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Abstract

We study evolutionary dynamics in assignment games where many agents interact anony-
mously at virtually no cost. The process is decentralized, very little information is avail-
able and trade takes place at many different prices simultaneously. We propose a com-
pletely uncoupled learning process that selects a subset of the core of the game with a
natural equity interpretation. This happens even though agents have no knowledge of
other agents’ strategies, payoffs, or the structure of the game, and there is no central
authority with such knowledge either. In our model, agents randomly encounter other
agents, make bids and offers for potential partnerships and match if the partnerships are
profitable. Equity is favored by our dynamics because it is more stable, not because of
any ex ante fairness criterion.
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1. Introduction

Many matching markets are decentralized and agents interact repeatedly with very little
knowledge about the market as a whole. Examples include online markets for bringing
together buyers and sellers of goods, matching workers with firms, matching hotels with
clients, and matching men and women. In such markets matchings are repeatedly broken,
reshuffled, and restored. Even after many encounters, however, agents may still have little
information about the preferences of others, and they must experiment extensively before
the market stabilizes.

In this paper we propose a simple adaptive process that reflects the participants’ limited
information about the market. Agents have aspiration levels that they adjust from time
to time based on their experienced payoffs. Matched agents occasionally experiment
with higher bids in the hope of extracting more from another match, while single agents
occasionally lower their bids in the hope of attracting a partner. There is no presumption
that market participants or a central authority know anything about the distribution of
others’ preferences or that they can deduce such information from prior rounds of play.
Instead they follow a process of trial and error in which they adjust their bids and offers
in the hope of increasing their payoffs. Such aspiration adjustment rules are rooted in
the psychology and learning literature.1 A key feature of the rule we propose is that an
agent’s behavior does not require any information about other agents’ actions or payoffs:
the rule is completely uncoupled.2 It is therefore particularly well-suited to environments
such as decentralized online markets where players interact anonymously and trades take
place at many different prices. We shall show that this simple adaptive process leads
to equitable solutions inside the core of the associated assignment game (Shapley and
Shubik 1972). In particular, core stability and equity are achieved even though agents
have no knowledge of the other agents’ strategies or preferences, and there is no ex ante
preference for equity.

The paper is structured as follows. The next section discusses the related literature on
matching and core implementation. Section 3 formally introduces assignment games and
the relevant solution concepts. Section 4 describes the process of adjustment and search
by individual agents. In sections 5 and 6 we show that the stochastically stable states of
the process lie inside the core. Section 7 concludes with several open problems.

1There is an extensive literature in psychology and experimental game theory on trial and error and
aspiration adjustment. See in particular the learning models of Thorndike (1898), Hoppe (1931), Estes
(1950), Bush and Mosteller (1955), Herrnstein (1961), and aspiration adjustment and directional learning
dynamics of Heckhausen (1955), Sauermann and Selten (1962), Selten and Stoecker (1986), Selten (1998).

2This idea was introduced by Foster and Young (2006) and is a refinement of the concept of uncoupled
learning due to Hart and Mas-Colell (2003, 2006). Recent work has shown that there exist completely
uncoupled rules that lead to pure Nash equilibrium in generic noncooperative games with pure Nash
equilibria (Germano and Lugosi 2007, Marden et al. 2009, Young 2009, Pradelski and Young 2012).
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2. Related literature

Our results fit into a growing literature showing how cooperative game solutions can
be implemented via noncooperative dynamic learning processes (Agastya 1997, 1999,
Arnold and Schwalbe 2002, Newton 2010, 2012, Sawa 2011, Rozen 2013). A particularly
interesting class of cooperative games are assignment games, in which every candidate
matched pair has a cooperative ‘value’. Shapley and Shubik (1972) showed that the
core of such a game is always nonempty.3 Subsequently various authors have explored
refinements of the assignment game core, including the kernel (Rochford 1984) and the
nucleolus (Huberman 1980, Solymosi and Raghavan 1994, Nunez 2004, Llerena et al.
2012). To the best of our knowledge, however, there has been no prior work showing how
a core refinement is selected via a decentralized learning process, which is the subject of
the present paper.

This paper establishes convergence to the core of the assignment game for a class of
natural dynamics and selection of a core refinement under payoff perturbations. We are
not aware of prior work comparable with our selection result. There are, however, several
recent papers that also address the issue of core convergence for a variety of related
processes (Chen et al. 2011, Biró et al. 2012, Klaus and Payot 2013, Bayati et al. 2014).
These processes are different from ours, in particular they are not aspiration-adjustment
learning processes, and they do not provide a selection mechanism for a core refinement as
we do here. The closest relative to our paper is the concurrent paper by Chen et al. (2011),
which demonstrates a decentralized process where, similarly as in our process, pairs of
players from the two market sides randomly meet in search of higher payoffs. This process
also leads almost surely to solutions in the core. Chen et al. (2011) and our paper are
independent and parallel work. They provide a constructive proof based on their process
which is similar to ours for the proof of the convergence theorem. Thus, theirs as well as
our algorithm (proof of Theorem 1) can be used to find core outcomes. Biró et al. (2012)
generalizes Chen et al. (2011) to transferable-utility roommate problems. In contrast
to Chen et al. (2011) and our proof, Biró et al. (2012) use a target argument which
cannot be implemented to obtain a core outcome. Biró et al. (2012)’s proof technique is
subsequently used in Klaus and Payot (2013) to prove the result of Chen et al. (2011)
for continuous payoff space in the assignment game. A particularity in this case is the
fact that the assignment may continue to change as payoffs approximate a core outcome.
Finally, Bayati et al. (2014) study the rate of convergence of a related bargaining process
for the roommate problem in which players know their best alternatives at each stage.
The main difference of this process to ours is that agents best reply (i.e. they have a lot
of information about their best alternatives). Moreover, the order of activation is fixed,
not random, and matches are only formed once a stable outcome is found.4 An important
feature of our learning process is that it is explicitly formulated in terms of random bids
of workers and random offers of firms (as in the original set-up by Shapley and Shubik
1972), which allows a completely uncoupled set-up of the dynamic.

3Important subsequent papers include Crawford and Knoer (1981), Kelso and Crawford (1982), De-
mange and Gale (1985), and Demange et al. (1986).

4In a recent paper Pradelski (2014) discusses the differences to our set-up in more detail. He then
investigates the convergence rate properties of a process closely related to ours.
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There is also a related literature on the marriage problem (Gale and Shapley 1962). In
this setting the players have ordinal preferences for being matched with members of the
other population, and the core consists of matchings such that no pair would prefer each
other to their current partners.5 Typically, many matchings turn out to be stable. Roth
and Vande Vate (1990) demonstrate a random blocking pair dynamic that leads almost
surely to the core in such games. Chung (2000), Diamantoudi et al. (2004) and Inarra
et al. (2008, 2013) establish similar results for nontransferable-utility roommate problems,
while Klaus and Klijn (2007) and Kojima and Ünver (2008) treat the case of many-to-one
and many-to-many nontransferable-utility matchings. Another branch of the literature
considers stochastic updating procedures that place high probability on core solutions,
that is, the stochastically stable set is contained in the core of the game (Jackson and
Watts 2002, Klaus et al. 2010, Newton and Sawa 2013).

The key difference between marriage problems and assignment games is that the former
are framed in terms of nontransferable (usually ordinal) utility, whereas in the latter each
potential match has a transferable ‘value’. The core of the assignment game consists
of outcomes such that the matching is optimal and the allocation is pairwise stable.
Generically, the optimal matching is unique and the allocations supporting it infinite.
On the face of it one might suppose that the known results for marriage games would
carry over easily to assignment games but this is not the case. The difficulty is that in
marriage games (and roommate games) a payoff-improving deviation is determined by
the players’ current matches and their preferences, whereas in an assignment game it
is determined by their matches, the value created by these matches, and by how they
currently split the value of the matches. Thus the core of the assignment game tends to
be significantly more constrained and paths to the core are harder to find than in the
marriage game.

The contribution of the present paper is to demonstrate a simple completely uncoupled
adjustment process that has strong selection properties for assignment games. Using
a proof technique introduced by Newton and Sawa (2013) (the one-period deviation
principle), we show that the stochastically stable solutions of our process lie in a subset
of the core of the assignment game. These solutions have a natural equity interpretation:
namely, every pair of matched agents splits the difference between the highest and lowest
payoffs they could get without violating the core constraints.

3. Matching markets with transferable utility

In this section we shall introduce the conceptual framework for analyzing matching mar-
kets with transferable utility; in the next section we introduce the learning process it-
self.

5See Roth and Sotomayor (1992) for a textbook on two-sided matching.
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3.1 The assignment game

The population N = F ∪ W consists of firms F = {f1, ..., fm} and workers W =
{w1, ..., wn}.6 They interact by making bids and offers to potential partners whom they
randomly encounter. We assume matches form only if these bids are mutually profitable
for both agents.

Willingness to pay. Each firm i has a willingness to pay, p+ij ≥ 0, for being matched
with worker j.

Willingness to accept. Each worker j has a willingness to accept, q−ij ≥ 0, for being
matched with firm i.

We assume that these numbers are specific to the agents and are not known to the other
market participants or to a central market authority.

Match value. Assume that utility is linear and separable in money. The value of a
match (i, j) ∈ F ×W is the potential surplus

αij = (p+ij − q−ij)+. (1)

It will be convenient to assume that all values p+ij, q
−
ij , and αij can be expressed as

multiples of some minimal unit of currency δ, for example, ‘dollars’.

We shall introduce time at this stage to consistently develop our notation. Let t =
0, 1, 2, ... be the time periods.

Assignment. For all pairs of agents (i, j) ∈ F ×W , let atij ∈ {0, 1}.

If (i, j) is

{
matched then atij = 1,

unmatched then atij = 0.
(2)

If for a given agent i ∈ N there exists j such that atij = 1 we shall refer to that agent as

matched ; otherwise i is single. An assignment At = (atij)i∈F,j∈W is such that if atij = 1
for some (i, j), then atik = 0 for all k 6= j and atlj = 0 for all l 6= i.

Matching market. The matching market is described by [F,W,α,A]:

• F = {f1, ..., fm} is the set of m firms (or men or sellers),

• W = {w1, ..., wn} is the set of n workers (or women or buyers),

• α =

 α11 . . . α1n
... αij

...
αm1 . . . αmn

 is the matrix of match values.

• A =

 a11 . . . a1n
... aij

...
am1 . . . amn

 is the assignment matrix with 0/1 values and
row/column sums at most one.

6The two sides of the market could also, for example, represent buyers and sellers, or men and women
in a (monetized) marriage market.
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The set of all possible assignments is denoted by A.

Note, that the game at hand is a cooperative game:

Cooperative assignment game. Given [F,W,α], the cooperative assignment game
G(v,N) is defined as follows. Let N = F ∪W and define v : S ⊆ N → R such that

• v(i) = v(∅) = 0 for all singletons i ∈ N ,

• v(S) = αij for all S = (i, j) such that i ∈ F and j ∈ W ,

• v(S) = max{v(i1, j1) + ...+ v(ik, jk)} for every S ⊆ F ×W ,

where the maximum is taken over all sets {(i1, j1), ..., (ik, jk)} consisting of disjoint pairs
that can be formed by matching firms and workers in S. The number v(N) specifies the
value of an optimal assignment.

3.2 Dynamic components

Aspiration level. At the end of any period t, a player has an aspiration level, dti,
which determines the minimal payoff at which he is willing to be matched. Let dt =
{dti}i∈F∪W .

Bids. In any period t, one pair of players is drawn at random and they make bids for
each other. We assume that the two players’ bids are such that the resulting payoff to
each player is at least equal to his aspiration level, and with positive probability is exactly
equal to his aspiration level.

Formally, firm i ∈ F encounters j ∈ W and submits a random bid bti = ptij, where ptij is
the maximal amount i is currently willing to pay if matched with j. Similarly, worker
j ∈ W submits btj = qtij, where qtij is the minimal amount j is currently willing to accept
if matched with i. A bid is separable into two components; the current (deterministic)
aspiration level and a random variable that represents an exogenous shock to the agent’s
aspiration level. Specifically let P t

ij, Q
t
ij be independent random variables that take values

in δ · N0 where 0 has positive probability.7 We thus have, for all i, j,

ptij = (p+ij − dt−1i )− P t
ij and qtij = (q−ij + dt−1j ) +Qt

ij. (3)

Consider, for example, worker j’s bid for firm i. The amount q−ij is the minimum that j

would ever accept to be matched with i, while dt−1j is his previous aspiration level over
and above the minimum. Thus Qt

ij is j’s attempt to get even more in the current period.
Note that if the random variable is zero, the agent bids exactly according to his current
aspiration level.

Prices. When i is matched with j they trade at a unique price, πtij.

7Note that P[P t
ij = 0] > 0 and P[Qt

ij = 0] > 0 are reasonable assumptions, since we can adjust p+ij
and q−ij in order for it to hold. This would alter the underlying game but then allow us to proceed as
suggested.
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Payoffs. Given [At,dt] the payoff to firm i / worker j is

φti =

{
p+ij − πtij if i is matched to j,

0 if i is single.
φtj =

{
πtij − q−ij if j is matched to i,

0 if j is single.
(4)

Note that players’ payoffs can be deduced from the aspiration levels and the assignment
matrix.

Profitability. A pair of bids (ptij, q
t
ij) is profitable if both players, in expectation, receive

a higher payoff if the match is formed.

Note that, if two players’ bids are at their aspiration levels and ptij = qtij, then they are
profitable only if both players are currently single. Also note that a pair of players (i, j)
with αij = 0 will never match.

Re-match. At each moment in time, a pair (i, j) that randomly encounters each other
matches if their bids are profitable. The resulting price, πtij, is set anywhere between qtij
and ptij. (Details about how players are activated are specified in the next section.)

To summarize, when a new match forms that is profitable, both agents receive a higher
payoff in expectation due to the full support of the resulting price.8

States. The state at the end of period t is given by Zt = [At,dt] where At ∈ A is an
assignment and dt is the aspiration level vector. Denote the set of all states by Ω.

3.3 Solution concepts

Optimality. An assignment A is optimal if
∑

(i,j)∈F×W aij · αij = v(N).

Pairwise stability. An aspiration level vector dt is pairwise stable if, ∀i, j and atij = 1,

p+ij − dti = q−ij + dtj, (5)

and p+i′j−dti′ ≤ q−i′j+dtj for every alternative firm i′ ∈ F with i′ 6= i and q−ij′+d
t
j′ ≥ p+ij′−dti

for every alternative worker j′ ∈ W with j′ 6= j.

Core (Shapley and Shubik 1972). The core of any assignment game is always non-
empty and consists of the set C ⊆ Ω of all states Z such that A is an optimal assignment
and d is pairwise stable.

Subsequent literature has investigated the structure of the core of the assignment game,
which turns out to be very rich.9 In order to investigate the constraints of pairwise
stability in more detail the concept of ‘payoff excess’ will be useful:

Excess. Given state Zt, the excess for a player i who is matched with j is

eti = φti −max
k 6=j

(αik − φtk)+. (6)

8In this sense any alternative match that may block a current assignment because it is profitable (as
defined earlier) is a strict blocking pair.

9See, for example, Roth and Sotomayor (1992), Balinski and Gale (1987), Sotomayor (2003).
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The excess for player i describes the gap to his next-best alternative, that is, the smallest
amount he would have to give up in order to profitably match with some other player
k 6= j. If a player has negative excess, pairwise stability is violated. In a core allocation,
therefore, all players have nonnegative excess. For the analysis of absorbing core states,
note that the excess in payoff can be equivalently expressed in terms of the excess in
aspiration level. This is the case since in absorbing core states aspiration levels are
directly deducible from payoffs.

Minimal excess. Given state Zt, the minimal excess is

etmin(Zt) = min
i: i matched

eti. (7)

Based on the minimal excess of a state, we can define the kernel (Davis and Maschler
1965). For assignment games, the kernel coincides with the solution concept proposed by
Rochford (1984), which generalizes a pairwise equal split solution à la Nash (1950).

Kernel (Davis and Maschler 1965, Rochford 1984). The kernel K of an assignment
game is the set of states such that the matching is optimal and, for all matched pairs
(i, j),

eti =δ e
t
j, (8)

where =δ means “equality up to δ”. (This is necessary given that we operate on the
discrete grid.)

Given Zt, extend the definition of excess to coalitional excess for coalition S ⊆ N ; et(S) =∑
i∈S φ

t
i−v(S). Now let E(φt) ∈ R2m+n

be the vector of coalitional excesses for all S ⊆ N ,
ordered from smallest to largest. Say E(φ) is lexicographically larger than E(φ′) for some
k, if Ei(φ) = Ei(φ

′) for all i < k and Ek(φ) < Ek(φ
′).10

Nucleolus (Schmeidler 1969). The nucleolus N of the assignment game is the unique
solution that minimizes the lexicographic measure. (See also Huberman 1980, Solymosi
and Raghavan 1994.)

For an analysis of the welfare properties and of the links between the kernel and the
nucleolus of the assignment game see Nunez (2004) and Llerena et al. (2012).

Least core (Maschler et al. 1979). The least core L of an assignment game is the
set of states Z such that the matching is optimal and the minimum excess is maximized,
that is,

emin(Z) = max
Z′∈C

emin(Z ′). (9)

Note that our definition of excess (equations (6) and (7)) applies to essential coalitions
only (that is, for the case of the assignment game, to two-player coalitions involving
exactly one agent from each market side). Hence, the least core generalizes the nucleolus
of the assignment game in the following sense. Starting with the nucleolus, select any

10Note that the excess for coalitions, et(S), is usually defined with a reversed sign. In order to make
it consistent with definition (6) we chose to reverse the sign.
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player with minimum excess (according to equation (6)): the least core contains all
outcomes with a minimum excess that is not smaller.11

The following inclusions are known for the assignment game:12

N ∈ (K ∩ L), K ⊆ C, L ⊆ C. (10)

4. Evolving play

A fixed population of agents, N = F ∪ W , plays the assignment game G(v,N). Re-
peatedly, a randomly activated agent encounters another agent, they make bids for each
other and match if profitable. The distinct times at which one agent becomes active will
be called periods. Agents are activated by independent Poisson clocks.13 Suppose that
an active agent randomly encounters one agent from the other side of the market drawn
from a distribution with full support. The two players enter a new match if their match
is profitable, which they can see from their current bids, offers and their own payoffs. If
the two players are already matched with each other, they remain so.

4.1. Behavioral dynamics

The essential steps and features of the learning process are as follows. At the start of
period t+ 1:

1. The activated agent i makes a random encounter j.

2a. If the encounter is profitable given their current bids and assignment, the pair
matches.

2b. If the match is not profitable, both agents return to their previous matches (or
remain single).

3a. If a new match (i, j) forms, the price is set anywhere between bid and offer. The
aspiration levels of i and j are set to equal their realized payoffs.

3b. If no new match is formed, the active agent, if he was previously matched, keeps his
previous aspiration level and stays with his previous partner. If he was previously
single, he remains single and lowers his aspiration level with positive probability.

11See Shapley and Shubik (1963, 1966) for the underlying idea of the least core, the strong ε-core. See
Maschler et al. (1979), Driessen (1999), Llerena and Nunez (2011) for geometric interpretations of these
concepts.

12N ∈ K is shown by Schmeidler (1969) for general cooperative games. Similarly N ∈ L is shown by
Maschler et al. (1979). Driessen (1998) shows for the assignment game that K ⊆ C. L ⊆ C follows
directly from the definitions.

13The Poisson clocks’ arrival rates may depend on the agents’ themselves or on their position in the
game. Single agents, for example, may be activated faster than matched agents.
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Our rules have antecedents in the psychology literature (Thorndike 1898, Hoppe 1931,
Estes 1950, Bush and Mosteller 1955, Herrnstein 1961). To the best of our knowledge,
however, such a framework has not previously been used in the study of matching markets
in cooperative games. The approach seems especially well-suited to modeling behavior
in large decentralized assignment markets, where agents have little information about
the overall game and about the identity of the other market participants. Following
aspiration adjustment theory (Sauermann and Selten 1962, Selten 1998) and related
bargaining experiments on directional and reinforcement learning (e.g., Tietz and Weber
1972, Roth and Erev 1995), we shall assume a simple directional learning model: matched
agents occasionally experiment with higher offers if on the sell-side (or lower bids if on
the buy-side), while single agents, in the hope of attracting partners, lower their offers if
on the sell-side (or increase their bids if on the buy-side).

We shall now describe the process in more detail, distinguishing the cases where the
active agent is currently matched or single. Let Zt be the state at the end of period t
(and the beginning of period t+ 1), and let i ∈ F be the unique active agent, for ease of
exposition assumed to be a firm.

I. The active agent is currently matched and meets j

If i, j are profitable (given their current aspiration levels) they match. As a result, i’s
former partner is now single (and so is j’s former partner if j was matched in period t).
The price governing the new match, πt+1

ij , is randomly set between pt+1
ij and qt+1

ij .

At the end of period t + 1, the aspiration levels of the newly matched pair (i, j) are
adjusted according to their newly realized payoffs:

dt+1
i = p+ij − πt+1

ij and dt+1
j = πt+1

ij − q−ij . (11)

All other aspiration levels and matches remain fixed. If i, j are not profitable, i remains
matched with his previous partner and keeps his previous aspiration level. See figure 1
for an illustration.

Figure 1: Transition diagram for active, matched agent (period t+ 1).

1 11,  old

t t t

i iij
a d d+ +

= =

i

meets no

profitable match

1 1 11,  t t t

ij i ij ija d p π
+ + + +

= = −

1 1 and t t

j ij ijd qπ
+ + −

= −

meets

profitable match

old match
new match
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II. The active agent is currently single and meets j

If i, j are profitable (given their current aspiration levels) they match. As a result, j’s
former partner is now single if j was matched in period t. The price governing the new
match, πt+1

ij , is randomly set between pt+1
ij and qt+1

ij .

At the end of period t + 1, the aspiration levels of the newly matched pair (i, j) are
adjusted to equal their newly realized payoffs:

dt+1
i = p+ij − πt+1

ij and dt+1
j = πt+1

ij − q−ij . (12)

All other aspiration levels and matches remain as before. If i, j are not profitable, i
remains single and, with positive probability, reduces his aspiration level,

dt+1
i = (dti −X t+1

i )+, (13)

where X t+1
i is an independent random variable taking values in δ ·N0, and δ occurs with

positive probability. See figure 2 for an illustration.

Figure 2: Transition diagram for active, single agent (period t+ 1).

1 1 1,  0,  ( )+ + +

+
∀ = = −

t t t t

ij i i ij a d d X

no match
new match

1 1 11,  t t t

ij i ij ija d p π
+ + + +

= = −

1 1 and t t

j ij ijd qπ
+ + −

= −

i

meets no

profitable match

meets

profitable match

4.2. Example

Let N = F ∪W = {f1, f2} ∪ {w1, w2, w3}, p+1j = (40, 31, 20) and p+2j = (20, 31, 40) for
j = 1, 2, 3, and q−i1 = (20, 30), q−i2 = (20, 20) and q−i3 = (30, 20) for i = 1, 2.

1f 2f

1w 2w 3w

(40,31,20) (20,31,40)

(20,30) (20,20) (30,20)
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Then one can compute the match values: α11 = α23 = 20, α12 = α22 = 11, and αij = 0
for all other pairs (i, j). Let δ = 1.

period t: Current state

Suppose that, at the end of some period t, (f1, w1) and (f2, w2) are matched and w3 is
single.

The current aspiration level is shown next to the name of that agent, and the values αij
are shown next to the edges (if positive). Bids will be shown to the right of the aspiration
level. Solid edges indicate matched pairs, and dashed edges indicate unmatched pairs.
(Edges with value zero are not shown.) Note that no player can see the bids or the status
of the players on the other side of the market.

Note that some matches can never occur. For example f1 is never willing to pay more
than 20 for w3, but w3 would only accept a price above 30 from f1.
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Note that the aspiration levels satisfy dti + dtj ≥ αij for all i and j, but the assignment is
not optimal (firm 2 should match with worker 3).

period t+ 1: Activation of single agent w3 and encounter of f2

w3’s current aspiration level is too high in order to be profitable with f2. Hence, inde-
pendent of the specific bid he makes, he remains single and, with positive probability,
reduces his aspiration level by 1.

w3 encounters f2
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period t+ 2: Activation of matched agent f2 and encounter of w3

f2 and w3 are profitable. With positive probability f2 bids 30 for w3 and w3 bids 29
for f2 (hence the match is profitable), and the match forms. The price is set at random
to either 29 such that f2 raises his aspiration level by one unit (11) and w3 keeps his
aspiration level (9), or to 30 such that f2 keeps his aspiration level (10) and w3 raises
his aspiration level by one unit (10). (Thus in expectation the agents get a higher payoff
than before.)

f2 encounters w3
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Successful match; f2 increases
aspiration level
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period t+ 3: Activation of single agent w2 and encounter of f2

w2’s current aspiration level is too high in the sense that he has no profitable matches, and
thus in particular is not profitable with f2. Hence he remains single and, with positive
probability, reduces his aspiration level by 1.

w2 encounters f2
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The resulting state is in the core:14
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5. Core stability – absorbing states of the unperturbed process

Recall that a state Zt is defined by an assignment At and aspiration levels dt that jointly
determine the payoffs. C is the set of core states; let C0 be the set of core states such
that singles’ aspiration levels are zero.

Theorem 1. Given an assignment game G(v,N), from any initial state Z0 = [A0,d0] ∈
Ω, the process is absorbed into the core in finite time with probability 1. The set of
absorbing states consists of C0. Further, starting from d0 = 0 any absorbing state is
attainable.

Throughout the proof we shall omit the time superscript since the process is time-
homogeneous. The general idea of the proof is to show a particular path leading into
the core which has positive probability. The proof uses integer programming arguments
(Kuhn 1955, Balinski 1965) but no single authority ‘solves’ an integer programming prob-
lem. It will simplify the argument to restrict our attention to a particular class of paths
with the property that the realizations of the random variables P t

ij, Q
t
ij are always 0 and

the realizations of X t
i are always δ. P t

ij, Q
t
ij determine the gaps between the bids and

the aspiration levels, and X t
i determines the reduction of the aspiration level by a single

agent. One obtains from equation (3) for the bids:

for all i, j, ptij = p+ij − dt−1i and qtij = q−ij + dt−1j (14)

Recall that any two agents encounter each other in any period with positive probability.
It shall be understood in the proof that the relevant agents in any period encounter each
other. Jointly with equation (3), we can then say that a pair of aspiration levels (dti, d

t
j)

is profitable if

either dti + dtj < αij or dti + dtj = αij and both i and j are single. (15)

Restricting attention to this particular class of paths will permit a more transparent anal-
ysis of the transitions, which we can describe solely in terms of the aspiration levels.

14Note that the states Zt+2 and Zt+3 are both in the core, but Zt+3 is absorbing whereas Zt+2 is not.
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We shall proceed by establishing the following two claims.

Claim 1. There is a positive probability path to aspiration levels d such that di+dj ≥ αij
for all i, j and such that, for every i, either there exists a j such that di + dj = αij or else
di = 0.

Any aspiration levels satisfying Claim 1 will be called good. Note that, even if aspiration
levels are good, the assignment does not need to be optimal and not every agent with a
positive aspiration level needs to be matched. (See the period-t example in the preceding
section.)

Claim 2. Starting at any state with good aspiration levels, there is a positive probability
path to a pair (A,d) where d is good, A is optimal, and all singles’ aspiration levels are
zero.15

Proof of Claim 1.

Case 1. Suppose the aspiration levels d are such that di + dj < αij for some i, j. Note
that this implies that i and j are not matched with each other since otherwise the entire
surplus is allocated and di + dj = αij. With positive probability, either i or j is activated
and i and j become matched. The new aspiration levels are set equal to the new payoffs.
Thus the sum of the aspiration levels is equal to the match value αij. Therefore, there is
a positive probability path along which d increases monotonically until di + dj ≥ αij for
all i, j.

Case 2. Suppose the aspiration levels d are such that di + dj ≥ αij for all i, j.

We can suppose that there exists a single agent i with di > 0 and di + dj > αij for
all j, else we are done. With positive probability, i is activated. Since no profitable
match exists, he lowers his aspiration level by δ. In this manner, a suitable path can be
constructed, along which d decreases monotonically until the aspiration levels are good.
Note that at the end of such a path, the assignment does not need to be optimal and
not every agent with a positive aspiration level needs to be matched. (See the period-t
example in the preceding section.)

Proof of Claim 2.

Suppose that the state (A,d) satisfies Claim 1 (d is good) and that some single exists
whose aspiration level is positive. (If no such single exists, the assignment is optimal
and we have reached a core state.) Starting at any such state, we show that, within a
bounded number of periods and with positive probability (bounded below), one of the
following holds:

The aspiration levels are good, the number of single agents with posi-
tive aspiration level decreases, and the sum of the aspiration levels
remains constant.

(16)

15Note that this claim describes an absorbing state in the core. It may well be that the core is reached
while a single’s aspiration level is more than zero. The latter state, however, is transient and will converge
to the corresponding absorbing state.
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The aspiration levels are good, the sum of the aspiration levels
decreases by δ > 0, and the number of single agents with a positive
aspiration level does not increase.

(17)

In general, say an edge is tight if di + dj = αij and loose if di + dj = αij − δ. Define
a maximal alternating path P to be a path that starts at a single player with positive
aspiration level, and that alternates between unmatched tight edges and matched tight
edges such that it cannot be extended (hence maximal). Note that, for every single with
a positive aspiration level, at least one maximal alternating path exists. Figure 3 (left
panel) illustrates a maximal alternating path starting at f1. Unmatched tight edges are
indicated by dashed lines, matched tight edges by solid lines and loose edges by dotted
lines.

Without loss of generality, let f1 be a single firm with positive aspiration level.

Case 1. Starting at f1, there exists a maximal alternating path P of odd length.

Case 1a. All firms on the path have a positive aspiration level.

We shall demonstrate a sequence of adjustments leading to a state as in (16).

Let P = (f1, w1, f2, w2, ..., wk−1, fk, wk). Note that, since the path is maximal and of
odd length, wk must be single. With positive probability, f1 is activated. Since no
profitable match exists, he lowers his aspiration level by δ. With positive probability, f1
is activated again next period, matches with w1 and receives the residual δ. At this point
the aspiration levels are unchanged but f2 is now single. With positive probability, f2
is activated. Since no profitable match exists, he lowers his aspiration level by δ. With
positive probability, f2 is activated again next period, matches with w2 and receives the
residual δ. Within a finite number of periods a state is reached where all players on P
are matched and the aspiration levels are as before. (Note that fk is matched with wk
without a previous reduction by fk since wk is single and thus their bids are profitable.)

In summary, the number of matched agents has increased by two and the number of single
agents with positive aspiration level has decreased by at least one. The aspiration levels
did not change, hence they are still good. (See figure 3 for an illustration.)

Figure 3: Transition diagram for Case 1a.
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Case 1b. At least one firm on the path has aspiration level zero.

We shall demonstrate a sequence of adjustments leading to a state as in (16).

Let P = (f1, w1, f2, w2, ..., wk−1, fk, wk). There exists a firm fi ∈ P with current aspiration
level zero (f2 in the illustration), hence no further reduction by fi can occur. (If multiple
firms on P have aspiration level zero, let fi be the first such firm on the path.) Apply
the same sequence of transitions as in Case 1a up to firm fi. At the end of this sequence
the aspiration levels are as before. Once fi−1 matches with wi−1, fi becomes single and
his aspiration level is still zero.

In summary, the number of single agents with a positive aspiration level has decreased
by one because f1 is no longer single and the new single agent fi has aspiration level
zero. The aspiration levels did not change, hence they are still good. (See figure 4 for an
illustration.)

Figure 4: Transition diagram for Case 1b.
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Case 2. Starting at f1, all maximal alternating paths are of even length.

Case 2a. All firms on all maximal alternating paths starting at f1 have a positive aspi-
ration level.

We shall demonstrate a sequence of adjustments leading to a state as in (17).

Since aspiration levels will have changed by the end of the sequence of transitions, it does
not suffice to only consider players along one maximal alternating path (for otherwise
the aspiration levels will no longer be good). Instead, we need to consider the union
of alternating paths (which are sets of edges) starting at f1. Note that this union is a
connected graph, say Gf1 . (Players may be part of multiple maximal alternating paths
starting at f1.) Now, fix a subgraph Tf1 ⊆ Gf1 that includes all firms and workers, is
connected, has no cycles and contains all of the matched edges. Tf1 is a spanning tree of
Gf1 and thus always exists. Note that Tf1 only has alternating paths (between unmatched
tight and matched tight edges) and all maximal alternating paths on this tree which start
at f1 contain an even number of edges. Thus there is one more firm on this graph than
there are workers. (Think of f1 as that extra firm.)

We shall describe a sequence of transitions along this tree such that, at its end, all firms
on the graph have reduced their aspiration level by δ and all workers have increased their
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aspiration level by δ. We shall label firms and workers such that, for i ≥ 2, fi is at
distance 2i − 2 from f1 on the tree Tf1 , and, for i ≥ 1, wi is at distance 2i − 1 from fi.
Note that this implies that, for two agents with label i and j and i < j, the former agent
is closer to f1 than the latter. Let k be the maximal i such that fi is on Tf1 .

With positive probability f1 is activated. Since no profitable match exists, f1 lowers his
aspiration level by δ. Hence, all previously tight edges starting at f1 are now loose.

We shall describe a sequence of transitions which will tighten a loose edge along the tree
Tf1 by making another edge on the tree loose. This new loose edge is further away from
f1 on the tree. At the end of this sequence the matching will not have changed and the
sum of aspiration levels will have remained fixed.

Consider one such loose edge starting at fi ∈ Tf1 . The loose edge from fi is shared with a
worker, say wi. Since all maximal alternating paths starting at f1 are of even length, the
worker has to be matched to a firm, say fi+1. With positive probability, wi is activated,
matches with fi, and fi receives the residual δ. (Such a transition occurs with strictly
positive probability, whether or not fi is matched, because the sum of aspiration levels
is strictly below the match value of (wi, fi).) Note that fi+1 and, for i 6= 1, fi’s previous
partner, wi−1, are now single. With positive probability, fi+1 is activated and meets wi
again who is now matched with fi. Since the aspiration levels of both players have not
changed, their match is not profitable, and thus fi+1 lowers his aspiration level by δ.
(Note that this reduction is possible because all firms on any maximal alternating path
starting at f1 have aspiration level at least δ.) With positive probability, fi+1 is activated
again, matches with wi, and wi receives the residual δ. Finally, with positive probability,
fi is activated. Since no profitable match exists, he lowers his aspiration level by δ. For
i 6= 1, fi was previously matched, then fi is activated with positive probability again in
the next period and matches with the single wi−1 (there is no additional surplus to be
split).

At the end of the sequence described above the assignment is the same as at the beginning.
Moreover, wi’s aspiration level went up by δ while fi+1’s aspiration level went down by δ
and all other aspiration levels stayed the same. The originally loose edge between fi and
wi is now tight. If fi+1 is not the last firm on its maximal alternating paths on Tf1 , there
will be a new loose edge on Tf1 between fi+1 and workers with label i + 1 (at distance
2i+1). Note that there may be other loose edges not on Tf1 . These we shall not consider
in our construction since they disappear at its end. (See figure 5 for an illustration.)
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Figure 5: Detailed transitions for Case 2a.
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We repeat the latter construction on Tf1 for fi = f1 until all loose edges at f1 have been
eliminated (iteration 1 ). This may create new loose edges on Tf1 between firms at distance
2 from f1 (on Tf1) and workers at distance 3 from f1. Next we repeat the construction for
all firms at distance 2 from f1 on Tf1 (iteration 2 ). Note that the distance of loose edges
to f1 is increasing after each such iteration (recall that we consider the fixed spanning
tree Tf1). We thus keep iterating the construction for firms at distance 2i from f1 for
i = 2, 3, . . . , k− 1. The final iteration of our construction on a maximal alternating path
does not lead to new loose edges on Tf1 (for otherwise the last firm on the unique path
from f1 on Tf1 would previously have had a tight edge, contradicting the assumption
that the alternating path is maximal.) Hence, in a finite number of periods, all firms
on Tf1 , and thus on Gf1 , have reduced their aspiration level by δ, and all workers have
increased their aspiration level by δ. Given that Gf1 contained all maximal alternating
paths starting at f1, and therefore all tight paths starting at f1, there are no more loose
edges connected to any firm or worker on Gf1 . This is the case for two reasons. First, all
edges on Gf1 were tight to begin with and, after each firm reduced his aspiration level
by δ and each worker increased his aspiration level by δ, they are again tight at the end
of all iterations. Second, there cannot be loose edges with firms or workers outside Gf1

since they were not tight before, and thus one δ-reduction cannot make them loose.

In summary, aspiration level reductions outnumber aspiration level increases by one
(namely by the δ-reduction by firm f1), hence the sum of the aspiration levels has de-
creased. The number of single agents with a positive aspiration level has not increased.
Moreover the aspiration levels are still good. ( See figure 6 for an illustration.)
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Figure 6: Transition diagram for Case 2a.
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Note that the δ-reductions may lead to new tight edges, resulting in new maximal alter-
nating paths of odd or even lengths.

Case 2b. At least one firm on a maximal alternating path starting at f1 has aspiration
level zero.

We shall demonstrate a sequence of adjustments leading to a state as in (16).

Let P = (f1, w1, f2, w2, ..., wk−1, fk) be a maximal alternating path such that a firm has
aspiration level zero. There exists a firm fi ∈ P with current aspiration level zero (f2 in
the illustration), hence no further reduction by fi can occur. (If multiple firms on P have
aspiration level zero, let fi be the first such firm on the path.) With positive probability
f1 is activated. Since no profitable match exists, he lowers his aspiration level by δ. With
positive probability, f1 is activated again next period, he matches with w1 and receives
the residual δ. Now f2 is single. With positive probability f2 is activated, lowers, matches
with w2, and so forth. This sequence continues until fi is reached, who is now single with
aspiration level zero.

In summary, the number of single agents with a positive aspiration level has decreased.
The aspiration levels did not change, hence they are still good. (See figure 7 for an
illustration.)
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Figure 7: Transition diagram for Case 2b.
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Let us summarize the argument. Starting in a state [A,d] with good aspiration levels d,
we successively (if any exist) eliminate the odd paths starting at firms/workers followed by
the even paths starting at firms/workers, while maintaining good aspiration levels. This
process must come to an end because, at each iteration, either the sum of aspiration levels
decreases by δ and the number of single agents with positive aspiration levels stays fixed,
or the sum of aspiration levels stays fixed and the number of single agents with positive
aspiration levels decreases. The resulting state must be in the core and is absorbing
because single agents cannot reduce their aspiration level further and no new matches
can be formed. Since an aspiration level constitutes a lower bound on a player’s bids we
can conclude that the process Zt is absorbed into the core in finite time with probability
1. Finally note that, starting from d0 = 0, we can trivially reach any state in C0.

6. Core selection

In this section, we investigate the effects of random perturbations to the adjustment
process. Suppose that players occasionally experience shocks when in a match and that
larger shocks are less likely than smaller shocks. The effect of such a shock is that a
player receives more or less payoff than anticipated given the current price he agreed to
with his partner. We shall formalize these perturbations and investigate the resulting
selection of stochastically stable states as the probability of shocks becomes vanishingly
small (Foster and Young 1990, Kandori et al. 1993, Young 1993). It turns out that the
set of stochastically stable states is contained in the least core; moreover there are natural
conditions under which it coincides with the least core.

Given a player i who is matched in period t, suppose his unperturbed payoff φti is subject
to a shock. Denote the new payoff by φ̂ti and define:

φ̂ti =

{
φti + δ ·Rt

i with probability 0.5,

φti − δ ·Rt
i with probability 0.5,

(18)

where Rt
i is an independent geometric random variable with P[Rt

i = k] = εk · (1 − ε) for
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all k ∈ N0.
16 Note that for ε = 0 the process is unperturbed.

The immediate result of a given shock is that players receive a different payoff than
anticipated. We shall assume that players update their aspiration levels to equal their
new perturbed payoff if the payoff is positive and zero if if it is negative. If, in a given
match, one of the players experiences a shock that renders his payoff negative, then we
assume that the match breaks up and both players become single. Note that, if the
partnership remains matched, the price does not change. The latter implies that if i does
not break up or re-match in the next period (t+1) his unperturbed payoff in t+1 will again
be φti, and the period-t shock then has no influence on subsequent state transitions.

6.1 Stochastic stability

We are interested in the long-run behavior of the process when ε becomes small. We
shall employ the concept of stochastic stability developed by Foster and Young (1990),
Kandori et al. (1993) and Young (1993). In particular, we follow the analysis along the
lines of ‘one-shot stability’ as recently introduced by Newton and Sawa (2013). Note that
the perturbed process is ergodic for ε > 0 and thus has a unique stationary distribution,
say Πε, over the state space Ω. We are interested in limε→0 Πε = Π0.

Stochastic stability. A state Z ∈ Ω is stochastically stable if Π0(Z) > 0. Denote the
set of stochastically stable states by S.

For a given parameter ε, denote the probability of transiting from Z to Z ′ in k periods
by Pkε [Z,Z ′]. The resistance of a one-period transition Z → Z ′ is the unique real number
r(Z,Z ′) ≥ 0 such that 0 < limε→0 P1

ε [Z,Z
′]/εr(Z,Z

′) <∞. For completeness, let r(Z,Z ′) =
∞ if P1

ε [Z,Z
′] = 0. Hence a transition with resistance r has probability of the order O(εr).

We shall call a transition Z → Z ′ (possibly in multiple periods) a least cost transition
if it exhibits the lowest order of resistance. Formally, let {Z = Z0, Z1, . . . , Zk = Z ′} (k
finite) describe a path of one-period transitions from Z to Z ′, then a least cost transition
minimizes

∑k−1
l=0 r(Zl, Zl+1) over all such paths. Say that a non-core state Z ′ is in the basin

of attraction of the core state Z if Z ′ is pairwise stable and the unique zero-resistance
transition from Z ′ to a core state leads to Z. For a core state Z ∈ C we shall say that
a transition out of the core is a least cost deviation if it minimizes the resistance among
all transitions from Z to any non-core state which is not in the basin of attraction of
Z.

Young (1993) shows that the computation of the stochastically stable states can be re-
duced to an analysis of rooted trees on the set of recurrent classes of the unperturbed
dynamic. Define the resistance between two recurrent classes Z and Z ′, r(Z,Z ′), to be
the sum of resistances of least cost transitions that start in Z and end in Z ′. Now identify
the recurrent classes with the nodes of a graph. Given a node Z, a collection of directed
edges T forms a Z-tree if, from every node Z ′ 6= Z, there exists a unique outgoing edge
in T , Z has no outgoing edge, and the graph has no cycles.

16For simplicity we propose this specific distribution. But note that any probability distribution can
be assumed as long as there exists a parameter ε such that P[k + 1] = ε ·O(P[k]) for all k ∈ N0.
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Stochastic potential. The resistance r(T ) of a Z-tree T is the sum of the resistances
of its edges. The stochastic potential of Z, ρ(Z), is given by

ρ(Z) = min{r(T ) : T is a Z-tree}. (19)

Theorem 4 in Young (1993) states that the stochastically stable states are precisely those
states where ρ is minimized.

6.2 Analysis

With this machinery at hand we shall show that the stochastically stable states are
contained in the least core. To establish this result we shall adapt Newton and Sawa
(2013)’s proof technique to show that the least core is the set of states which is most
stable against one-shot deviations. We shall also provide conditions on the game under
which the stochastically stable set is identical with the least core.

Recall that the least core consists of states that maximize the following term:

etmin = min
i: i matched

{φti − max
j: atij=0

(αij − φtj)+} (20)

= min{ min
i,j: atij=0, i matched

(φti + φtj − αij)︸ ︷︷ ︸
=: caseA

; min
i: i matched

φti︸ ︷︷ ︸
=: caseB

} (21)

Case A holds when the minimal cost deviation is such that two players who are currently
not matched experience shocks such that a match of the two players may become prof-
itable in the next period. Case B holds when the minimal cost deviation is such that a
matched agent experiences a shock that renders his payoff negative, leading to a break-up
of his match.

Given two states Z and Z∗, let the distance between them be

D(Z,Z∗) =
∑

i∈F∪W

|φi − φ∗i |. (22)

Lemma 2. Given Z∗ ∈ L and Z ∈ C \ L. Let Z ′ be a state not in the core which
is reachable from Z by a least cost deviation. Then there exists Z1 ∈ C such that
D(Z∗, Z1) < D(Z∗, Z) and Pt0[Z ′, Z1] > 0 for some t ≥ 0.

Proof. By Theorem 1, the recurrent classes consist of all singleton states in C0 ⊆ C.
Thus it suffices to limit our analysis to Z∗ ∈ L ∩ C0 and Z ∈ C0 \ L since other core
states have zero-resistance paths to the states in C0.

Case A. Suppose that the least-cost deviation to a non-core state is such that two (cur-
rently not matched with each other) players experience shocks, after which a match of
the two may become profitable. That is, there exists i, matched to j, and a nonempty
set J ′ such that i, j′ is least costly to destabilize for any j′ ∈ J ′. Note that di + dj′ − αij′
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is minimal for all j′ ∈ J ′ and thus constant, and that di + dj′ − αij′ is also non-negative
since we are in a core state.

Case A.1. di > d∗i .

Case A.1a. For all j′ ∈ J ′, di + dj′ > αij′ .

We can construct a sequence of transitions such that i reduces his aspiration level by δ,
j increases his aspiration level by δ (note that we have dj < d∗j), and all other aspiration
levels stay the same. Note that D then decreased and the resulting state is again a core
state given that, for all j′ 6= j, we started out with di + dj′ > αij′ .

We shall explain this sequence in detail. Suppose a shock occurs such that i reduces
his aspiration level by at least δ and i and j′ match at a price such that i’s aspiration
level does not increase. Consequently j and i′ (j′’s former partner if j′ is matched in
the core assignment) are now single. In the following period, i and j are profitable
with positive probability. With positive probability, they match at a price such that di
decreases by δ relative to the start of this sequence. Now i′ and j′ are both single. With
positive probability, they reduce their aspiration levels and rematch at their previous
price, returning to their original aspiration levels. Thus, with positive probability, the
prices are set such that di decreases by δ, dj increases by δ, and all other aspiration levels
do not change. Hence D decreased and, given the earlier observation, the resulting state
is again in the core because, now for all j′, di + dj′ ≥ αij′ and all other inequalities still
hold.

For the subsequent cases, we shall omit a description of the period-by-period transitions
since they are conceptually similar.

Case A.1b. For all j′ ∈ J ′, di + dj′ = αij′ .

It follows that dj′ < d∗j′ , hence a δ-reduction of i’s aspiration level and δ-increases by j
and all j′ ∈ J ′ yield a reduction in D, and this leads to a core state.

Case A.2. di = d∗i .

Since Z /∈ L we must have dj′ < d∗j′ . Otherwise, given (i, j′) is least costly to destabilize,
we would have Z ∈ L. But then j′ must be matched in the core assignment and we
have, for j′’s partner i′, that di′ > d∗i′ . Hence a δ-reduction in i′’s aspiration level and
δ-increases by j′ and all j′′ for whom di′ + dj′′ = αi′j′′ yield a reduction in D, and this
leads to a core state.

Case A.3. di < d∗i .

We have dj > d∗j and a similar argument applies again. A δ-reduction in j’s aspiration
level and δ-increases by i and all i′ for whom di′ + dj = αi′j yield a reduction in D, and
this leads to a core state.

Case B. Suppose that the least cost deviation to a non-core state is such that one player
experiences a shock and therefore wishes to break up, that is, there exists i such that di
is least costly to destabilize.

It follows that di < d∗i , for otherwise Z ∈ L would constitute a contradiction.
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Case B.1. For all i′ 6= i, di′ + dj > αi′j.

Again, we can construct a sequence of transitions such that i increases his aspiration level
by δ, and j reduces his aspiration level by δ. Note that D then decreased and the resulting
state is again in the core given that, for all i′ 6= i, we started out with di′ + dj > αi′j.

Now, we shall explain the sequence in detail. Suppose the shock occurs such that i
turns single. Consequently, j turns too and, given that we are in a core state, (i′, j) is
not profitable for any i′ 6= i. Therefore, if j encounters any i′ 6= i, he will reduce his
aspiration level. Now i can rematch with his optimal match j at a new price such that
i can increase his aspiration level by δ while dj decreases his by δ. (Note that, for the
latter transition, it is crucial that any matched pair has match value at least δ.) Hence
D decreased and, given the earlier observation, the resulting state is again in the core,
since now for all i′ di′ + dj ≥ αi′j, and all other inequalities still hold.

Case B.2. There exists I ′ 6= ∅ and i /∈ I ′ such that for all i′ ∈ I ′, di′ + dj = αi′j.

Similar to case B.1 we can construct a sequence such that i increased his aspiration level
by δ, j reduced his by δ, and all i′ ∈ I ′ increased their aspiration level by δ (which will
only further reduce D). The resulting state is in the core.

Theorem 3. The stochastically stable states are maximally robust to one-period devia-
tions, and hence S ⊆ L.

Proof. We shall prove the theorem by contradiction. Suppose there exists Z∗ ∈ S\L. Let
T ∗ be a minimal cost tree rooted at Z∗ and suppose that ρ(Z∗) is minimal. Let Z∗∗ ∈ L.
By lemma 2, together with the fact that the state space is finite, we can construct a finite
path of least cost deviations between different core states such that their distance to a
core state in L is decreasing:

Z∗ → Z1 → Z2 → . . .→ Zk = Z∗∗ (23)

Now we perform several operations on the tree T ∗ to construct a tree T ∗∗ for Z∗∗. First
add the edges Z1 → Z2, . . . , Zk−1 → Zk and remove the previously exiting edges from
Z1, . . . , Zk−1. Note that, since the newly added edges are all minimal cost edges, the sum
of resistances does not increase. Next, let us add the edge Z∗ → Z1 and delete the exiting
edge from Zk. Since Z∗ /∈ L, it follows that r(Z∗ → Z1) < r(Zk → ·), and hence

ρ(Z∗∗) ≤ ρ(Z∗) + r(Z∗ → Z1)− r(Zk → ·) < ρ(Z∗). (24)

This constitutes a contradiction.

We can formulate natural conditions under which the stochastically stable set coincides
with the least core:

Well-connected. An assignment game is well-connected if, for any non-core state and
for any player i ∈ F × W , there exists a sequence of rematchings in the unperturbed
process such that i is single at its end.
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Rich. An assignment game with match values α is rich if, for every player i ∈ F , there
exists a player j ∈ W such that (i, j) is never profitable, that is, αij = 0.

Corollary 4. Given a well-connected and rich assignment game with a unique optimal
matching17, the set of stochastically stable states coincides with the least core, that is
S = L.

Proof. Given two recurrent classes of the process, Z∗, Z∗∗ ∈ C0, and a non-core state, Z /∈
C, which is reachable from Z∗ by a least cost deviation, we shall show that r(Z,Z∗∗) = 0.
Suppose that Z∗∗ has aspiration levels d∗∗.

The idea of the proof is to construct a finite family of well-connected sequences, such that,
after going through all transitions, players have aspiration levels less than or according
to d∗∗. Once we are in such a state Z∗∗ can be reached easily.

Suppose we wish to make worker jk single. By well-connectedness there exists a sequence
of rematchings which makes jk single at its end.18 Suppose we have a minimal-length
sequence among all sequences making jk single, say (i1, j1), (i2, j2), . . . , (ik, jk) if j1 is
matched and j1, (i2, j2), . . . , (ik, jk) if j1 is single. Note that it must hold that all play-
ers along the sequence (except potentially j1) are currently matched for otherwise the
sequence is not minimal. (This is the case since any single, by richness, reduces his as-
piration level to zero and would then be a natural starting point for a shorter sequence
as shall become clear below.) Further, by a similar observation, the sequence does not
allow for profitable matches except for a match between j1 and i2. Finally, note that, for
the sequence allowing jk to become single at the end we must have that dil+1

< αil+1jl for
l = 1, . . . , k − 1. This fact, together with the former comment, implies in particular that
djl > 0 for l = 2, . . . , k − 1.

Now suppose j1 matches with i2 (which is possible by assumption of well-connectedness)
and j2 becomes single. Suppose that the price is set such that di2 does not increase.
Then, by richness, with positive probability j2 reduces his aspiration level to 0. Suppose
next that j2 matches again with i2 and the price is set such that j2 keeps aspiration level
0. Now j1 (and i1 if j1 was previously matched) is single and, by richness, with positive
probability reduces his aspiration level to zero. Note that j2 and i3 are now profitable and
they match with positive probability at a price such that di3 does not increase. Hence
by iterating this sequence of transitions we arrive at a state where all players along the
sequence are single except jk−1 and ik who are now matched to each other. Suppose that
they matched at a price such that jk−1 kept aspiration level 0. In particular note that jk
is single.

Next, we describe transitions such that the matching along the sequence considered re-
mains the same (that is only (jk−1, ik) are matched) and the aspiration levels of jk−1
and ik are such that djk−1

≤ d∗∗jk−1
and dik ≤ d∗∗ik . This can be achieved by matching

ik−1 with jk−1 at a price such that jk−1 keeps aspiration level 0. Next, by richness, ik

17Generically the optimal matching is unique. In particular this holds if the weights of the edges are
independent, continuous random variables. Then, with probability 1, the optimal matching is unique.

18Note that the sequence naturally needs to alternate between firms and workers in order to make
players single along the way.
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reduces his aspiration level to zero. Finally jk−1 and ik match again at a price such that
the aspiration levels are less than or equal to their core aspiration levels in d∗∗. (This
can actually occur since otherwise the aspiration level vector d∗∗ would not be pairwise
stable, contradicting that Z∗∗ is a core state.)

Now, by the well-connectedness assumption, we know that from any non-core state and
for every player there exists such a sequence. Hence successively applying sequence after
sequence such that each player is at its end once, we can conclude that there exists a
path to a state such that, for all i, di ≤ d∗∗i . But note that some players may be matched.

Next, we have to show how Z∗∗ is reached from the latter state. This is achieve if we
successively match all (i, j) who are matched in Z∗∗, who are not matched yet, and for
whom di + dj < αij (they are profitable) at a price such that their new aspiration levels
are d∗∗i , d

∗∗
j . (Here we need the assumption that the core matching is unique. Given

our construction, players may be matched at the end of the sequences described above.
In particular the core might already be reached with aspiration levels d∗∗. Now, if the
optimal matching is not unique, we cannot guarantee that any particular matching is in
place.) This leads to a state where aspiration levels are d∗∗. Note that these aspiration
levels are good. Further note that a reduction of the sum of aspiration levels will lead
to a state which is not good. Cases 1a,b and 2b of the proof of Claim 2 of Theorem 1
can now be applied iteratively (Case 2a cannot hold, otherwise aspiration levels will no
longer be good). These cases concern matchings only but do not change the aspiration
levels. Hence eventually the desired core state Z∗∗ is reached.

The proof summarizes as follows. We have shown that once the process is in a non-core
state any core state can be reached. Hence the analysis of stochastic stability reduces
to the resistance of exiting a core state. But this resistance is uniquely maximized by
the states in the least core, which thus coincides with the set of stochastically stable
states.

6.3 Example

We shall illustrate the predictive power of our result for the 3 × 3 ‘house trade game’
studied by Shapley and Shubik (1972). Let three sellers (w1, w2, w3) and three buyers
(f1, f2, f3) trade houses. Their valuations are as follows:

Table 1: Seller and buyer evaluations.

House Sellers willingness to accept Buyers’ willingness to pay
j q−1j = q−2j = q−3j p+1j p+2j p+3j
1 18, 000 23, 000 26, 000 20, 000
2 15, 000 22, 000 24, 000 21, 000
3 19, 000 21, 000 22, 000 17, 000
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These prices lead to the following match values, αij (units of 1,000), where sellers are
occupying rows and buyers columns:

α =

 5 8 2
7 9 6
2 3 0

 (25)

The unique optimal matching is shown in bold numbers. Shapley and Shubik (1972) note
that it suffices to consider the 3-dimensional imputation space spanned by the equations
dw1 + df2 = 8, dw2 + df3 = 6, dw3 + df1 = 2. Figure 8 illustrates the possible core
allocations.

Figure 8: Imputation space for the sellers.
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We shall now consider the least core, L. Note that the particular states in L depend on
the step size δ. We shall consider δ → 0 to best illustrate the core selection. By an easy
calculation one finds that the states which are least vulnerable to one-period deviations
are such that

dw1 ∈ [11/3, 13/3], dw2 = 17/3, dw3 = 1/3. (26)

The minimal excess in the least core is emin = 1/3. The bold line in figure 9 illustrates
the set L. The nucleolus, dw1 = 4, dw2 = 17/3, dw3 = 1/3, is indicated by a cross. (One
can verify, that here the kernel coincides with the nucleolus.)
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Figure 9: Core selection for the sellers.
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7. Conclusion

In this paper we have shown that agents in large decentralized matching markets can learn
to play equitable core outcomes through simple trial-and-error learning rules. We assume
that agents have no information about the distribution of others’ preferences, about their
past actions and payoffs, or about the value of different matches. The unperturbed
process leads to the core with probability one but no authority ‘solves’ an optimization
problem. Rather, a path into the core is discovered in finite time by a random sequence
of adjustments by the agents themselves. This result is similar in spirit to that of Chen
et al. (2011), but in addition our process selects equitable outcomes within the core. In
particular, the stochastically stable states of the perturbed process are contained in the
least core, a subset of the core that generalizes the nucleolus for assignment games. This
result complements the stochastic stability analysis of Newton and Sawa (2013) in ordinal
matching and of Newton (2012) in coalitional games. It is an open problem to extend
the analysis to more general classes of cooperative games and matching markets.
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