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Abstract We introduce natural strategic games on graphs, which capture the idea of
coordination in a local setting. We study the existence of equilibria that are resilient
to coalitional deviations of unbounded and bounded size (i.e., strong equilibria and
k-equilibria respectively). We show that pure Nash equilibria and 2-equilibria exist,
and give an example in which no 3-equilibrium exists. Moreover, we prove that strong
equilibria exist for various special cases. We also study the price of anarchy (PoA) and
price of stability (PoS) for these solution concepts. We show that the PoS for strong
equilibria is 1 in almost all of the special cases for which we have proven strong
equilibria to exist. The PoA for pure Nash equilbria turns out to be unbounded, even
when we fix the graph on which the coordination game is to be played. For the PoA
for k-equilibria, we show that the price of anarchy is between 2(n − 1)/(k − 1) − 1
and 2(n−1)/(k−1). The latter upper bound is tight for k = n (i.e., strong equilibria).
Finally, we consider the problems of computing strong equilibria and of determining
whether a joint strategy is a k-equilibrium or strong equilibrium. We prove that, given
a coordination game, a joint strategy s, and a number k as input, it is co-NP complete
to determine whether s is a k-equilibrium. On the positive side, we give polynomial
time algorithms to compute strong equilibria for various special cases.
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1 Introduction

In game theory, coordination games are used to model situations in which players
are rewarded for agreeing on a common strategy, e.g., by deciding on a common
technological or societal standard. In this paper we introduce and study a very simple
class of coordination games, which we call coordination games on graphs:

We are given a finite (undirected) graph, of which the nodes correspond to the
players of the game. Each player chooses a color from a set of colors available
to her. The payoff of a player is the number of neighbors who choose the same
color.

Our main motivation for studying these games is that they constitute a natural class of
strategic games that capture the following three key characteristics:

1. Join the crowd property (Simon and Apt 2015) The payoff of each player weakly
increases when more players choose her strategy.

2. Asymmetric strategy sets Players may have different strategy sets.
3. Local dependency The payoff of each player depends only on the choices made

by certain groups of players (i.e., neighbors in the given graph).

The above characteristics are inherent to many applications. As a concrete example,
consider a situation in which several clients have to choose between multiple compet-
ing providers offering the same service (or product), such as peer-to-peer networks,
social networks, photo sharing platforms, and mobile phone providers. Here the bene-
fit of a client for subscribing to a specific provider increases with the number of clients
who opt for this provider. Also, each client typically cares only about the subscriptions
of certain other clients (e.g., friends, relatives, etc.).

In coordination games on graphs it is beneficial for each player to align her choices
with the ones of her neighbors. As a consequence, the players may attempt to increase
their payoffs by coordinating their choices in groups (also called coalitions). In our
studies we therefore focus on equilibrium concepts that are resilient to deviations of
groups; more specifically we study strong equilibria (Aumann 1959) and k-equilibria
(also known as k-strong equilibria) of coordination games on graphs. Recall that in
a strong equilibrium no coalition of players can profitably deviate in the sense that
every player of the coalition strictly improves her payoff. Similarly, in a k-equilibrium
with k ∈ {1, . . . , n}, where n is the number of players, no coalition of players of size
at most k can profitably deviate.

Our contributions The focus of this paper is on the existence, inefficiency and com-
putability of strong equilibria and k-equilibria of coordination games on graphs. Our
main contributions are as follows:
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1. Existence We show that Nash equilibria and 2-equilibria always exist. On the other
hand, k-equilibria for k ≥ 3 do not need to exist. We therefore derive a complete
characterization of the values of k for which k-equilibria exist in our games.
We also show that strong equilibria exist if only two colors are available. Fur-

ther, we identify several graph structural properties that guarantee the existence of
strong equilibria: in particular they exist if the underlying graph is a pseudoforest,1

and when every pair of cycles in the graph is edge-disjoint. Also, they exist if the
graph is color complete, i.e., if for each available color x the components of the
subgraph induced by the nodes having color x are complete. Moreover, existence
of strong equilibria is guaranteed in case the coordination game is played on a
color forest, i.e., for every color, the subgraph induced by the players who can
choose that color is a forest.
We also address the following question. Given a coordination game denote its

transition value as the value of k for which a k-equilibrium exists but a (k + 1)-
equilibrium does not. The question then is to determine for which values of k a
game with transition value k exists. We exhibit a game with transition value 4.
In all our proofs the existence of strong equilibria is established by showing a
stronger result, namely that the game has the coalitional finite improvement prop-
erty, i.e., every sequence of profitable joint deviations is finite (see Sect. 2 for a
formal definition).

2. Inefficiency We also study the inefficiency of equilibria. In our context, the social
welfare of a joint strategy is defined as the sum of the payoffs of all players.
The k-price of anarchy (Andelman et al. 2009) (resp. k-price of stability) refers
to the ratio between the social welfare of an optimal outcome and the minimum
(resp. maximum) social welfare of a k-equilibrium.2

We show that the price of anarchy is unbounded, independently of the underlying
graph structure, and the strong price of anarchy is 2. In general, for the k-price
of anarchy with k ∈ {2, . . . , n − 1} we derive almost matching lower and upper
bounds of 2 n−1

k−1 − 1 and 2 n−1
k−1 , respectively (given a coordination game that has

a k-equilibrium). We also prove that the strong price of stability is 1 for the cases
that there are only two colors, or the graph is a pseudoforest or color forest.
Our results thus show that as the coalition size k increases, the worst-case ineffi-
ciency of k-equilibria decreases from ∞ to 2. In particular, we obtain a constant
k-price of anarchy for k = Ω(n).

3. Complexity We also address several computational complexity issues. Given a
coordination game, a joint strategy s, and a number k as input, it is co-NP complete
to determine whether s is a k-equilibrium. However, we show that this problem
can be solved in polynomial time in case the graph is a color forest. We also give
polynomial time algorithms to compute strong equilibria for the cases of color
forests, color complete graphs, and pseudoforests.

1 Recall that in a pseudoforest each connected component has at most one cycle.
2 The k-price of anarchy is also commonly known as the k-strong price of anarchy.
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Related work Our coordination games on graphs are related to various well-studied
types of games. We outline some connections below.

First, coordination games on graphs are polymatrix games. Recall that a polyma-
trix game (see Howson 1972; Janovskaya 1968) is a finite strategic game in which the
payoff for each player is the sum of the payoffs obtained from the individual games the
player plays with each other player separately. Cai and Daskalakis (2011) considered a
special class of polymatrix gameswhich they call coordination-only polymatrix games.
These games are identical to coordination games on graphs with edge weights. They
showed that pureNash equilibria exist and that finding one is PLS-complete. The proof
of the latter result crucially exploits that the edge weights can be negative. Note that
negative edge weights can be used to enforce that players anti-coordinate. Our coordi-
nation games do not exhibit this characteristic and are therefore different from theirs.

Second, our coordination games are related to additively separable hedonic games
(ASHG) (Banerjee Konishi 2001; Bogomolnaia and Jackson 2002), which were orig-
inally proposed in a cooperative game theory setting. Here the players are the nodes
of an edge weighted graph and form coalitions. The payoff of a node is defined as
the total weight of all edges to neighbors that are in the same coalition. If the edge
weights are symmetric, the corresponding ASHG is said to be symmetric. Recently,
a lot of work focused on computational issues of these games (see, e.g., Aziz et al.
2010, 2011; Gairing and Savani 2010). Aziz and Brandt (2012) studied the existence
of strong equilibria in these games. The PLS-hardness result established in Gairing
and Savani (2010) does not carry over to our coordination games because it makes
use of negative edge weights, which we do not allow in our model. Note also that
in ASHGs every player can choose to enter every coalition which is not necessarily
the case in our coordination games. Such restrictions can be imposed by the use of
negative edge weights (see also Gairing and Savani 2010) and our coordination games
therefore constitute a special case of symmetric ASHGs with arbitrary edge weights.

Third, our coordination games on graphs are related to congestion games (Rosenthal
1973). In particular, they are isomorphic to a special case of congestion games with
weakly decreasing cost functions (assuming that each player wants to minimize her
cost). Rozenfeld and Tennenholtz (2006) derived a structural characterization of strat-
egy sets that ensure the existence of strong equilibria in such games. By applying their
characterization to our (transformed) games one obtains that strong equilibria exist if
the underlying graph of the coordination game is a matching or complete (both results
also follow trivially from our studies). Bilò et al. (2011) studied congestion games
where the players are embedded in a (possibly directed) influence graph (describing
how the players delay each other). They analyzed the existence and inefficiency of pure
Nash equilibria in these games. However, because the delay functions are assumed to
be linearly increasing in the number of players, these games do not cover the games
we study here.

Further, coordination games on graphs are special cases of the social network games
introduced and analyzed inApt and Simon (2013) (if one uses in them thresholds equal
to 0). These are games associatedwith a thresholdmodel of a social network introduced
in Apt and Markakis (2011) which is based on weighted graphs with thresholds.

Coordination games are also related to the problem of clustering, where the task is
to partition the nodes of a graph in a meaningful manner. If we view the strategies as
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possible cluster names, then a Nash equilibrium of our coordination game on a graph
corresponds to a “satisfactory” clustering of the underlying graph. Hoefer (2007)
studied clustering games that are also polymatrix games based on graphs. Each player
plays one of two possible base games depending onwhether the opponent is a neighbor
in the given graph or not. Another more recent approach to clustering through game
theory is by Feldman et al. (2015). In this paper both a fixed clustering of points lying
in a metric space and a correlation clustering (in which the distance is in [0,1] and
each point has a weight denoting its ‘influence’) is viewed as a strategic hedonic game.
However, in both references each player has the same set of strategies, so the resulting
games are not comparable with ours.

Strategic games that involve coloring of the vertices of a graph have also been
studied in the context of the vertex coloring problem. These games are motivated by
the question of finding the chromatic number of a graph. As in our games, the players
are nodes in a graph that choose colors. However, the payoff function differs from the
onewe consider here: it is 0 if a neighbor chooses the same color and it is the number of
nodes that chose the same color otherwise. Panagopoulou and Spirakis (2008) showed
that an efficient local search algorithm can be used to compute a good vertex coloring.
Escoffier et al. (2012) extended this work by analyzing socially optimal outcomes and
strong equilibria. Chatzigiannakis et al. (2010) studied the vertex coloring problem in
a distributed setting and showed that under certain restrictions a good coloring can be
reached in polynomial time.

Strong and k-equilibria in strategic games on graphs were also studied in Gourvès
and Monnot (2009) and Gourvès and Monnot (2010). These games are related to,
respectively, the MAX-CUT and MAX-k-CUT problems. However, they do not satisfy
the join the crowd property, so, again, the results are not comparable with ours.

To summarize, in spite of these close connections, our coordination games on graphs
are different from all classes of games mentioned above. Notably, this is due to the
fact that our games combine the three properties mentioned above, i.e., join the crowd,
asymmetric strategy sets and local dependencies modeled by means of an undirected
graph.

Research reported here was recently followed in two different directions. In Apt
et al. (2015) and Simon and Wojtczak (2016) coordination games on directed graphs
were considered, while in Rahn and Schäfer (2015) coordination games on weighted
undirected graphs were analyzed. Both setups lead to substantially different results
that are discussed in the final section. Finally, Feldman and Friedler (2015) studied
the strong price of anarchy for a general class of strategic games that, in particular,
include as special cases our games and the MAX-CUT games mentioned above.

As a final remark, let usmention that the coordination games on graphs are examples
of games on networks, a vast research area surveyed in Jackson and Zenou (2012).

Our techniques Most of our existence results are derived through the application of
one technical key lemma. This lemma relates the change in social welfare caused
by a profitable deviation of a coalition to the size of a minimum feedback edge set
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of the subgraph induced by the coalition.3 This lemma holds for arbitrary graphs and
provides a tight bound on themaximum decrease in social welfare caused by profitable
deviations. Using it, we prove our existence results by means of a generalized ordinal
potential function argument. In particular, this enables us to show that every sequence
of profitable joint deviations is finite. Further, we use the generalized ordinal potential
function to prove that the strong price of anarchy is 1 and that strong equilibria can be
computed efficiently for certain graph classes.

The non-existence proof of 3-equilibria is based on an instance whose graph essen-
tially corresponds to the skeleton of an octahedron and whose strategy sets are set up
in such a way that at most one facet of the octahedron can be unicolored. We then use
the symmetry of this instance to prove our non-existence result.

The upper bound on the k-price of anarchy is derived through a combinatorial
argument. We first fix an arbitrary coalition of size k and relate the social welfare of a
k-equilibrium to the socialwelfare of an optimumwithin this coalition.We then extrap-
olate this bound by summing over all coalitions of size at most k. We believe that this
approach might also prove useful to analyze the k-price of anarchy in other contexts.

2 Preliminaries

A strategic game G := (N , (Si )i∈N , (pi )i∈N ) consists of a set N := {1, . . . , n} of n >

1 players, a non-empty set Si of strategies, and a payoff function pi : S1×· · ·×Sn → R

for each player i ∈ N . We denote S1 × · · · × Sn by S, call each element s ∈ S a joint
strategy, and abbreviate the sequence (s j ) j �=i to s−i . Occasionally we write (si , s−i )

instead of s.
We call a non-empty subset K := {k1, . . . , km} of N a coalition. Given a joint

strategy s we abbreviate the sequence (sk1 , . . . , skm ) of strategies to sK and Sk1 ×
· · ·× Skm to SK . We also write (sK , s−K ) instead of s. If there is a strategy x such that
si = x for all players i ∈ K , we also write (xK , s−K ) for s.

Given two joint strategies s′ and s and a coalition K , we say that s′ is a deviation
of the players in K from s if K = {i ∈ N | si �= s′

i }. We denote this by s
K→s′. If in

addition pi (s′) > pi (s) holds for all i ∈ K , we say that the deviation s′ from s is
profitable. Further, we say that the players in K can profitably deviate from s if there
exists a profitable deviation of these players from s.

Next, we call a joint strategy s a k-equilibrium, where k ∈ {1, . . . , n}, if no coalition
of at most k players can profitably deviate from s. Using this definition, aNash equilib-
rium is a 1-equilibrium and a strong equilibrium (Aumann 1959) is an n-equilibrium.

Given a joint strategy s, we call the sum SW(s) = ∑
i∈N pi (s) the social welfare

of s. When the social welfare of s is maximal, we call s a social optimum. Given a
finite game that has a k-equilibrium, its k-price of anarchy (resp. stability) is the ratio
SW(s)/SW(s′), where s is a social optimum and s′ is a k-equilibrium with the lowest
(resp. highest) social welfare.4 The (strong) price of anarchy refers to the k-price of
anarchy with k = 1 (k = n). The (strong) price of stability is defined analogously.

3 Recall that a feedback edge set is a set of edges whose removal makes the graph acyclic.
4 In the case of division by zero, we define the outcome as ∞.
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1

{a, c}

2

{a, b}

3
{a, b}

4

{b, c}

5
{b, c}

6

{c, a}

7
{c, a}

8

{b, a}

Fig. 1 A graph with a color set assignment. The bold edges indicate pairs of players choosing the same
color

A coalitional improvement path, in short a c-improvement path, is a maximal
sequence (s1, s2, . . . ) of joint strategies such that for every k > 1 there is a coalition
K such that sk is a profitable deviation of the players in K from sk−1. Clearly, if a
c-improvement path is finite, its last element is a strong equilibrium. We say that G
has the finite c-improvement property (c-FIP) if every c-improvement path is finite.
So if G has the c-FIP, then it has a strong equilibrium. Further, we say that the function
P : S → A (where A is any set) is a generalized ordinal c-potential for G if there

exists a strict partial ordering� on the set A such that if s
K→s′ is a profitable deviation,

then P(s′) � P(s). A generalized ordinal potential is also called a generalized strong
potential (Harks et al. 2013; Holzman and Law-Yone 1997). It is easy to see that if
a finite game admits a generalized ordinal c-potential then the game has the c-FIP.
The converse also holds: a finite game that has the c-FIP admits a generalized ordinal
c-potential. The latter fact is folklore; we give a self-contained proof in the Appendix.

Note that in the definition of a profitable deviation of a coalition, we insisted that all
members of the coalition change their strategies. This requirement is irrelevant for the
definitions of the k-equilibrium and the c-FIP, but it makes some arguments slightly
simpler.

3 Coordination games on graphs

We now introduce the games we are interested in. Throughout the paper, we fix a finite
set of colors M of size m, an undirected graph G = (V, E) without self-loops, and a
color assignment A. The latter is a function that assigns to each node i a non-empty set
Ai ⊆ M . A node j ∈ V is a neighbor of the node i ∈ V if {i, j} ∈ E . Let Ni denote
the set of all neighbors of node i . We define a strategic game G(G, A) as follows:

• the players are identified with the nodes, i.e., N = V ,
• the set of strategies of player i is Ai ,
• the payoff function of player i is pi (s) := | { j ∈ Ni |si = s j } |.

So each node simultaneously chooses a color from the set available to her and the
payoff to the node is the number of neighbors who chose the same color. We call these
games coordination games on graphs, from now on just coordination games.
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Example 1 Consider the graph and the color assignment depicted in Fig. 1. Take the
joint strategy that consists of the underlined strategies. Then the payoffs are as follows:

• 1 for the nodes 1, 6, 7,
• 2 for the nodes 2, 3,
• 3 for the nodes 4, 5, 8.

It is easy to see that the above joint strategy is a Nash equilibrium. However, it is not
a strong equilibrium because the coalition K = {1, 4, 5, 6, 7} can profitably deviate
by choosing color c. 
�

Wenow recall some notation and introduce some terminology. LetG = (V, E) be a
graph.Given a set of nodes K , we denote byG[K ] the subgraph ofG induced by K and
by E[K ] the set of edges in E that have both endpoints in K . So G[K ] = (K , E[K ]).
Further, δ(K ) denotes the set of edges that have one node in K and the other node
outside of K . Also, given a subgraph C of G we use V (C) and E(C) to refer to the
set of nodes and the set of edges of C , respectively.

Furthermore, we define SWK (s) := ∑
i∈K pi (s). Given a joint strategy s we denote

by E+
s the set of edges {i, j} ∈ E such that si = s j . We call these edges unicolored

in s. (In Fig. 1, these are the bold edges.) Note that SW(s) = 2|E+
s |. Finally, we call

a subgraph unicolored in s if all its nodes have the same color in s.

4 Existence of strong equilibria

Webegin by studying the existence of strong equilibria and k-equilibria of coordination
games. We first prove our key lemma and then show how it can be applied to derive
several existence results.

4.1 Key lemma

Recall that an edge set F ⊆ E is a feedback edge set of the graph G = (V, E) if the
graph (V, E\F) is acyclic.

Lemma 1 (Key lemma) Suppose s
K→s′ is a profitable deviation. Let F be a feedback

edge set of G[K ]. Denote SW(s′) − SW(s) by ΔSW and for a coalition L denote
SWL(s) − SWL(s) by ΔSWL. Then

ΔSW = 2(ΔSWK − |E+
s′ ∩ E[K ]| + |E+

s ∩ E[K ]|) (1)

and
ΔSW > 2(|F ∩ E+

s | − |F ∩ E+
s′ |). (2)

Proof Let NK denote the set of neighbors of nodes in K that are not in K . Abbreviate
SW(s′) − SW(s) to ΔSW, and analogously, for a coalition L , let ΔSWL = SWL(s′) −
SWL(s). The change in the social welfare can be written as

ΔSW = ΔSWK + ΔSWNK + ΔSWV \(K∪NK ).
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We have

SWK (s) = 2|E+
s ∩ E[K ]| + |E+

s ∩ δ(K )|

and analogously for s′. Thus
ΔSWK = 2(|E+

s′ ∩ E[K ]| − |E+
s ∩ E[K ]|) + |E+

s′ ∩ δ(K )| − |E+
s ∩ δ(K )|.

It follows that

ΔSWNK = |E+
s′ ∩ δ(K )| − |E+

s ∩ δ(K )|
= ΔSWK − 2(|E+

s′ ∩ E[K ]| − |E+
s ∩ E[K ]|).

Furthermore, the payoff of the players that are neither in K nor in NK does not change
and hence ΔSWV \(K∪NK ) = 0. Putting these equalities together, we obtain (1).

Let Fc = E[K ]\F . Then
|E+

s ∩ E[K ]| − |E+
s′ ∩ E[K ]| = |E+

s ∩ F | − |E+
s′ ∩ F | + |E+

s ∩ Fc| − |E+
s′ ∩ Fc|.

We know that (K , Fc) is a forest because F is a feedback edge set. So |Fc| < |K |.
Hence

|E+
s ∩ Fc| − |E+

s′ ∩ Fc| ≥ −|Fc| > −|K |.

Furthermore, each player in K improves his payoff when switching to s′ and hence
ΔSWK ≥ |K |. So, plugging in these inequalities in (1) we get

ΔSW > 2(|K | + |E+
s ∩ F | − |E+

s′ ∩ F | − |K |) = 2(|E+
s ∩ F | − |E+

s′ ∩ F |),

which proves (2). 
�
Let τ(K ) be the size of a minimal feedback edge set of G[K ], i.e.,

τ(K ) = min{|F | | G[K ]\F is acyclic}. (3)

Equation (2) then yields that SW(s′) − SW(s) > −2τ(K ). The following example
shows that this bound is tight.

Example 2 Wedefine a graphG = (V, E) and a color assignment as follows.Consider
a clique on l nodes and let K be the set of nodes. Every i ∈ K can choose between two
colors {ci , x}, where ci �= c j for every j �= i . Further, every node i ∈ K is adjacent to
(l − 2) additional nodes of degree one, each of which has the color set {ci }. Note that
when defining a joint strategy s, it is sufficient to specify si for every i ∈ K because
the remaining nodes have only one color to choose from.

Let s := (ci )i∈K and s′ := (x)i∈K . Then s
K→s′ is a profitable deviation because

every node in K increases its payoff from (l − 2) to (l − 1). Also |E+
s | = l(l − 2) and

|E+
s′ | = l(l−1)

2 , so

|E+
s | − |E+

s′ | = l

(

l − 2 − l − 1

2

)

= l

(
l − 1

2
− 1

)

.
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Furthermore, each tree on |K | nodes has |K | − 1 edges. Thus

τ(K ) = |E[K ]| − (|K | − 1) = l(l − 1)

2
− (l − 1) = l

(
l − 1

2
− 1

)

+ 1.

So SW(s′) − SW(s) = 2(|E+
s′ | − |E+

s |) = −2τ(K ) + 2. Tightness follows because
the left hand side is always even. 
�

4.2 Color forests and pseudoforests

We use our key lemma to show that coordination games on pseudoforests admit strong
equilibria. Recall that a pseudoforest is a graph in which every connected component
contains at most one cycle. For a color x ∈ M let

Vx = {i ∈ V | x ∈ Ai }

be the set of nodes that can choose x . If G[Vx ] is a forest for all x ∈ M , we call G
a color forest (with respect to A). Note that, in particular, a forest constitutes a color
forest. Given a joint strategy s, we call a subgraph G ′ of G completely non-unicolored
in s if none of its edges is unicolored in s.

We first derive some corollaries from our key lemma. Throughout this section, we

consider a profitable deviation s
K→s′ and let ΔSW = SW(s′) − SW(s).

Corollary 1 If ΔSW ≤ 0, then there is a cycle C in G[K ] that is completely non-
unicolored in s and unicolored in s′.

Proof Assume that the claim does not hold. Then for all cycles C in G[K ], we can
pick an edge eC ∈ E[C] that is unicolored in s or non-unicolored in s′. Let F =
{eC |C is a cycle in G[K ]}. This is a feedback edge set satisfying F ∩ E+

s′ ⊆ F ∩ E+
s .

Hence by (2), ΔSW > 2(|E+
s ∩ F | − |E+

s′ ∩ F |) ≥ 0, which is a contradiction. 
�
The next statement follows immediately from Corollary 1 because unicolored cycles
cannot exist in color forests. Note that forests are a special case.

Theorem 1 Suppose that G[K ] is a color forest. Then ΔSW > 0. Hence every coor-
dination game on a color forest has the c-FIP. 
�
Corollary 2 If G[K ] is a graph with at most one cycle, then ΔSW ≥ 0.

Proof If G[K ] is a connected graph with exactly one cycle, then there is a feedback
edge set of size 1. Hence ΔSW > −2. Because the left hand side is even, this implies
ΔSW ≥ 0. 
�

Using Corollaries 1 and 2, we now establish the following result.

Theorem 2 Every coordination game on a pseudoforest has the c-FIP.
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Proof Associate with each joint strategy s the pair

P(s) := (SW(s), | {C | C is a unicolored cycle in s} | ).

We now claim that P : S → R
2 is a generalized ordinal c-potential when we take for

the strict partial ordering � on P(S) the lexicographic ordering.

Consider a profitable deviation s
K→s′. By partitioning K into the subsets of different

connected components we can decompose this deviation into a sequence of profitable
deviations such that each deviating coalition induces a subgraph of a connected graph
with at most one cycle. By Corollary 2 the social welfare in each of these profitable
deviations weakly increases. So SW(s′) ≥ SW(s).

If SW(s′) > SW(s) then P(s′) � P(s). If SW(s′) = SW(s), then by Corollary 1
each of these profitable deviations is by a coalition that induces a connected graphwith
exactly one cycle. Moreover, this cycle becomes unicolored in s′. Thus P(s′) � P(s).


�

4.3 Further applications

The following corollary is an immediate consequence of Corollary 1.

Corollary 3 In every coordination game, every sequence of profitable deviations of
coalitions of size at most two is finite. Hence Nash equilibria and 2-equilibria always
exist.

Corollary 4 Every coordination game in which at most two colors are used has the
c-FIP.

Proof Let s
K→s′ be a profitable deviation. By assumption, all players in K then deviate

to their other option. As a consequence, every edge in E[K ] is unicolored in s′ if and
only if it is unicolored in s. Hence each cycle in G[K ] that is unicolored in s′ is also
unicolored in s. It follows from Corollary 1 that SW(s′) > SW(s). This shows that SW
is a generalized ordinal c-potential. 
�

The existence of strong equilibria for coordination games with two colors and sym-
metric strategy sets follows from Proposition 2.2 in Konishi et al. (1997). Corollary 3
shows that a stronger result holds, namely that these games have the c-FIP. This implies
that arbitrary coalitional improvement paths always converge to a strong equilibrium.

We next derive an existence result of k-equilibria in graphs in which every pair of
cycles is edge-disjoint. We call an edge e of a graph private if it belongs to a cycle
and is node-disjoint from all other cycles.

Lemma 2 Let G be a graph in which every pair of cycles is edge-disjoint. Then there
exists a private edge.

Proof Given a cycle C , we call a node v ∈ V (C) an anchor point of C if v can be
reached from a node v′ ∈ V (C ′) of another cycle C ′ �= C without traversing an edge
in E(C). First we show that there always exists a cycle with at most one anchor point.
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Assume that the claim does not hold. Then every cycle C of G contains at least two
distinct anchor points. Fix an arbitrary cycle C of G and let v1C and v2C be two anchor
points of C . Start from v1C and traverse the edges of C to reach v2C . Then follow a
shortest path P that connects v2C to a node v1C ′ ∈ V (C ′) of another cycle C ′ �= C ; P
must exist because v2C is an anchor point.

Note that C and C ′ share at most one node because all cycles are edge-disjoint;
in particular, P might have length zero and consist of a single node only. Because
we choose a shortest path connecting C and C ′, v1C ′ must be an anchor point of C ′.
By assumption, C ′ has another anchor point v2C ′ . Repeat the above procedure with
cycle C ′ and anchor points v1C ′ and v2C ′ . Continuing this way, we construct a path that
traverses cycles ofG. Eventually, this pathmust return to a previously visited cycle. So
this path contains a cycle and this cycle shares at least one edge with one of the visited
cycles. This contradicts the assumption that all cycles of G are pairwise edge-disjoint.

Now, let C be a cycle with at most one anchor point v (if no such node exists, any
edge in E(C) is private). Then any edge e ∈ E(C) such that v is not an endpoint of e
is private. 
�
Theorem 3 Consider a coordination game on a graph G in which every pair of cycles
is edge-disjoint. Let k be the minimum length of a cycle in G. Then every sequence
of profitable deviations of coalitions of size at most k is finite. In particular, the game
has a 3-equilibrium.

Proof We proceed by induction on the number z of cycles. If z = 1, then the claim
follows by Theorem 2.

Now, let z > 1. Let s
K→s′ be a profitable deviation such that |K | ≤ k. From (1) we

infer that

ΔSW = 2(ΔSWK − |E+
s′ ∩ E[K ]| + |E+

s ∩ E[K ]|) ≥ 2(ΔSWK − |E[K ]|)

because |E+
s′ ∩ E[K ]| ≤ |E[K ]|. Because k is the minimum length of a cycle in G

and |K | ≤ k, we have |E[K ]| ≤ |K |. So ΔSW ≥ 0.

Consider a sequence of profitable deviations s1
K1→s2

K2→s3 . . . We show that it is
finite. Because the social welfare cannot decrease and is upper bounded there is an
index l ≥ 1 such that for all i ≥ l, SW(si ) = SW(sl). We can assume without
loss of generality that l = 1. By Corollary 1, for each i ≥ 1 there is a cycle Ci in
G[Ki ] such Ci is completely non-unicolored in si and unicolored in si+1. Note that
k ≤ |V (Ci )| ≤ |Ki | ≤ k and hence Ki = V (Ci ).

By Lemma 2, there is a cycleC with a private edge e = {u1, u2} ∈ E(C). We claim
thatC = Ci for at most one i.Assume otherwise and let i1, i2 such thatC = Ci1 = Ci2
and C �= Ci for i1 < i < i2. Because C = Ci1 , e is unicolored in si1+1. We know
that C is the only cycle containing u j for j = 1, 2 by choice of e. So u j /∈ Ki for
i1 < i < i2 and hence e is still unicolored in i2. But C switches from completely
non-unicolored in si2 to unicolored in si2+1, a contradiction.

Since C is the only cycle containing u j for j = 1, 2, it follows that each u j can
appear atmost once in a deviating coalition. So there is an index l such that u1, u2 /∈ Ki
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for all i > l. Hence if we remove e and call the new graph G ′, then for all i > l,

si
Ki→si+1 is a profitable deviation in G ′. Because G ′ has one cycle less than G, we can

apply the induction hypothesis and conclude that the considered sequence of profitable
deviations is finite. 
�

4.4 Uniform coordination games

Next, we establish the c-FIP property for some additional classes of coordination
games. We call a coordination game on a graph G uniform if for every joint strategy
s and for every edge {i, j} ∈ E it holds that if si = s j then pi (s) = p j (s).

Theorem 4 Every uniform coordination game has the c-FIP.

Proof Given a sequence θ ∈ R
n of reals we denote by θ∗ its reordering from the

largest to the smallest element. Associate with each joint strategy s the sequence
(p1(s), . . . , pn(s))∗ that we abbreviate to p∗(s). We now claim that p∗ : S → R

n is
a generalized ordinal c-potential when we take for the partial ordering � on p∗(S) the
lexicographic ordering on the sequences of reals.

Suppose that some coalition K profitably deviates from the joint strategy s to
s′ = (s′

K , s−K ). We claim that then p∗(s′) � p∗(s).
Assume this does not hold. Rename the players such that p∗(s′) = (p1(s′), . . . ,

pn(s′)). Let i be the smallest value for which pi (s′) < pi (s). By assumption such an i
exists. By the choice of i for all j < i wehave p j (s′) ≥ p j (s) and also p j (s′) ≥ pi (s′).

Now, pi (s′) < pi (s) implies that i /∈ K and hence we can write s′ = (si , s′−i ). By
the definition of the payoff functions, it follows that there exists some neighbor j of i
with s j = si and s′

j �= s j . Thus, j ∈ K . By the uniformity property, pi (s) = p j (s). So
p j (s′) > p j (s) = pi (s). Consequently, by the choice of i , we have p∗(s′) � p∗(s),
which is a contradiction. 
�

We can capture by Theorem 4 the following class of coordination games: We say
that G is color complete (with respect to A) if for every x ∈ M each component of
G[Vx ] is complete. (Recall that Vx = {i ∈ V | x ∈ Ai }.)
Corollary 5 Every coordination game on a color complete graph has the c-FIP. In
particular, every coordination game on a complete graph has the c-FIP.

The existence of strong equilibria for color complete graphs also follows from a
result by Rozenfeld and Tennenholtz (2006) and the following lemma.

Lemma 3 Coordination games on color complete graphs are a special case of
monotone increasing congestion games in which all strategies are singletons.

Proof We can assume without loss of generality that for each color x , G[Vx ] is con-
nected (otherwise, we replace x with a new respective color for each component of
G[Vx ]). Then we can identify x with a singleton resource, along with the payoff
function vx : N → R such that vx (k) = k − 1. Now, if a player i chooses si = x then

pi (s) = | { j ∈ Ni | s j = x} | = | { j ∈ V | s j = x} | − 1 = vx ( | { j ∈ V | s j = x} | ),
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Fig. 2 Three-dimensional illustration of the coordination game used to show that 3-equilibria do not exist
(Theorem 5). The colored facets indicate the triangles that can be unicolored. The identity of the players is
displayed in boldface. The strategy sets of the players are stated between curly braces

so the payoff in the coordination game coincides with the payoff in the associated
congestion game. 
�

Rozenfeld and Tennenholtz (2006) show that monotone increasing congestion
games in which all strategies are singletons admit strong equilibria. Note, however,
that our result above is stronger because we show that these games have the c-FIP.

4.5 Non-existence of 3-equilibria and existence thresholds

We next prove that 3-equilibria do not exist in general. Recall that 2-equilibria always
exist by Corollary 3.

Theorem 5 There exists a coordination game that does not have a 3-equilibrium.

Proof Wedefine a coordination gameG(G, A) as indicated in Fig. 2: There are n = 10
players and 4 colors. The strategy sets are as follows: A1 = {1, 3}, A2 = {2, 4}, A3 =
{1, 4}, A4 = {1, 2}, A5 = {2, 3}, A6 = {3, 4}, A7 = {1}, A8 = {2}, A9 = {3}, A10 =
{4}. There are 16 edges, defined as follows: Players 1 and 2 are both connected to
players 3, 4, 5, and 6, accounting for 8 of the edges. There is aditionally a cycle
(3, 4, 5, 6, 3), accounting for four more edges. Lastly, players 7, 8, 9, and 10 all have
a single edge attached to them and are connected to players 3, 4, 5, and 6, respectively.

As can be seen from Fig. 2, the graph on which the game is played is essentially
the skeleton of an octahedron: 12 of the edges and 6 of the nodes of the graph belong
to this skeleton, and the four remaining edges are connected to four remaining nodes
that are dummy players (i.e., they have only one strategy that they can play).
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Observe that there are eight triangles in the graph, which correspond to the eight
facets of the octahedron. The strategy sets are defined such that only four out of the
eight triangles of the octahedron can be unicolored. Also, this game is constructed
such that if one triangle is unicolored, then the other three triangles are necessarily
not unicolored.

We prove the theorem by showing that for every strategy profile of G, there exists a
profitable deviation of a set of at most 3 players. To simplify the proof, we make use
of the many symmetries in G, which are apparent from Fig. 2. Let s be an arbitrary
strategy profile of G. We distinguish two cases:

– If there is a triangle that is unicolored under s, we may assume without loss of
generality that this triangle is the one corresponding to players {1, 3, 4} (because
of symmetry), i.e., s1 = s3 = s4 = 1. Observe that p4(s) = 2. We distinguish two
cases:

– p5(s) = 2. Then s5 = s6 = 3. If s2 = 4 then player 6 can deviate profitably
to 4. If s2 = 2 then the coalition {2, 6} can deviate profitably to 4.

– p5(s) ≤ 1. If s2 = 2 and s5 = 2, then player 4 can deviate profitably to 2.
If s2 = 2 and s5 = 3 then the coalition {4, 5} can deviate profitably to 2. If
s2 = 4, then s5 = 3, and coalition {2, 4, 5} can deviate profitably to 2.

– If there is no triangle that is unicolored under s, we distinguish again two cases.
By symmetry we may assume that s1 = 1.

– s3 = 4. Then p3(s) ≤ 1, so player 3 can profitably deviate by changing his
color to 1.

– s3 = 1. Then s4 = 2. If p4(s) = 1 then player 4 can profitably deviate by
changing his color to 1. Otherwise, p4(s) = 2 and either (s2, s5) = (2, 3) or
(s2, s5) = (4, 2).

• If (s2, s5) = (2, 3), then if also p5(s) = 2 it holds that s6 = 3 and
therefore player 1 can profitably deviate to 3. If p5(s) = 1, then player 5
can profitably deviate to 2.

• If (s2, s5) = (4, 2), then p2(s) ≤ 1, so player 2 can profitably deviate to
2.

Note that each profitable deviation given above consists of at most three players.
This concludes the proof. 
�

The coordination game given in Fig. 2 is an example of a game that does not
have a 3-equilibrium but admits a 2-equilibrium. We define the transition value of a
coordination game as the value of k for which a k-equilibrium exists but a (k + 1)-
equilibrium does not. Clearly, the instance in Fig. 2 has an transition value of k = 2.
An interesting question is whether one can identify instances of coordination games
with a non-trivial transition value k ≥ 3.

Wenext show that the coordination gamegiven inFig. 1 is an instancewith transition
value k = 4.

Theorem 6 There is a coordination game that has a transition value of 4.

Proof Consider the coordination game discussed in Example 1 (see Fig. 1). We first
argue that it does not admit a 5-equilibrium. Assume for the sake of a contradiction
that s is a strong equilibrium of this game.
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Consider players 4 and 5. Let i, j ∈ {4, 5}, i �= j be such that pi (s) ≤ p j (s).
Note that the neighbors of i and j (excluding j and i , respectively) are the same. As
a consequence, if si �= s j , then player i can profitably deviate to player j’s color, i.e.,
s′
i = s j . Thus players 4 and 5 have the same color in s, say s4 = s5 = b. (Because of
the symmetry of the instance, the case s4 = s5 = c follows analogously.)

Assume there exists a player i ∈ {2, 3} with si �= b. Then i can profitably deviate
by choosing s′

i = b. It follows that players 2 and 3 have color s2 = s3 = b.
Next, consider player 8 and suppose s8 = b. Then his payoff is p8(s) = 2. Further,

the payoff of each of the players 1, 6 and 7 is 0 because all their neighbors have color
b. But then the coalition K = {1, 6, 7, 8} can profitably deviate by choosing color a.
We conclude that s8 = a.

As a consequence, for players 1, 6, and 7 we have s1 = s6 = s7 = a as otherwise
any such player could profitably deviate by choosing a.

Thus, the only remaining possible configuration for s is the one indicted in Fig. 1
(by the underlined strategies). But this is not a strong equilibrium because the coali-
tion K = {1, 4, 5, 6, 7} can profitably deviate by choosing color c. This yields a
contradiction and proves the non-existence of 5-equilibria.

On the other hand, it is easy to see that the strategy profile indicated in Fig. 1
constitutes a 4-equilibrium. This concludes the proof. 
�

In general, we leave open the question for which k ≥ 2 there exist coordination
games with transition value k.

The above example can be adapted to show that there are coordination games that
do not have the c-FIP but are c-weakly acyclic. Recall that a gameG is c-weakly acyclic
if for every joint strategy there exists a finite c-improvement path that starts at it. Note
that a c-weakly acyclic game admits a strong equilibrium.

Corollary 6 There is a coordination game that does not have the c-FIP but is c-weakly
acyclic.

Proof Take the coordination game from Example 1 and modify it by adding to each
color set a new, common color d. Then the joint strategy s in which each player selects
d is a strong equilibrium. Moreover, for each player her payoff in s is strictly higher
than in any joint strategy in which she chooses another color. So s can be reached from
each joint strategy in just one profitable deviation, by a coalition of the players who
all switch to d. On the other hand, the argument presented in Example 1 shows that
this game does not have the c-FIP. 
�

5 Inefficiency of k-equilibria

Wefirst summarize some results concerning the strong price of stability of coordination
games.

Theorem 7 The strong price of stability is 1 in each of the following cases:

• G is a pseudoforest;
• G is a color forest;
• there are only two colors.
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Proof If G is a pseudoforest, a maximum of P in the lexicographic ordering defined
in the proof of Theorem 2 is a strong equilibrium and a social optimum. In the other
two cases, the social welfare function SW is a generalized ordinal c-potential. So in
both cases each social optimum is a strong equilibrium. 
�

Wenext study the k-price of anarchy of our coordination games. It is easy to see that
the price of anarchy is infinite. In fact, this holds independently of the graph structure,
as the next theorem shows.

Theorem 8 For every graph there exists strategy sets for the players such that the
price of anarchy of the resulting coordination game is infinite.

Proof Let G = (V, E) be an arbitrary graph. We assign to each node i ∈ V a color
set Ai = {xi , c}, where xi is a private color, i.e., xi �= x j for every j �= i , and c
is a common color. The joint strategy s in which every player chooses her private
color constitutes a Nash equilibrium with SW(s) = 0. On the other hand, the joint
strategy s′ in which every player chooses the common color c is a social optimum
with SW(s′) = 2|E |. 
�

We now determine the k-price of anarchy and the strong price of anarchy.We define
for every j ∈ N and K ⊆ N and joint strategy s,

NK
j (s) = {{i, j} ∈ E | i ∈ K , si = s j }.

Intuitively, |NK
j (s)| is the payoff j derives from players in K under s.

Theorem 9 The k-price of anarchy of coordination games is between 2 n−1
k−1 − 1 and

2 n−1
k−1 for every k ∈ {2, . . . , n}. Furthermore, the strong price of anarchy is exactly 2.

Proof We first prove the upper bound. By the definition of the payoff function for all
joint strategies s and σ , we have |NK

j (σ )| ≤ p j (σK , s−K ).
Suppose that the considered game has a k-equilibrium, say s, and let σ be a social

optimum. By the definition of a k-equilibrium, for all coalitions K of size at most k
there exists some j ∈ K such that p j (σK , s−K ) ≤ p j (s) and hence by the above
|NK

j (σ )| ≤ p j (s).
Fix a coalition K = {v1, . . . , vk} of size k. We know that there is some j ∈ K such

that |NK
j (σ )| ≤ p j (s). Rename the nodes so that j = vk . Further, there is a node j

such that
∣
∣
∣N

{v1,...,vk−1}
j (σ )

∣
∣
∣ ≤ p j (s).

Again we rename the nodes so that j = vk−1. Continuing this way we obtain that for
all i ∈ {1, . . . , k} it holds that |N {v1,...,vi }

vi (σ )| ≤ pvi (s). Hence

pvi (σ ) =
∣
∣
∣N {v1,...,vi }

vi
(σ )

∣
∣
∣ +

∣
∣
∣NV \{v1,...,vi }

vi
(σ )

∣
∣
∣ ≤ pvi (s) +

∣
∣
∣NV \{v1,...,vi }

vi
(σ )

∣
∣
∣

= pvi (s) +
∣
∣
∣NK\{v1,...,vi }

vi
(σ )

∣
∣
∣ +

∣
∣
∣NV \K

vi
(σ )

∣
∣
∣.
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Summing over all players in K we obtain

SWK (σ ) ≤ SWK (s) +
k∑

i=1

(∣
∣
∣NK\{v1,...,vi }

vi
(σ )

∣
∣
∣ +

∣
∣
∣NV \K

vi
(σ )

∣
∣
∣
)
. (4)

But

k∑

i=1

∣
∣
∣NK\{v1,...,vi }

vi
(σ )

∣
∣
∣ =

k∑

i=1

|{ j > i : {vi , v j } ∈ E+
σ }| = |E+

σ ∩ E[K ]|

and
∑k

i=1 |NV \K
vi (σ )| = |E+

σ ∩ δ(K )|. Hence rewriting (4) yields

SWK (σ ) ≤ SWK (s) + |E+
σ ∩ E[K ]| + |E+

σ ∩ δ(K )|.

It also holds that SWK (σ ) = 2|E+
σ ∩ E[K ]| + |E+

σ ∩ δ(K )|. So we get

SWK (σ ) ≤ SWK (s) + 1

2
SWK (σ ) + 1

2
|E+

σ ∩ δ(K )|,

which implies that

SWK (σ ) ≤ 2SWK (s) + |E+
σ ∩ δ(K )|. (5)

Now we sum over all coalitions K of size k. Each player i appears in
(n−1
k−1

)
of such

sets because it is possible to choose k − 1 out of n − 1 remaining players to form a
set K of size k that contains i . Hence,

∑

K :|K |=k

SWK (σ ) =
n∑

i=1

∑

K : K�i
pi (σ ) =

n∑

i=1

(
n − 1

k − 1

)

pi (σ ) =
(
n − 1

k − 1

)

SW(σ ).

We obtain an analogous expression for the joint strategy s.
Furthermore, for each edge e = {u, v} ∈ E+

σ , we can choose 2
(n−2
k−1

)
sets K of size

k such that e ∈ δ(K ). Indeed, assuming that u ∈ K and v /∈ K , we can choose k − 1
out of n − 2 remaining players to complete K and hence there exist

(n−2
k−1

)
of those

sets. Reversing the roles of u and v and summing up yields 2
(n−2
k−1

)
. Hence

∑

K :|K |=k

|E+
σ ∩ δ(K )| = 2

(
n − 2

k − 1

)

|E+
σ | =

(
n − 2

k − 1

)

SW(σ ).

By summing over all coalitions K of size k, Eq. (5) yields

(
n − 1

k − 1

)

SW(σ ) ≤ 2

(
n − 1

k − 1

)

SW(s) +
(
n − 2

k − 1

)

SW(σ ).
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It follows that the k-price of anarchy is at most

2
(n−1
k−1

)

(n−1
k−1

) − (n−2
k−1

) = 2
n − 1

k − 1
.

This concludes the proof of the upper bound.
The claimed lower bounds follow from Examples 3 and 4 given below. 
�
The following example establishes a lower bound on the k-price of anarchy.

Example 3 Fix n and k ∈ {2, . . . , n}. Let V (G) consist of two sets V1 and V2 of size
k and n − k, respectively, and define

E[G] = {{u, v} | u ∈ V1, v ∈ V1 ∪ V2}.

Fix three colorsa, b and c. For v ∈ V1, let A(v) = {a, c}. For v ∈ V2, let A(v) = {b, c}.
Then the color assignment σ in which each player chooses the common color c is a
social optimum. The social welfare is

SW(σ ) = SWV1(σ ) + SWV2(σ ) = k(n − 1) + (n − k)k.

Next we show that the color assignment s in which every node in V1 chooses a
and every node in V2 chooses b is a k-equilibrium. Assume that there is a profitable

deviation s
K→s′ such that |K | ≤ k. Then all nodes in K switch to c and also all nodes

that choose c in s′ are in K . Hence for all v ∈ K , pv(s′) = |Nv ∩ K |. So there is a
node v ∈ V1 ∩ K because otherwise the payoff of all nodes in K would remain 0. But
then pv(s′) = |Nv ∩ K | ≤ k = pv(s), which yields a contradiction.

Note that SW(s) = k(k − 1). It follows that the k-price of anarchy is at least

SW(σ )

SW(s)
= k(n − 1) + (n − k)k

k(k − 1)
= 2(n − 1) − (k − 1)

k − 1
= 2

n − 1

k − 1
− 1.


�
The following example shows that the upper bound of 2 on the strong price of

anarchy (k = n) of Theorem 9 is tight.

Example 4 Consider the graph and the color assignment depicted in Fig. 3. Here
(a, a, a, a) is a social optimum with the social welfare 8, while (b, b, b, a) is a strong
equilibrium with the lowest social welfare, 4. So the strong price of anarchy is 2 in
this example of 4 players. By duplicating the graph l times, we can draw the same
conclusion for the case of 4l players. 
�

6 Complexity

In this section we study complexity issues concerning k-equilibria.
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1
{a, b}

2 {a, b}

3
{a, b}

4{a}

Fig. 3 A coordination game showing that the strong price of anarchy is at least 2

6.1 Verification

First, we show that in general it is hard to decide whether a given joint strategy is a
k-equilibrium.

Let k-Equilibrium denote the problem to decide, given a coordination game with
a joint strategy s and k ∈ {1, . . . , n}, whether s is a k-equilibrium.

Theorem 10 k-Equilibrium is co-NP-complete.

Proof It is easy to verify that k-Equilibrium is in co-NP: a certificate of aNO-instance
is a profitable deviation of a coalition of size at most k.

We show the hardness by reduction of the complement of Clique, which is a co-
NP-complete problem. Let (G, k) be an instance thereof. We construct an instance
of k-Equilibrium as follows. For v ∈ V let Av = {xv, y}, where color y and all
colors xv, v ∈ V are distinct. Furthermore, for every node v ∈ V we add k − 2 nodes
u1v, . . . , u

k−2
v and edges {v, uiv} for i = 1, . . . , k − 2. These additional nodes can only

choose the color xv. Let s be the joint strategy in which every node v ∈ V chooses xv .
We claim that this is a k-equilibrium if and only if G has no clique of size k.

Suppose G has a clique K of size k. Then jointly deviating to y yields to each node
in K a payoff of k − 1, whereas every node has a payoff of k − 2 in s. So this is a
profitable deviation. For the other direction, suppose that there is a profitable deviation

s
K→s′ by a coalition K of size at most k. Then every node in K deviates to y and hence

belongs to V . Since every node in K has a payoff of k − 2 in s, pv(s′) ≥ k − 1 for all
v ∈ K . So v is connected to at least k − 1 nodes in K . This implies that K is a clique
of size k. 
�

We next show that for color forests the decision problem is in P. First we show that
we can focus on certain profitable deviations which we call simple: Fix a joint strategy

s and a coalition K . We call K connected if G[K ] is connected. A deviation s
K→s′ is

simple if K is connected and s′ = (xK , s−K ) for some color x .

Lemma 4 Let s be a joint strategy in a coordination game. If there is a profitable
deviation by a coalition of size at most k, then there is also a simple profitable deviation
by a coalition of size at most k.
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Proof Let s
K→s′ be a profitable deviation with |K | ≤ k. Pick an arbitrary v ∈ K and

let x = s′
v . Let L consist of those nodes u ∈ K for which s′

u = x and u is reachable
in G[K ] from v. Let s′′ = (xL , s−L). Then the deviation to s′′ is simple. For all nodes
u ∈ L , we have NK

u (s′) = NL
u (s′) = NL

u (s′′) by the definition of L . Furthermore,

NV \K
u (s′) ⊆ NV \L

u (s′) ⊆ NV \L
u (s′′). Hence

pu(s
′) =

∣
∣
∣NK

u (s′)
∣
∣
∣ +

∣
∣
∣N

V \K
u (s′)

∣
∣
∣ ≤

∣
∣
∣NL

u (s′′)
∣
∣
∣ +

∣
∣
∣N

V \L
u (s′′)

∣
∣
∣ = pu(s

′′),

which implies that the deviation to s′′ is profitable for u. 
�
Theorem 11 Consider a coordination game on a color forest. Then there exists
a polynomial-time algorithm that decides whether a given joint strategy is a k-
equilibrium and, if this is not the case, outputs a profitable deviation of a coalition of
size at most k.

Proof For a statement P we write below [[P]] to denote the variable that is 1 if P is
true and 0 otherwise. For a function f : V → R andU ⊆ V , let f (U ) = ∑

v∈U f (v).

For a function F : V → 2V let F(U ) = ⋃
v∈U F(v).

Let s be a joint strategy. By Lemma 4 it is sufficient to check for the existence of
simple profitable deviations by coalitions of size at most k. Thus, we let x ∈ M and we
search for simple profitable deviations in which the coalition deviates to x . Because a
coalition in a simple deviation is connected, we can check each connected component
of G[Vx ] separately. Assume without loss of generality that G[Vx ] itself is connected,
i.e., is a tree. Pick an arbitrary root r of G[Vx ] and define for each node the children,
parent, and rooted subtree in the usual way (with respect to r ). For each node v ∈ Vx

let Cv ⊆ Vx denote the set of children of v and let Pv ∈ Vx denote the parent of v (if
v �= r ). Finally, let Tv denote the subtree of G[Vx ] rooted at v. For each node v, we
define U(v), D(v),U p(v), and Dp(v) as follows.

• U(v) is a connected coalition K ⊆ Tv of minimum size such that v ∈ K and the
deviation to (xK , s−K ) is profitable for all nodes in K (if such a coalition exists).
We denote the properties it has to satisfy by (∗).

• D(v) = |U(v)| if U(v) exists and ∞ otherwise.
• U p(v) is a connected coalition L ⊆ Tv of minimum size such that v ∈ L and the
deviation to (xL ′ , s−L ′) is profitable for all nodes in L , where L ′ := L ∪ {Pv} (if
such a coalition exists). We denote the properties it has to satisfy by (∗∗). (Note
that the deviation is not required to be profitable for Pv even though Pv ∈ L ′.)

• Dp(v) = |U p(v)| if U p(v) exists and ∞ otherwise.

We can compute D, Dp,U andU p using a dynamic program as follows. Let v ∈ Vx

and suppose we found these objects for all children of v. LetU ⊆ Cv minimize Dp(U )

among all sets U ′ ⊆ Cv that satisfy Dp(U ′) < ∞ and

|U ′| + [[sPv
= x]] > pv(s) (6)

if such a set exists. In this case setU(v) = {v}∪U p(U ) and D(v) = |U(v)|. Otherwise,
we set it to ∞.
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We first prove that K := U(v) satisfies (∗) if U(v) exists. The set K is connected
because v ∈ K and all sets U p(u) are connected, for u ∈ Cv . It is profitable for
v to deviate to x because of (6). The deviation is profitable for nodes u ∈ K\{v}
because U p(u) ⊆ K ,P(u) ∈ K (by the connectivity of K ) and U p(u) satisfies (∗∗).
Furthermore, K is ofminimal size amongst all coalitions that satisfy (∗). Indeed, if K ′ is
another such coalition, thenU ′ := K∩Cv satisfies (6) because it is profitable to deviate
to x for v. It is profitable for u ∈ U ′ to deviate to x and hence |K ∩ T (u)| ≥ Dp(u),
which implies |K ′| ≥ 1 + Dp(U ′). Therefore |K ′| ≥ 1 + Dp(U ) by the minimality
of U . But |K | = |{v} ∪ U p(U )| = 1 + Dp(U ), which shows that |K ′| ≥ |K |.

Similarly, for v ∈ Vx\{r}, let W ⊆ Cv minimize Dp(W ) among all sets W ′ ⊆ Cv

that satisfy Dp(W ′) < ∞ and

|W ′| + 1 > pv(s) (7)

if such a set exists. In this case set U p(v) = {v} ∪ U p(W ) and Dp(v) = |U p(v)|.
Otherwise, we set Dp(v) = ∞. Similar arguments as before show that if U p(v) exists
then it indeed satisfies (∗∗).

Note that we can compute U(v) in polynomial time by sorting the nodes u ∈ Cv

in increasing order of Dp(u) and then successively adding nodes to U(v) until (6) is
satisfied. Similarly, we can compute U p(v) efficiently. This shows that the algorithm
runs in polynomial time.

Now, let s
K→s′ be a simple profitable deviation to x such that |K | ≤ k. Let v be

the root of G[K ] according to our previously fixed ordering. By the properties of the
function D, we know that D(v) ≤ |K | ≤ k. Conversely, if D(v) ≤ k for some node
v, then U(v) of size D(v) ≤ k is the coalition we are looking for. 
�

6.2 Computing strong equilibria

Next we focus on the problem of actually computing a strong equilibrium. As we show
below, this is possible for certain graph classes.

Corollary 7 Consider a coordination game on a color forest. Then a strong equilib-
rium can be computed in polynomial time.

Proof We begin with an arbitrary initial joint strategy s. Putting k = n, by Theorem
11 there is an algorithm that decides whether s is a strong equilibrium and, if this is

not the case, outputs a profitable deviation s
K→s′. In the first case, we output s; in

the second case, we repeat the procedure with s′. We know that SW(s) is a natural
number and SW(s′) > SW(s) by Corollary 1, so at most maxs∈S SW(s) ≤ 2|E | steps
are necessary to reach a strong equilibrium. 
�
Theorem 12 Consider a coordination game on a color complete graph. Then a strong
equilibrium can be computed in polynomial time.

Proof This follows fromLemma 3 and the corresponding result for monotone increas-
ing congestion games in which all strategies are singletons, established in Rozenfeld
and Tennenholtz (2006). 
�
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Theorem 13 Consider a coordination game on a pseudoforest. Then a strong equi-
librium can be computed in polynomial time.

Proof We first show that for a tree, a strong equilibrium can be computed efficiently
via dynamic programming. By Corollary 1 it suffices to compute a social optimum.
Let T be a tree and root it at an arbitrary node r ∈ V (T ). Given a node i ∈ V (T ),
let Ti denote the subtree of T that is rooted at i and let Ci be the set of children of i .
Given a color si ∈ Si , define di (si ) as the maximum social welfare achievable by the
nodes in Ti if node i chooses color si . Note that for each leaf i ∈ V (T ) of T we have
di (si ) = 0 for all si ∈ Si . Consider a node i ∈ V (T ) that is not a leaf and assume we
computed all values d j (s j ) for every j ∈ Ci and s j ∈ S j . Define [[s j = si ]] to be 1 if
s j = si and 0 otherwise. We can then compute di (si ) for every si ∈ Si as follows:

di (si ) =
∑

j∈Ci
max
s j∈S j

(d j (s j ) + 2[[s j = si ]]).

The intuition here is that we account for every child j ∈ Ci of i for the maximum
social welfare achievable in T j plus an additional contribution of 2 if i and j choose
the same color.

Computing di (si ) for all si ∈ Si takes time at most O(m2|Ci |), where m is the
number of colors. Thus, it takes time O(m2|V (T )|) to compute all values dr (sr ) for
sr ∈ Sr of the root node r . The optimal social welfare of the tree T is then SW(T ) =
maxsr∈Sr dr (sr ). The corresponding optimal joint strategy s∗

T can be determined using
some standard bookkeeping.

Next suppose that T is a pseudotree. Let C = (i1, . . . , ik) be the unique cycle in
T . Note that it might no longer be sufficient to simply compute a social optimum for
T . Instead, the idea is to compute a social optimum s∗

T of T such that, if possible, C
is unicolored.

Note that if such a social optimum does not exist, then there is an edge in C that
is not unicolored. Let SW( j), j ∈ {1, . . . , k}, be the maximum social welfare of the
tree that one obtains from T by removing edge {i j , i j+1} from C (where we define
ik+1 = i1). Note that we can efficiently compute SW( j) by using the dynamic program
for trees described above.5 Let SW1 = max j=1,...,k SW( j). Computing SW1 takes time
O(k · m2|V (T )|) = O(nm2|V (T )|).

Next assume a social optimum exists in which all nodes of C are unicolored.
Note that if we remove the edges on C from T then T decomposes into k trees,
rooted at i1, . . . , ik . We can compute di j (·) for every root i j as described above. Let
R = ∩k

j=1Si j be the set of common colors of the nodes in C . If all nodes in C choose
color c ∈ R then we obtain a social welfare of

SW(c) = 2k +
k∑

j=1

di j (c).

5 Observe that we do not enforce that the endpoints of the removed edge {i j , i j+1} obtain different colors
in the optimal solution. In fact, subsequently it will become clear that we do not have to do so.
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Let SW2 = maxc∈R SW(c). The time needed to compute SW2 is atmost O(m2|V (T )|+
k · m).

Clearly, if SW1 > SW2 then there is no social optimum in which all nodes ofC have
the same color. In this case, we choose an arbitrary social optimum. Otherwise, there
exists a social optimum in which all nodes of C have a common color. In this case,
we choose such a social optimum. Let the resulting social optimum for pseudotree T
be s∗

T .
By proceeding this way for each pseudotree T of the given pseudoforest G, we

obtain a joint strategy s∗ that maximizes the social welfare and the number of uni-
colored cycles. By Corollary 2, s∗ is a strong equilibrium of G. The time needed per
pseudotree T is dominated by O(nm2|V (T )|). The total time needed to compute s∗
is thus at most O(n2m2). 
�

7 Conclusions

We introduced and studied a natural class of games which we termed coordination
games on graphs. We provided results on the existence, inefficiency and computation
of strong equilibria for these games.

It would be interesting to prove existence of k-equilibria for other graph classes
and to investigate the computational complexity of computing them. Another open
question is to determine the (strong) price of anarchy when the number of colors is
fixed. Yet another intriguing question is for which k ≥ 2 coordination games with
transition value k exist. In Sect. 4.5 we settled this question positively only for k = 2
and k = 4. In the future we also plan to study a natural extension of our coordination
games to hypergraphs.

Another natural question that comes to one’smind iswhether super strong equilibria
exist. Recall that a joint strategy s is a super strong equilibrium if for all coalitions K
there does not exist a deviation s′ = (s′

K , s−K ) such that pi (s′) ≥ pi (s) for all i ∈ K
and pi (s′) > pi (s) for some i ∈ K . It is not hard to verify that super strong equilibria
are not guaranteed to exist: Consider a path consisting of two edges and assume that
the nodes have color sets {a}, {a, b} and {b}, respectively. Clearly, a super strong
equilibrium does not exist for this instance.

A natural generalization of our model are coordination games on weighted graphs.
Here each edge {i, j} has a non-negative weight wi j specifying how much player i
and j profit from choosing the same color. It is easy to see that 12SW continues to be an
exact potential function for weighted coordination games, guaranteeing the existence
of a Nash equilibrium. In fact, as observed in Cai and Daskalakis (2011), this is an
exact potential for coordination games with arbitrary weights. Coordination games on
weighted graphs are studied in more detail in Rahn and Schäfer (2015). In particular,
the existence results for strong equilibria (Theorems 1, 2) and 2-equilibria (Corollary
3) do not hold for these games. We refer the reader to Rahn and Schäfer (2015) for
further studies of these games.

Another natural variation is to consider coordination games on weighted directed
graphs. Given a directed graphG = (V, E), we say that node j is a neighbour of node i
if there is an edge ( j, i) inG. Each edge ( j, i) has a non-negativeweightw j i specifying
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how much player i profits from choosing the same color as player j . The transition
from undirected to directed graphs changes the status of the games substantially. In
particular,Nash equilibria need not always exist in these games.Moreover, the problem
of determining the existence of Nash equilibria is NP-complete. We refer the reader to
Apt et al. (2015) and Simon and Wojtczak (2016) for further studies of these games.
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Appendix: c-FIP and generalized ordinal c-potentials

Theorem 14 A finite game has the c-FIP iff a generalized ordinal c-potential for it
exists.

Proof (⇒) We use here the argument given in the proof of Milchtaich (1996) of
the fact that every finite game that has the FIP (finite improvement property) has a
generalized ordinal potential.

Consider a branching tree of which the root has all joint strategies as successors,
of which the non-root elements are joint strategies, and of which the branches are the
c-improvement paths. Because the game is finite, this tree is finitely branching.

König’s Lemma of König (1927) states that any finitely branching tree is either
finite or it has an infinite path. So by the assumption, the considered tree is finite.
Hence the number of c-improvement paths is finite. Given a joint strategy s, define
P(s) to be the number of prefixes of the c-improvement paths that terminate in s. Then
P is a generalized ordinal c-potential, where we use the strict linear ordering on the
natural numbers.

(⇐) Immediate, as already noted in Holzman and Law-Yone (1997). 
�
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