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Abstract. We investigate a two-player zero-sum differential game with asymmetric infor-
mation on the payoff and without Isaacs’ condition. The dynamics is an ordinary differential
equation parametrized by two controls chosen by the players. Each player has a private infor-
mation on the payoff of the game, while his opponent knows only the probability distribution
on the information of the other player.

We show that a suitable definition of random strategies allows to prove the existence of a
value in mixed strategies. This value is taken in the sense of the limit of any time discretization,
as the mesh of the time partition tends to zero. We characterize it in terms of the unique
viscosity solution in some dual sense of a Hamilton-Jacobi-Isaacs equation. Here we do not
suppose the Isaacs’ condition, which is usually assumed in differential games.
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1 Introduction

We consider a two-player differential game which dynamic is given by the following differential
equation

dXs

ds
= f (Xs, us, vs) , s ∈ [t, T ]

parametrised by two controls u : [t, T ] 7→ U and v : [t, T ] 7→ V chosen by the Players 1 and 2,
respectively. Here the function f : Rd ×U × V 7→ R

d satisfies standard assumptions, and U and
V denote two compact metric spaces.

The final cost involves I×J payoffs gij(XT ) i = 1, 2 . . . I, j = 1, 2 . . . J , where the gij : R
d 7→

R are given bounded functions. The first player aims to minimize the cost, while the second
player’s objective is to maximize it.

∗The work is partially supported by the Commission of the European Communities under the project SADCO,
FP7-PEOPLE-2010-ITN, No 264735, the French National Research Agency ANR-10-BLAN 0112 and Natural
Science Foundation of Jiangsu Province and China (No.BK20140299; No.14KJB110022; No.11401414) and the
collaborative innovation center for quantitative calculation and control of financial risk.
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Let us now describe how the game is played. For this purpose let us fix an initial time
t ∈ [0, T ].
- Before the game starts, a pair (i, j) is chosen randomly according to a probability measure
p ⊗ q ∈ ∆(I) ×∆(J). Here ∆(I) denotes the set of probabilities p = (pi)i=1,...,I on {1, . . . , I};
∆(J) is similarly defined.
- The choice of i is communicated to Player 1 but not to Player 2, while j is communicated to
Player II but not to Player I;
- The game is played on the time interval [t, T ];
- Both players know the probability p⊗q and observe their opponents’ controls during the game.
Note that the players do not know which gij they are actually optimising, because they have
only a part of the information on the pair (i, j). Nevertheless they can try to guess their missing
information by observing what their opponent does. Indeed, in order to use his information, a
player necessarily reveals at least a part of it, and any piece of information he reveals can be
later exploited by his opponent.

Games with asymmetric information where introduced by Aumann and Maschler in the
1960s [1]. They proved that games with lack of information on one side have a uniform value.
The existence of a value in the general case but in a weaker sense was established by Mertens
and Zamir [21]. Models with asymmetric information in economics have been investigated
extensively, for instance in [2, 3, 4, 27]. They study the case that participants in a market have
private information not public to the others.

A milestone in the literature of differential games is the article [18] which has been later
extended to stochastic differential games in [19]. It was shown there that under the following
Isaacs’ condition

inf
u∈U

sup
v∈V

f (x, u, v) · ξ = sup
v∈V

inf
u∈U

f (x, u, v) · ξ,

the value function of a differential game is given as the unique viscosity solution of a Hamilton–
Jacobi–Isaacs (HJI in short) equation. For two-person zero-sum stochastic differential games, we
also refer the reader to [5] for an overview and a more complete description. Differential games
with asymmetric information on the payoff were studied first by Cardaliaguet in [8] ( see also
[11, 13]) . The case where the asymmetric information concerns the initial position was studied
in [10]. The extension to stochastic differential games was investigated in [12, 14]. The proof
was accomplished by introducing the notion of dual viscosity solutions to the HJI equation of a
usual differential game, where the probability (p, q) just appear as additional parameters. Such
a notion of dual solution was introduced in [8] for differential games and in [16] for repeated
games. A different unique characterisation via the viscosity solution of the HJI equation with
double obstacles in the form of constraints in (p, q) was given in [9]. More recently, Oliu-Barton
[22] extends Cardaliaguet [8] to the case of correlated types, and where the lack of information
carries over the initial state, the dynamic and the pay-off function.

Differential games without Isaacs’ assumption where first considered by Krasovskii and Sub-
botin[20], using relaxed controls. This approach has also been chosen by Sirbu [24]. Recently,
the article [6] considered zero-sum differential games with complete information without Isaacs’
condition by playing classical, randomized controls, imposing on the underlying controls for
both players a conditional independence property. The article [7] generalized this method to
stochastic differential games using the approach of backward stochastic differential equations.
In comparison with [6] we have made here the choice of a randomisation of the strategies apply-
ing pathwise to control processes, rather than to consider strategies applying globally (and not
only pathwise) to randomised control processes. Both approaches lead, of course, to the same
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value, which also can be gotten by considering relaxed controls. While the approach of [6] with
its randomisation of controls is in some sense still near to this idea of relaxed controls, the choice
we have made in the present work is justified by the fact that both players use strategies, the
associated controls are only a consequence and computed with the help of the chosen strategies.
In addition, our approach is not only justified from the point of view of interpretation but it
leads also to a considerable simplification of the computation.

The present paper introduces this method to differential games with asymmetric information.
By using a suitable notion of random, non-anticipative strategies with delay, we show that the
upper and lower value function of the game along a partition of [t, T ] (where the players are
restricted to react at times t = t0 < t1 < . . . < tN = T ) converge to the unique dual viscosity
solution of the following HJI equation

{

∂V
∂t

(t, x) +H (x,DV (t, x)) = 0, in [0, T ]×Rd,
V (T, x) =

∑

ij piqjgij (x) ,
(1.1)

where

H (x, ξ) = inf
µ∈P(U)

sup
ν∈P(V )

∫

U×V

f (x, u, v)µ (du) ν (dv) · ξ .

Here P (U) denotes the space of all probability measures on U , P (V ) that on V . Since both
control state spaces U and V are compact, P(U) and P(V ) are compact, convex subsets of the
linear topological spaces of signed measures over U and V , respectively. Moreover, taking into
acount the continuity of f(x, ., .) : U × V → R, for all (µ, ν) ∈ P(U) × P(V ) the functions
P(U) ∋ µ′ →

∫

U×V
f(x, u, v)µ′(du)ν(dv) and P(V ) ∋ ν ′ →

∫

U×V
f(x, u, v)µ(du)ν ′(dv) are

continuous (w.r.t. the topology generated by the weak convergence of measures), and from the
linearity of the functions we get their convexity and concavity, respectively. But then it follows,
for instance, from Sion’s Minimax Theorem, that

inf
µ∈P(U)

sup
ν∈P(V )

∫

U×V

f (x, u, v)µ (du) ν (dv) · ξ. = sup
ν∈P(V )

inf
µ∈P(U)

∫

U×V

f (x, u, v)µ (du) ν (dv) · ξ .

(1.2)

Non-anticipative strategies are randomised on a single probability space. The obtained limit
value is similar to the value with relaxed controls concerning P (U) and P (V ) as the control
spaces, although players are not allowed to use relaxed controls. See [6] for more explanation.

The organisation of the paper is as follows. In the next section we present necessary defi-
nitions. Section 3 shows the convexity (concavity) of the value of the game along a partition
and considers its dual game. A subdynamic programming principle is established for the dual
game in section 4. In section 5, we prove that the lower value function and the upper value
function are a viscosity subsolution and a viscosity supersolution respectively of the associated
HJI equation. In section 6, we show by a special comparison principle of partial differential
equations that the limit value of the game along partitions exists as the mesh of partitions tends
to zero, and the limit value function is characterized as the dual solution of some HJI equation.
In the last section we consider the case of lack of information on the dynamics.

2 Settings of the game

Throughout the paper we work with the following probability space:

(Ω,F , P ) := ([0, 1] ,B ([0, 1]) , dx) ,
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where the interval [0, 1] is endowed with the Borel σ-field B ([0, 1]) and the Borel measure dx.

Let {ζj,l, l ≥ 1, j = 1, 2} be a family of independent random variables following all a uniform
distribution on [0, 1]. Let us consider two compact metric spaces U and V representing the
control state spaces used by player 1 and 2, respectively. P (U) and P (V ) denote the space of
all probability measures over U and V , endowed with Borel σ-field B (U) and B (V ), respectively.
It is an immediate consequence of Skorohod’s Representation Theorem that P (U) (resp., P (V ))
coincides with the set of the laws of all U -valued (resp., V -valued) random variables defined over
([0, 1] ,B ([0, 1]) , dx).

Let us now introduce the admissible controls for both players.

Definition 2.1 (Admissible controls) Given the initial time t ∈ [0, T ], we define the sets of
admissible controls for player 1 and player 2 by

Ut,T =
{

all U-valued and Lebesque measurable functions (us)s∈[t,T ]

}

,

Vt,T =
{

all V-valued and Lebesque measurable functions (vs)s∈[t,T ]

}

.

Both spaces are endowed with the topology generated by the convergence in L1([t, T ]).

The dynamics of the game is given by
{

dX
t,x,u,v
s = f

(

X
t,x,u,v
s , us, vs

)

ds, s ∈ [t, T ] , (u, v) ∈ Ut,T × Vt,T ,

X
t,x,u,v
t = x,

(2.1)

where f : Rd × U × V 7→ Rd is bounded, continuous, and Lipschitz continuous in x ∈ Rd,
uniformly with respect to u and v. Standard estimates show that there exists a constant C > 0
such that, for all (t, x) , (t′, x′) ∈ [0, T ]×Rd and all s ∈ [t ∨ t′, T ],

(i)
∣

∣

∣
X

t,x,u,v
s − x

∣

∣

∣
≤ C (s− t),

(ii)
∣

∣

∣
X

t,x,u,v
s −X

t′,x′,u,v
s

∣

∣

∣
≤ C (|t− t′|+ |x− x′|).

While player 1 tries to minimise a given cost functional, the objective of player 2 is to
maximise it. For this they have at their disposal the above introduced spaces of admissible
controls. But can they play the game “control against control”? As it is by now well-known,
apart from rather particular cases, differential games of the type “control against control” don’t,
in general, admit the dynamic programming principle and don’t have a value. This is why
in the literature approaches studying games of the type “strategy against control” and “non
anticipative strategy with delay (NAD-strategy) against NAD-strategy” have imposed. This
latter type has turned out to be the best adapted one for the study of differential games with
asymmetric information. Taking into account the asymmetry of the information, the players
aim to hide a part of their private knowledge. To do this they randomise their strategies. From
a technical point of view, this randomness is also the key argument to get a value of our game
without Isaacs’ condition.

Let us consider now a partition π = {0 = t0 < t1 < . . . < tN = T} and let us fix arbitrarily
the initial time of the game t ∈ [tk−1, tk], for some 0 ≤ k ≤ N .

Definition 2.2 (Random NAD strategies along the partition π) A random NAD-strategy along
the partition π for player 1 is a mapping α : Ω× Vt,T 7→ Ut,T of the form

α (ω, v) (s) = αl ((ζ1,k, . . . , ζ1,l) (ω) , v) (s) ,

ω ∈ Ω, s ∈ [t∨tl−1, t∨tl), k ≤ l ≤ N , with a Borel measurable mapping αl : R
l−k+1×Vt,T 7→ Ut,T

satisfying the following: For all v, v′ ∈ Vt,T , it holds that, whenever v = v′ a.e. on [t, tl−1], we
have for all x ∈ Rl−k+1, αl (x, v) = αl (x, v

′), a.e on [t ∨ tl−1, t ∨ tl].
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Similarly, a random NAD strategy along the partition π for player 2 is a mapping β : Ω ×
Ut,T 7→ Vt,T of the form

β (ω, u) (s) = βl ((ζ2,k, . . . , ζ2,l) (ω) , u) (s) ,

ω ∈ Ω, s ∈ [t ∨ tl−1, t ∨ tl], k ≤ l ≤ N , with a Borel measurable mapping βl : R
l−k+1 × Ut,T 7→

Vt,T satisfying the following: For all u, u′ ∈ Ut,T , it holds that, whenever u = u′ a.e. on [t, tl−1],
we have for all x ∈ Rl−k+1, βl (x, u) = βl (x, u

′), a.e on [t ∨ tl−1, t ∨ tl].

We denote by Aπ
r (t, T ) the set of all such random NAD strategies for player 1, and by

Bπ
r (t, T ) that for player 2. Sometimes we will use pure (i.e. deterministic) strategies: Let

Aπ (t, T ) (resp. Bπ (t, T )) denote the subset of strategies in Aπ
r (t, T ) (resp. B

π
r (t, T )) which do

not depend on ω ∈ Ω.

Remark 2.1 Given t ∈ [tk−1, tk], for s ∈ [t, T ], (u, v) ∈ Ut,T × Vt,T , we have

α (ω, v) (s) = αk (ζ1,k (ω) , v) · 1[t,tk) (s) +
∑N

l=k+1 αl ((ζ1,k, . . . , ζ1,l) (ω) , v) · 1[tl−1,tl) (s) ,

β (ω, u) (s) = βk (ζ2,k (ω) , u) · 1[t,tk) (s) +
∑N

l=k+1 β,l ((ζ2,k, . . . , ζ2,l) (ω) , u) · 1[tl−1,tl) (s) .
(2.2)

Remark 2.2 The above notion of strategies comes close to the one used in the framework of
repeated games. One difference is that here the actions of the players on each interval [tl, tl+1]
depend on the whole sequence of random variables ζi,k, . . . , ζi,l introduced since the beginning of
the game, while in repeated games, the strategy at stage l depends only on the last, new random
variable.
In fact, in the proof of the dynamic programming principles -crucial step to establish the HJI-
equation-, it is important that the strategies may depend on the past trajectory of the dynamic.
There are several possibilities to take this into account: firstly, as for repeated games, by letting
the action at stage l depend not only on the action of the opponent but also on its own past
actions, or, secondly, by observing directly this trajectory. In our setting, the most convenient
was to keep, at each stage l the memory of the randomness introduced in the previous steps. In
terms of the required information, all these approaches are equivalent.

Thanks to the delay of the strategies, we have the following property.

Lemma 2.1 For any (α, β) ∈ Aπ
r (t, T )×Bπ

r (t, T ) there is a unique (up to a null set) mapping
Ω ∋ ω 7→ (uω, vω) ∈ Ut,T × Vt,T such that, for all ω ∈ Ω,

α (ω, vω) = uω, β (ω, uω) = vω, a.e. on [t, T ] . (2.3)

The proof of this lemma uses standard arguments. However since the special form of the
random NAD-strategies which we use here is new, we prefer to give the proof for the convenience
of the reader.

Proof Let t ∈ [tk−1, tk], 0 ≤ k ≤ N . For each ω ∈ Ω, α (ω, v) and β (ω, u) restricted to
[t, tk] depend only on v ∈ Vt,T and u ∈ Ut,T restricted to [t, tk−1]. But [t, tk−1] is empty or a
singleton, so that α (ω, v), β (ω, u) on [t, tk] do not depend on v and u. Thus, for any v0 ∈ Vt,T

and u0 ∈ Ut,T , we can define u1ω = α
(

ω, v0
)

, v1ω = β
(

ω, u0
)

. We observe that this definition
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guarantees the measurability of the mapping Ω ∋ ω 7→
(

u1ω, v
1
ω

)

∈ Ut,T × Vt,T . Moreover, from
this definition we have

α
(

ω, v1
)

= u1, β
(

ω, u1
)

= v1, a.e., on [t, tk] .

Assume that for j ≥ 2, Ω ∋ ω 7→
(

u
j−1
ω , v

j−1
ω

)

∈ Ut,T × Vt,T is measurable and such that

α
(

ω, v
j−1
ω

)

= u
j−1
ω , β

(

ω, u
j−1
ω

)

= v
j−1
ω , a.e., on [t, tk+j−2]. Then we set u

j
ω = α

(

ω, v
j−1
ω

)

,

v
j
ω = β

(

ω, u
j−1
ω

)

. Obviously, the thus defined mapping ω 7→
(

u
j
ω, v

j
ω

)

is measurable and
(

u
j
ω, v

j
ω

)

=
(

u
j−1
ω , v

j−1
ω

)

, a.e., on [t, tk+j−2]. Then by the NAD property of α and β, ujω =

α
(

ω, v
j
ω

)

, vjω = β
(

ω, u
j
ω

)

, a.e., on [t, tk+j−1]. Iterating the above steps, we can obtain the

desired result. The uniqueness is an immediate consequence of the above construction. �

Thanks to Lemma 2.1, to any pair (α, β) ∈ Aπ
r (0, T )×Bπ

r (0, T ) and any (x, ω) ∈ Rd × [0, 1]

can be associated a trajectory t 7→ X
t,x,α(ω,·),β(ω,·)
t defined as:

X
t,x,α(ω,·),β(ω,·)
t := X

t,x,uω ,vω
t ,

with (uω, vω) uniquely determined by relation (2.3).

Remark 2.3 We observe that, for all 1 ≤ l ≤ N − 1, the processes u and v constructed in
the above proof and restricted to the time interval [t, tl] are conditionally independent knowing
ζk = (ζ1,k, ζ2,k), . . . , ζl−1 = (ζ1,l−1, ζ2,l−1). Indeed, the processes u and v are of the following
form:

{

u· (s) = uk (s, ζ1,k) · 1[t,tk) (s) +
∑n

l=k+1 u
l (s, ζk, . . . , ζl−1, ζ1,l) · 1[tl−1,tl) (s) ,

v· (s) = vk (s, ζ2,k) · 1[t,tk) (s) +
∑n

l=k+1 v
l (s, ζk, . . . , ζl−1, ζ2,l) · 1[tl−1,tl) (s) ,

where
(

ul, vl
)

are measurable functions of s, ζj,m, j = 1, 2, k ≤ m ≤ l − 1 and ζl = (ζ1,l, ζ2,l),

for l ≥ 1.

The description of the game involves I × J terminal payoffs (where I, J ≥ 1): gij : R
d 7→ R

for i = 1, . . . , I and j = 1, . . . , J , which are supposed to be Lipschitz continuous and bounded
throughout the paper.

We now define the lower and the upper value functions.

Definition 2.3 Let (p, q) ∈ ∆(I) × ∆(J), (t, x) ∈ [0, T ) × Rd. For t ∈ [tk−1, tk), α̂ =
(αi)i=1,...I ∈ (Aπ

r (t, T ))
I , β̂ = (βj)j=1,...J ∈ (Bπ

r (t, T ))
J , we define the cost functional

J
(

t, x, α̂, β̂, p, q
)

=

I
∑

i=1

J
∑

j=1

piqjE
[

gij

(

X
t,x,αi,βj

T

)]

, (2.4)

the upper value function

W π (t, x, p, q) = inf
α̂∈(Aπ

r (t,T ))I
sup

β̂∈(Bπ
r (t,T ))J

J
(

t, x, α̂, β̂, p, q
)

, (2.5)

as well as the lower value function

V π (t, x, p, q) = sup
β̂∈(Bπ

r (t,T ))J
inf

α̂∈(Aπ
r (t,T ))I

J
(

t, x, α̂, β̂, p, q
)

. (2.6)
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3 Convexity and Fenchel conjugates

The convexity (resp. concavity) of the value functions with respect to the probabilities p (resp.
to q) is a crucial aspect in the analysis of games with asymmetric information. In this section
we study this property and introduce the Fenchel conjugate of the value functions.

The proof of the following lemmas are inspired by [8]. We just remark that, in order to take
into account the missing Isaacs’ assumption, our notion of strategy is much more explicit and,
therefore, more restrictive than the one defined in [8]. This explains additional difficulties in the
proofs.

Lemma 3.1 The value functions W π and V π are Lipschitz continuous with respect to (t, x, p, q),
uniformly with respect to π.

Proof We only give the proof for V π. By the definition of V π and the boundness of gij , it is
easy to see that V π is Lipschitz with respect p and q. For every t ∈ [0, T ] and (u, v) ∈ Ut,T ×Vt,T ,

we can show that x → gij

(

X
t,x,u,v
T

)

is Lipschitz uniformly w.r.t. (t, u, v) and, hence, for any
(

α̂, β̂
)

∈ (Aπ
r (t, T ))

I × (Bπ
r (t, T ))

J , the mapping

x 7→ J
(

t, x, α̂, β̂, p, q
)

is Lipschitz continuous with a Lipschitz constant C (for short, C-Lipschitz) independent of
(t, p, q) ∈ [0, T ]×∆(I)×∆(J) and π. Therefore, we deduce that V π is C-Lipschitz with respect
to x.

Now we show that V π is Lipschitz in t. Let x ∈ Rd, (p, q) ∈ ∆(I) ×∆(J) and t < t′ < T

be fixed. Let β̂ = (βj)j=1,...J ∈ (Bπ
r (t, T ))

J be ε-optimal for V π (t, x, p, q). We have to associate

with each βj a strategy β′
j ∈ Bπ

r (t
′, T ). To this aim, we fix some arbitrary constant control

ū ∈ U and set

β̃j (ω, u) = βj (ω, ũ) , where ũ (s) =

{

ū, s ∈ [t, t′),
u(s), s ∈ [t′, T ] .

If t′ < tk, then β̃j ∈ Bπ
r (t

′, T ) and we set β′
j = β̃j .

Otherwise, let l > k such that tl−1 ≤ t′ < tl. We consider now l − k + 1 random variables
κk, . . . , κl on ([0, 1],B([0, 1]), dx) with κl(x) = x, x ∈ [0, 1], which are uniformly distributed on
[0, 1], mutually independent, and independent of ζi,m, (i,m) 6= (2, l). We remark that then
also the composed random variables κk ◦ ζ2,l, . . . , κl ◦ ζ2,l are mutually independent, uniformly
distributed random variables, which are moreover independent of all ζi,m, (i,m) 6= (2, l). Indeed,
recall that the ζi,l’s themselves are also i.i.d. and obey a uniform distribution over the interval
[0, 1].
Now we set, for any u ∈ Ut′,T , l ≤ m ≤ N , and s ∈ [t′ ∨ tm−1, tm),

β′
j(ω, u)(s) = β̃j,m (κk ◦ ζ2,l, . . . , κl ◦ ζ2,l, ζ2,l+1, . . . , ζ2,m) (ω, u)(s).

Then β′
j ∈ Bπ

r (t
′, T ). Moreover, for all u ∈ Ut′,T ,β

′
j(u) and β̃j(u) obey the same law knowing

ζ2,l, ζ2,l+1, . . . , ζ2,n, if tl−1 ≤ t′ < tl (Here we use the fact that κl(ζ2,l) = ζ2,l). Thus

E[g(X
t′,x,u,β′

j(u)

T )] = E[g(X
t′,x,u,β̃j(u)
T )],
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and, hence, for all α̂ = (αi) ∈ (Aπ
r (t

′, T ))I ,

J (t′, x, α̂, (β′
j), p, q) = J (t′, x, α̂, (β̃j), p, q).

Next, to every α ∈ Aπ
r (t

′, T ), we associate some new strategy α′ ∈ Aπ
r (t, T ) by setting, for all

v ∈ Vt,T ,

α′ (ω, v) (s) =

{

ū (s) , s ∈ [t, t′),
α
(

ω, v|[t′,T ]

)

(s) , s ∈ [t′, T ] .

By construction, if tl−1 ≤ t′ ≤ tl (k ≤ l ≤ n), the couples of random controls associated by
Lemma 2.1 to the couples of strategies (α′, βj) and (α, β̃j) coincide on the time interval [t′, T ]
under the conditional law P [ · |ζ2,l, ζl+1, . . . , ζn] . Therefore the standard estimate applies :

E
[

|X
t,x,α′,βj
s −X

t′,x,α,β̃j
s |

]

≤ M
∣

∣t′ − t
∣

∣ , s ∈ [t′, T ],

where M is a constant depending on the bound of f as well as the Lipschitz constants of f and
the functions gij , but not on π. Hence, for any α̂ = (αi)i=1,...I ∈ (Aπ

r (t
′, T ))I , we have

J
(

t′, x, α̂,
(

β′
j

)

, p, q
)

= J
(

t′, x, α̂,
(

β̃j

)

, p, q
)

≥ J
(

t, x, α̂′, β̂, p, q
)

− LM
∣

∣t′ − t
∣

∣

≥ inf
α̂′′∈(Aπ

r (t,T ))I
J
(

t, x, α̂′′, β̂, p, q
)

− LM
∣

∣t′ − t
∣

∣

≥ V π (t, x, p, q)− ε− LM
∣

∣t′ − t
∣

∣

where we have used the fact that β̂ is ε-optimal for V π (t, x, p, q). Consequently,

V π
(

t′, x, p, q
)

≥ V π (t, x, p, q)− ε− LM
∣

∣t′ − t
∣

∣ . (3.1)

To prove the reverse inequality, we associate in a symmetric way to above to a vector of strategies
β̂ = (βj)j=1,...J ∈ (Bπ

r (t
′, T ))J which is ε-optimal for V π(t′, x, p, q) and each arbitrary α̂ ∈

(Aπ
r (t, T ))

I some vectors of strategies β̂′ ∈ (Bπ
r (t, T ))

J and α̂′ ∈ (Aπ
r (t

′, T ))I , in order to get
the inequality

J
(

t, x, α̂, β̂′, p, q
)

≥ J
(

t′, x, α̂′, β̂, p, q
)

− LM |t− t′| ≥ V π
(

t′, x, p, q
)

− ε− LM
∣

∣t′ − t
∣

∣

and, thus,
V π (t, x, p, q) ≥ V π

(

t′, x, p, q
)

− ε− LM
∣

∣t′ − t
∣

∣ . (3.2)

Finally, thanks to the arbitrariness of ε > 0, from (3.1) and (3.2) we get the Lipschitz con-
tinuity for V π in t. �

Next we have to prove that V π and W π are convex in p and concave in q. We can use the
standard argumentation of [25], provide we show that the sets of strategies satisfy the following
convexity property.

Lemma 3.2 Let (t, x, p) ∈ [0, T ) × Rd × ∆(I), q0, q1 ∈ ∆(J) and λ ∈ (0, 1). Set qλ = (1 −
λ)q0 + λq1. For all β̂0, β̂1 ∈ (Bπ

r (t, T ))
J , there exists β̂λ ∈ (Bπ

r (t, T ))
J , such that, for all

α̂ ∈ (Aπ
r (t, T ))

I ,

J
(

t, x, α̂, β̂λ, p, qλ
)

= (1− λ)J (t, x, α̂, β̂0, p, q0) + λJ (t, x, α̂, β̂1, p, q1).

An analogue result holds for the strategies of Player 1.
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Proof For all j ∈ {1, . . . , J}, we set cj =
(1−λ)q0j

qλj
. For ω ∈ Ω, u ∈ Ut,T , s ∈ [t ∨ tl−1, t ∨ tl),

k ≤ l ≤ N , j = 1, . . . , J , we define the following strategies

βλ
j (ω, u) (s) = βlj ((ζ2,k, . . . , ζ2,l) (ω) , u) (s)

where

βlj ((y1, . . . , yl−k+1) , u) = β0
lj

(

1

cj
y1, y2, . . . , yl−k+1, u

)

· 1[0,cj ] (y1)

+ β1
lj

(

1

1− cj
(y1 − cj) , y2, . . . , yl−k+1, u

)

· 1[cj ,1] (y1) .

The mappings β0
l,j and β1

l,j, k ≤ l ≤ N , are associated with β0
j and β1

j through Definition 2.2.

It is easy to see that
(

βλ
j

)

∈ (Bπ
r (t, T ))

J .

Fix now (i, j) ∈ {1, . . . , I} × {1, . . . , J}. A straight forward computation yields

E[gi,j(X
t,x,αi,β

λ
j )]

=

∫

[0,cj]
E

[

gi,j

(

X
t,x,αi,β

0
j

(

( 1

cj
y1,ζ2,k+1,...,ζ2,N )(ω)

)

)]

dy1

+

∫

[cj ,1]
E

[

gi,j

(

X
t,x,αi,β

1
j

(

( 1

1−cj
(y1−cj),ζ2,k+1,...,ζ2,N )(ω)

)

)]

dy1

=
(1−λ)q0j

qλj
E

[

gij

(

X
t,x,αi,β

0
j

T

)]

+
λq1j

qλj
E

[

gij

(

X
t,x,αi,β

1
j

T

)]

.

Consequently it holds that

∑J
j=1 q

λ
jE

[

gij

(

X
t,x,αi,β

λ
j

T

)]

= (1− λ)
∑J

j=1 q
0
jE

[

gij

(

X
t,x,αi,β

0
j

T

)]

+ λ
∑J

j=1 q
1
jE

[

gij

(

X
t,x,αi,β

1
j

T

)]

The result follows. �

Lemma 3.3 (see [25], Chapter 2) For any (t, x) ∈ [0, T ) × Rd, the mappings W π (t, x, p, q),
V π (t, x, p, q) are convex in p and concave in q on ∆(I) and ∆(J), respectively.

For the proof the reader is referred to [25].

Let us now introduce the Fenchel conjugates: Given a mapping w : [0, T ) × Rd × ∆(I) ×
∆(J) 7→ R convex in p and concave in q on ∆ (I) and ∆(J), respectively, we denote by w∗ its
convex conjugate with respect to variable p:

w∗ (t, x, p̂, q) := sup
p∈∆(I)

{〈p̂, p〉 −w (t, x, p, q)} , (t, x, p̂, q) ∈ [0, T ]×Rd ×RI ×∆(J) ,

and w# its concave conjugate with respect to variable q:

w# (t, x, p, q̂) := inf
q∈∆(J)

{〈q̂, q〉 − w (t, x, p, q)} , (t, x, p, q̂) ∈ [0, T ]×Rd ×∆(I)×RJ .
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In coherence with these notations, we write V π∗ (W π#) for the convex (resp. concave) conjugate
of V π (W π) with respect to p (resp. q). As the previous lemma, the following alternative
formulation of V π∗ is standard for normal-form games with convex sets of strategies (see also
[25], Chapter 2). For this reason we omit the proof.

Lemma 3.4 (Reformulation of V π∗) For all (t, x, p̂, q) ∈ [0, T ) ×Rd ×RI ×∆(J),
(i) we have

V π∗ (t, x, p̂, q) = inf
(βj)∈(Bπ

r (t,T ))J
sup

α∈Aπ(t,T )
max

i∈{1,...,I}







p̂i −

J
∑

j=1

qjE
[

gij

(

X
t,x,α,βj

T

)]







(3.3)

4 The subdynamic programming principle

For any continuous time control problem, the first step leading to the Hamilton-Jacobi-equation
is a dynamic programming principle. In the case of differential games with asymmetric informa-
tion, we have to prove two sub- (resp. super-) dynamic programming principles: one for each
Fenchel conjugate.

Lemma 4.1 (Subdynamic programming principle) For any (t, x, p̂, q) ∈ [tk−1, tk)×Rd ×RI ×
∆(J) and for all l (k ≤ l ≤ N), we have

V π∗ (t, x, p̂, q) ≤ inf
(βj)∈Bπ

r (t,tl)
sup

α∈Aπ(t,tl)
E
[

V π∗
(

tl,X
t,x,α,β
tl

, p̂, q
)]

(4.1)

≤ inf
(βj)∈Bπ

r (t,tl)
sup

α∈Aπ
r (t,tl)

E
[

V π∗
(

tl,X
t,x,α,β
tl

, p̂, q
)]

. (4.2)

Proof The second inequality is obvious. Let us prove the first one. For this, we let V π∗(t, tl, x, p̂, q)
denote the right side of (4.1). For arbitrarily given ε > 0, let β0 ∈ Bπ

r (t, tl) be an ε-optimal

strategy for V π∗ (t, tl, x, p̂, q). For any z ∈ Rd, let β̂z =
(

βz
j

)

∈ (Bπ
r (tl, T ))

J be an ε-optimal

strategy for player 2 in the dual game with value function V π∗ (tl, z, p̂, q). From the uniform
Lipschitz continuity of the mappings

y 7→ sup
α∈Aπ

r (tl,T )
max

i∈{1,...,I}







p̂i −
J
∑

j=1

qjE
[

gij

(

X
tl,y,α,β

x
j

T

)]







and, hence, also that of y 7→ V π∗ (tl, y, p̂, q), it follows that β̂z is a (2ε)-optimal strategy for
V π∗ (tl, y, p̂, q) , if z belongs to the ball Br (y), for some radius r > 0 small enough but not

depending on y ∈ Rd. Because the coefficient f is bounded, Xt,x,α,β
tl

takes all its values in

some ball BR (0), for R > 0 large enough. We choose a finite sequence (xn)n=1,...,n0
⊂ Rd such

that BR (0) ⊂ ∪n0

n=1Br (xn). This allows to construct a Borel partition (An)n=1,...,n0
of the ball

BR (0) such that, for all 1 ≤ n ≤ n0, xn ∈ An ⊂ Br (xn). To simplify the notation, we write

βn
j := βxn

j . We observe that on the event {Xt,x,α,β
tl

∈ Br (xn)} the strategy βn
j is (2ε)-optimal

for V π∗
(

tl,X
t,x,α,β
tl

, p̂, q
)

.

For any ω ∈ Ω and u ∈ Ut,T , we set

βj (ω, u) (s) =

{

β0 (ω, u) (s) , s ∈ [t, tl),

βn
j

(

ω, u|[tl,T ]

)

, s ∈ [tl, T ] and X
t,x,u,β0

tl
(ω) ∈ An.
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Since, for all 1 ≤ n ≤ n0, (ω, u) 7→ 1An

(

X
t,x,u,β0

tl
(ω)
)

is σ
{

ζ2,k, . . . , ζ2,l, u|[t,tl)
}

-measurable,

there are Borel functions fn : Rl−k+1×Ut,tl 7→ R such that 1An

(

X
t,x,u,β0

tl

)

= fn
(

ζ2,k, . . . , ζ2,l, u|[t,tl)
)

.

Note also that, by the definition of βn
j ∈ Bπ

r (tl, T ),

βj(ω, u)(s) =

(

β0(ω, u)(s)1[t,tl) (s) + (

n0
∑

n=1

βn
j (ω, u|[tl,T ])(s)f

n
(

ζ2,k(ω), . . . , ζ2,l(ω), u|[t,tl)
)

)1[tl,T ] (s)

)

.

Thus βj ∈ Bπ
r (t, T ).

For any α ∈ Aπ (t, T ), we have

gij

(

X
t,x,α,βj

T

)

=

n0
∑

n=1

gij

(

X
tl,X

t,x,α,β0

tl
,α̃,βn

j

T

)

· 1An

(

X
t,x,α,β0

tl

)

,

where α̃ ∈ Aπ
r (tl, T ) is a restriction of α to [tl, T ] defined by

α̃ (v) (s) = α
(

v′
)

(s) , ∀v ∈ Vt,T , where v′ (s) =

{

v̄ (s) , s ∈ [t, tl),
v (s) , s ∈ [tl, T ] ,

with the controls (ū (·) , v̄ (·)) being associated with
(

α, β0
)

through Lemma 2.1.
Remark that, since β0 is a deterministic function of (ζ2,k, . . . , ζl−1), the same holds for v̄ and
for α̃. During the computations, we shall need to fix this dependence by the notation α̃ :=
α̃(ζ2,k, . . . , ζl−1).

Further we observe that X
t,x,α,β0

tl
is independent of βn

j . Indeed, while βn
j depends only on

(ζ2,l, . . . , ζ2,N ), Xt,x,α,β0

tl
= X

t,x,α,β0

tl−
only depends on (ζ2,k, . . . , ζ2,l−1). It follows that

max
i∈{1,...,I}

{

p̂i −
∑J

j=1 qjE
[

gij

(

X
t,x,α,βj

T

)]}

= max
i∈{1,...,I}

{

p̂i −
∑J

j=1 qjE

[

∑n0

n=1 gij

(

X
tl,X

t,x,α,β0

tl
,α̃,βn

j

T

)

· 1An

(

X
t,x,α,β0

tl

)

]}

= max
i∈{1,...,I}

{

p̂i −
∑J

j=1 qjE

[

∑n0

n=1E
[

gij

(

X
tl,y,α̃(z),β

n
j

T

)]

y=X
t,x,α,β0

tl
,z=(ζ2,k,...,ζ2,l−1)

· 1An

(

X
t,x,α,β0

tl

)

]}

≤ E

[

∑n0

n=1 max
i∈{1,...,I}

{

p̂i −
∑J

j=1 qjE
[

gij

(

X
tl,y,α̃(z),β

n
j

T

)]}

y=X
t,x,α,β0

tl
,z=(ζ2,k,...,ζ2,l−1)

· 1An

(

X
t,x,α,β0

tl

)

]

≤ E

[

∑n0

n=1 sup
α′∈Aπ

r (tl,T )
max

i∈{1,...,I}

{

p̂i −
∑J

j=1 qjE

[

gij

(

X
tl,y,α

′,βn
j

T

)]}

y=X
t,x,α,β0

tl

· 1An

(

X
t,x,α,β0

tl

)

]

≤ E
[

∑n0

n=1 V
π∗
(

tl,X
t,x,α,β0

tl
, p̂, q

)

· 1An

(

X
t,x,α,β0

tl

)]

+ 2ε

≤ V π∗ (t, tl, x, p̂, q) + 3ε.

The latter inequality is due to the fact that β0 is ε-optimal for V π∗ (t, tl, x, p̂, q). Then we
conclude that V π∗ (t, x, p̂, q) ≤ V π∗ (t, tl, x, p̂, q). �

5 Viscosity solutions of the dual game

Let (πn)n≥1 be a given sequence of partitions of the time interval [0, T ] such that the mesh of
the partition |πn| tends to zero, when n → ∞. We prove in this section that (V πn∗) converges
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to some function Ṽ as |πn| → 0 and that, for fixed (p̂, q), the limit function Ṽ is a viscosity
subsolution of the following HJI equation:

∂Ṽ

∂t
(t, x) +H∗

(

x,DṼ (t, x)
)

= 0,in [0, T ]×Rd. (5.1)

where

H∗ (x, ξ) = −H (x,−ξ)

= inf
ν∈P(V )

sup
µ∈P(U)

(
∫

U×V

f (x, u, v) µ (du) ν (dv) · ξ

)

= sup
µ∈P(U)

inf
ν∈P(V )

(
∫

U×V

f (x, u, v) µ (du) ν (dv) · ξ

)

. (5.2)

The following lemma is obtained directly from the boundedness of f and the Lipschitz
continuity of f (·, u, v) and of g (·).

Lemma 5.1 There is some constant L ∈ R+, depending only on the bound of f and the Lipschitz
constant of f (·, u, v) and of g, such that, for all partition π of the interval [0, T ] and for all
(t, x, p̂, q) , (t′, x′, p̂′, q′) ∈ [0, T ) ×Rd ×RI ×∆(J),

∣

∣V π∗ (t, x, p̂, q)− V π∗
(

t′, x′, p̂′, q′
)
∣

∣ ≤ L
(
∣

∣t− t′
∣

∣+
∣

∣x− x′
∣

∣+
∣

∣p̂− p̂′
∣

∣+
∣

∣q − q′
∣

∣

)

.

By the above equi-Lipschitz continuity of the family of lower dual value functions, applying
the Arzelà-Ascoli Theorem, we have

Lemma 5.2 There exists a subsequence of partitions, still denoted by (πn)n≥1 and there is a

bounded Lipschitz functions Ṽ : [0, T ]×Rd ×RI ×∆(J) 7→ R such that
V πn∗ → Ṽ uniformly on compact sets in [0, T ]×Rd ×RI ×∆(J).

We deduce from Lemma 5.1 that also the function Ṽ in Lemma 5.2 is Lipschitz continuous
with respect to all its variables. More precisely, we get the following corollary:

Corollary 5.1 For the constant L introduced in Lemma 5.1, we have,
for all (t, x, p̂, q) , (t′, x′, p̂′, q′) ∈ [0, T )×Rd ×RI ×∆(J),

∣

∣

∣
Ṽ (t, x, p̂, q)− Ṽ

(

t′, x′, p̂′, q′
)

∣

∣

∣
≤ L

(∣

∣t− t′
∣

∣+
∣

∣x− x′
∣

∣+
∣

∣p̂− p̂′
∣

∣+
∣

∣q − q′
∣

∣

)

.

Remark 5.1 Lemma 5.1 and Lemma 5.2 also hold for W π# on [0, T )×Rd ×∆(I)×RJ . Let
W̃ : [0, T ) × Rd × ∆(I) × RJ 7→ R denote the uniform limit of W πn# on compact sets of
[0, T )×Rd ×∆(I)×RJ . Then Corollary 5.1 also holds for W̃ .

Proposition 5.1 (viscosity subsolution) The function Ṽ (t, x, p̂, q) is a viscosity subsolution of
HJI equation (5.1).
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Proof For fixed (p̂, q) ∈ RI ×∆(J), we denote Ṽ (t, x, p̂, q) by Ṽ (t, x) for short. Fix (t, x) ∈
[0, T ] × Rd. Let M > 0 such that, for all (s, y) ∈ [0, T ] × B1(x), all n ∈ N∗ and all (α, β) ∈

Aπn
r × Bπn

r , Xt,y,α,β
s ∈ BM (x) (where BM (x) is the closed ball of center x and radius M).

Let ϕ ∈ C1([0, T ] ×Rd) such that Ṽ − ϕ attains a strict maximum on [0, T ]×BM (x) at (t, x):

(Ṽ − ϕ)(t, x) > (Ṽ − ϕ)(s, y), (s, y) ∈ [0, T ] ×BM (x) \ {(t, x)}.

For all n ∈ N, let (sn, xn) ∈ [0, T ] × BM (x) be such that V πn∗ − ϕ achieves at (sn, xn) its
maximum over [0, T ]×BM (x). Then there exists a subsequence (still denoted by (sn, xn) which
converges to (t, x) (see [15] Proposition 4.3).
Let N0 ∈ N such that, for all n ≥ N0, |x− xn| ≤ 1. Then, for any n ≥ N0, let kn be such that
tnkn−1

≤ sn < tnkn . By the dynamic programming principle (Lemma 4.1), we have

0 ≤ infβ∈Bπn
r (sn,tnkn )

supα∈Aπn
r (sn,tnkn)

E[V πn∗(tnkn ,X
sn,xn,α,β
tkn

)− V πn∗(sn, xn)]

≤ infβ∈Bπn
r (sn,tnkn )

supα∈Aπn
r (sn,tnkn)

E[ϕ(tnkn ,X
sn,xn,α,β
tkn

)− ϕ(sn, xn)]

= infβ∈Bπn
r (sn,tnkn )

supα∈Aπn
r (sn,tnkn)

E
[ ∫ tn

kn
sn

(

∂
∂r
ϕ(r,Xsn,xn,α,β

r )

+f(Xsn,xn,α,β
r , αr, βr)Dϕ(r,Xsn ,xn,α,β

r )
)

dr
]

≤ infβ∈Bπn
r (sn,tnkn )

supα∈Aπn
r (sn,tnkn)

E
[ ∫ tn

kn
sn

(

∂
∂r
ϕ(sn, xn)

+f(xn, αr, βr)Dϕ(sn, xn) +m(C|tnkn − sn|)
)

dr
]

,

with

m(δ) :=

supEδ

∣

∣

(

∂
∂r
ϕ(s, y) + f(y, u, v)Dϕ(s, y)

)

−
(

∂
∂r
ϕ(r, y′) + f(y′, u, v)Dϕ(r, y′)

)
∣

∣ ,

with Eδ = {u ∈ U, v ∈ V, s, r ∈ [0, T ], y, y′ ∈ BM (x); |s − r| + |y − y′| ≤ δ}. Remark that
limδց0 m(δ) = 0.
It follows that

−(tnkn − sn)
(

∂
∂t
ϕ(sn, xn) +m(C|tnkn − sn|)

)

≤ infβ∈Bπn
r (sn,tnkn )

supα∈Aπn
r (sn,tnkn)

E
[

∫ tn
kn

sn
f(xn, αr, βr)Dϕ(sn, xn)dr

]

≤ supα∈Aπn
r (sn,tnkn )

E
[

∫ tn
kn

sn
f(xn, αr, β̃r)Dϕ(sn, xn)dr

]

,

where β̃(ω, u) =
∑Nn

l=kn+1 ṽ(ζ2,l)(ω)1[tl−1,tl)(s), for some arbitrary measurable map ṽ : [0, 1] → V .

Now we can find a (tnkn − sn)
2-optimal strategy αn (depending on β̃) such that

−(tnkn − sn)
(

∂
∂t
ϕ(sn, xn) +m(C|tnkn − sn|) + (tnkn − sn)

)

≤ E
[

∫ tn
kn

sn
f(xn, α

n
r , β̃r)Dϕ(t, x)dr

]

= E
[

∫ tn
kn

sn
f(xn, α

n(ζ1,kn , ṽ)r, ṽ(ζ2,kn))Dϕ(sn, xn)dr
]

.

Due to the time delay, on [sn, t
n
kn
], αn doesn’t depend on the control ṽ of Player 2. (Note that

this is the crucial point where we use that both players have the same time grid.) Then, thanks
to the independence between ζ1,kn and ζ2,kn , we get

−(tnkn − sn)
(

∂
∂t
ϕ(sn, xn) +m(C|tnkn − sn|) + (tnkn − sn)

)

≤ (tnkn − sn) supµ∈P(U)

∫

U
E[f(xn, u, ṽ(ζ2,kn))Dϕ(sn, xn))µ(du).
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Thus, thanks to the arbitrariness of ṽ,

−(tnkn − sn)
(

∂
∂t
ϕ(sn, xn) +m(C|tnkn − sn|) + (tnkn − sn)

)

≤ (tnkn − sn) inf ṽ supµ∈P(U)

∫

U
E[f(xn, u, ṽ(ζ2,kn))Dϕ(sn, xn))µ(du)

= (tnkn − sn) infν∈P(V ) supµ∈P(U)

∫

U×V
f(xn, u, v)Dϕ(sn, xn)µ(du)ν(dv).

Now recall that (sn, xn) → (t, x) and that 0 ≤ (tnkn − sn) ≤ (tnkn − tnkn−1
) ≤ |πn| → 0 as n → ∞.

Therefore, taking the limit as n → ∞, we obtain

−
∂

∂t
ϕ(t, x) ≤ inf

ν∈P(V )
sup

µ∈P(U)

∫

U×V

f(x, u, v)Dϕ(t, x)µ(du)ν(dv).

The result follows.

Proposition 5.2 (viscosity supersolution) The function W̃ (t, x, p̂, q) is a viscosity supersolution
of HJI equation (5.1).

Proof Note that

−W π (t, x, p, q) = sup
(αi)∈(Aπ

r (t,T ))I
inf

(βj)∈(Bπ
r (t,T ))J

I
∑

i=1

J
∑

j=1

piqjE
[

−gij

(

X
t,x,αi,βj

T

)]

.

The right side of this equation has the same form as V π, only the role of players changes.
Hence, the convex conjugate of (−W π) with respect to q, i.e., −W π# (−q̂) satisfies a subdynamic
programming principle. Then, as a consequence of the above result for Ṽ , we can deduce easily
the following:
For any (t, x, p, q̂) ∈ [0, T ) ×Rd ×∆(I)×RJ , and for all l (k ≤ l ≤ n), we have

W πn# (t, x, p, q̂) ≥ sup
α∈Aπ

r (t,tnk)
inf

(βj)∈Bπ
r (t,tnk)

E
[

W πn#
(

tnk ,X
t,x,α,β
tn
k

, p, q̂
)]

, (5.3)

and W̃ , the uniform limit on compact sets of (W πn#), is a supersolution of the HJI equation
(5.1).
(Here we have used equality (5.2). Actually W̃ is a supersolution of (5.1) with Hamiltonian

H∗ (x, ξ) = sup
µ∈P(U)

inf
ν∈P(V )

∫

U×V

f (x, u, v) µ (du) ν (dv) · ξ.)

�

6 Existence of the value

In this section we show that the limit of the game along partitions has a value. This value can
be characterized by dual solutions of some HJI equation.

We now recall the definition of dual solutions for the following HJI equation:
{

∂V
∂t

(t, x) +H (x,DV (t, x)) = 0, in [0, T ]×Rd,
V (T, x) =

∑

ij piqjgij (x) ,
(6.1)

where

H (x, ξ) = inf
µ∈P(U)

sup
ν∈P(V )

(
∫

U×V

f (x, u, v) µ (du) ν (dv) · ξ

)

.
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Definition 6.1 A function w : [0, T ] ×Rd ×∆(I)×∆(J) 7→ R is a dual subsolution of (6.1)
if w is Lipschitz continuous, convex with respect to p, and concave with respect to q and if for
any (p, q̂) ∈ ∆(I)×RJ , (t, x) 7→ w# (t, x, p, q̂) is a supersolution of the dual HJ equation

∂V
∂t

(t, x) +H∗ (x,DV (t, x)) = 0, in [0, T ]×Rd, (6.2)

where H∗ (x, ξ) = −H (x,−ξ).
We call w : [0, T ]×Rd ×∆(I)×∆(J) 7→ R a dual supersolution of (6.1), if w is Lipschitz

continuous, convex with respect to p, and concave with respect to q and if for any (p̂, q) ∈
RI ×∆(J), (t, x) 7→ w∗ (t, x, p, q̂) is a subsolution of (6.2).

The function w is called the dual solution of (6.1) if w is at the same time a dual subsolution
and a dual supersolution of (6.2).

Note that P (U) and P (V ) are compact spaces. The measures µ ∈ P (U) and ν ∈ P (V )
can be interpreted as control variables. Therefore, the comparison principle applies here in the
sense of Cardaliaguet [8].

Lemma 6.1 (comparison principle) Let w1, w2 : [0, T ]×Rd ×∆(I)×∆(J) 7→ R a dual subso-
lution and a dual supersolution of HJ (6.1), respectively. If, for all (x, p, q) ∈ Rd×∆(I)×∆(J),
w1 (T, x, p, q) ≤ w2 (T, x, p, q), then we have w1 ≤ w2 on [0, T ]×Rd ×∆(I)×∆(J).

We now state the main result of the paper.

Theorem 6.1 (uniqueness and existence of the value) For all sequences of partitions (πn) with
|πn| → 0, the sequences (V πn) and (W πn) converge uniformly on compact sets to a same Lipschitz
continuous function V , which is the unique dual solution of the HJ equation (6.1).

We will establish a, in appearance, weaker result :

Proposition 6.1 For all sequences of partitions (πn) with |πn| → 0, there exists a subsequence
of partitions, still denoted by (πn)n≥1, such that (V πn ,W πn) converges uniformly on compact
sets to a couple (V, V ), where the function V is the unique solution of the HJ equation (6.1).

But we remark that, if Proposition 6.1 is true for the partition (πn), it holds also for all
subsequence of (πn): there exists a sub-subsequence (πnl

) such that (V πnl ,W πnl ) converges uni-
formly on compact sets. But Proposition 6.1 characterizes the limit V (= W ) as the unique dual
solution of the Hamilton-Jacobi-equation (6.2). Consequently, all converging sub-subsequences
have the same limit, and the Theorem 6.1 follows.

Proof of Proposition 6.1

Step 1. We know since Lemma 3.1 that, for all n, V πn and W πn are Lipschitz continuous
in all their variables, with the same Lipschitz constant depending only on f and g. It follows
that there is a subsequence of partitions, still denoted by (πn)n≥1 and two bounded Lipschitz

functions V , W :[0, T ]×Rd ×∆(I)×∆(J) 7→ R such that (V πn ,W πn) → (V,W ) uniformly on
compact sets in [0, T ]×Rd×∆(I)×∆(J) and, obviously, the functions V,W are also Lipschitz
continuous with respect to all their variables, convex in p, concave in q (see Lemma 3.2).

Step 2. Recall that W̃ = lim
n→+∞

(W πn)#, Ṽ = lim
n→+∞

(V πn)∗. Due to our results in Section

5, w1 := W̃# and w2 = Ṽ ∗ are, respectively, a dual subsolution and a dual supersolution of HJI
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equation (6.1) and W̃# (T, x, p, q) = Ṽ ∗ (T, x, p, q) =
∑

ij piqjgij (x). Then, by the comparison
principle (Lemma 6.1), we have

W̃# ≤ Ṽ ∗ on [0, T ]×Rd ×∆(I)×∆(J) . (6.3)

Step 3. Since V πn converges to V uniformly on compact sets, for any ε,M > 0, there is a
positive integer Nε,M such that for all n ≥ Nε,M , t ∈ [0, T ] and |x| ≤ M , (p, q) ∈ ∆(I)×∆(J),

|V πn (t, x, p, q)− V (t, x, p, q)| ≤ ε.

Here ε > 0 is arbitrarily given. Consequently, we have for all n ≥ Nε,M , t ∈ [0, T ], |x| ≤ M and
(p̂, q) ∈ RI ×∆(J),

|V πn∗ (t, x, p̂, q)− V ∗ (t, x, p̂, q)| ≤

∣

∣

∣

∣

∣

sup
p∈∆(I)

{p̂ · p− V πn (t, x, p̂, q)} − sup
p∈∆(I)

{p̂ · p− V (t, x, p, q)}

∣

∣

∣

∣

∣

≤ sup
p∈∆(I)

|V πn (t, x, p̂, q)− V (t, x, p, q)|

≤ ε.

Hence, Ṽ = lim
n→+∞

V πn∗ = V ∗, and, consequently, since V is convex in p, V = V ∗∗ = Ṽ ∗.

In a symmetric way, it is easy to get that W̃# = lim
n→+∞

W πn = W .

As a consequence of (6.3), we have W ≤ V in [0, T ] ×Rd ×∆(I) ×∆(J). Observing that
W = lim

n→+∞
W πn ≥ lim

n→+∞
V πn = V , we obtain that the game has a limit value

W = V in [0, T ]×Rd ×∆(I)×∆(J) .

From the above proof we deduce that the value V (= W ) is the unique dual solution of HJ
equation (6.1). �

7 The case of lack of information on the dynamics

In this section, we consider a game in which the players have also an asymmetric information on
the dynamics: In each of the scenarios (i, j) ∈ {1, . . . , I} × {1, . . . , J} the game has a different
dynamic given by

{

dX
t,xij ,u,v

ij (s) = fij

(

X
t,xij ,u,v

ij (s) , u (s) , v (s)
)

ds, s ∈ [t, T ] , (u, v) ∈ Ut,T × Vt,T

X
t,x,u,v
ij (t) = xij ∈ Rd,

(7.1)

where fij : R
d × U × V 7→ Rd is bounded, continuous and Lipschitz continuous in x, uniformly

with respect to (u, v). The possible payoffs are still given by gij

(

X
t,xij ,u,v

ij (T )
)

, with gij bounded

and Lipschitz.
As already in the sections before, for some fixed (p, q) ∈ ∆(I) ×∆(J), at time t, a scenario

(i, j) is chosen at random with the probability piqj; the choice of i is communicated only to
player 1, while the choice of j is communicated only to player 2. The players observe their oppo-
nent’s behavior and try to deduce from it their missing information. Player 1 aims to minimize,
Player 2 to maximize the payoff. We remark that, in the case with Isaacs’ assumption but with
correlated information, the case of lack of information on the dynamics has been considered by
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Oliu Barton [22].

As in the previous chapters, we fix a partition π = {t0 = t < . . . < tN = T}. Keeping the
same definitions for the sets of strategies Aπ

r and Bπ
r , the upper and lower values of the game

associated to π are then, respectively, for (p, q) ∈ ∆(I)×∆(J), (t,x) ∈ [0, T )×
(

Rd
)IJ

,

W π (t,x, p, q) = inf
(αi)∈(Aπ

r (t,T ))I
sup

(βj)∈(Bπ
r (t,T ))J

I
∑

i=1

J
∑

j=1

piqjE
[

gij

(

X
t,xij ,αi,βj

ij (T )
)]

, (7.2)

and

V π (t,x, p, q) = sup
(βj)∈(Bπ

r (t,T ))J
inf

(αi)∈(Aπ
r (t,T ))I

I
∑

i=1

J
∑

j=1

piqjE
[

gij

(

X
t,xij ,αi,βj

ij (T )
)]

. (7.3)

The idea to solve this case of asymmetric information is to blow up the dynamics: We
introduce the following auxiliary dynamic with values in Rd×I×J :

{

dXt,x,u,v (s) = F
(

Xt,x,u,v (s) , u (s) , v (s)
)

ds, s ∈ [t, T ] ,
Xt,x,u,v (t) = x,

(7.4)

with F =(fij) ,x =(xij) and a new family of payoffs Gij (x) = gij (xij). This permits us to
rewrite the value functions as

W π (t,x, p, q) = inf
(αi)∈(Aπ

r (t,T ))I
sup

(βj)∈(Bπ
r (t,T ))J

I
∑

i=1

J
∑

j=1

piqjE
[

Gij

(

X
t,x,αi,βj

T

)]

and

V π (t,x, p, q) = sup
(βj)∈(Bπ

r (t,T ))J
inf

(αi)∈(Aπ
r (t,T ))I

I
∑

i=1

J
∑

j=1

piqjE
[

Gij

(

X
t,x,αi,βj

T

)]

,

and we recover the case of asymmetric information solved in the previous chapters. As a conse-
quence we have the following result:

Theorem 7.1 The limit value of the game exists, as the mesh of partitions tends zero, and it
is the dual solution of the following HJI equation:

{

∂V
∂t

(t,x) +H (x,DV (t,x)) = 0, in [0, T ] ×
(

Rd
)IJ

,
V (T,x) =

∑

ij piqjgij (xij) ,
(7.5)

where

H (x, ξ) = inf
µ∈P(U)

sup
ν∈P(V )

∑

ij

∫

U×V

fij (xij , u, v) µ (du) ν (dv) · ξij

= sup
ν∈P(V )

inf
µ∈P(U)

∑

ij

∫

U×V

fij (xij , u, v) µ (du) ν (dv) · ξij.

Remark 7.1 In the present paper the asymmetric information structure concerns a number of
finite types of the payoffs gij(XT ), i = 1, 2 . . . I, j = 1, 2 . . . J . An interesting question would
concern the case where the set of types is infinite : typically each player, instead knowing a prob-
ability measure with finite support which represent the information on its opponents knowledge,
would know a probability measure which support is an arbitrary subset of some Rq.

In this direction the results of the present paper could be extended using methods of [13] and
[10].
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