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1 Introduction

Arguably, the major goal of epistemic game theory is to characterize solution concepts
epistemically. Characterizations of the solution concepts that are most commonly used
in strategic-form games, namely, Nash equilibrium, correlated equilibrium, and rational-
izability, in terms of common knowledge of rationality are well known (Aumann 1987;
Brandenburger and Dekel 1987). We show how to get analogous characterizations of
sequential equilibrium (Kreps and Wilson 1982), (trembling hand) perfect equilibrium
(Selten 1975), and quasi-perfect equilibrium (van Damme 1984) for arbitrary n-player
games, using results of Halpern (2009, 2013).

To put our results in context, we start by reviewing the characterizations of Nash
equilibrium, correlated equilibrium, and rationalizability in Section 2. In Section 3, we
recall Halpern’s characterizations of sequential equilibrium and perfect equilibrium, since
these play a key role in our new results. Halpern’s results involve the use of nonstandard
probability measures, which take values in non-Archimedean fields. We briefly review
these as well, and then state and prove the new characterizations of sequential equilib-
rium, quasi-perfect equilibrium, and perfect equilibrium in terms of common knowledge
of rationality. For our results, we need to consider two types of rationality: local ra-
tionality, which considers only whether each player’s action is a best response at each
information set (with everything else fixed), and rationality, which considers whether his
whole strategy from that point on is a best response. This distinction seems critical
when comparing perfect and quasi-perfect equilibrium (as already noted by van Damme
(1984)); interestingly, it is not critical when it comes to sequential equilibrium. We com-
pare our results to those of Asheim and Perea (2005), who provide a characterization
of sequential equilibrium and quasi-perfect equilibrium for 2-player games in terms of
common knowledge of rationality similar in spirit to ours. We conclude in Section 4 with
a discussion of the use of common knowledge of rationality in characterizing solution
concepts.

2 A review of earlier results

To explain our results, we briefly review the earlier results on characterizing solution con-
cepts in strategic-form games terms of common knowledge (see (Dekel and Siniscalchi 2015)
for a more comprehensive survey). We assume that the reader is familiar with standard
solution concepts such as Nash equilibrium, correlated equilibrium, and rationalizability;
see (Osborne and Rubinstein 1994) for a discussion. Let Γ = (N,S, (ui)i∈N ) be a finite
strategic-form game, where N = {1, . . . , n} is the set of players, S = ×i∈NSi is a finite set
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of strategy profiles, and ui : S → IR is player i’s utility function. For ease of exposition,
we assume that Si ∩ Sj = ∅ for i 6= j.

Let a model of Γ be a tuple M = (Ω, s, (Pri)i∈N), where Ω is a set of states of Γ,
s associates with each state ω ∈ Ω a pure strategy profile s(ω) ∈ S, and Pri is a
probability distribution on Ω, describing i’s initial beliefs.1 Let si(ω) denote player i’s
strategy in the profile s(ω), and let s−i(ω) denote the strategy profile consisting of the
strategies of all players other than i.

For S ∈ Si, let [S] = {ω ∈ Ω : si(ω) = S} be the set of states at which player i chooses

strategy S. Similarly, let [~S−i] = {ω ∈ Ω : s−i(ω) = ~S−i} and [~S] = {ω ∈ Ω : s(ω) = ~S}.

For simplicity, we assume that [~S] is measurable for all strategy profiles ~S, and that
Pri([Si]) > 0 for all strategies Si ∈ Si and all players i ∈ N .

As usual, we say that a player is rational at state ω (in a model M of Γ) if his
strategy at ω is a best response in Γ given his beliefs at ω. We view Pri as i’s prior belief,
intuitively, before i has been assigned or has chosen a strategy. We assume that i knows
his strategy at ω, and that this is all that i learns in going from his prior knowledge
to his knowledge at ω, so his beliefs at ω are the result of conditioning Pri on [si(ω)].

2

Given our assumption that Pri([si(ω)]) > 0, the conditional probability Pri | [si(ω)] is
well defined.

Note that we can view Pri as inducing a probability PrSi on strategy profiles ~S ∈ S by

simply taking PrSi (
~S) = Pri([~S]); we similarly define PrSi (Si) = Pri([Si]) and PrSi (

~S−i) =
Pri([S−i]). Let PrSi,ω = PrSi | si(ω). Intuitively, at state ω, player i knows his strategy

si(ω), so his distribution PrSi,ω on strategies at ω is the result of conditioning his prior

distribution on strategies PrSi on this information.

Formally, i is rational at ω if, for all strategies S ∈ Si, we have that

∑

~S′

−i
∈S−i

PrSi,ω(
~S ′
−i)ui(si(ω),

~S ′
−i) ≥

∑

~S′

−i
∈S−i

PrSi,ω(S
′
−i)ui(S,

~S ′
−i).

We say that player i is rational in model M if i is rational at every state ω in M .
Finally, we say that rationality is common knowledge in M if all players are rational at
every state of M .(Technically, our definition of rationality being common knowledge in
M means that rationality is universal in M (i.e., true at all states in M), and thus, in
particular, common knowledge at all states in M according to the standard definition
of common knowledge at a state (cf., (Fagin et al. 1995)). While common knowledge of

1For simplicity, we assume in this paper that Ω is finite, and all subsets of Ω are measurable.
2While this arguably is a reasonable assumption for strategic-form games, when we move to extensive-

form games, agents will be able to learn more in the course of a game.

2



rationality at a state does not imply that rationality is universal in general, in the models
that we focus on in this paper, the two notions coincide.)

With this background, we can state Aumann’s (1987) characterization of Nash equi-
librium. As usual, we can identify a mixed strategy profile ~σ in Γ with a distribution Pr~σ
on S; the distribution Pr~σ can be viewed as a crossproduct ×i∈N Prσi

(where Prσi
is a

distribution on Si).
3 Let Σi denote the set of mixed strategies for player i.

Theorem 2.1 ~σ is a Nash equilibrium of Γ iff there exists a model M = (Ω, s, (Pri)i∈N)
of Γ where rationality is common knowledge such that Pri = Prj for all i, j ∈ N and
PrSi = Pr~σ for all i ∈ N .

The fact that Pri = Prj for all i, j ∈ N means that there is a common prior. Be-
cause Pr~σ has the form of a cross-product, the fact that PrSi = Pr~σ means that i’s
beliefs about other players’ strategies is independent of the state; that is, PrSi | si(ω)
marginalized to S−i is independent of ω.

4

Theorem 2.1 is actually a special case of Aumann’s (1987) characterization of cor-
related equilibrium. Recall that we can think of a correlated equilibrium of Γ as a
distribution η on S. Intuitively, η is a correlated equilibrium if, when a mediator chooses
a strategy profile ~S according to η and tells each player i his component Si of ~S, then
playing Si is a best response for i. This intuition is formalized in Aumann’s theorem:

Theorem 2.2 η is a correlated equilibrium of Γ iff there exists a modelM = (Ω, s, (Pri)i∈N )
of Γ where rationality is common knowledge such that PrSi = η for all i ∈ N .

Theorems 2.1 and 2.2 show that the difference between correlated equilibrium and
Nash equilibrium can be understood as saying that, with correlated equilibrium, the
common prior does not have to be a cross-product, so that a player i’s beliefs may vary,
for different choices of strategy. Of course, if the prior is a cross-product, then the
correlated equilibrium is also a Nash equilibrium. With correlated equilibrium, as with
Nash equilibrium, there is a common prior.

We complete the review of characterizations of solution concepts in strategic-form
games in terms of common knowledge of rationality with the following characterization

3We consistently use S, possibly subscripted, to denote a pure strategy, while σ, possibly subscripted
or with a prime, denotes a mixed strategy.

4Aumann and Brandenburger (1995) show that common knowledge of rationality is not required for σ
to be a Nash equilibrium. This is not a contradiction to Theorem 2.1, which simply says that σ is a
Nash equilibrium iff there exists a model M describing the beliefs of the players where rationality is
common knowledge. There may be other models where the players play σ and rationality is not common
knowledge.
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of correlated rationalizability (where a player can believe that other players’ strategies
are correlated), due to Brandenburger and Dekel (1987):

Theorem 2.3 Sj is a (correlated) rationalizable strategy for player j in a game Γ iff
there exists a model M = (Ω, s, (Pri)i∈N) of Γ where rationality is common knowledge
and a state ω ∈ Ω such that sj(ω) = Sj.

Note that the characterization of rationalizability does not require the players to have
a common prior.

3 Characterizing sequential equilibrium and perfect

equilibrium

Our goal is to characterize sequential equilibrium and perfect equilibrium in finite extensive-
form games with perfect recall in terms of common knowledge of rationality. We as-
sume that the reader is familiar with the standard definitions of extensive-form games of
perfect (trembling hand) perfect equilibrium, quasi-perfect equilibrium, and sequential
equilibrium. Our characterizations make essential use of non-epistemic characteriza-
tions of sequential and perfect equilibrium using nonstandard probability (Halpern 2009;
Halpern 2013). We briefly review these results here.

One of the issues that the definitions of sequential and perfect equilibrium need to
deal with are probability zero events, specifically, those corresponding to information sets
that are off the equilibrium path. Halpern (2009, 2013) presents a novel way to approach
this issue in the context of games, by making use of nonstandard probability measures,
which we now describe.

Non-Archimedean fields are fields that include the real numbers IR as a subfield,
and also contain infinitesimals , which are positive numbers that are strictly smaller
than any positive real number. The smallest such non-Archimedean field, commonly
denoted IR(ε), is the minimal field generated by adding to the reals a single infinitesimal,
denoted by ε.5 IR(ε) consists of all the rational expressions f(ε)/g(ε), where f(x) and
g(x) are polynomials with real coefficients and g(0) 6= 0. It is easy to see that this gives
us a field that includes the reals and ε. We can place an order < on the elements of
IR(ε) by taking 0 < ε < 1/r for all reals r > 0, and extending to all of IR(ε) by assuming
that standard properties of the reals (e.g., that r2 < r if 0 < r < 1) continue to hold.
Thus, 0 < · · · < ε3 < ε2 < ε holds, for all real numbers r > 0 we have that 1/ε > r,

5The construction of IR(ε) apparently goes back to Robinson (1973).
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and so on. (We can use formal division to identify f(ε)/g(ε) with a power series of the
form a0 + a1ε+ a2ε

2 + · · ·; this suffices to guide how the order < should be extended to
quotients f(ε)/g(ε).)

The field IR(ε) does not suffice for our purposes. In this paper we will be interested
in non-Archimedean fields IR∗ that are elementary extensions of the standard reals. This
means that IR∗ is an ordered field that includes the real numbers, at least one infinites-
imal ε, and is elementarily equivalent to the field of real numbers. The fact that IR∗

and IR are elementarily equivalent means that every formula ϕ that can be expressed
in first-order logic and uses the function symbols + and × (interpreted as addition and
multiplication, respectively), and constant symbols r standing for particular real num-
bers (the underlying language contains a constant symbol r for each real number r ∈ IR)
is true in F iff ϕ is true in IR. We call such a field a normal non-Archimedean field.
Thus, for example, every odd-degree polynomial has a root in a normal non-Archimedean
field IR∗ since this fact is true in IR and can be expressed in first-order logic. Note that
IR(ε) is not a normal non-Archimedean field. For example, one property of the reals
expressible in first-order logic is that every positive number has a square root. However,
ε does not have a square root in IR(ε). For the results of this paper, we do not have
to explicitly describe a normal non-Archimedean field; it suffices that one exists. The
existence of normal non-Archimedean fields is well known, and follows from the fact that
first-order logic is compact ; see (Enderton 1972).6

Given a normal non-Archimedean field IR∗, we call the elements of IR the standard
reals in IR∗, and those of IR∗ \ IR the nonstandard reals. A nonstandard real b is finite
if −r < b < r for some standard real r > 0. If b ∈ IR∗ is a finite nonstandard real,
then b = a + ε, where a is the unique standard real number closest to b and ε is an
infinitesimal. Formally, a = inf{r ∈ IR : r > b} and ε = b− a; it is easy to check that ε
is indeed an infinitesimal. We call a the standard part of b, and denote it st (b).

A nonstandard probability measure Pr on Ω just assigns each event in Ω an element
in [0, 1] in some (fixed) non-Archimedean field IR∗. Note that Pr(Ω) = 1, just as with
standard probability measures. We require Pr to be finitely additive. Recall that, for
the purposes of this paper, we restrict attention to finite state spaces Ω. This allows us
to avoid having to define an analogue of countable additivity for nonstandard probabil-
ity measures. Given a nonstandard probability measure ν, we can define the standard
probability measure st (ν) by taking st (ν) (w) = st (ν(w)). Two possibly nonstandard
distributions ν and ν ′ differ infinitesimally if st (ν) = st (ν ′) (i.e., for all events E, the
probabilities ν(E) and ν ′(E) differ by at most an infinitesimal, so st (ν(E)− ν ′(E)) = 0).
If a nonstandard distribution assigns a positive (possibly infinitesimal) probability to

6There is a natural extension of IR(ε) called IR∗(ε) that is normal. As shown by (Halpern 2009;
Halpern 2013), Theorems 3.3 and 3.5 could be strengthened to use IR∗(ε) rather than an existentially
quantified normal non-Archimedean field.
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every possible outcome in a game, then there is no technical problem in conditioning on
such outcomes. Moreover, every standard probability measure differs infinitesimally from
a nonstandard probability measure that assigns positive probabilities to all outcomes.

A behavioral strategy σ for player i in an extensive-form game associates with each
information set I for player i a distribution σ(I) over the actions that can be played at I.
We allow σ(I) to be a nonstandard probability distribution. We say that σ is standard if
σ(I) is standard for all information sets I for player i. Two behavioral strategy σ and σ′

for player i differ infinitesimally if, for all information sets I for player i, the distributions
σ(I) and σ′(I) differ infinitesimally. Two strategy profiles ~σ and ~σ′ differ infinitesimally
if σi and σ′

i differ infinitesimally for i = 1, . . . , n. We say that a behavioral strategy σ
is completely mixed if it assigns positive (but possibly infinitesimal) probability to every
action at every information set.

A behavioral strategy profile in an extensive-form game induces a probability on
terminal histories of the game (i.e., histories that start at the root of the game tree and
end at a leaf). Let ZΓ be the set of terminal histories in a game Γ. (We omit explicit
mention of the game Γ if it is clear from context or irrelevant.) Given a behavioral
strategy profile ~σ for Γ, let Pr~σ be the probability on terminal histories induced by ~σ.
Thus, Pr~σ is a distribution on pure strategy profiles if ~σ is a mixed strategy profile, and
a distribution on histories if ~σ is a behavioral strategy profile in an extensive-form game.
We hope that the context will disambiguate the notation. Since we can identify a partial
history with the terminal histories that extend it, Pr~σ(h) and Pr~σ(I) are well defined for
a partial history h and an information set I. Recall that in an extensive-form game Γ,
each player i’s utility function is defined on ZΓ.

A belief system (Kreps and Wilson 1982) is a function µ that associates with each
information set I a probability, denoted µI , on the histories in I. Given a behavioral
strategy ~σ and a belief system µ in an extensive-form game Γ, let

EUi((~σ, µ) | I) =
∑

h∈I

∑

z∈Z

µI(h)Pr~σ(z | h)ui(z).

Thus, the expected utility of (~σ, µ) conditional on reaching I captures the expected payoff
to player i if I is reached via the distribution ~σ and from that point on the game is played
according to µ. Intuitively, this expected utility captures what i can expect to receive
if i changes its strategy at information set I.

Finally, if ~σ is a completely-mixed behavioral strategy profile, let µ~σ be the belief
system determined by ~σ in the obvious way:

µ~σ
I (h) = Pr~σ(h | I).
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Definition 3.1 Fix a game Γ. Let I be an information set for player i, let ~σ′ be a
completely-mixed behavioral strategy profile, and let ε ≥ 0. Then we say that σi is an ε-
best response to ~σ′

−i for i conditional on having reached I using ~σ′ if, for every strategy τi
for player i, we have that

EUi(((σi, ~σ
′
−i), µ

~σ′

I ) | I) ≥ EUi(((τi, ~σ
′
−i), µ

~σ′

I ) | I)− ε. (1)

The strategy σi is an ε-best response for i relative to ~σ′ if σi is an ε-best response to ~σ′
−i

for i conditional on having reached I using ~σ′ for all information sets I for i.

Observe that in Equation 1 the probability of reaching I on both sides of the inequality
depends only on ~σ′ (via µ~σ′

I ) and not on τi. Thus, τi only influences player i’s behavior
after I has been reached.

Given an information set I for player i, let AI be the set of actions available to i at
histories in I.7 As usual, we take ∆(AI) to be the set of probability measures on AI .
Note that if σi is a behavioral strategy for player i then, by definition, σi(I) ∈ ∆(AI).

Definition 3.2 If ε ≥ 0 and I is an information set for player i that is reached with
positive probability by ~σ′, then a ∈ ∆(AI) is a local ε-best response to ~σ

′
−i for i conditional

on having reached I using ~σ′ if, for all a′ ∈ ∆(AI), we have that

EUi(((σ
′
i[I/a], ~σ

′
−i), µ

~σ′

I ) | I) ≥ EUi(((σ
′
i[I/a

′], ~σ′
−i), µ

~σ′

I ) | I)− ε, (2)

where σ′
i[I/a

′] is the behavioral strategy that agrees with σ′
i except possibly at information

set I, and σ′
i[I/a

′](I) = a′. The strategy σi is a local ε-best response for i relative to ~σ′

if σi(I) is a local ε-best response to ~σ′
−i for i conditional on having reached I using ~σ′

for all information sets I for i. The strategy ~σi is a (local) best response for i relative
to ~σ′ (resp., (local) best response for i conditional on having reached I using ~σ′) if σi is a
(local) 0-best response for i relative to ~σ′ (resp., (local) 0-best response for i conditional
on having reached I).

Thus, with local best responses, we consider the best action at an information set; with
(non-local) best responses, we consider the best continuation strategy.

Halpern (2009, 2013) characterizes perfect equilibrium using non-Archimedean fields
and local best responses as follows:

7As is standard, we assume that the same set of actions is available to i at all histories in I.
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Theorem 3.3 Let Γ be a finite extensive-form game with perfect recall. Then the (stan-
dard) behavioral strategy profile ~σ = (σ1, . . . , σn) is a perfect equilibrium of Γ iff there
exists a normal non-Archimedean field IR∗ and a nonstandard completely-mixed behav-
ioral strategy profile ~σ′ with probabilities in IR∗ that differs infinitesimally from ~σ such
that, for each player i = 1, . . . , n and each information set I of player i, σi(I) is a local
best response for i relative to ~σ′.

Roughly speaking, Theorem 3.3 shows that we can replace the sequence of strate-
gies converging to ~σ considered in Selten’s definition of perfect equilibrium by a single
nonstandard completely-mixed strategy that is infinitesimally close to ~σ. Considering
a completely-mixed strategy guarantees that all information sets are reached with posi-
tive probability, and thus allows us to define best responses conditional on reaching an
information set, for every information set.

We can obtain a characterization of quasi-perfect equilibrium by requiring that σi be
a best response for i rather than a local best response (Halpern 2009; Halpern 2013).8 As
we said earlier, the fact that the key difference between perfect equilibrium and quasi-
perfect equilibrium is that local best responses were required for the former and best
responses were required for the latter was already stressed by van Damme (1984) in his
original definition of quasi-perfect equilibrium.

Theorem 3.4 (Halpern 2009; Halpern 2013) Let Γ be a finite extensive-form game with
perfect recall. Then the (standard) behavioral strategy profile ~σ = (σ1, . . . , σn) is a quasi-
perfect equilibrium of Γ iff there exists a normal non-Archimedean field IR∗ and a nonstan-
dard completely-mixed behavioral strategy profile ~σ′ with probabilities in IR∗ that differs
infinitesimally from ~σ such that, for each player i = 1, . . . , n, the strategy σi is a best
response for i relative to ~σ′.

Finally, we can obtain a characterization of sequential equilibrium by requiring that σi
be an ε-best response for i to ~σ′ rather than a local best response as in Theorem 3.3, or
a best response as in Theorem 3.4. It can be shown if ε is an infinitesimal, then there
exists an infinitesimal ε′ such that an ε-local best response relative to ~σ′ is actually an
ε′-best response (see Lemma 3.10), so, as we would expect, the requirement for sequential
equilibrium is actually a weakening of the requirements for both perfect and quasi-perfect
equilibrium.

8The characterization of perfect equilibrium given in (Halpern 2009) involved best responses. In
(Halpern 2013), it was pointed out that this was incorrect; σi needed to be a local best response to get
a characterization of perfect equilibrium, but taking it to be a best response gave a characterization of
quasi-perfect equilibrium.
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Theorem 3.5 (Halpern 2009; Halpern 2013) Let Γ be a finite extensive-form game with
perfect recall. Then there exists a belief system µ such that the assessment (~σ, µ) is a
sequential equilibrium of Γ iff there exist a normal non-Archimedean field IR∗, an in-
finitesimal ε ∈ IR∗, and a nonstandard completely-mixed behavioral strategy profile ~σ′

with probabilities in IR∗ that differs infinitesimally from ~σ such that σi is an ε-best re-
sponse for i relative to ~σ′, for each player i = 1, . . . , n.

Our epistemic characterizations are based on Theorems 3.3, 3.4, and 3.5. Given
a finite extensive-form game Γ, we take a model M of Γ to be a tuple (Ω,Z, (Pri)i∈N)
where, as before, Ω is a finite set of states and Pri is a (possibly nonstandard) probability
distribution on Ω. Now Z is a function that associates with each state ω ∈ Ω a terminal
history in Γ, denoted Z(ω). The distribution Pri on states induces a distribution PrZi on
terminal histories in the obvious way. A model M = (Ω,Z, (Pri)i∈N) of the game Γ is
compatible with a behavioral strategy profile ~σ if PrZ1 = · · · = PrZn = Pr~σ.

We now define two notions of rationality, corresponding to the types of best response
considered above: local best response and best response. To be consistent with the
type of response considered, we call these local rationality and rationality. Both notions
have been considered in the literature, although different terms have been used. Arieli
and Aumann (2015) use the terms action rationality and utility maximization instead of
“local rationality” and “rationality”.

Definition 3.6 Fix ε > 0 and a modelM compatible with a completely-mixed strategy
profile ~σ′. Player i is ε-locally rational at state ω if, for each information set I for player i,
if some history h ∈ I is a prefix of Z(ω), player i plays action a after h in Z(ω), and
st (σ′

i(I)(a)) > 0, then a is a local ε-best response to ~σ−i for i conditional on having
reached I using ~σ′. Player i is locally rational at ω if he is 0-locally rational at ω.
Player i is ε-rational at state ω if, for each information set I for player i, if some history
h ∈ I is a prefix of Z(ω), then st (σ′

i) is an ε-best response to ~σ−i for i conditional on
having reached I using ~σ′. Player i is rational at state ω if he is 0-rational at ω.

Note that in the definition of local rationality at ω, we do not require that the action
played by i at a prefix of Z(ω) be a local best response if that action is played with only
infinitesimal probability. Similarly, in the definition of rationality, we require st (σ′

i) to
be a best response, not σ′

i, since we are ultimately interested in st (σ′
i). Also note that we

define rationality only in models that are compatible with a completely-mixed behavioral
strategy profile. This ensures that the expected utility conditional on I is well defined
for each information set I. We could, of course, try to define rationality more generally,
but the extra work would not be relevant to the results of this paper.
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We are now ready to formally capture perfect equilibrium in terms of common knowl-
edge of rationality, using Theorem 3.3. Intuitively, the assumption that σi is a best
response relative to the nonstandard ~σ′ is replaced by the assumption of common knowl-
edge of rationality when players play ~σ′.

Theorem 3.7 Let Γ be a finite extensive-form game with perfect recall. Then ~σ is a
perfect equilibrium of Γ iff there exist a normal non-Archimedean field IR∗, a nonstandard,
completely-mixed strategy profile ~σ′ that differs infinitesimally from ~σ with probabilities
in IR∗, and a model M = (Ω,Z, (Pri)i∈N) of Γ compatible with ~σ′ where local rationality
is common knowledge.

Proof: Suppose that ~σ is a perfect equilibrium of Γ. Then, by Theorem 3.3, there
exists a normal non-Archimedean field IR∗ and a nonstandard completely-mixed strat-
egy profile ~σ′ with probabilities in IR∗ that differs infinitesimally from ~σ such that,
for each player i, the strategy σi is a local best response for i relative to ~σ′. Let
M = (Ω,Z, (Pri)i∈N) be such that Ω = {ωh : h ∈ ZΓ}, Z(ωh) = h, and Pri(ωh) = Pr~σ′(h),
for i = 1, . . . , n. ClearlyM is compatible with ~σ′. We claim that it is common knowledge
in M that all players are locally rational.

To see this, consider an arbitrary state ωh ∈ Ω. Suppose that I is an information
set for player i, h′ ∈ I is a prefix of h, the action played by i at h′ in h is a, and
st (σ′

i(I))(a)) > 0. Since σi is a local best response for i conditional on having reached I
using ~σ′, Equation (2) from Definition 3.2 (with ε = 0) implies that

EUi((σ
′
i[I/σi(I)], ~σ

′
−i), µ

~σ′

I ) | I) ≥ EUi((σi[I/a
′], ~σ′

−i), µ
~σ′

I ) | I)

for all a′ ∈ ∆(AI). It easily follows that

EUi((σ
′
i[I/a

′′], ~σ′
−i), µ

~σ′

I ) | I) ≥ EUi((σi[I/a
′], ~σ′

−i), µ
~σ′

I ) | I) (3)

for all actions a′ ∈ AI and all actions a′′ in the support of σi(I). By assumption, σ′
i differs

infinitesimally from σi. Hence, the fact that st (σ′
i(I)(a)) > 0 implies that σi(I)(a) > 0,

so that the action a must be in the support of σi(I). Therefore, (3) holds for a′ = a,
so i is rational at ωh. We conclude that every player i is locally rational at all states
ω ∈ Ω and thus, by definition, it is common knowledge in M that the players are locally
rational.

For the converse, fix ~σ and suppose that there exist IR∗, ~σ′, and a modelM as required
by the theorem. For each information set I for player i, if a ∈ AI is in the support
of σi(I), then st (σ′

i(I)(a))) > 0. Since M is compatible with ~σ′, there must exist some
state ω in M with a prefix h of Z(ω) in I such that i plays a after h in Z(ω). Since i
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is locally rational at ω, performing a must be a local best response for i conditional on
having reached I using ~σ′. Thus, σi(I) must be a local best response for i conditional
on having reached I using ~σ′. Hence, by Theorem 3.3 we obtain that ~σ is a perfect
equilibrium.

Perhaps not surprisingly, we obtain an analogue of Theorem 3.7 by replacing “local
rationality” by “rationality”.

Theorem 3.8 Let Γ be a finite extensive-form game with perfect recall. Then ~σ is
a quasi-perfect equilibrium of Γ iff there exist a normal non-Archimedean field IR∗, a
nonstandard, completely-mixed strategy profile ~σ′ that differs infinitesimally from ~σ with
probabilities in IR∗, and a model M = (Ω,Z, (Pri)i∈N) of Γ compatible with ~σ′ where
rationality is common knowledge.

Proof: The proof is similar in spirit to that of Theorem 3.7, and simpler, so we leave
details to the reader.

Interestingly, for sequential equilibrium, we can work with either ε-rationality or ε-
local rationality.

Theorem 3.9 Let Γ be a finite extensive-form game with perfect recall. The following
are equivalent:

(a) there exists a belief system µ such that the assessment (~σ, µ) is a sequential equi-
librium of Γ;

(b) there exist a normal non-Archimedean field IR∗, a nonstandard, completely-mixed
behavioral strategy profile ~σ′ with probabilities in IR∗ that differs infinitesimally
from ~σ, an infinitesimal ε > 0 in IR∗, and a model M = (Ω,Z, (Pri)i∈N) compatible
with ~σ where ε-rationality is common knowledge;

(c) there exist a normal non-Archimedean field IR∗, a nonstandard, completely-mixed
strategy profile ~σ′ with probabilities in IR∗ that differs infinitesimally from ~σ, an
infinitesimal ε > 0 in IR∗, and a model M = (Ω,Z, (Pri)i∈N) compatible with ~σ
where ε-local rationality is common knowledge.

Proof: In light of Theorem 3.5, the equivalence of (a) and (b) is almost immediate. To
see that (a) implies (c), suppose that (~σ, µ) is a sequential equilibrium. By Theorem 3.5,
there exists a strategy profile ~σ′ that differs infinitesimally from ~σ and an infinitesimal ε
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such that, for each player i, strategy σi is an ε-local best response relative to ~σ′
−i. Con-

struct M as in the proof of Theorem 3.7. Since σi differs infinitesimally from σ′
i, for each

player i, there exists an infinitesimal ε′i such that, for all information sets I for player i,

EUi(((σi, ~σ
′
−i), µ

~σ′

I ) | I) ≥ EUi(((σi, ~σ
′
−i), µ

~σ′

I ) | I)− ε′i. (4)

Let ε′ = maxi=1,...,n ε
′
i and let

r = mini=1,...,n{σi(I)(a) : I is an information set for i and a is in the support of σi(I)};

that is, r is the smallest positive probability assigned by a strategy σi, i = 1, . . . , n.
Note that ε′ + ε+ ε/r is an infinitesimal (since r is a standard rational). We claim that
(ε′ + ε+ ε/r)-local rationality is common knowledge in M .

To see this, fix a player i and a state ω in M , and let h = Z(ω). Again, suppose
that I is an information set for player i, h′ ∈ I is a prefix of h, the action played by i
at h′ in h is a, and st (σ′

i(I))(a)) > 0. We want to show that

EUi(((σ
′
i[I/a], ~σ

′
−i), µ

~σ′

I ) | I) ≥ EUi(((σ
′
i[I/a

′], ~σ′
−i), µ

~σ′

I ) | I)− (ε′ + ε+ ε/r) (5)

for all actions a′ ∈ AI . First observe that, by choice of ε′, it easily follows from (4) that

EUi(((σ
′
i[I/a], ~σ

′
−i), µ

~σ′

I | I) ≥ EUi(((σi[I/a], ~σ
′
−i), µ

~σ′

I | I)− ε′. (6)

Moreover, since σi is an ε-best response relative to ~σ′
−i, for all actions a

′ ∈ AI , we must
have

EUi(((σi, ~σ
′
−i), µ

~σ′

I ) | I) ≥ EUi(((σ
′
i[I/a

′], ~σ′
−i), µ

~σ′

I ) | I)− ε. (7)

Since (7) holds for each action a′ in the support of σi(I), we must have

EUi(((σi, ~σ
′
−i), µ

~σ′

I ) | I)
= σi(I)(a)EUi(((σi[I/a], ~σ

′
−i), µ

~σ′

I ) | I) +
∑

{a′:σi(I)(a′)>0, a′ 6=a} σi(I)(a
′)EUi(((σi[I/a

′], ~σ′
−i), µ

~σ′

I ) | I)
≤ σi(I)(a)EUi(((σi[I/a], ~σ

′
−i), µ

~σ′

I ) | I) +
∑

{a′:σi(I)(a′)>0, a′ 6=a} σi(I)(a
′)(EUi(((σi, ~σ

′
−i), µ

~σ′

I ) + ε)

= σi(I)(a)EUi(((σi[I/a], ~σ
′
−i), µ

~σ′

I ) | I) + (1− σi(I)(a))(EUi(((σi, ~σ
′
−i), µ

~σ′

I ) | I) + ε).

A little algebraic manipulation now shows that

EUi(((σi[I/a], ~σ
′
−i), µ

~σ′

I ) | I) ≥ EUi((σi, ~σ
′
−i), µ

~σ′

I ) | I)− ε(1− σi(I)(a))/σi(I)(a)
≥ EUi((σi, ~σ

′
−i), µ

~σ′

I ) | I)− ε/r.
(8)

Equation (5) follows immediately from (6), (7), and (8). Thus, (ε′ + ε + ε/r)-local
rationality is common knowledge in M . We have shown that (a) implies (c).
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It remains to show that (c) implies (a). So suppose that there exists a field IR∗, a
nonstandard strategy profile ~σ′, an infinitesimal ε > 0 in IR∗, and a model M where ε-
local rationality is common knowledge, as required for (c) to hold. It is almost immediate
that σi is an ε-local best response for i relative to σ′

i
. We want to show that there exists

some infinitesimal ε′′, possibly different from ε, such that σi is an ε
′′-best response for i

relative to σ′
i, for each player i. The result then follows from Theorem 3.5.

To do this, we need some preliminary definitions. In a finite extensive-form game Γ
with perfect recall, for each player i, we can define a partial order ≻i on player i’s
information sets such that I ≻i I

′ if, for every history h ∈ I, there is a prefix h′ of h in I ′.
Thus, I ≻i I

′ if I is below (i.e., appears later than) I ′ in the game tree. We define the
height of an information set I for player i, denoted by height(I), inductively as follows;
height(I) = 1 if I is a maximal set for player i, that is, there is no information set I ′ such
that I ′ ≻i I. If I is not maximal, then height(I) = max{height(Î) + 1 : Î ≻i I}. Since Γ
is a finite game, height(I) is well defined. Indeed, the size of the game ensures that there
is a finite bound d such that height(I) ≤ d for all information sets in the game. For ε′

defined just before Equation (4), we can now prove the following result:

Lemma 3.10 σi is a d(ε+ ε′)-best response for i relative to ~σ′ in Γ.

Proof: For all information sets I of player i, we show by induction on k = height(I)
that σi is a k(ε + ε′)-best response to ~σ′

i conditional on having reached I using ~σ′.
So fix an arbitrary player i, and let I be an information set for i. If I is maximal,
then height(I) = 1. By assumption, σi is a local ε-best response to ~σ′

−i conditional on
having reached I using ~σ′, so the base case of the induction holds. Now suppose that
height(I) = k > 1 and that the claim holds for all I ′ such that height(I ′) < k.

By choice of ε′, we have by Equation (4) that

EUi(((σi, ~σ
′
−i), µ

~σ′

I ) | I) ≥ EUi(((σ
′
i[I/σi(I)], ~σ

′
−i), µ

~σ′

I ) | I)− ε′. (9)

Let τi be an arbitrary strategy for player i. By assumption, σi is a local ε-best response
relative to ~σ′

−i, so

EUi(((σ
′
i[I/σi(I)], ~σ

′
−i), µ

~σ′

I ) | I) ≥ EUi(((σ
′
i[I/τi(I)], ~σ

′
−i), µ

~σ′

I ) | I)− ε. (10)

Let I = {I1, . . . , Im} be the information sets for player i that immediately succeed I in Γ
(i.e., for each Ij ∈ I, Ij � I and there is no information set I ′ such that Ij ≻i I

′ ≻i I)
and can be reached by starting at a history in I and playing τ(I). By the inductive
hypothesis, σi is a (k − 1)(ε + ε′)-best response to ~σ′

−i at each information set I ′ ∈ I,
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so player i’s utility is at most (k − 1)(ε+ ε′) worse if he plays σi rather than τi at each
I ′ ∈ I. It easily follows that

EUi((σi[I/τi(I)], ~σ
′
−i), µ

~σ
I ) | I) ≥ EUi((τi, ~σ

′
−i), µ

~σ
I ) | I)− (k − 1)(ε+ ε′). (11)

Putting together (9), (10), and (11), we obtain that

EUi(((σi, ~σ
′
−i), µ

~σ′

I ) | I) ≥ EUi(((τi, ~σ
′
−i), µ

~σ′

I ) | I)− k(ε+ ε′).

Since height(I) ≤ d for each information set I in Γ, it follows that σi is an d(ε+ ε′)-
best response for i relative to ~σ′, for each player i = 1, . . . , n. This completes the proof
of the lemma.

Clearly ε′′ = d(ε + ε′) is an infinitesimal, so by Theorem 3.5, it follows that there
exists a belief system µ such that the assessment (~σ, µ) is a sequential equilibrium of Γ,
as desired.

It follows from Theorem 3.9 that Theorem 3.5 can be generalized to use either ε-
rationality or ε-local rationality. Each of the choices gives a characterization of sequential
rationality.

It is interesting to compare our results to those of Asheim and Perea (2005). As
mentioned, they provide epistemic characterizations of sequential equilibrium and quasi-
perfect equilibrium in 2-player games in terms of rationality. Their notion of rationality
is essentially equivalent to ours; since they do not use local rationality, it is perhaps not
surprising that they do not deal with perfect equilibrium, which seems to require it.

To obtain their results, Asheim and Perea represent uncertainty using a generalization
of LPSs (lexicographic probability sequences) (Blume, Brandenburger, and Dekel 1991a;
Blume, Brandenburger, and Dekel 1991b) that they call systems of conditional lexico-
graphic probabilities (SCLPs). An LPS is a sequence (Pr0, . . . ,Prk) of probability mea-
sures on a measure space (S,F). Roughly speaking, we can identify such a sequence with
the nonstandard probability measure (1− ǫ−· · ·− ǫk) Pr0+ǫPr1+ · · ·+ ǫk Prk on (S,F).
Indeed, it has been shown that LPSs and nonstandard probability spaces (NPSs) are es-
sentially equivalent in finite spaces (Blume, Brandenburger, and Dekel 1991a; Halpern 2010).
However, it is not hard to show that SCLPs can capture some situations that cannot be
captured by NPSs. Roughly speaking, this is because SCLPs do not necessarily satisfy
an analogue of the chain rule of probability (Pr(A | B) × Pr(B | C) = Pr(A | C) if
A ⊆ B ⊆ C), which does hold for NPSs.9 (Of course, we might view such situations

9There is no notion of multiplication in SCLPs, so this statement is not quite accurate. Nevertheless,
consequences of the chain rule, such as that µ(A | B) = µ(A′ | B) implies µ(A | C) = µ(A′ | C) do not
hold for SCLPs.
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as unreasonable.) It would be interesting to investigate whether our results could be
obtained with some variant of LPSs or CPSs (conditional probability spaces).

Another relatively minor difference between our result and that of Asheim and Perea
is that they work with what they call common certain belief rather than with common
knowledge, where certain belief of E is defined relative to a model characterized by an
LPS (µ1, . . . , µk) if µj(E) = 1 for j = 1, . . . , k. Although Asheim and Perea’s theorems
are stated in terms of mutual certain belief of rationality rather than common certain
belief, where mutual certain belief holds if both of the players have certain belief of
rationality, they also require mutual certain belief of each player’s type; in their setting,
this implies common certain belief of rationality.

Finally, in their characterization of quasi-perfect equilibrium, Asheim and Perea also
require common certain belief of caution, which, roughly speaking, in our language, says
that players should prefer a strategy that is a best response to one that is an ε-best
response, even for an infinitesimal ε. Dropping caution when moving from quasi-perfect
equilibrium to sequential equilibrium in Asheim and Perea’s framework corresponds to
moving from rationality to ε-rationality in our framework.

4 Discussion

Theorems 3.7, 3.8, and 3.9 illustrate the role that common knowledge of rationality plays
in perfect equilibrium, quasi-perfect equilibrium, and sequential equilibrium. Comparing
Theorem 2.1 to Theorem 3.7, note that for ~σ to be a perfect equilibrium, Theorem 3.7
requires players to always be rational; that is, for every information set I that a player i
can reach in the game, i must be rational conditional on reaching I. Since Theorem 2.1
considers only normal-form games, the requirement that players always be rational has no
bite. But we could prove an analogue of Theorem 2.1 for Nash equilibrium in extensive-
form games, and again it would suffice to have rationality ex ante, rather than conditional
on reaching each information set. The other key difference between Theorems 2.1 and 3.7
is that in Theorem 3.7, rather than taking the probability on histories in M to be de-
termined by ~σ, it is determined by ~σ′, a completely-mixed nonstandard strategy that
differs infinitesimally from ~σ. Note that there are many strategies that differ infinitesi-
mally from ~σ. The exact choice of ~σ′ has only an infinitesimal impact on i’s beliefs at
information sets I that are on the equilibrium path; but for information sets I off the
equilibrium path, the choice of ~σ′ completely determines i’s beliefs; different choices can
result in quite different beliefs.

The distinction between Theorems 3.7 and 3.9 highlights one way of thinking about
the difference between perfect equilibrium and sequential equilibrium. For perfect equi-
librium, it has to be common knowledge that players are always rational; for sequential
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equilibrium, it suffices to have common knowledge that players are always ε-rational for
an infinitesimal ε > 0. The distinction between Theorems 3.7 and 3.8 brings out the
point that van Damme already stressed in the definition of quasi-perfect equilibrium:
the difference between local best responses and best responses. We find it of interest
that this distinction does not play a role in sequential equilibrium.

Our results complement Aumann’s earlier epistemic characterizations of Nash and of
correlated equilibria. The general picture obtained is that all of these solution concepts
can be characterized in terms of common knowledge of rationality; the differences between
the characterizations depend on what we assume about the prior probability, whether
rationality holds at all information sets or just at the beginning, and whether we consider
rationality or ε-rationality. As we show in related work (Halpern and Moses 2007), as a
consequence of this observation, it follows that all these solution concepts can be embod-
ied in terms of a single knowledge-based program (Fagin et al. 1995; Fagin et al. 1997),
which essentially says that player i should perform action a if she believes both that she
plans to perform a and that playing a is optimal for her in the sense of being a best
response. This is, arguably, the essence of rationality. In the case of each of the equi-
librium notions that we have discussed, for the corresponding notions of rationality and
best response, if it is common knowledge that everyone is following this knowledge-based
program, then rationality is common knowledge.

Can other standard solution concepts be characterized this way? It is straightforward
to state and prove an analogue of Theorem 2.1 for Bayes-Nash equilibrium. Now the
state space in the model would include each player’s type. If we define rationality and
best responses in terms of minimax regret, rather than in terms of maximizing expected
utility, Boutilier and Hyafil (2004) define a notion of minimax-regret equilibrium that
can be captured in terms of common knowledge of rationality. Similarly, Aghassi and
Bertsimas (2006) define rationality in terms of maximin (i.e., maximizing the worst-case
utility) and use that to define what they call maximin equilibria. Again, we can prove
an analogue of Theorem 2.1 for this solution concept.

Perhaps more interesting is the solution concept of iterated admissibility, also known
as iterated deletion of weakly dominated strategies. Brandenburger, Friedenberg, and
Keisler (2008) provide an epistemic characterization of iterated admissibility (i.e., it-
erated deletion of weakly dominated strategies) where uncertainty is represented using
LPSs (lexicographic probability sequences). They define a notion of belief (which they
call assumption) appropriate for their setting, and show that strategies that survive k
rounds of iterated deletion are ones that are played in states where there is kth-order
mutual belief in rationality; that is, everyone assumes that everyone assumes . . . (k − 1
times) that everyone is rational. However, they prove only that their characterization
of iterated admissibility holds in particularly rich structures called complete structures,
where all types are possible. However, more recently, Halpern and Pass (2009) provide
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a characterization that is closer to the spirit of Theorem 2.1. The key new feature is
that instead of just requiring that everyone is rational, and that everyone knows that
everyone is rational, and that everyone knows that everyone knows . . . , they require that
all everyone knows is that everyone is rational, and that all everyone knows is that all
everyone knows is that everyone is rational, and so on. In this claim, the statement that
all agent i knows is ϕ is true at a state ω if, not only is it the case that ϕ is true at all
states that i considers possible at ω (which is what is required for i to know ϕ at ω),
but it is also the case that i assigns ψ positive probability for each formula ψ consistent
with ϕ. Thus, we capture “all i knows is ϕ” by requiring that i considers any situation
compatible with ϕ possible. In the specific case of iterated admissibility, this means
that i considers possible (i.e., assigns positive probability to) all strategies compatible
with rationality. As shown by Halpern and Pass (2009), a strategy survives k rounds of
iterated deletion iff it is played at a state in a structure where all everyone knows is that
all everyone knows . . . (k times) that everyone is rational. This result does not require
the restriction to complete structures.

Now consider extensive-form rationalizability (EFR) (Pearce 1984), an extension of
rationalizability that seems appropriate for extensive-form games (Halpern and Pass 2009).
Battigalli and Siniscalchi (2002) provide an epistemic characterization of EFR using a
notion of strong belief ; these are beliefs that are maintained unless evidence shows that
the beliefs are inconsistent. For example, if player 1 has a strong belief of player 2’s
rationality, then whatever moves player 2 makes, player 1 will revise her beliefs and, in
particular, her beliefs about player 2’s beliefs, in such a way that she continues to believe
that player 2 is rational (so that she believes that player 2 is making a best response to
his beliefs), unless it is inconsistent for her to believe that player 2 is rational. Battigalli
and Siniscalchi characterize EFR in terms of common strong belief of rationality. Specif-
ically, they show that a strategy satisfies EFR iff it is played in a complete structure.
Again, using “all i knows” would allow us to give an epistemic characterization of EFR
in the spirit of the theorems in this paper without the restriction to complete structures
(Halpern and Pass 2009).10

To summarize, the notion of common knowledge of rationality seems deeply em-
bedded in many game-theoretic solution concepts. While not all solution concepts
can be given epistemic characterizations in terms of some variant of common knowl-
edge of rationality (one counterexample is the notion of iterated regret minimization
(Halpern and Pass 2012)), the results of this paper and of others mentioned in the pre-
vious discussion show that many of the most popular solution concepts do admit such a
characterization.

10Perea (2012) also provides epistemic characterizations of iterated admissibility and EFR that do not
require complete type structures.
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