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players as friends. If the utility from relationships with other players
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valuation. If the utility from relationships is strictly concave, then these
measures order the players in the same way as the common valuation.
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1. Introduction

In social network analysis, centrality measures or indices attempt to

measure the importance of an actor in a given network. The best known

measures are the indegree, the eigenvector centrality measure (Bonacich

1972), theKatz-Bonacich measure (Katz 1953, Bonacich 1987, and Bonacich

and Lloyd 2001), and of course the PageRank method (Brin and Page 1998).

The indegree of a node or an actor is the sum of intensities of links from

the immediate neighbors of that actor. The Katz-Bonacich measure of an

actor can be viewed as a discounted sum of intensities of links from neigh-

bors, from neighbors of neighbors, and so on. The eigenvector centrality

of an actor is a weighted sum of intensities of links from the immediate

neighbors of that actor, where the weights are given by the eigenvector

centralities themselves.

Kitti (2012) has given an axiomatic characterization of the eigenvector

centrality measure. Altman and Tennenholz (2005) have given an axiomatic

characterization of the PageRank method. The PageRank method is close

to the Katz-Bonacich measure or the eigenvector centrality measure, de-

pending of values of parameters chosen for the PageRank method (see Sec-

tion 2). I am not aware of axiomatic characterizations of the Katz-Bonacich

measure.

It is unclear who has first proposed the indegree as a centrality measure

for directed networks, but see Freeman (1979) for a review of degree based

measures for undirected networks. It seems that eigenvector centrality mea-

sure has been discussed already by Seeley (1949), Wei (1952), and Kendall

(1955) (see e.g. Kitti 2012, Boldi and Vigna 2013). The Katz-Bonacich

measure appears first time in Katz (1953).

Ballester et.al (2006) analyze a noncooperative game played in a given

network of agents. Each agent chooses a single real number that describes

his activity level in the whole network. Agent’s utility is a quadratic function

depending on the activity levels of all agents. Ballester et.al (2006) show

that the equilibrium is proportional to the Katz-Bonacich measure (see also

Jackson and Zenou 2014 for a review of related models).
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We will analyze the relationship between equilibria of link formation

games and centrality measures. Link formation games are models that try

to describe the way networks are formed, and equilibria of these games give

a prediction about how stable networks might look like. In the seminal

paper Jackson and Wolinsky (1996) link formation strategy is a discrete

0−1 variable. Bloch and Dutta 2009 analyze games in which link strengths

are continuous variables.

In our model an agent has one unit of some resource like time or effort

that he may use to form links with other players. The utility agent i gets

from agent j is a Cobb-Douglas type of function of the investments of these

players. This function is weighted by a positive parameter pj that does not

depend on i. Hence players have a common ranking over other players as

friends. Total utility of a player is the sum of utilities from all relationships

minus the opportunity cost of privacy.

We solve explicitly equilibrium strategies that produce a complete net-

work and the centrality measures corresponding to these equilibrium net-

works. If utility functions are bilinear, then the indegree measure, the eigen-

vector centrality measure, and the Katz-Bonacich measure put the players

in opposite order than players’ original ranking given by the coefficients pj.

If utility functions are strictly concave, then these centrality measures order

the players the same way as players’ original ranking.

The model and notation is introduced in Section 2. The results are given

in Section 3.

2. The Model

Given a finite set N , and a function L : N × N −→ R
+, the pair

W = (N,L) is called a (directed, weighted) network on N or simply a

network. The number Lij ≡ L(i, j) is the weight, strength, or intensity

of the link from i to j. There is no link from i to j, if Lij = 0, and we

will assume Lii = 0 for all i ∈ N . Network is directed because Lij = Lji

need not hold. A network W ′ = (N ′, L′) is a subnetwork of W = (N,L), if
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N ′ ⊂ N and L′ is the restriction L|A of L into N ′. A network W = (N,L)

is complete if Lij > 0 for all distinct nodes i, j ∈ N .

Given a network W = (N,L) and i, j ∈ N , there exists a path Pij from i

to j, if there exists nodes i0, . . . , iK such that 1) i0 = i, iK = j; 2) Likik+1
> 0

for all k = 0, . . . , K − 1; 3) all nodes are distinct except possibly i0 and iK .

A subset A ⊂ N is connected, if for any i, j ∈ A, there is a path Pij or Pji

that lies entirely in A. If paths Pij and Pji lie in A for all i, j ∈ A, then A is

strongly connected. A network W = (N,L) is connected if N is connected.

We call a strongly connected network W = (N,L) a complete network.

A subset A ⊂ N is a component of a network W = (N,L), if 1) A

is connected; 2) there are no links between A and Ac ≡ N \ A. So a

component A is a maximal strongly connected subset of N . A clique is

a subset A ⊂ N such that Lij > 0 for all distinct nodes i, j ∈ A. If

a component is a clique (i.e. the component is strongly connected), we

may call it a complete component. If A is a clique then the subnetwork

WA = (A,L|A) is a complete network.

The indegree di of node i is the number
∑

j 6=i Lji, i.e, the sum of weight

of links from nodes j 6= i to i. We may interpret L as a matrix, and then

di is the i’th column sum.

The eigenvector centrality measure is the left eigenvector q associated

with the greatest eigenvalue λ of L. So q satisfies the equation qL = λq.

By the Perron-Frobenius theorem, if for each distinct i and j there exists a

path Pij (i.e. L is irreducible), then L has a greatest eigenvalue λ > 0. In

case L is a stochastic matrix (i.e. all row sums equal 1), λ = 1 and qL = q,

so q is a fixed point of L. In this paper we deal mostly with irreducible

stochastic matrices.

The Katz-Bonacich measure b of a stochastic matrix L satisfies the equa-

tion b(I − αL) = 1, where α ∈ (0, 1) is a given constant, I is the identity

matrix, and 1 = (1, . . . , 1). If L is irreducible, then b is strictly positive.

This holds because the inverse matrix of (I − αL) is
∑∞

k=0(αL)
k, and irre-

ducibility means for each distinct i and j there is k such that the cell (Lk)ij

of the matrix Lk is strictly positive.
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The PageRank measure gpr of a stochastic matrix L satisfies the equation

gpr = αqprL + (1 − α)w, where α ∈ [0, 1], and w is a strictly positive

”preference vector” (Boldi and Vigna 2013). If α = 1, then PageRank and

the eigenvector centrality are the same. If w = 1 (like in the 1998 article of

Brin and Page), then the PageRank measure is proportional to the Katz-

Bonacich measure: gpr = (1 − α)b. This follows because gpr(I − αL) =

(1− α)w.

A normal form game G =
(

N, (Si)i∈N , (ui)i∈N
)

specifies a player set N ,

a set of pure strategies Si and a utility function ui : S −→ R for each player

i ∈ N , where S = ΠiSi, the product of strategy sets, is the set of strategy

profiles.

Give s ∈ S, we may denote s = (si, s−i) when we want to emphasize

that i chooses si. A pure strategy Nash equilibrium is a strategy profile

s ∈ S such that

ui(si, s−i) ≥ ui(s
′
i, s−i), ∀i ∈ N, ∀s′i ∈ Si. (1)

We study link formation games of the following type. The set of pure

strategies of player i ∈ N is

Si =
{

si ∈ RN
+

∣

∣

∑

j

sij = 1
}

.

An interpretation is that each player i has one unit of time or effort to be

shared with other player j including i himself. The utility function of player

i is

ui(s) =
∑

j 6=i

pjs
α
ijs

β
ji + csii, ∀s ∈ S, (2)

where α, β, c, pj > 0 for all j.

There is a common ordering of players such that player j is consid-

ered more valuable than i, if pj > pi. The cost parameters c reflects the

opportunity cost of privacy. These games are special cases of so called

semi-symmetric link formation games studied by Salonen (2014). We give

a detailed analysis of two cases: 1) bilinear games for which α = β = 1; 2)

concave games for which α + β < 1.
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3. Results

We give first necessary and sufficient conditions for bilinear games to

have an equilibrium with a complete network. We concentrate mostly on

these kind of equilibria, since we want to study the relationship between cen-

trality measures and the a priori ranking p of players. Centrality measures

studied here exist uniquely for complete networks. For complete networks

these measures are also easier to compute than for general incomplete net-

works.

Player i would want the networks to be as complete as possible, if we

would append a term Ni(s) = |{j 6= i | sijsji > 0}| to his utility function. So

player i’s utility would be an increasing function of the number of players j

with whom i has both links Lij and Lji. One can check that the equilibrium

given by equation 6 in the proof of Theorem 1 would remain an equilibrium

after such a modification of utility functions.

Theorem 1. For bilinear link formation games with c = 0 there exists an

equilibrium with a complete network, iff

∑

i∈N

pi > (n− 1)pn.

Proof. Let s be an equilibrium with a complete network. Completeness of

equilibrium network means that sij > 0 for all i, for all j 6= i. Since the

opportunity cost of privacy is zero, sii = 0 for all i, since si is a best reply

against s. The first order condition for player i is

sjipj = vi, ∀j 6= i, (3)

where vi is the equilibrium utility of player i. Keeping j fixed and taking

the sum over i 6= j in equation 3 we get

pj + vj =
∑

i∈N

vi, ∀j ∈ N, (4)

since
∑

i 6=j sji = 1. Taking the sum over j on both sides of equation 4 we

get
∑

j vj =
(
∑

j pj
)

/(n−1). Inserting this into equation 4 and rearranging
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gives us

vj =
1

n− 1

∑

i∈N

pi − pj, ∀j ∈ N. (5)

Equation 5 implies
∑

i∈N pi > (n − 1)pn, since sijsjivj > 0 for all i, for all

j 6= i.

Assume then that
∑

i∈N pi > (n − 1)pn holds, i.e. vj > 0 for all j in

equation 5. Inserting vj from equation 5 into equation 3 we get

sij =
( 1

n− 1

∑

k∈N

pk − pj

)

p−1
i . (6)

Since sij > 0 and
∑

j 6=i sij = 1, equation 6 we have constructed an equilib-

rium s with a complete network.

Remark 1. We assumed that c = 0 in Theorem 1. It is straightforward to

verify that the equilibrium given by equation 6 remains an equilibrium if

c satisfies 0 < c <
∑

j pj/(n − 1) − pn. In this case c is smaller than the

equilibrium value vj of any player j given by equation 5, and therefore every

player j chooses sii = 0 when c is sufficiently small. This remark applies to

Theorem 2 below as well.

Given a link formation game G, we say that an equilibrium network

corresponding to equilibrium s is maximally complete, if the components of

the network are all complete and there is no equilibrium s′ with a coarser

partition into components such that all the components are complete.

Theorem 1 gives the a condition for the existence of an equilibrium

with a complete network. Even if there are no such equilibria, that is, the

condition given in that theorem does not hold, there are always equilibria

with a maximally complete network. We say that a subset A of natural

numbers is an interval, if i, j ∈ A implies k ∈ A for all k such that i < k < j.

Proposition 1. For bilinear link formation games there exists an equi-

librium with a maximally complete network such that the components are

intervals.
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Proof. Let n0 = n, and let n1 ∈ N be the least integer such that

∑

i≥n1

pi > (n− n1 − 1)pn.

By Theorem 1 there exists an equilibrium s1 in the link formation game

with player set N1 = {n1, . . . , n} such that the corresponding network is

complete. Given that nk > 1 and the corresponding interval Nk are defined

k ≥ 1, let nk+1 ∈ N be the least integer such that

∑

nk+1≤i<nk

pi > (nk − nk+1)pnk−1.

Continue as long as nm = 1 is reached. Then for each player set Nk there

exists an equilibrium sk with a complete network by Theorem 1. Let s be

an equilibrium of G such that si = ski for all i ∈ Nk, k = 1, . . . ,m. Then s

is an equilibrium with a maximally complete network.

Denote by S the n×n (stochastic) matrix whose rows are the strategies

s1, . . . , sn. By equation 3 the row vector p = (p1, . . . , pn) and the vector of

equilibrium values v = (v1, . . . , vn) satisfy

pS = (n− 1)v. (7)

Let us compute next the eigenvector centrality measure of S.

Theorem 2. Suppose S is the stochastic matrix of equilibrium strategies

given by equation 6 of a bilinear game of Theorem 1. Then the probability

vector q satisfies qS = q, iff

qj =
pj − (n− 1)p2j

1− (n− 1)
∑n

i=1 p
2
i

, j ∈ N. (8)

Proof. We may normalise the weight vector p so that
∑

i pi = 1. This

normalisation doesn’t affect the equilibria of our link formation game. Now

qS = q, iff there exist a strictly positive vector a such that aipi = qi for all
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i ∈ N . Therefore we have to solve
∑

i 6=j sijaipi = ajpj for all j ∈ N . By

equation 6 this reduces to
( 1

n− 1
− pj

)

∑

i 6=j

ai = ajpj, ∀j ∈ N, (9)

since
∑

i pi = 1. Rearranging the terms of equation 9 we get

( 1

n− 1

)

∑

i 6=j

ai = pj

n
∑

i=1

ai. (10)

Rearranging the terms of equation 10 and multiplying both sides by pj gives

us
(

n
∑

i=1

ai

)

(

1− (n− 1)pj
)

pj = ajpj. (11)

Taking the sum with respect to j on both sides of equation 11 and simpli-

fying gives us

n
∑

j=1

ajpj =
(

n
∑

i=1

ai

)(

1− (n− 1)
n

∑

j=1

p2j

)

= 1, (12)

where the last equality holds because
∑n

j=1 ajpj = 1.

Equations 11 and 12 imply

aj =
1− (n− 1)pj

1− (n− 1)
∑n

i=1 p
2
i

, j ∈ N. (13)

Therefore the fixed point equation qS = q is satisfied by q such that

qj = ajpj =
pj − (n− 1)p2j

1− (n− 1)
∑n

i=1 p
2
i

, j ∈ N.

This completes the proof.

Remark 2. Note that Theorem 2 can easily be adapted by to cases in which

no equilibrium has a complete network by Proposition 2. Given an equi-

librium with a maximally complete network, each component Nk of that

network has an equilibrium sk. One can solve for the fixed point qk corre-

sponding to the stochastic matrix whose rows are strategies ski , i ∈ Nk just

like in the proof of Theorem 2.
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Let us study how the eigenvector centrality measure q of equation 8 and

the indegree d are related to the original weights p of players. It turns out

that player j is ranked higher than player i according to q and d, if player

j was ranked lower than i according to p.

Proposition 2. Let q be the fixed point of the stochastic matrix S of The-

orem 2. A) If pj < pi, then qi < qj, for all i, j ∈ N . B) For indegrees we

have that pj < pi iff di < dj, for all i, j ∈ N .

Proof. A) Equation 8 implies immediately that pj < pi implies qj < qi iff

1/(n−1) > pi+pj. If this holds for any i, j, then it must hold for i = 1, j = 2

since p1 < · · · < pn. But in this case p1 + p2 +
∑

k>2 pk = 1 implies that
∑

k>2 pk > 1 − 1/(n − 1) = (n − 2)/(n − 1). Therefore pn > 1/(n − 1), a

contradiction with Theorems 1 and 2. Hence pj < pi implies qi < qj, for all

i, j ∈ N .

B) By equation 6 the indegree of player i is

di =
∑

k 6=i

ski =
( 1

n− 1
− pi

)

∑

k 6=i

1

pk
.

Then di < dj iff

1

pj
− (n− 1)pi

∑

k 6=i

1

pk
<

1

pi
− (n− 1)pj

∑

k 6=j

1

pk

iff

pi − (n− 1)p2i pj
∑

k 6=i

1

pk
< pj − (n− 1)pip

2
j

∑

k 6=j

1

pk

iff

pi − pj − (n− 1)(p2i − p2j) < (n− 1)pipj(pi − pj)
∑

k 6=i,j

1

pk

iff

(pi − pj)[1− (n− 1)(pi + pj)] < (pi − pj)(n− 1)pipj
∑

k 6=i,j

1

pk
.

If pi < pj would hold, then the last inequality would imply

1− (n− 1)(pi + pj) > (n− 1)pipj
∑

k 6=i,j

1

pk
.
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But this cannot hold since the right hand side is positive, and the left hand

side is negative by the proof of case A) above. Hence pj < pi.

Let us compute next the Katz-Bonacich measure b of S.

Theorem 3. Given α ∈ (0, 1), the Katz-Bonacich measure b of the stochas-

tic matrix S of Theorem 2 is given by

bi =
pi(αviT + 1)

pi + αvi
,

for all i ∈ N , where

T =
n/(1− α)−

∑

i vi/(pi + αvi)

1/(n− 1)− α
∑

i v
2
i /(pi + αvi)

,

and vi = 1/(n−1)−pi is the equilibrium value of player i given in equation 5.

Proof. The i’th column of the equation b(I − αS) = 1 is

bi − αvi
∑

j 6=i

bj/pj = 1,

where vi = 1/(n − 1) − pi is the equilibrium value of player i. This is

equivalent to

bi + αvibi/pi − αvi
∑

j∈N

bj/pj = 1. (14)

Taking the sum over i gives us

∑

i∈N

bi − α
[(

∑

i∈N

vi

)(

∑

i∈N

bi/pi

)

−
∑

i∈N

vibi/pi

]

= n. (15)

The term in the square brackets is equal to
∑

i(Sb)i. Since S is a stochastic

matrix,
∑

i bi =
∑

i(Sb)i. Therefore the number in the square brackets

equals
∑

i bi = n/(1− α).

Let T =
∑

j∈N bj/pj. Then from equation 14 we get that

bi/pi =
αviT + 1

pi + αvi
. (16)
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Since bi/pi appears of both sides of equation 16, we must solve for T . Using

equation 16 the term in the square brackets of equation 15 becomes

1

n− 1
T −

∑

i∈N

vi(αviT + 1)

pi + αvi
, (17)

because
∑

i vi = 1/(n− 1). Using the fact that
∑

i bi = n/(1−α), the term

T =
∑

i bi/pi in equation 17 can be solved:

T =
n/(1− α)−

∑

i vi/(pi + αvi)

1/(n− 1)− α
∑

i v
2
i /(pi + αvi)

. (18)

Now the value of bi can be solved from equation 16.

Corollary 1. Substituting 1/(n− 1)− pi for vi the bi values of Theorem 3

can be rewritten as

bi =
pi
(

α(1− (n− 1)pi)T + n− 1
)

α + (1− α)(n− 1)pi
, (19)

where

T =
n(n− 1)− (n− 1)(1− α)

∑

i
1−(n−1)pi

α+(1−α)(n−1)pi

(1− α)
(

1− α
∑

i
(1−(n−1)pi)2

α+(1−α)(n−1)pi

) .

Let us study next how the vectors b and p are related. It turns out that

the eigenvector centrality q and the Katz-Bonacich measure b give the same

ordinal ranking of the players. Hence the ranking given by b is the opposite

to the one given by p.

Proposition 3. Suppose b is the Katz-Bonacich measure b of the stochastic

matrix S of Theorem 3. Then pi < pj implies bj < bi, for all i, j ∈ N .

Proof. Given α > 0 and the stochastic matrix S, the Katz-Bonacich mea-

sure b satisfies

bS = (b− 1)/α. (20)

Therefore bi < bj if and only if (Sb)i < (Sb)j. Let j = 1 and i = 2, and

consider the first and second column of the matrix S. By equation 6 the
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j’th element of the first column is sj1 = (1/(n − 1) − p1)/pj and the j’th

element of the second column is sj2 = (1/(n − 1) − p2)/pj, where j 6= 1, 2.

Since p1 < · · · < pn, we get that sj2 < sj1.

Comparing s12 = (1/(n − 1) − p2)/p1 and s21 = (1/(n − 1) − p1)/p2

we get that s12 < s21. To see this, note first that the quadratic function

(1/(n − 1) − p)p is maximized at p∗ = 1/2(n − 1). Hence s12 < s21 holds,

iff p1 is closer to p∗ than p2. This holds if p∗ ≤ p1 since p1 < p2. Consider

next cases p1 < p∗.

Note first that p2 ≤ p∗ would imply that p1 + p2 < 1/(n − 1), and

therefore pn > 1/(n − 1) since
∑

i pi = 1. This is a contradiction because

pn < 1/(n− 1) by Theorem 1. Therefore we can assume p1 < p∗ = 1/2(n−

1) < p2. Let p1 = p∗ − a1 and p2 = p∗ + a2, a1, a2 > 0. If a2 ≤ a1, then

p1 + p2 ≤ 1/(n − 1) and therefore pn ≥ 1/(n − 1), a contradiction. So

a1 < a2, and hence s12 < s21.

In the same way it can be shown that given any players i, j, k such that

i < j and k 6= i, j, the following inequalities hold: skj < ski, and sij < sji.

Given the Katz-Bonacich measure b, compute (Sb)1 − (Sb)2 by using

equation 20. This gives us

∑

j 6=1,2

(sj1 − sj2)bj − s12b1 + s21b2 = (b1 − b2)/α.

It is impossible that b1 ≤ b2, because in this case the left hand side of the

equation would be strictly positive and the right hand side would be zero

or negative. This follows since sj1 − sj2 for all j 6= 1, 2, s12 < s21, and b is

a strictly positive vector.

In the same way it can shown that bj < bi for all i, j ∈ N such that

i < j. Since pi < pj iff i < j, we are done

Let us now analyze concave link formation games. The utility function

of player i is

ui(si, s−i) =
∑

j 6=i

pjs
α
ijs

β
ji + c

(

1−
∑

j 6=i

sji

)

, (21)

12



where α, β > 0, α + β < 1, and c > 0. Since
∑

j sij = 1, c(1 −
∑

j 6=i sji) is

the utility player i gets from acting alone. We do not assume that
∑

i pi = 1

since we already have the normalization c = 1. It was shown in Example 2

in Salonen (2014) that there exists an interior equilibrium (sii, sij > 0 for

all i, j) if

αp <
[ 1

n− 1

]1−α−β

.

The equilibrium strategies are given by

sij = α1/[1−α−β]
[

p1−α
j pβi

]1/[(1−α)2−β2]

, ∀i, j ∈ N. (22)

Let again S be a stochastic matrix whose i’th row is the equilibrium strategy

si of player i ∈ N . Now it turns out that the Katz-Bonancich index b ranks

the players in the same way as p.

Proposition 4. Let S be the stochastic matrix corresponding to the interior

equilibrium of equation 22 of a concave link formation game. If b is the

Katz-Bonacich measure of S, then pi < pj implies bi < bj.

Proof. It was noted in the proof of Proposition 3 that bi < bj, iff (Sb)i <

(Sb)j. We employ a similar strategy of proof here as was used in the proof

of Proposition 3: we show that (Sb)i < (Sb)j holds if i < j, which in turn

means that pi < pj. We prove that (Sb)1 < (Sb)2 holds, from which the

result extends easily to arbitrary i, j with i < j.

The first two columns of S are (0, s21, s31, . . . , sn1) and (s12, 0, s32, . . . , sn2).

The terms s21 and s12 are of the form: s21 = A[p1−α
1 pβ2 ]

B, and s12 =

A[p1−α
2 pβ1 ]

B, where A,B > 0. Hence s21 < s12, iff p1−α
1 pβ2 < p1−α

2 pβ1 , which

holds because p1 < p2 and β < 1− α.

Comparing sj1 = A[p1−α
1 pβj ]

B and sj2 = A[p1−α
2 pβj ]

B, j > 2, we observe

immediately that sj1 < sj2 since p1 < p2.

By using equation 20 the difference (Sb)1 − (Sb)2 is
∑

j 6=1,2

(sj1 − sj2)bj − s12b1 + s21b2 = (b1 − b2)/α.

Now the left hand side is negative since b is positive, and therefore

b1 < b2.
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Corollary 2. Let S be the stochastic matrix corresponding to the interior

equilibrium of equation 22 of a concave link formation game. Then the

indegree d and the eigenvector centrality measure q of S give the players the

same ranking as p.

Proof. It was shown in the proof of Proposition 4 that sji < sij and ski < skj

hold for columns i and j of S, when i < j and k 6= i, j. Hence the indegrees

of these columns satisfy di < dj, which is the same ranking as given by p.

The eigenvector centrality q satisfies Sq = q, and therefore the equiva-

lence (Sq)i < (Sq)j iff qi < qj holds automatically. By the previous para-

graph,
∑

k 6=i,j(skj − ski)qk > 0 holds, and therefore qi < qj.

References

Altman, A. and Tennenholtz, M. (2005) Ranking systems: The PageRank

axioms. In Proceedings of the 6th ACM conference on Electronic com-

merce (EC-05). ACM Press, New York, pp. 1–8.
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