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Abstract In this work we extend a result of Lehrer (Math Oper Res 17(1):175–199,
1992a) characterising the correlated equilibrium payoffs in undiscounted two player
repeated games with partial monitoring to the case in which the signals are permitted
to be stochastic. In particular, we develop appropriate versions of Lehrer’s concepts
of “indistinguishable” and “more informative.” We also show that any individually
rational payoff associated with a (correlated) distribution on pure action profiles in
the stage game such that neither player can profitably deviate from one of his actions
to another that is indistinguishable and more informative is the payoff of a correlated
equilibrium of the infinitely repeated game.
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1 Introduction

The folk theorem tells us that in a repeated game with perfect monitoring any feasible
and individually rational payoff is an equilibriumpayoff as long as the players are suffi-
ciently patient. The original and cleanest version of this result deals with undiscounted
games.

Without perfect monitoring the result is not true. Onemay think of the case in which
no player ever learns anything about how the others played as an extreme example. In
a series of papers Lehrer (1989, 1990, 1991, 1992a, b, c) gave some characterisation
of the equilibrium payoffs in undiscounted games with partial monitoring. Like the
folk theorem (most of) Lehrer’s results characterise the equilibrium payoffs in the
repeated game in terms of easily calculated aspects of the stage game. Lehrer’s work
deals with both two player games and n-player games.

The cleanest of Lehrer’s results deals with the correlated equilibria of two player
games. There is a clear intuition as to why this should be the case. With partial mon-
itoring each player receives at the end of each stage some signal that depends on the
actions taken in that stage. In general different players will receive different signals.
Thus from the next stage on an equilibrium of the original game will generate not a
Nash equilibrium but rather a correlated equilibrium. We also see that having more
than two players adds substantial complications. With more than two players and par-
tial monitoring the signals may or may not provide a way for two players to privately
communicate. This will make a difference as to how severely a pair of players can
punish a third, for example.

In a two player game, Lehrer (1992a) considers the set of (correlated) distributions
on profiles of moves such that no player could gain by deviating in an undetectable
way. He shows that any payoff associated with such a distribution is achievable as a
correlated equilibrium of the infinitely repeated game.

There are two aspects of the notion of a deviation being undetectable. The first is
that if player 1 changing from action s to action t would lead to a different signal to
player 2 then that deviation would be detectable. And even if this was only true if
player 2 was taking some particular action one could think of player 2 as occasionally
taking that action to “check” on player 1. Lehrer calls two actions of player 1 that
generate the same signal for player 2 whatever player 2 does “indistinguishable.” One
might think that a deviation that involved deviating from some action to an action that
was indistinguishable from it could not be detected. This however is not true.
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Correlated equilibria of two person repeated games… 139

The problem is that while two actions may generate the same signal for the other
player they may not lead to the same information for the player taking the action. Thus
player 1 might get perfect information about the action taken by player 2 if he takes
action s and no information if he takes action t . Then player 2 could check if player 1
was playing s when he was expected to by requiring player 1 to take actions leading to
different signals to player 2 depending onwhat player 1 had learned aboutwhat player 2
had done. If player 1 had deviated to t he would be unable to respond appropriately.

Thus Lehrer defines also a notion of one action being “more informative” than
another. A deviation from action s to t is undetectable if t is both indistinguishable
from s and more informative than s. Of course to make the argument in the previous
paragraph required player 2 to be able to tell if player 1 was responding appropriately.
Thus there must be actions by player 1 that lead to different signals to player 2. Lehrer
called a game such that each player had some possibility to communicate with the
other through his choice of action one with a “nontrivial signalling structure,” and his
results deal with games with such a signalling structure.

In this paper we extend this result of Lehrer concerning the correlated equilibria
of two player games. In Lehrer’s models the signals are deterministic. That is, for
given actions of the players the signals to the players are determined. We extend the
analysis to allow the signals to be stochastic. This introduces some complications and
requires some statistical computations.One aspect inwhich the analysis changes is that
deviations to mixed actions need to be explicitly considered. Another is that there is
some extra difficulty in transmittingmessages between the players, and in particular in
telling the other player which stage he should report. That this is possible is the content
of Claim 1 in the proof. However the idea of the proof is, in its essential features, not
very different than that developed by Lehrer. Much of the statistical computation is
done using Blackwell’s approachability theorem.

2 Related literature

Even at the time of Lehrer’s original papers there was a significant literature on dis-
counted gameswith imperfectmonitoring.Green andPorter (1984),Abreu et al. (1986,
1990), Fudenberg and Levine (1991), and (earlier versions of) Fudenberg et al. (1994)
are among the most important. Since that time there has been a very large literature
on discounted repeated games with imperfect monitoring. However the techniques,
and even the questions addressed, are quite different to those of the literature on
undiscounted repeated games. The solution concepts are typically subgame perfect
equilibria or sequential equilibria, which require exact optimality at all information
sets, ruling out many of the techniques used in the undiscounted case. This makes the
problem considerably more difficult and there are few results characterising the set
of all equilibrium payoffs. Rather sufficient conditions are given for some efficient
outcome to be supported as an equilibrium payoff. We shall say nothing further about
discounted repeated games. Good surveys of the literature on discounted repeated
games are Kandori (2002) and Mailath and Samuelson (2006). Renault and Tomala
(2011) and Gossner and Tomala (2009) survey results for both discounted and undis-
counted games.
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The literature on undiscounted games is more manageable. The most directly rel-
evant paper is Renault and Tomala (2004). They consider all finite stage games rather
than just two-player games and look at communication equilibria rather than correlated
equilibria. They show that the set of communication equilibrium payoffs coincides
with the generalisation to an arbitrary number of players of the set we define as giving
the set of correlated equilibrium payoffs. (For two players it coincides with the set
we define.) Since any correlated equilibrium is a communication equilibrium their
result is stronger for one of the inclusions we show, namely that the set of equilibrium
payoffs is contained in the defined set of payoffs. The inclusion in the other direction
in their paper is weaker.

Thus one way of looking at the result of this paper is that it shows that for two-
player games any communication equilibrium payoff can be achieved as a correlated
equilibrium payoff. This is interesting because there is a literature that focuses on
implementing payoffs supported by less restrictive equilibrium notions, such as com-
munication equilibria, by more restrictive notions, such as correlated equilibria, or
even Nash equilibria. Urbano and Vila (2004), using results developed in Urbano
and Vila (2002) with cryptographic methods, show that in two-player repeated games
with imperfect monitoring correlated equilibrium payoffs can be supported by Nash
equilibria of the game augmented by cheap talk communication with computationally
restricted players. More recently, Liu (2014), also using cryptographic methods, has
shown that with 3 or more players communication equilibrium payoffs can be sup-
ported by Nash equilibria in a game augmented by cheap talk with both public and
private messages or as correlated equilibria in a game with only public messages. Like
Urbano andVila (2002, 2004) he uses cryptographic methods, but unlike them he does
not assume any computational restrictions. Heller et al. (2012), in a class of extensive
form games they call games with public information, show that communication equi-
librium payoffs can be supported with cheap talk as correlated equilibria, or, under
additional conditions and using more complex cheap talk, as Nash equilibria.

Solan (2001) shows that in stochastic games with perfect monitoring communica-
tion equilibrium payoffs can be supported by extensive form correlated equilibria or
even, under some conditions that would be satisfied in repeated games, as correlated
equilibria. These results are particularly interesting since they do not involve augment-
ing the game by cheap talk. One might ask whether the ideas developed in this paper
might be used to extend the results of Solan (2001) to gameswith imperfectmonitoring.

3 Preliminaries

We start by recalling the definition of a repeated game. The notation and definitions
follow Sorin (1990) and Mertens et al. (2015).

We let I = {1, 2} denote the set of players, Si for i = 1, 2 the finite set of actions
for player i in the stage game with S = S1 × S2, and g : S → R

2 the payoff function.
We assume that g is normalised to take values between 0 and 1. We denote by G the
normal form game defined by I , S, and g; by Xi the set of mixed actions of player i ,
that is, probabilities on Si , with X = X1 × X2; by P the set of probabilities on S
(correlated actions) and by g also the extension of the payoff function to X and to P .
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Correlated equilibria of two person repeated games… 141

The infinitely repeated game � with stage game G is played as follows: At stage
n + 1, each player observes a signal ain from some finite set Ai , jointly generated
(perhaps stochastically) by sn the profile of actions of the players in the previous
stage. We assume perfect recall, that is, that each player remembers the signals he
received in the past and the actions he took. For notational convenience we assume
that ain reveals, at least, sin . Thus player i makes his decision at stage n + 1 based on
the sequence of signals {ai1, ai2, . . . , ain}. Each player i , at stage n+1, chooses a move
sin+1 and the signals an+1 are generated, and each player i is informed of ain+1. The
game continues to stage n + 2. Finally the above description is commonly known.

Aplay in the game� is an infinite sequence (s1, g1, a1, s2, . . ., an−1, sn, gn, an, . . .)
where gn = g(sn), and an is the realisation of the signal generated by the action sn .
The set of all plays is denoted by H∞. The initial part of a play ending in stage n
(that is, a finite sequence (s1, g1, a1, s2, . . . , an−1, sn, gn, an)) is called an n-history
and the set of all n-histories is Hn . The set of all histories is H = ∪nHn .

We let Hn be the σ -algebra generated by Hn , H∞ the product σ -algebra ∨nHn ,
and H the induced σ -algebra on H . Similarly we let Hi

n be the set of sequences
(ai1, . . . , a

i
n)—recall that we assume that at each stage ai reveals si . And we let Hi

n
be the σ -algebra on H∞ generated by Hi

n and Hi be player i’s information partition
on H generated by the restriction of each Hi

n to Hn .
A pure strategy for player i is aHi -measurable function from H to Si . A behaviour

strategy for player i is aHi -measurable function from H to Xi . And a mixed strategy
is a probability distribution over pure strategies.

A profile of behaviour strategies σ defines a probability Pσ on (H∞,H∞). We let
γ̄n(σ ) = Eσ ( 1n

∑n
m=1 gm) denote the expected average payoff for the first n stages

under σ . For some such strategies these averages may not converge in the usual sense.
Thus, in order to be able to define equilibria in the usual sense we use the notion
of a Banach limit. For any Banach limit L and for any pair of strategies this defines
the payoff to that pair of strategies and with the payoffs well defined the concept of
equilibrium is defined in the usual way. We call such equilibria L-equilibria.

We give here three relevant definitions from Mertens et al. (2015).

Definition 1 Let �∞ denote the space of all bounded sequences of real numbers. A
linear functional F : �∞ → R is called a Banach limit if F({ξn}) ≤ lim sup({ξn}) for
all {ξn} in �∞ and ηn = ξn+1 for all n implies that F({ηn}) = F({ξn}).

A stronger notion of equilibrium than L-equilibrium is that of uniform equilibria.

Definition 2 The strategy σ is a uniform equilibrium if γ̄ i
n(σ ) converges to some

γ̄ i (σ ) and for all ε > 0, there exists N such for all n > N , for each i , and for all τ i ,
γ̄ i
n(σ

−i , τ i ) ≤ γ̄ i (σ ) + ε.

Correlated equilibria are defined as the equilibria of the game obtained from the
original game by augmenting it with a correlation device.

Definition 3 A correlation device c (for the player set I ) is a probability space
(E, E, P) together with sub σ -fields (E i )i∈I of E . The extension �c of a game �

by c is the game where first nature selects e from E according to P , next each player i
in I is informed of the events in E i which contain e, then � is played. A correlated
equilibrium of � is a pair (c, equilibrium of �c).
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4 The model with non-stochastic signals

Here we develop formally the model of Lehrer of games with nonstochastic signals.
After each move s, each player i observes ai = Qi (s), where Qi is a mapping from
S to some finite set of signals Ai . Recall that we assume the game has perfect recall
and that Qi reveals i’s move, that is, for any profiles of actions s and t if si �= t i then
Qi (s) �= Qi (t).

We now define what it means for a game to have a nontrivial signalling structure.
We shall be concerned only with games satisfying this condition. Games for which this
condition is not satisfied are quite easy to deal with, since at least one of the players
never observes anything about what the other player is doing.

Definition 4 (Nontrivial signalling structure) A game is said to have a nontrivial
signalling structure if for both players i = 1, 2 there exists si in Si and s j , t j in S j

with j �= i such that Qi (si , s j ) �= Qi (si , t j ).

Next we define the notion of actions being indistinguishable. This means that the
other player cannot tell them apart on the basis of the signal he receives.

Definition 5 (Indistinguishable) Two actions of player i , si and t i are said to be
indistinguishable if Q j (si , s j ) = Q j (t i , s j ) for all s j in S j .

Andfinally one action ismore informative than another if taking thefirst action gives
at least as much information about what the other has done as taking the second action.
Sincewe shall only be concernedwith situations inwhich actions are indistinguishable
and one is more informative we shall include the requirement that the actions be
indistinguishable part of the definition of more informative.

Definition 6 (More informative) One action of player i , si , is said to be more infor-
mative than another, t i , if si and t i are indistinguishable and Qi (t i , s j ) �= Qi (t i , t j )
implies that Qi (si , s j ) �= Qi (si , t j ) for all s j and t j in S j .

This definition means that player i always gets no more information on player j’s
move by playing t i than by playing si .

Comment 1 The indistinguishable relation is an equivalence relation and the more
informative relation is a partial order. In particular, both are transitive.

The sets of equilibrium payoffs are characterised in terms of the sets

Ai =
⎧
⎨

⎩
P ∈ P

∣
∣
∣
∣

∑

s j

P(si , s j )gi (si , s j ) ≥
∑

s j

P(si , s j )gi (t i , s j )

for all si , t i in Si with t i more informative than si

⎫
⎬

⎭

We denote the set of correlated equilibrium payoffs in the infinitely repeated game by
C∞, and the set of individually rational payoffs in the one-shot game by IR. Lehrer
(1992a) proves the following theorem.
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Theorem 1 The set of payoffs of correlated equilibria of the infinitely repeated game
equals g(A1 ∩ A2) ∩ IR.

5 The model with stochastic signals

In this section we describe a model in which the signals are stochastic. That is, the
actions of the players determine the distribution of the generated signals, not the
actual realisation. Given the actions (si , s j ) of the players we let θ((·, ·) | si , s j ) be
the joint distribution on the space of signals A = Ai × A j . We also denote the derived
distribution θ j (· | si , s j ) the marginal distribution on A j and extend this to mixed
actions of player i in the obvious way as

θ j (· | xi , s j ) =
∑

si

x i (si )θ j (· | si , s j ).

Definition 7 (Nontrivial signalling structure) A game is said to have a nontrivial
signalling structure if for both players i = 1, 2 there exists si in Si and s j , t j in S j

with j �= i such that θ i (· | si , s j ) �= θ i (· | si , t j ).
Logically, perhaps, we should use mixed actions in the previous definition but it is

trivially equivalent to use pure actions. In the definitions that follow we do need to
explicitly consider mixed actions. In the situation in which the signalling is determin-
istic if there are no pure actions that are indistinguishable from a given action then
there can be no mixed actions that are indistinguishable either. However the same is
not true in the situation with stochastic signalling. Here the relevant notion of indistin-
guishable is that the actions produce the same distribution on the signals of the other
player so that the other player could with some statistical test tell, with some degree
of certainty, which of the actions was being taken. And it could well be that while the
distributions on the signals of the others from two pure actions are both different from
the distribution generated by a third action that some mixture of the first two actions
might generate exactly the distribution generated by the third action. And similarly,
when considering when an action is more informative than a given action it might be
that while no pure action is more informative some mixture might be. And, if so, we
could not prevent a player from deviating to that mixed action.

Definition 8 (Indistinguishable) Two mixed actions of player i , xi and yi are said to
be indistinguishable if θ j (· | xi , s j ) = θ j (· | yi , s j ) for all s j in S j .

As in the model with non-stochastic signalling player j can’t tell, on the basis of
the signal he received whether player i played xi or yi .

We use Blackwell’s (1951) idea of one experiment being more informative than
another to define a notion of one action being more informative than another in the
setting in which signals are stochastic. We shall first recall Blackwell’s definition in a
more general setting.

Let M be the space of parameters in which we are interested. An experiment
consists of � a set of possible observations and Ym(·) a set of probability distributions
over � for every m inM.
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144 J. Hillas, M. Liu

Definition 9 (Blackwell 1951) The experiment Y 1 is more informative than Y 2 if
there exists Lω1(·) (that is, for all ω1 in �1, a probability distribution over �2) such
that for all m inM, for all ω in �2, Y 2

m(ω) = ∑
ω1∈�1

Y 1
m(ω1)Lω1(ω).

In the definition that follows we define one action to be more informative than
another if it is more informative in the sense of Blackwell about both the action the
other takes and the signal he receives. (That is, the space of parameters specifies both
the action taken and the signal observed by the other.) Again this differs a little from the
situation with deterministic signalling. There the signal of the other was completely
determined by the actions and so there was no need for an independent concern with
the observation of the other.

Definition 10 (More informative) One mixed action xi of player i is said to be more
informative than another yi if xi and yi are indistinguishable and there exist Lai (·) in

Ai (that is, for all ai in Ai , a probability distribution over Ai ) such that for all a j in
A j and for all s j in S j ,

θ i (· | yi , a j , s j ) =
∑

ai∈Ai

θ i (ai | xi , a j , s j )Lai (·)

where θ i (ai | yi , a j , s j ) = ∑
si y

i (si )θ((ai , a j ) | si , s j )/∑si y
i (si )θ j (a j | si , s j ).

Comment 2 Again, the indistinguishable relation is an equivalence relation and the
more informative relation is a partial order.

We now define the sets we will use to characterise the equilibrium payoffs. Let

Āi =
⎧
⎨

⎩
P ∈ P

∣
∣
∣
∣

∑

s j

P(si , s j )gi (si , s j ) ≥
∑

s j

P(si , s j )gi (yi , s j )

for all si in Si and yi in Xi with yi more informative than si

⎫
⎬

⎭
,

that is, the set of correlated strategies such that, when advised to play si , player i
cannot gain by deviating to yi in Xi for any yi more informative than si .

6 Preliminary results

In this section we give two preliminary results. Both results are very minor modifi-
cations of results in Mertens et al. (2015) to the stochastic signalling case. The first
result is Proposition 4.5 from their Chapter IV. They assume that the signalling is
deterministic but their proof does not depend on this.1 Renault and Tomala (2011) in

1 A version of this paper containing a somewhat more detailed version of the proof of Mertens et al. (2015)
with some minor modifications to make clear that it does not depend on the assumption of nonstochastic
signalling is available from the first author.
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Lemma 2.13 also state this result in the context of games with stochastic signalling
and sketch the proof of Mertens et al. (2015).

Proposition 1 The payoff profile d is a uniform equilibrium payoff if and only if there
exists a decreasing sequence εm converging to 0, and sequences Nm and σm such that
σm is an εm-equilibrium in �Nm leading to a payoff within εm of d.

Comment 3 AsMertens et al. (2015) point out, the result remains true if we consider
equilibria of the game augmented by a correlation device.

The following lemma is a (rather trivial) extension of Lemma 4.6 of Chapter 4 of
Mertens et al. (2015) to the stochastic signalling case.

Lemma 1 In the infinitely repeated two-person stochastic signalling game, given a
pure strategy σ 1, at each history h player 1 can use any (mixed) action y1 that is more
informative than σ 1(h) = s1 rather than s1, while still inducing the same probability
distribution onH2.

Proof The signal distributions to player 2 will be the same if player 1 plays y1 instead
of s1 because the two actions are indistinguishable. Now at the next stage, since y1 is
more informative than s1, player 1 can generate the same probability distribution over
his space of signals that would have resulted from him playing s1 from the signals that
he actually observed when playing y1 and play accordingly in the future. ��

7 The main result

In this section we prove our main result, extending Lehrer’s result to the model with
stochastic signalling. Many of the details of the proof follow quite closely the proof
of Theorem 1 given in Mertens et al. (2015).

Theorem 2 The set of payoffs of correlated equilibria of the infinitely repeated game
equals g(Ā1 ∩ Ā2) ∩ IR.

Proof We shall show that C∞ ⊂ g(Ā1 ∩ Ā2) ∩ IR ⊂ C∞. To show the first inclusion
let d = (d1, d2) be an L-equilibrium payoff not in g(Ā1 ∩ Ā2). (The inclusion in IR
is clear, because if not, the players will always be better off by deviating to individual
rational actions contradicting the supposition that d was an equilibrium payoff.)

Now we show that any strategy leading to a payoff outside g(Ā1 ∩ Ā2) cannot be
a correlated equilibrium. The idea is simple. From such a strategy a player can gain
by replacing any action recommended to him by his most preferred (mixed) action
among those that are more informative than the recommended action.

The equilibrium strategies σ together with the correlation device give, for each
stage n, an induced distribution on S, which we denote Pn . We let P̄n = 1

n

∑n
m=1Pm

and P̃ = L(P̄n). Thus d = g(P̃).
Now, for any P in P we define P1 in Ā1 that results when player 1 replaces any

action by one that is most preferred among those that are more informative. First
let the map ϕ1 : S1 → X1 be such that ϕ1(s1) maximises

∑
s2 P(s1, s2)g1(y1, s2)
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146 J. Hillas, M. Liu

on the set U = {y1 ∈ X1 | y1 is more informative than s1}. Now let P1(s1, s2) =∑
t1 ϕ1(t1)(s1)P(t1, s2). (The term ϕ1(t1)(s1) is the weight that the mixed action

ϕ1(t1) puts on the action s1.)
Suppose that P̃ is not in Ā1. Let ϕ̃1 be the map described in the previous paragraph

when P = P̃ . Let τ 1 be obtained from σ 1, the equilibrium strategy of player 1, by
using, at each stage, ϕ̃1(s1) rather than s1 and generating for the following stages
(by adding some random element, if necessary) a signal having the same distribution
as the distribution on the signals that would have resulted from using s1. Thus from
Lemma 1

L(γ̄ 1
n (τ 1, σ 2)) = g1(P̃1) > g1(P̃)

contradicting the supposition that σ was an equilibrium.
To show the inclusion of g(Ā1 ∩ Ā2)∩ IR in C∞ consider P in Ā1 ∩ Ā2 with g(P)

in IR. By Proposition 1 it is enough to construct, for any ε > 0, an ε-equilibrium in a
finite game with payoff within ε of g(P). Let ε = 5ε1.

We construct the finite game and the ε-equilibrium in the following way. First we
define a block consisting of a large number of “normal” stages followed by a phase
in which each player randomly chooses for the other the stage about which he is to
report, and then each reports the signal he observed at that stage. We can accomplish
this in such a way that

1. the fraction of “normal” stages is high
2. during the “normal” stages the players play in a way that leads to the desired

payoff,
3. each player communicates to the other with high accuracy the stage that the other

is to report, and
4. neither player can profitably deviatewithout substantially changing the distribution

on the signals observed by the other player.

We next consider a larger block, consisting of a large number of the previously
defined blocks. Since in the smaller blocks neither player could profitably deviate
without changing the distribution on the other player’s signals, in the larger block
each player can partition his observations into two sets so that

1. if the other player has not deviated the observation will lie, with high probability,
in the first set, while

2. if the other player has deviated in a manner giving him a significant gain the
observation will, with high probability, lie in the second set.

Finally we put a large number of these larger blocks together so that for almost all
of those blocks there remains time to punish deviations.

We first observe that the hypothesis of nontrivial signalling means that the players
can communicate with each other. Whatever information they wish to communicate
can first be encoded as a binary number. Then player 2 has at least two actions s2 and
t2 and a action s1 of player 1 with θ1(· | s1, s2) �= θ1(· | s1, t2). And similarly for
player 1. Now if we want player 2 to communicate a binary number we let s2 denote
“0” and t2 denote “1”. For example, if we want to have player 2 communicate the
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signal that he observed we would label each signal in A2 with a binary number and
translate this to a sequence of s2 and t2. If we wanted the information communicated
with high probability we would have to repeat each “1” or “0” a large number of times.
(Below we see that we do wish to communicate the randomly chosen time accurately,
but do not need to communicate the observation accurately.) For future use we let W
be the number of stages, that is, digits, the players need to report their observed signal
according to some binary code.

The strategies are defined on blocks of stages of size N1 = 2n + 2nK + 2W .
For the first 2n stages of the block the players receive a recommendation from some
correlation device R̄. The correlation device R̄ is the independent product of 2n copies
of the probability R on�1×�2 = (S1∪(S1×S2))×(S2∪(S2×S1)). The distribution
R is obtained by taking the convex combination of the uniform distribution on S (with
probability η) and P (with probability (1 − η)) and independently announcing with
probability η to one of the players the move of his opponent. That is,

R(s) = (η/(#S) + (1 − η)P(s))/(1 + 2η)

R(s1, {s2, s1}) = ηR(s)

R({s1, s2}, s2) = ηR(s).

The device operates as follows. An outcome in (�1 × �2)2
n
is randomly selected

according to R̄. player i is informedof its projection on (�i )2
n
and is asked to follow the

projection of this on (Sk)2
n
. Now, at every one of the first 2n stages each move of each

player is announcedwith positive probability and for each pair of recommendedmoves
there is a positive probability that player 1will also be told player 2’s recommendation.
And similarly there is a positive probability that player 1 will also be told player 2’s
recommendation.

During the next n subsequences of K stages, during each subsequence, player 1
plays an independent mixture (1/2, 1/2) on the moves (s1, t1) at the first stage. Once
this move (s1 or t1) is realised, he plays the same action for the following K −1 stages.
At the same time, player 2 plays s2. We choose s1, t1 and s2 so that θ2(· | s1, s2) �=
θ2(· | t1, s2). For the next n subsequences we reverse the roles of players 1 and 2.
These random moves are used to generate random times m2 and m1 independently
and uniformly distributed on the previous 2n stages and communicate them with a
precision depending on K .

Given ε1 let η < ε1/3. The following claim says that we can let K = K (ε1, n)

be such that each player i hears correctly mi with probability at least 1 − ε1 and let
n be such that (2nK (ε1, n) + 2W ))/2n ≤ η. We leave its proof until after we have
completed the main part of the proof of the theorem.

Claim 1 For any ε1 and n one can choose K = K (ε1, n) so that player 2 may with
probability at least 1− ε1 choose correctly the stage that player 1 is trying to tell him.

And similarly with the roles reversed. Moreover the K (ε1, n)’s can be chosen so that
the fraction of time spent outside the “normal” part of the block converges to zero as
n goes to infinity.

Finally during the last 2W stages the previously defined code is alternatively used
by each player i (i = 1, 2) to report the signal he got at stagemi (i = 1, 2). Note that

123



148 J. Hillas, M. Liu

neither player may know very well exactly what the report of the other player was.
But since in any case the signal that the other player saw is not precisely known it
does not make the proof any easier to repeat the message until it is very likely to be
accurately heard. All that really matters here is that there is some distribution on the
signals that player 1 will observe when player 2 is reporting and that player 2 cannot
generate a similar distribution if he deviates in a way that gives him significant gains.

We now show that if a large number M of these N1 blocks put together then each
player may make a statistical test to check if the other player is deviating—or at least
to check if he is deviating very often. These statistical calculations could be done
directly. However a corollary of the approachability theorem gives us the statistics in
almost exactly the form we need. (See Appendix for a brief discussion of games with
vector payoffs and the approachability theorem.)

Consider an artificial game with vector payoffs with the “stages” being N1 blocks
from the original game. Let S̃1 = {s̄1} be the strategy set of player 1 where s̄1 means
that player 1 follows the recommendation at each stage in the original game. Player 2’s
pure action set S̃2 in the artificial game is the set of his pure strategies in the N1 block
in the true game (including the correlation device). We denote the equilibrium strategy
of player 2 in the original game by s̄2.

Let v = #S1 × #S2 × #A1 × 2n + #S1 × #S2 × #A1 × (#A1)W . We now define
the vector payoff of dimension v + 1 for this game. Each choice of action by player 2
leads to a distribution over the histories in the N1 block. (Recall that player 1 has only
one action.) For the first v dimensions we describe the map from such histories to
payoffs. For the final dimension we define the payoff directly on the strategies.

The first large block has #S1 × #S2 × #A1 × 2n dimensions. In this block, there
are 2n “periods.” For each “period,” there are #S1 × #S2 × #A1 dimensions. Thus,
each dimension of each “period” is indexed by a triple (s1, s2, a1) with s1 in S1, s2 in
S2, and a1 in A1. For each period k = 1, . . . , 2n , if in the original game, in stage k,
player 1 was recommended to play s1 and was told that player 2’s recommendation
was s2 and player 1 observed signal a1, then we put 1 in the (s1, s2, a1) dimension of
period k. Otherwise we put 0.

The second large block of the vector payoff consists of #S1 × #S2 × #A1 parts.
Each part is indexed by a particular (s1, s2, a1), meaning that in the stage that player 1
randomly chose for player 2 to report in the original game, player 1 had been told both
players’ recommendations (s1, s2) and had observed a1. Each part consists of (#A1)W

dimensions, each indexed by a particular sequence of observed signals of player 1. If
in the stage he choose for player 2 to report, player 1 received the recommendation
(s1, s2), observed the signal a1 and then observed a particular sequence of signals
during player 2’s reporting stage we put 1 in the dimension with this index. Otherwise
we put 0.

The third block is the simplest. It has only one dimension, and we denote it by c. We
let c be 0 if player 2 does not deviate with positive probability to an action which gives
him ε/3 more than following the recommendation and 1 otherwise. Let V 2 denote the
set of strategies of player 2 that involve such a deviation. Note that we are dealing here
only with pure strategies. We use the term“with positive probability” only because of
the stochastic signals and the randomisation of the correlation device.
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Thus we have a map from the action space to probability distributions over v + 1
dimensional vectors of zeros and ones, a finite subset of Rv+1, as required for the
version of the approachability theorem given in Appendix. We denote this map by
ϕ̃ : S̃2 → 
({0, 1}v+1). Notice that both the first and second moments of all elements
of ϕ̃(s2) are bounded by 1 for every s2. Moreover, since player 1 has only one strategy
we can, without loss of generality, assume that he observes the realised payoff.

Let ν̄ be the expected value of the first v dimensions of the payoff vector when
player 2 plays s̄2, that is, ν̄ = projEϕ̃(s̄2)ν, where proj denotes the projection onto the
first v dimensions.

Let f̃ (s2) = Eϕ̃(s̄2)ν and Z = Co{ f̃ (s2) | s2 ∈ S̃2}. Now (ν̄, 0) = f̃ (s̄2) is
in Z . And (ν̄, δ) is not in Z for any δ > 0. For suppose that (ν̄, δ) was in Z , then
(ν̄, δ) = ∑

s2∈S̃2 αs2 f̃ (s
2) with 0 ≤ αs2 ≤ 1 and

∑
s2 αs2 = 1. The vector (αs2) is

essentially a mixed action putting positive weight on those strategies involving posi-
tive probability of a deviation to an ε̄-gaining strategy (since δ > 0). This means, the
mixed action at one of the 2n stages of the original game must involve distribution
over player 2’s actions that gains him at least ε̄ compared to his recommended action.
By the construction of Ā2, this mixed action cannot be more informative than his
recommended action. “Not more informative” involves two possibilities. One possi-
bility is that the mixed action is not indistinguishable from the recommended action,
which gives different distributions over player 1’s signals and then leads to a different
distribution on one of the first blocks of the vector payoff. The other possibility is that
the distribution over player 2’s signals gives him less information about player 1’s
action and signal distribution. This means, there is no function from his observation
to his actions in the reporting stage that will give the same distribution over his action
as if he had played as recommended, thus not the same distribution over player 1’s
signals in the reporting phase. This will make the second block of the vector payoff
different from (ν̄, δ).

Now let Zδ = {ν ∈ Z | νv+1 ≥ δ} and let Z0 be the projection on the first v

dimensions of Z(ε1/4). Clearly ν̄ is not in Z0 and Z0 is a closed and convex set. Let
d(Z0, ν̄) = 3q and let O0 be the open q-ball around Z0. (That is, O0 = ∪z∈Z0Bq(z).)

Let O1 = {ν ∈ [0, 1]v+1 | either νv+1 < (ε1/3) or (ν1, . . . , νv) ∈ O0}. Notice
that Z is contained in O1. Also let δn′ = d(Z , ν̄n′), where ν̄n′ is the average payoff for
the first n′ stages of the artificial game.

Now, by Corollary 1 of Appendix, Pr(supn′≥Ma
δn′ ≥ q) ≤ 8/(q2Ma) for any

ε1 > 0 and any integer Ma . In order to have 8/(q2Ma) ≤ ε1, we need to choose
Ma ≥ 8/(ε1q2).

We alsowant tomake sure that if player 2 does follow the recommendation therewill
be a large probability that ν̄n′ will be very close to the point (ν̄, 0). For k = 1, . . . , v,
by the Chebyshev inequality,

Pr

(

| ν̄n′,k − E(ν̄n′,k) |≥ q√
v

)

≤ Var(ν̄n′,k)

(
q√
v
)2

≤ v

n′q2

since Var(ν̄n′,k) ≤ (1/n′). Also Pr(|ν̄n′,v+1 − E(ν̄n′,v+1)| = 0) = 1. Thus
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Pr(| ν̄n′ − E(ν̄n′) |≥ q) = Pr

(√
(ν̄n′,1−E(ν̄n′,1))2 + · · · + (ν̄n′,v − E(ν̄n′,v))2≥q

)

= Pr(((ν̄n′,1 − E(ν̄n′,1))
2 + · · · + (ν̄n′,v − E(ν̄n′,v))

2)≥q2)

≤
v∑

k=1

Pr

(

(ν̄n′,k − E(ν̄n′,k))
2 ≥ q2

v

)

=
v∑

k=1

Pr

(

|ν̄n′,k − E(ν̄n′,k)| ≥ q√
v

)

≤ v2

n′q2
.

If we want this probability to be very small (at most ε12) the number of stages has to
be at least Mb = v2/(ε1

2q2).
Now the most that player 2 can gain in the final 2K (ε1, n) + 2W stages is ε1/3.

And the most he can gain without playing a strategy in V 2 is ε1/3. Thus if he is to
gain ε1 he must deviate to a strategy in V 2 at least ε1/3 fraction of the time. If he does
this and is within q of Z then (ν1, . . . , νv) must lie in O0. Also if ν̄n′ is within q of ν̄

then it is not in O0.
LetM ≥ max{Ma, Mb} and let N2 = MN1 Thus in an N2 superblock, anydeviation

from the recommended strategy which gives player 2 at least ε1 gain will be detected
by player 1 with probability at least 1− ε1. If player 1 detects a deviation by player 2
he will hold player 2 to his individually rational level for the rest of the game.

Let M ′ be the smallest integer greater than 1/ε1 so that the relative size of a block
N2 in games of length N = M ′N2 is (almost exactly) ε1. Then for any strategy τ 2 and
for the strategy σ 1 we have described for player 1

γ̄ 2
N (σ 1, τ 2) ≤ ε1 + (1 − ε1)

(

γ 2(P) + ε1 + 1

M

)

+ 2ε1

= ε1 + γ 2(P) + ε1 + 1

M
− ε1γ

2(P) − ε21 − ε1

M
+ 2ε1

≤ γ 1(P) + 5ε1
= γ 1(P) + ε0.

The reasoning is as follows. The first N2 block in which player 2 deviates to a strategy
in V 2 he will be undetected with probability at most ε1 in which case he could obtain
at most 1 (in every period). If he is detected in the first N2 block in which he deviated
to a strategy in V 2 he could have gained at most ε1 by deviating to strategies not in V 2

and could gain at most 1 for the 1/M of time of that block. Also, by construction, the
equilibrium strategies lead to a payoff that is within 2ε1 of γ 2(P). (When following
the described strategies in an N1 block the equilibrium payoff differs by at most ε1
from γ 2(P) and the probability of player 1 observing a signal in O0 in some N1 block,
and so punishing player 2, is at most ε1—or more accurately Mε1

2 which is almost
exactly the same thing.) ��
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We now prove the claim that we made, but did not prove, above. This will complete
the proof of the result.

Proof of Claim 1 We divide player 1’s signal space A1 into two categories, A1
0 and

A1
1, according to the ratio of Pr(a1 | s1, s2)/Pr(a1 | s1, t2). If the ratio is between 0

and 1 then a1 is in A1
1; if the ratio is larger than 1 then a1 is in A1

0. Thus Pr(A
1
0 |

s1, s2) > Pr(A1
0 | s1, t2) and Pr(A1

1 | s1, s2) < Pr(A1
1 | s1, t2). Let Y be the

number of times in the sequence of K trials that the observed signal is in A1
0. Let

Ps = Pr(A1
0 | s1, s2), Pt = Pr(A1

0 | s1, t2). If player 2 plays s2, K Ps = E(Y | s1, s2),
and if player 2 plays t2, K Pt = E(Y | s1, t2).

We will next select K so that Pr(Y ≤ K (Ps + Pt )/2 | s1, s2) ≤ ε1/n and Pr(Y ≥
K (Ps + Pt )/2 | s1, t2) ≤ ε1/n. Then the probability that in any of the n K -blocks
that Yn will be in the wrong set is less than ε1.

If player 1 plays s1 and player 2 plays s2 then E(Y | s1, s2) = K Ps and Var(Y |
s1, s2) = K Ps(1 − Ps). Thus, from the Chebyshev inequality,

Pr(Y ≤ K (Ps + Pt )/2 | s1, s2) = Pr(Y − K Ps ≤ K (Pt − Ps)/2 | s1, s2)
≤ Pr(| Y − K Ps |≥ K (Ps − Pt )/2 | s1, s2)
≤ K Ps(1 − Ps)

(K (Ps − Pt )/2)2
= 4Ps(1 − Ps)

K (Ps − Pt )2
.

Similarly

Pr

(

Y ≥ 1

2
K (Ps + Pt ) | s1, t2

)

≤ 4Pt (1 − Pt )

K (Ps − Pt )2
.

And so if we choose K to be (the smallest integer greater than) 4n/(ε1(Ps − Pt )2))
then both probabilities will be less than ε1/n.

Also, K < (4n/(ε1(Ps − Pt )2))) + 1 and so

lim
n→∞

nK

2n
≤ lim

n→∞

(
4n2

2nε1(Ps − Pt )2
+ n

2n

)

= 0.

So (2nK (ε1, n) + 2W )/2n converges to 0 as n goes to infinity and we can choose n
so that this is less than η. ��
Comment 4 In fact the set of payoffs to communication equilibria (seeForges 1986) is
also the same set. Since the notion of communication equilibrium is more general than
that of correlated equilibrium one needs only to check the inclusion in g(Ā1∩Ā2)∩IR.
This proof is essentially no different than the proof given for the inclusion of the set
of payoffs to correlated equilibria. Renault and Tomala (2004) prove this result for a
much more general class of games.

Comment 5 In the proof we used the notion of L-equilibrium in proving the first
inclusion and the notion of uniform equilibrium in proving the second. In both cases
this was the stronger result. Thus the result is proved for both notions of equilibrium.
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Appendix: The approachability theorem

In this appendixwe give some of the basic results concerningmatrix gameswith vector
payoffs. The results are due to Blackwell (1956) and our treatment follows (in a less
general setting) that of Mertens et al. (2015).

As before we consider a finite stage game with pure action sets S1 and S2 and
mixed action sets X1 and X2. Rather than having a payoff associated with each pair of
actions we assume that there is a function ϕ from S = S1 × S2 to the set of probability
distributions over some finite subset ofRk . The game is played more or less as before.
At each stage n player i chooses an action in Si and then a point gn is chosen at random
according to ϕ(s1n , s

2
n ). Both players then obtain some signal that reveals for player 1,

at least, gn . We let ḡn = 1
n

∑n
t=1 gt .

Definition 11 (Approachable) A set C in R
k is said to be approachable by player 1

if there is a strategy for player 1 in the infinitely repeated game for which d(ḡn,C)

converges to zero almost surely.

Let f (s1, s2) be the expected value of ϕ(s1, s2) and for any x1 in X1 let Z(x1) be
the convex hull of the points in {∑s1∈S1 x1(s1) f (s1, s2) | s2 ∈ S2}.
Theorem 3 (The approachability theorem) Let C be any closed set in R

k . Suppose
that for any g not in C there is x1 (=x1(g)) in X1 such that the hyperplane through
h(g) a closest point in C to g perpendicular to the line segment between g and h(g)
separates g from Z(x1(g)). Then C is approachable by player 1 using strategy σ 1(·),
a strategy depending on the history only through ḡn where

σ 1(ḡn) =
{
x1(ḡn) if n > 0 and ḡn /∈ C,

arbitrary otherwise.

With that strategy,

E(d(ḡn,C)2) ≤ 4K/n (1)

and

P

(

sup
n≥N

d(ḡn,C) ≥ ε

)

≤ 8K/(ε2N ). (2)

where K is a bound on the second order moments of ϕ(s1, s2) for all s1 and s2.

We need, in fact, only one relatively simple implication of the approachability
theorem.

Corollary 1 (Mertens et al. 2015, Corollary II.4.4) For any x1 in X1 the set Z(x1) is
approachable by player 1 using the constant strategy σ 1(·) = x1. And, again, with
this strategy inequalities (1) and (2) hold.
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