goes by studying the difference

in expected profits of two firms, 1 and 2, in the complete networks gc and in the network
g−12 ≡ {gc − 12}. We first compute equilibrium strategies in gc. The updating coefficient in gc

is for every i:

kig
c

1 =
t

ps + (n− 1) pn
. (38)

We obtain the following common equiibrium coefficient:

βg
c

= − tγaθ
(ps + (n− 1) pn) (2γa + γaA (n− 1))

.

For g−12 ≡ {gc − 12}, the updating coefficients are:

kig
−12

1 =
t

ps + (n− 2) pn
, ki2 =

pn
ps + (n− 2) pn

, i = 1, 2

kig
−12

1 =
t

ps + (n− 1) pn
, ∀i ≥ 3 (39)

We obtain the following equilibrium coefficients for firms 1 and 2:

βg
−12

11 = βg
−12

22 = − tγaθ
2γa (ps + (n− 2) pn) + γaA ((n− 2) ps + (5 + n (n− 4)) pn)

βg
−12

1j = βg
−12

2j =

= − t (2γa + (n− 2) γaA) γaθ
(2γa + (n− 1) γaA) (2 (ps + (n− 2) pn) γa + γaA ((n− 2) ps + (5 + n (n− 4)) pn))

, ∀j ≥ 3

From (20), we can express the difference ue(gc)− ue(g−12) in the expected profits of firm 1
(and, by symmetry, of firm 2) in gc and in g−12 as proportional to:

n ·
(
βg

c

ij

)2
(ps + (n− 1) pn)−

((
βg
−12

11

)2
+ (n− 2)

(
βg
−12

1j

)2)
ps− (40)

− (n− 2)βg
−12

1j

(
2βg

−12

11 + (n− 3)βg
−12

1j

)
pn.

Plugging in the values of the β coefficients, we obtain the following expression:

(ps − pn) t2
(
4 (ps + (n− 2) pn) (1 + (n− 3)µ) + ((7 + (n− 6)n) ps + (n (19 + (n− 8)n)− 16) pn)µ2

)
γ2aθ

(ps + (n− 1) pn) (2 + (n− 1)µ)2 (2ps + 2 (n− 2) pn + (n− 2) psµ+ (5 + (n− 4)n) pnµ)
2 γ2a

(41)

The denominator of the above equation is always strictly positive for all admissible values
of the parameters; moreover the sign is the same as the sign of the following expression:

4 (ps + (n− 2) pn) (1 + (n− 3)µ) + (42)

+ ((7 + (n− 6)n) ps + (n (19 + (n− 8)n)− 16) pn)µ2
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We divide it in two terms. The first, 4 (ps + (n− 2) pn) (1 + (n− 3)µ), is always positive: indeed
by assumption µ > 0 and the proof follows directly; it can be directly verified that the second
term is positive for n ≥ 5. Therefore (42) could be negative only for n = 3 and n = 4. But for
n = 3 (42) becomes 4 (ps + pn)−2 (ps + 2pn)µ2and for n = 4 (42) becomes 4 (ps + 2pn) (1 + µ)−
(ps + 4pn)µ2 and, by the assumption that 0 < µ < 1, both terms are strictly positive.

Proof of point 2
We study the difference in expected profits of two agents, 1 and 2, in the empty network g∅

and in the network g12 ≡ {12}. The updating coefficients for g∅ are:

kig
∅

1 =
t

ps
, kig

∅

2 =
pn
ps
, ∀i (43)

from which we obtain the common coefficient of agents’ equilibrium strategies:

βg
∅

ii = − γaθt

2γaps + γaA (n− 1) pn
, ∀i

The updating coefficients for g12 ≡ {12} are:

kig
12

1 = t
ps+pn

for i = 1, 2

kig
12

1 = t
ps

for all i ≥ 3

kig
12

2 = pn
ps+pn

for i = 1, 2

kig
12

2 = pn
ps

for i ≥ 3

We obtain the following equilibrium coefficients for agents 1 and 2:

βg
12

11 = βg
12

12 = βg
12

21 = βg
12

22 =

= − t (2psγa − γaApn) γaθ
4ps (ps + pn) γ2a + 2 (ps + pn) (ps + (n− 3)pn) γaγaA + pn((n− 3) ps − (3n− 5) pn)γ2aA

.

From (20), we can express the difference in profits of agent 1 (and, by symmetry, of agent
2) in g∅ and in g12 as: (

βg
∅

ii

)2
ps − 2

(
βg

12

11

)2
(ps + pn) . (44)

Plugging in (44) the values of the β coefficients, recalling the definition of µ and letting
p ≡ ps + pn we obtain the following expression:

t2γ2aθ
γ2a

[
ps

(2ps + (n− 1) pnµ)2
− 2p (pnµ− 2ps)

2

(4psp+ 2p (ps + (n− 3) pn)µ− pn ((3n− 5) pn − (n− 3) ps)µ2)
2

]

It can be shown that the denominator of the above expression is strictly positive. Its sign of is
therefore the sign of the numerator of the above expression, which can be written in the following
form:

a · n2 + b · n+ c (45)
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where

a = (ps − pn) p2nµ
2
(
4psp (µ− 1) +

(
p2s − 5pspn + 2p2n

)
µ2
)

b = 2 (ps − pn) pnµ·
·
(
−8p2sp+ 4psp (2ps + 3pn)µ+ 2ps (ps − 8pn) pµ2 − pn

(
3p2s − 11psps + 2p2n

)
µ3
)

c = (ps − pn)
[
2p4nµ

4 + psp
3
nµ

2 ((44− 21µ)µ− 36) + 4p4s (µ (4 + µ)− 4)

−4p3spn (µ− 1) (3µ (4 + µ)− 4) + p2sp
2
nµ (48 + µ (µ (32 + 9µ)− 76))

]
The proof continues now by studying the sign of (45).

We first note that the roots (n−, n+) of (45) are real (since b2− 4ac ≥ 0), distinct and finite
as long as a 6= 0. With this in mind, we now look for conditions under which expression (45)
is concave. Such conditions will tell us whether the sign of (45) becomes negative for n large
enough.

Lemma 2 If µ < 2
1+
√
2

then (45) is concave. If µ > 2
1+
√
2

then there exists p∗n such that for

all pn > p∗n (45) is concave, otherwise it is convex.

Proof of Lemma 2: Note that concavity of (45) depends on the sign of term a in (45). This
term is negative for µ < 0. Moreover, the sign of a is the sign of the following term:(

4psp (µ− 1) +
(
p2s − 5pspn + 2p2n

)
µ2
)
. (46)

Let us evaluate the roots of (46) as a function of pn. We find:

4ps (1− µ) + 5psµ
2 ± ps (µ− 2)

√
4 (1− µ) + 17µ2

4µ2
(47)

Since the largest root yields a value which exceeds ps, we only consider the smaller root denoted
by p∗n. Note here that the second derivative of (46) with respect to pn is positive (so that a is a
convex function of pn). This directly implies that a is negative for all pn > p∗n. We then turn
to the analysis of the root p∗n in relation to the parameter µ. We show that if µ < 2

1+
√
2

then

p∗n < 0, implying that a < 0 for all parameters’ values; moreover, when µ > 2
1+
√
2
, we show that

p∗n > 0 and that p∗n is increasing in µ. In this latter case, a < 0 for all values p∗n < pn < ps.
Consider again the smaller root in (47):

p∗n =
4ps (1− µ) + 5psµ

2 + ps (µ− 2)
√

4 (1− µ) + 17µ2

4µ2
. (48)

Expression (48) is null for the following values of µ:

µ− = 2
(
−1−

√
2
)

; µ+ =
2

1 +
√

2
. (49)

Moreover, the expression (48) is strictly increasing in µ for all values of µ in the range (0, 1].
This implies that p∗n < 0 for all 0 < µ < µ+, and that ps > p∗n > 0 for all µ+ < µ ≤ 1. �

Having established conditions under which (45) is concave in n, we study its sign by estab-
lishing a few facts about the behaviour of (45) at the point n = 2.
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Lemma 3 At n = 2: i) expression (45) is negative for µ < 2
3 , is positive for µ > 2

1+
√
2

and

in the intermediate range is positive if and only if pn >
ps
(
4− 4µ− µ2

)
2µ2

≡ p∗∗n . ii) Moreover,

there exists p̂n > 0 such that (45) is increasing in n if pn < p̂n and µ > 2
1+
√
2
, otherwise (45) is

decreasing in n.

Proof of Lemma 3. Point i) follows from direct computation, and is consistent with Propo-
sition 4.4 in Raith (1996) for the specific case of Cournot oligopoly, setting n = 2. Point ii) is
proved as follows. The first derivative of (45) at n = 2 is given by:

2 (ps − pn) pnpµ (2ps − pnµ)
(
ps (µ (4 + µ)− 4)− 2pnµ

2
)
. (50)

The sign of (50) is the same as the sign of the following expression:

µ
(
ps (µ (4 + µ)− 4)− 2pnµ

2
)
. (51)

The expression in brackets in (51) is positive for pn <
ps (µ (4 + µ)− 4)

2µ2
≡ p̂n. It is directly

verifiable that p̂n is negative for µ < 2
1+
√
2

and positive for µ > 2
1+
√
2
.�

We are now ready to prove Proposition 7.

Point i) (µ < 2
3 ). we know from Lemma 3 that at n = 2 (45) is negative and decreasing

in n, and from Lemma 2 we know that (45) is concave in n. This two facts tell us the all points
n ≥ 2 are in the right (and decreasing) branch of the parabola (45). We conclude that (45) is
negative for all n ≥ 2.

Point ii) (2
3 < µ < 2

1+
√
2
). From Lemma 2 and Lemma 3 we know that (45) is concave

and decreasing in n at n = 2. These two facts imply that all points n ≥ 2 are in the right
(and decreasing) branch of the parabola (45). In this range of values for µ, however, (45) can
be either positive or negative at n = 2, depending on the value of pn (see Lemma 3 point i)).
Suppose first that (45) is negative at n = 2; in this case, the two real roots of (45) are strictly
smaller than 2, and (45) remains negative for all n ≥ 2. Suppose then that (45) is positive at
n = 2; in this case, the larger real root n+ must be larger than 2, so that (45) is negative for all
n > n+.

Point iii) (µ > 2
1+
√
2
). In this range, (45) is concave in n if and only if if pn > p∗n > 0,

otherwise it is convex (Lemma 2). Moreover, we know from Lemma 3 that at n = 2 (45) is
positive. Consider first the case pn > p∗n ((45) concave). Here, the larger real root n+ must be
larger than 2, so that for all n > n+ (45) is negative. Consider then the case pn < p∗n ((45)
convex). Here, at n = 2 (45) is increasing in n if pn < p̂n. Since p̂n = p∗n for µ = 2

1+
√
2

and for

µ > 2
1+
√
2

the difference p̂n− p∗n is increasing in µ 2, it follows that p∗n < p̂n for all µ > 2
1+
√
2

and that (45) is increasing in n at n = 2. Since in this case (45) is convex, we conclude that the
two real roots (n−, n+) are smaller than 2, and that (45) is positive for n ≥ 2. �

Proof of Proposition 8 We replace the parameters in (1) with those specific for the Beauty

Contest: γa = −1; γθ = −v; γaθ = 2v; γA = − (1−v)
(n−1)2 ; γaA = 2(1−v)

n−1 .

2More precisely, the first derivative of the expression
ps (µ (4 + µ) − 4)

2µ2
− pn is increasing in µ.
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Point 1. We study again the difference in expected profits of two firms, 1 and 2, in the
complete networks gc and in the network g−12 ≡ {gc − 12}. The updating coefficient in gc is:

kig
c

1 =
t

ps + (n− 1) pn
, (52)

from which we obtain the following common equiibrium coefficient:

βg
c

= − t

(ps + (n− 1) pn)
.

For g−12 ≡ {gc − 12}, the updating coefficients are:

kig
−12

1 =
t

ps + (n− 2) pn
, ki2 =

pn
ps + (n− 2) pn

, i = 1, 2

kig
−12

1 =
t

ps + (n− 1) pn
, ∀i ≥ 3 (53)

We obtain the following equilibrium coefficients for firms 1 and 2 and for firms j, k > 2:

βg
−12

11 = βg
−12

22 = − t(n− 1)v

ps + (n− 2)psv + pn(n− 3 + (5 + (n− 4)n)v)

βg
−12

1j = βg
−12

2j =

= − t+ (n− 2)tv

ps + (n− 2)psv + pn(n− 3 + (5 + (n− 4)n)v)
,

βg
−12

j1 = βg
−12

j2 =

= − (n− 1)((n− 2)pn + ps)tv

((n− 1)pn + ps)(ps + (n− 2)psv + pn(n− 3 + (5 + (n− 4)n)v))

βg
−12

jj = βg
−12

jk =

= − t(ps + (n− 2)psv + (n− 1)pn(1 + (n− 3)v))

((n− 1)pn + ps)(ps + (n− 2)psv + pn(n− 3 + (5 + (n− 4)n)v))

We will now write down the change in expectd payoff of agent 1 moving from gc to g−12

following condition (17-19) and (21). The terms used to compute the other players’ aggregate
volatility are given by:

Bgc

1k = (n− 1)βg
c

11; (54)

Bg−12

11 = (n− 2)βg
−12

31 ; (55)

Bg−12

12 = βg
−12

11 + (n− 2)βg
−12

31 ; (56)

Bg−12

1k = βg
−12

13 + (n− 2)βg
−12

33 . (57)

From (21) we express the change in payoff moving from g−12 to gc as follows:
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−γa[(psn+ n(n− 1)pn)(βg
c

11)2 − ps(βg
−12

11 )2 − (n− 2)(βg
−12

1k )2ps − (2(n− 2)βg
−12

11 βg
−12

1k +

(n− 2)(n− 3)(βg
−12

1k )2)pn] + γA[nps(B
gc

21)2 + n(n− 1)(Bgc

ik )2pn − ps((Bg−12

12 )2+

(Bg−12

11 )2 + (n− 2)(Bg−12

13 )2)− 2pn((Bg−12

11 (Bg−12

12 + (n− 2)Bg−12

13 )+

Bg−12

12 (n− 2)Bg−12

13 + (Bg−12

13 )2(n− 2)(n− 3)/2)]

Now we show that this expression is never negative for all values of v, pn and ps in the ranges
0 < v ≤ 1 and pn < ps. Replacing the coefficients we get the following expression:

(ps − pn) t2v
(
pn

(
2n+ 12v − 6 + n · v (n (n− 2)− 4) + v2 (n (7− 2n)− 8)

)
+ ps

(
2 + v

(
n2 − 4 + 3v − 2nv

)))
((n− 1) pn + ps) (ps + (n− 2) psv + pn (n− 3 + (5 + (n− 4)n) v))2

(58)

It can be shown that the denominator of (58) is strictly positive. Then the sign of (58) is
therefore the sign of its numerator, which can be written in the following form:

a · v2 + b · v + c (59)

where

a = pn (n (7− 2n)− 8) + ps (3− 2n)

b = 12pn + n · pn (n (n− 2)− 4) + ps
(
n2 − 4

)
c = 2ps + pn (2n− 6)

The proof continues now by studying the sign of (59).
We first note that the roots (n−, n+) of (59) are real (since b2 − 4ac ≥ 0), distinct and

finite (since a 6= 0). Moreover by a direct inspection of (59) we see that it is concave and that
its smaller root is negative and the larger one is greater than 1. Then (58) is positive for all
parameter values, implying that the complete network is always stable.

Point 2 : We study the difference in expected profits of two agents, 1 and 2, in the empty
network g∅ and in the network g12 ≡ {12}. The updating coefficients for g∅ are:

kig
∅

1 =
t

ps
, kig

∅

2 =
pn
ps
, ∀i (60)

from which we obtain the common coefficient of agents’ equilibrium strategies:

βg
∅

= − tv

ps+ pn(v − 1)
.

and

Bg∅

ii = 0 (61)

Bg∅

ij = βg
∅

for i 6= j

(63)
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The updating coefficients for g12 ≡ {12} are:

kig
12

1 = t
ps+pn

for i = 1, 2

kig
12

1 = t
ps

for all i ≥ 3

kig
12

2 = pn
ps+pn

for i = 1, 2

kig
12

2 = pn
ps

for i ≥ 3

We obtain the following equilibrium coefficients:

βg
12

11 = βg
12

12 = βg
12

21 = βg
12

22 =

= − (n− 1)tv(pn(1− v) + (n− 1)ps)

(n− 1)p2s(n+ v − 2) + p2n(v − 1)(n(n− 1− 3v) + 5v − 2) + pnps(n− 2 + v)(2 + (n− 3)v)
;

βg
12

kk =
(n− 1)tv(pn(2 + n− 3v) + ps(n− 2 + v))

(n− 1)p2s(n− 2 + v) + p2n(v − 1)(n− 2(n− 1− 3v) + 5v) + pnps(n− 2 + v)(2 + (n− 3)v)
,

and:

Bg12

11 = βg
12

21 (64)

Bg12

1k = βg
12

kk . (65)

Using (20) we can express the difference in profits of agent 1 (and, by symmetry, of agent 2)
in g∅ and in g12 as:

− γa[(βg
∅

ii )2ps − 2(βg
12

11 )2(ps + pn)]

+ γA[(n− 1)Bg∅

ij
2ps + (n− 1)(n− 2)Bg∅

ij
2pn − (2(Bg12

11 )2 + (n− 2)(Bg12

1k )2)ps−

(2(Bg12

11 )2 + (4n− 8)Bg12

11 B
g12

1k + (n− 2)(n− 3)(Bg12

1k )2)pn] (66)

The proof then goes through the following steps (complete proofs from authors upon request):
we plug in the coefficients’ expressions, so we get an expression in n, ps, pn and v. Then we find
that: i) (66) is strictly positive for pn = 0 for all parameters’ values; ii) (66) is equal zero for
pn = ps for all parameters’ values; iii) the derivative of (66) respect to pn computed in pn = ps
is strictly negative for all parameters’ values; iv) (66) never is negative for pn ∈ (0, ps) and for
all other parameters’ value. All these evidences are enough to say that (66) is positive for all
parameters’ values and, consequently, the empty network is not pairwise stable.

Proof of Proposition 9
We replace the parameters in (1) with those specific for the Public Good Game: γa = −b;

γAθ = 1; γaθ = 1. Expression (6) becomes:

βgih =
t

2b(ps + (ngi − 1) pn)
∀h ∈ Ni; (67)

Note as the coefficient that agent i applies to signal h depends only on his degree.
The incentives to form a new link are given by (20) which, when (g′ = g + ij), is rewritten

as follows: [
cov

(
Ag
′

i , θ
)
− cov (Agi , θ)

]
+ b ·

[
var

(
ag
′

i

)
− var (agi )

]
(68)
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Note that the term inside the first brackets depends only on the covariance between the
action of agent j and θ. Therefore using (67) and (18), and noting that passing from g to g′

only agents i’s and j’s coefficients change, we can write (68) as:

t2

2b

[
nj + 1

(ps + njpn)
− nj

(ps + (nj − 1)pn)

]
+
t2

4b
·
[

ni + 1

ps + nipn
− ni
ps + (ni − 1)pn

]
(69)

that, from a direct inspection, is strictly positive as long as ps > pn. Therefore every incom-
plete network is not stable resulting in the complete network being the unique pairwise stable
architecture.
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