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GRUNDY VALUES OF FIBONACCI NIM

URBAN LARSSON AND SIMON RUBINSTEIN-SALZEDO

Abstract. In this article, we investigate the Grundy values of the popular game of Fi-
bonacci nim. The winning strategy, which amounts to understanding positions of Grundy
value 0, was known since [Whi63]. In this paper, we extend Whinihan’s analysis by comput-
ing all the positions of Grundy value at most 3. Furthermore, we show that, when we delete
the Fibonacci numbers (which have Grundy value 0), the Grundy values of the starting
positions are increasing, and we give upper and lower bounds on the growth rate.

1. Introduction

Fibonacci Nim, described and analyzed in [Whi63], is a 2-player combinatorial game,
popular due to its simple game rules and its elegant solution. Its analysis involves not only
the Fibonacci numbers, but also the Zeckendorf representation of a natural number. It is
played on one heap of tokens and the rules are the same for both players; thus the game is
impartial (see [BCG01]).

The rules of the game are as follows. Suppose that there are originally n tokens in the
heap. On the first move, the first player can remove between 1 and n− 1 tokens. If, on the
previous move, the last player removed r tokens, then the next player can remove up to 2r
tokens. The game ends when there are no moves left; the player left without a move loses.

Many impartial games are studied under the disjunctive sum operator; that is, two games
G and H are played together, with a move in their sum G + H being either a move in G

or a move in H , but not both. Sums of games are highly amenable to analysis, due to the
Sprague-Grundy theory [Spr35, Gru39], which we review in §2. Fibonacci Nim, however, is
a so-called move-size dynamic game, where the current player’s move options depend on the
particular removal by the previous player, and so the possible moves of the game depend not
only on the position but also on the game history. There are two logical ways of summing
games of Fibonacci nim, or equivalently, playing Fibonacci nim with several heaps, based
on where the move dynamic lives: is the move dynamic global, or is it local, specific to each
heap?

In this article, we consider the move dynamic to be local, so there is a separate move
dynamic assigned to each heap, and a move in one heap does not change the move dynamic
in any other heap. The reason for this is that this rule fits in properly with the Sprague-
Grundy theory, as it is simply the disjunctive sum operator. This allows us to analyze the
game assuming we can analyze each heap separately.

In order to analyze each heap, it is necessary to compute Grundy values of single-heap
positions. We consider a position to be a pair (n, r), where n is the total number of stones
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n\r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 0
1 0 1
2 0 0 2
3 0 0 0 3
4 0 1 1 3 3
5 0 0 0 0 0 4
6 0 1 1 1 1 4 4
7 0 0 2 2 2 4 4 4
8 0 0 0 0 0 0 0 0 5
9 0 1 1 1 1 1 1 1 5 5
10 0 0 2 2 2 2 2 2 5 5 5
11 0 0 0 3 3 3 3 5 5 5 5 5
12 0 1 1 3 3 3 3 3 6 6 6 6 6
13 0 0 0 0 0 0 0 0 0 0 0 0 0 6
14 0 1 1 1 1 1 1 1 1 1 1 1 1 6 6
15 0 0 2 2 2 2 2 2 2 2 2 2 2 6 6 6
16 0 0 0 3 3 3 3 3 3 3 3 3 7 7 7 7 7
17 0 1 1 3 3 3 3 3 3 3 3 3 3 7 7 7 7 7
18 0 0 0 0 0 4 4 4 4 4 4 7 7 7 7 7 7 7 7
19 0 1 1 1 1 4 4 4 4 4 4 4 7 7 7 7 7 7 7 7
20 0 0 2 2 2 4 4 4 4 4 4 4 4 7 7 7 7 7 7 7 7

Table 1. Grundy values for Fibonacci nim

in the heap, and r is the maximum number that may be removed on the next turn. The
starting position is therefore (n, n− 1). We sometimes simply write n to denote (n, n).

In Table 1, we display the Grundy values of the pairs (n, r) for small values of n and r.
We write G(n, r) for the Grundy value of the pair (n, r).

The structure of the rest of the paper is as follows. In §2, we review the Sprague-Grundy
theory. In §3, we review Zeckendorf’s theorem and the winning strategy for Fibonacci nim.
In §4, we give a complete description of the positions (n, r) with G(n, r) ≤ 3. In §5, we show
that the nonzero Grundy values of the starting positions are increasing and provide upper
and lower bounds for their sizes.
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2. The Sprague-Grundy theory

When analyzing an impartial two-player game in isolation, it is sufficient to identify the
N positions, which are winning for the next player, and the P positions, which are winning
for the previous player (or, equivalently, losing for the next player). These positions can be
classified recursively, as follows:

• A position is an N position if there is at least one move to a P position.
• A position is a P position if every move is to an N position.

It is possible to analyze a sum of several games by understanding each game individually,
but it is necessary to know more detailed information than just whether it is an N or P
position. The key is the minimal excludant (mex) function.

Definition 2.1. Let S denote a finite set of nonnegative integers. Then the minimal excludant
mex(S) is the least nonnegative integer not in S.

The Sprague-Grundy theory assigns a nonnegative integer G(X), known as the Grundy
value of X , to each finite impartial game X recursively, by letting G(X) = mex({G(Y )}),
where Y runs over all the moves from X .

If X decomposes as a sum of several games, say X = X1 + · · · + Xn, then G(X) =
G(X1) ⊕ · · · ⊕ G(Xn), where the operator ⊕ is “add in binary without carrying.” (See
e.g. [BCG01] for more details.) An impartial game X is a P position iff G(X) = 0.

3. Playing Fibonacci nim

The essential ingredient to winning at Fibonacci nim is Zeckendorf’s Theorem.

Theorem 3.1 (Zeckendorf, [Zec72]). Every positive integer has a unique representation as

a sum of distinct Fibonacci numbers, no two of which are consecutive.

We call this representation the Zeckendorf representation of n. We write zi(n) for the ith

smallest part in the Zeckendorf representation of n; if the Zeckendorf representation of n
contains fewer than i parts, then we write zi(n) = ∞. We also write expressions of the form
n = a + b+ c + · · · , meaning that z1(n) = a, z2(n) = b, z3(n) = c, and c < ∞.

Now, assume that (n, r) is an N position. As we shall prove in Theorem 4.1, this is true
if and only if r ≥ z1(n). A winning move is to remove z1(n) tokens. (There may be other
winning moves as well.)

Because the winning strategy of Fibonacci nim is so closely tied to Zeckendorf’s Theorem,
we can view the entire game as a game-theoretic interpretation of Zeckendorf’s Theorem.

4. Small Grundy Values

Notation. We write Ft for the tth Fibonacci number. As usual, we index the Fibonacci
numbers so that F0 = 0 and F1 = 1.

We show the following:

Theorem 4.1. G(n, r) = 0 if and only if r < z1(n).

Remark 4.2. An important special case of Theorem 4.1 is that the starting position (n, n−1)
with n stones is losing iff n is a Fibonacci number.
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This is a classical result, due to Whinihan in [Whi63]. However, its proof will be useful
for the rest of our results, so we review it here. We will make use of the following Lemma:

Lemma 4.3. Suppose n > 1 and 1 ≤ k < z1(n). If z1(k) = Ft, then z1(n− k) is either Ft+1

or Ft−1. In particular, z1(n− k) ≤ 2k, and if k ≥ 4, then z1(n− k) ≤ 2k − 2.

Remark 4.4. We primarily use the clause that z1(n− k) ≤ 2k. However, at one point in the
proof of Theorem 4.7, we will need the stronger clause that z1(n− k) ≤ 2k − 2 if k ≥ 4.

Proof. We prove this by induction on the number of parts in the Zeckendorf representation
of k. We start with the case of k being a Fibonacci number, so that z1(k) = k. Suppose
that z1(n) = Fs. We divide the proof into two cases: s ≡ t (mod 2) and s 6≡ t (mod 2). If
s ≡ t (mod 2), then we have t = s− 2d for some d ≥ 1, and we have

Fs − k = Fs − Fs−2d = Fs−2d+1 + Fs−2d+3 + · · ·+ Fs−3 + Fs−1,

so
z1(Fs − k) = Fs−2d+1 = Ft+1.

Now, note that the Zeckendorf representation of n−k is equal to the union of the Zeckendorf
representation of Fs − k and the Zeckendorf representation of n with the first part (that is,
Fs) removed. So, the result holds in this case.

Now, suppose that s 6≡ t (mod 2). Then t = s− 2d− 1 for some d ≥ 0, and we have

Fs − Ft = Fs − Fs−2d−1 = Fs−2d−2 + Fs−2d + · · ·+ Fs−3 + Fs−1,

so z1(Fs − k) = Fs−2d−2 = Ft−1. As before, we have z1(n− k) = z1(Fs − k), so here too the
result holds.

Now suppose that the result holds whenever the Zeckendorf representation of k has p− 1
parts. Suppose furthermore that the Zeckendorf representation of k has p parts. Then,
since k − z1(k) has p − 1 parts, we know that if z1(k) = Ft, then z1(k − z1(k)) ≥ Ft+2, so
z1(n − k + z1(k)) ≥ Ft+1 > Ft = z1(k). Hence, by the base case above with n − k + z1(k)
and z1(k), respectively, playing the parts of n and k, z1(n− k) is either Ft−1 or Ft+1. �

Proof of Theorem 4.1. The proof of this theorem, and the others in this section, are all by
induction on n. It suffices to show that, from any position with r ≥ z1(n), there is some k

with k ≤ r so that 2k < z1(n − k) (in fact, k = z1(n) works), and that if r < z1(n), then
for every k ≤ r, 2k ≥ z1(n − k). In the language of N and P positions, this says that for
every N position (r ≥ z1(n)), there is a move to a P position (r < z1(n)), and for every P
position, all moves are to N positions.

Assume that r ≥ z1(n). We show that 2z1(n) < z2(n) = z1(n − z1(n)). Since z1(n) is a
Fibonacci number, say Ft with t ≥ 2, and z2(n) is also a Fibonacci number at least Ft+2, we
have

z2(n) ≥ Ft+2 = Ft+1 + Ft > 2Ft,

as desired. Hence, k = z1(n) satisfies the condition in the previous paragraph.
Now assume that k < z1(n). By Lemma 4.3, if z1(k) = Ft, then z1(n − k) ≤ Ft+1. Since

Ft+1 ≤ 2Ft ≤ 2k, we have 2k ≥ z1(n− k), as desired. �

Theorem 4.5. G(n, r) = 1 iff z1(n) = 1 and 1 ≤ r < z2(n).
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Proof. In order for G(n, r) to be 1, there must be some k with 1 ≤ k ≤ r so that G(n−k, 2k) =
0, and furthermore, G(n − k, 2k) 6= 1 for all k with 1 ≤ k ≤ r. Suppose z1(n) = 1 and
r < z2(n). Then G(n− 1, 2) = 0 by Theorem 4.1, since z1(n− 1) = z2(n) ≥ 3, as otherwise
the Zeckendorf representation of n would have two consecutive Fibonacci numbers, which is
impossible. We now show that, for each k < z2(n) = z1(n− 1), G(n− k, 2k) 6= 1. It suffices
to show that either z1(n− k) 6= 1 or 2k ≥ z2(n− k). This follows from applying Lemma 4.3
with n− 1 in place of n, since if z1(n− k) = 1, then z2(n− k) = z1(n− 1− k).

Now, suppose that z1(n) > 1. If r < z1(n), then by Theorem 4.1, G(n, r) = 0. If
r ≥ z1(n), then there is a move to (n− z1(n) + 1, 2z1(n)− 2). Now, z1(n− z1(n) + 1) = 1,
and 2z1(n) − 2 ≤ z2(n − z1(n) + 1) = z2(n). Hence G(n − z1(n) + 1, 2z1(n) − 2) = 1, so
G(n, r) 6= 1.

Finally, suppose that z1(n) = 1 and r ≥ z2(n). Then G(n − z2(n), 2z2(n)) = 1, since
2z2(n) < z3(n) = z2(n − z2(n)). Thus, in this case, there is a move to a position with
Grundy value 1, so G(n, r) 6= 1. �

Theorem 4.6. G(n, r) = 2 iff z1(n) = 2 and 2 ≤ r < z2(n).

Proof. In order for G(n, r) to be 2, there must be moves to positions of values 0 and 1, and
no move to a position of value 2. We now show that if z1(n) = 2 and 2 ≤ r < z2(n), then
G(n, r) = 2. Since r ≥ 2 and z1(n) = 2, G(n− 2, 4) = 0, so there is a move to a 0-position,
since z1(n−2) = z2(n) ≥ 5. Furthermore, G(n−1, 2) = 1, so there is a move to a 1-position.
Now, suppose that G(n − k, 2k) = 2 for some k ≤ r. Then, by induction, we would have
z1(n−k) = 2 and 2k < z2(n−k). But if z1(n−k) = 2, then z2(n−k) = z1(n−k−2), which,
since k ≤ r < z2(n) = z1(n − 2), is ≤ 2k by Lemma 4.3, which contradicts the induction.
Hence, there are no moves to positions of value 2.

Now, suppose z1(n) 6= 2. If z1(n) = 1 and 1 ≤ r < z2(n), then by Theorem 4.5, G(n, r) = 1.
Now, suppose z1(n) = 1 and r ≥ z2(n). Then G(n− z2(n) + 1, 2z2(n)− 2) = 2 by induction.
Hence, in this case, G(n, r) 6= 2.

Finally, suppose z1(n) = 2 and r ≥ z2(n). Then G(n − z2(n), 2z2(n)) = 2, since 2z2(n) <
z3(n). Hence, there is a move to a position with Grundy value 2, so G(n, r) 6= 2. �

Theorem 4.7. G(n, r) = 3 iff z1(n) = 1, z2(n) = 3, and 3 ≤ r < z3(n), or z1(n) = 3 and

3 ≤ r < z2(n)− 1.

Proof. In order for G(n, r) to be 3, there must be moves to positions of values 0, 1, and
2, and no move to a position of value 3. We now show that if z1(n) = 1, z2(n) = 3, and
3 ≤ r < z3(n), then G(n, r) = 3. By Theorem 4.1, G(n− 1, 2) = 0, so there is a move to 0.
By Theorem 4.5, G(n−3, 6) = 1, since n−3 = 1+z3(n)+ · · · and z3(n) ≥ 8 by Zeckendorf’s
Theorem, since z2(n) = 3. By Theorem 4.6, G(n − 2, 4) = 2, since n − 2 = 2 + z3(n) + · · · .
Now, we show that there are no moves from (n, r) to a position with Grundy value 3. Clearly,
removing one or two tokens does not leave a position with Grundy value 3. If we were to
leave a position with Grundy value 3 after removing 3 ≤ k < z3(n), then we must either have
z1(n−k) = 1, z2(n−k) = 3, and 2k < z3(n−k), or z1(n−k) = 3 and 2k < z2(n−k)−1. In
the first case, we have z3(n− k) = z1(n− k − 4), and as k < z3(n) = z1(n− 4), Lemma 4.3
implies that z3(n − k) ≤ 2k, contradicting the hypothesis. In the second case, we have
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z2(n − k) = z1(n − k − 3) ≤ 2(k − 1) by Lemma 4.3, contradicting the assumption that
z2(n− k) > 2k + 1. Hence, there is no move to a position with Grundy value 3.

Now suppose that z1(n) = 3 and 3 ≤ r < z2(n) − 1. Then G(n − 3, 6) = 0 since
6 < z1(n − 3) = z2(n). Now, G(n − 2, 4) = 1 since n − 2 = 1 + z2(n) + · · · and z2(n) ≥ 8.
Furthermore, G(n−1, 2) = 2 since n−1 = 2+z2(n)+ · · · . If there were a move to a position
(n− k, 2k) of Grundy value 3, then we would either have z1(n− k) = 1, z2(n− k) = 3, and
2k < z3(n−k), or z1(n−k) = 3 and 2k < z2(n−k)−1. Furthermore, if k ≤ 3, then we have
already seen that G(n − k, 2k) 6= 3, so we may assume that k ≥ 4, putting us in the final
case of Lemma 4.3, as mentioned in Remark 4.4. In the first case, z3(n− k) = z1(n− k− 4),
and as k + 1 < z2(n) = z1(n − 3), Lemma 4.3 implies that z3(n − k) ≤ 2(k + 1) − 2 = 2k,
so by induction G(n − k, 2k) 6= 3. In the second case, z2(n − k) = z1(n − k − 3), and by
Lemma 4.3, z1(n− k− 3) ≤ 2k, contradicting the hypothesis. Hence, once again there is no
move to a position with Grundy value 3.

Now, we must show that for any (n, r) not of the above two forms, G(n, r) 6= 3. If
n = 1 + 3 + z3(n) + · · · and r < 3, then there are only at most two moves, so there are
only at most two Grundy values among its moves, so G(n, r) < 3. This is also true if
n = 3 + z2(n) + · · · and r < 3. Now, if n = 1 + 3 + z3(n) + · · · and r ≥ z3(n), then we can
remove z3(n) tokens to obtain (n − z3(n), 2z3(n)), which has Grundy value 3 by induction.
Similarly, if n = 3 + z2(n) + · · · and r ≥ z2(n)− 1, then we can remove z2(n)− 1 tokens to
reach (n− z2(n) + 1, 2z2(n)− 2), which has value 3 by induction. Hence, these positions do
not have Grundy value 3.

Now, suppose n = 1 + z2 + · · · , where z2 ≥ 5. If r < z2, then G(n, r) ≤ 1. If r ≥ z2,
then there is a move to (n − z2 + 2, 2z2 − 4), which has Grundy value 3 by induction, so
G(n, r) 6= 3. Now suppose n = 2+ z2 + · · · . If r < z2, then G(n, r) ≤ 2. If r ≥ z2, then there
is a move to (n − z2 + 1, 2z2 − 2), which has Grundy value 3 by induction, so G(n, r) 6= 3.
Finally, suppose z1(n) ≥ 5. If r < z1(n), then G(n, r) = 0. If r ≥ z1(n), then there is a move
to (n− z1(n)+ 3, 2z1(n)− 3), which has Grundy value 3. Hence G(n, r) 6= 3. This completes
the proof. �

It appears to be more difficult to classify the positions of Grundy value k for k ≥ 4. Thus
we turn to the problem of understanding the Grundy values of the initial positions (n, n−1)
(and (n, n)) and their growth.

5. Values of starting positions

In this section we prove the following result.

Theorem 5.1. Ignoring the Fibonacci numbers, the Grundy values G(n, n−1) of the starting
positions are non-decreasing. Furthermore, when they increase, they increase by one.

Consider positions of the form (n, n). A starting position is of the form (n, n− 1). Unless
n is a Fibonacci number, it is clear that G(n, n) = G(n, n − 1), since the only additional
move is to (0, 0), which has Grundy value 0. Recall that we sometimes denote a position of
the form (n, n) simply by n. It is clear that Theorem 5.1 follows from the theorem below,
which we prove instead.

Theorem 5.2. For all n ≥ 0, G(n) ≤ G(n + 1) ≤ G(n) + 1.
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Before we begin the proof, we introduce some notation. For each g ≥ 0, let h(g) be the
smallest value of n for which there is some r with G(n, r) = g. It is clear that we could
equivalently let h(g) be the smallest value of n for which G(n, n) = g. For g ≥ 0, let Ag

denote the set of pairs (n, r) with n < h(g + 1) and for which G(n, r) = g. We think of Ag

as being the “first block” of positions (n, r) for which G(n, r) = g. A key property of Ag is
that if (n, r) ∈ Ag and r′ > r, then (n, r′) ∈ Ag as well.

Proof. We prove the theorem by induction on n, together with the following statement: if
G(n) = g, then for each d < g, there is some move from n to (md, kd) with (md, kd) ∈ Ad. For
n = 0, both of these statements are clear. Now, suppose they both hold for n; we show that
they also hold for n+1. Suppose G(n) = g. Then, for each d < g, there is a move from n to
(md, kd) ∈ Ad. Thus there is a move from n+ 1 to (md, kd + 2). Since (md, kd + 2) ∈ Ad, we
have a move from n+ 1 to a position in Ad. Hence, there are moves from n+ 1 to positions
of Grundy value d for all d < g, so G(n + 1) ≥ g. The inductive hypothesis shows that
h(g + 1) ≥ n + 1, so any position (m, k) with m < n + 1 and G(m, k) = g must be in Ag;
furthermore, h(g + 2) > n+ 1. Thus, if there is a move from n+ 1 to a position (m, k) with
Grundy value g, then (m, k) ∈ Ag. This completes the proof. �

Theorem 5.3. We have log3/2(n) ≤ G(n) ≤ ⌈2√n⌉ + 1.

Proof. We first prove the lower bound. For n > 0, let n′ = ⌈3n
2
⌉. We show that G(n′) ≥

G(n) + 1, which implies the lower bound log3/2(n) ≤ G(n). By Theorem 5.2, we have
G(r) ≤ G(r + 1) ≤ G(r) + 1 for all r. From n′, there is a move to n, and hence to r for each
r ≤ n. Thus, the moves from n′ include moves to 0, 1, 2, . . . , n, and {G(0),G(1), . . . ,G(n)} =
{0, 1, . . . ,G(n)}. Hence G(n′) ≥ G(n) + 1.

To prove the upper bound, we let j(g) be the least value of r for which there is some n with
G(n, r) = g. In order for G(n, r) to be equal to g, there must be at least g moves from (n, r),
since there must be moves to positions of value 0, 1, 2, . . . , g − 1. Hence, j(g) ≥ g. Now,
assuming we have computed h(g), we give a lower bound for h(g + 1). In order for G(n, r)
to be equal to g + 1, there must be a move to a position (n1, r1) whose Grundy value is g.
Hence, we need n1 ≥ h(g) and r1 ≥ j(g) ≥ g. Since r1 = 2(n−n1), we obtain 2(n−n1) ≥ g,
or n ≥ g

2
+ n1 ≥ g

2
+ h(g), so h(g + 1)− h(g) ≥ g

2
. Since h(1) = 1, we have

h(g)− 1 =

g−1∑

i=1

(h(i+ 1)− h(i)) ≥
g−1∑

i=1

i

2
=

g(g − 1)

4
,

so h(g) ≥ g(g−1)
4

. Thus,

h(⌈2√n⌉ + 1) ≥ (2
√
n+ 1)2

√
n

4
+ 1 > n,

so G(n) ≤ ⌈2√n⌉ + 1, as desired. �

In fact, it appears that the lower bound is a lot closer to the truth than is the upper
bound. More precisely, we conjecture based on numerical evidence that G(n)+1 ≤ G(⌈3n

2
⌉) ≤

G(n) + 2, which would imply that the growth rate is logarithmic.
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