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Algebraic games – Playing with groups and rings
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Abstract

Two players alternate moves in the following impartial combinatorial game:
Given a finitely generated abelian group A, a move consists of picking some
0 6= a ∈ A. The game then continues with the quotient group A/〈a〉. We prove
that under the normal play rule, the second player has a winning strategy if
and only if A is a square, i.e. A ∼= B ×B for some abelian group B. Under the
misère play rule, only minor modifications concerning elementary abelian groups
are necessary to describe the winning situations. We also compute the nimbers,
i.e. Sprague-Grundy values of 2-generated abelian groups. An analogous game
can be played with arbitrary algebraic structures. We study some examples of
non-abelian groups and commutative rings such as R[X], where R is a principal
ideal domain.

1 Introduction

Consider the following two-person impartial combinatorial game: Given an abelian
group A, a move consists of picking some 0 6= a ∈ A and replacing A by the quotient
group A/〈a〉; here 〈a〉 denotes the subgroup generated by a. Hence, the next move
consists of picking some 0 6= b ∈ A/〈a〉 and replacing A/〈a〉 by A/〈a〉/〈b〉 ∼= A/〈a, b〉,
etc. Under the normal (resp. misère) play rule, the player with the last possible move
wins (resp. loses): When A = 0, the next player cannot move and therefore wins under
the misère play rule and loses under the normal play rule. The ending condition is
satisfied precisely when A is finitely generated. For which A does the first player have
a winning strategy, i.e. when is A an N -position? And for which A does the second
player have a winning strategy, i.e. when is A a P-position? This question can be
asked both for the normal as well as for the misère play rule.

The moves in the game starting with a finitely generated abelian group A may also
be described by a sequence of elements a1, a2, a3, . . . of A such that ai is not contained
in the subgroup 〈a1, . . . , ai−1〉 generated by the previous elements. In fact, the moves
are then given by

A
I
 A/〈a1〉

II
 A/〈a1, a2〉

I
 A/〈a1, a2, a3〉

II
 . . . .

The game ends as soon as a1, . . . , ai generate A. Hence, our game features some
similarities with the game considered in [AH87, BES16], where the weaker condition
ai /∈ {a1, . . . , ai−1} but the same ending condition were imposed. In this setup, the
games of two groups A and B are already equivalent if there is a bijection between the
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underlying sets of A and B which induces a bijection between the maximal subgroups.
This is not the case for our game, which seems to incorporate better the specific
algebraic structure of A and does not put any emphasis on the underlying set of A.

Our main theorem, proven in Section 3, states the following:

Theorem 1.1. Let A be a finitely generated abelian group.

• Under the normal play rule, A is a P-position if and only if A is a square, i.e.
A ∼= B2 for some abelian group B.

• Under the misère play rule, A is a P-position if and only if A is

– either a square, but not isomorphic to (Z/p)s for some prime p and some even
number s,

– or isomorphic to (Z/p)s for some prime p and some odd number s.

Here, Z/p abbreviates Z/〈p〉. Recall that groups of the form (Z/p)s are also called
elementary abelian p-groups. They cause the only difference between the normal and
the misère play rule. Notice that the game of a product of abelian groups A×A′ does
not equal the sum of the games of A and A′, and that usually (A×A′)/〈(a, a′)〉 is not
isomorphic to A/〈a〉×A′/〈a′〉. This is why the theorem cannot be proven as easily as
one might guess at first glance.

A similar theorem holds for finitely generated modules over a principal ideal do-
main. Here, we quotient out cyclic submodules.

Our proof is constructive and will include a winning strategy (see Theorem 3.7).
For example, the abelian group Z/4⊕Z/8 is a normal N -position: Player I quotients
out the element 0 ⊕ 4 to obtain Z/4 ⊕ Z/4. No matter what Player II does, he will
produce an abelian group isomorphic to Z/4 or Z/2 ⊕ Z/4. In the first case Player
I quotients out the generator of Z/4 and wins. In the second case Player I quotients
out 0⊕ 2, so that Player II gets Z/2⊕Z/2. He can only react with an abelian group
isomorphic to Z/2. Player I quotients out the generator and therefore wins. The group
Z/4⊕Z/8 is also a misère N -position: From Z/4 Player I quotients out 2, and from
Z/2 ⊕ Z/4 he quotients out 0 ⊕ 1. In each case Player II has to play with Z/2 and
does the last move, so that he loses under the misère play rule.

We will also compute the nimbers, i.e. Sprague-Grundy values, of some finitely
generated abelian groups; recall that the nimber of an impartial combinatorial game
G is the unique ordinal number α for which G is equivalent to the Nim game ∗α with
one pile of size α [C00, Chapter 11]. Specifically, the nimber of a finitely generated
abelian group A is recursively defined as the least ordinal number which does not equal
the nimber of any quotient A/〈a〉, where 0 6= a ∈ A.

Theorem 1.2. If n ≥ 1, then the nimber of Z/n equals the number Ω(n) of prime
factors of n counted with multiplicity. The nimber of Z equals the first infinite ordinal
number ω. The nimber of Z/n⊕ Z equals ω + Ω(n).

Theorem 1.3. Let p be a prime number and 0 ≤ n ≤ m be natural numbers. Let
k := m−n and ∆k :=

1
2
k(k+1) be the triangular number. The nimber of Z/pn⊕Z/pm

equals {
n+m if n ≤ ∆k,

∆k + (n−∆k − 1 mod k + 1) if n > ∆k.

See Figure 1 in Section 3.3 for how these numbers look like. The nimber of an
arbitrary 2-generated finite abelian group Z/n1 ⊕ Z/n2 with n1 | n2 turns out to be
the nimber of the p-group Z/pΩ(n1) ⊕ Z/pΩ(n2) for any chosen prime number p.
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It is possible to generalize the game to arbitrary algebraic structures of some given
signature, as we shall explain in Section 2. For example, if we start with a group G,
then a move consists of replacing G by the quotient group G/〈〈a〉〉, where 1 6= a ∈ G
and 〈〈a〉〉 denotes the normal subgroup generated by a. We briefly analyze this game
in Section 4. We also look at the related game of subgroups of a group G, which is
more balanced as to the proportion of N - and P-positions. Here we start with the
trivial subgroup of G and a move replaces a subgroup U of G by the subgroup 〈U, g〉
for some g ∈ G \ U . We only make some initial considerations such as the following
two results.

Proposition 1.4. Let n ≥ 1. In the game of subgroups, the dihedral group Dn is a
normal P-position if and only if n is a prime number. The symmetric group Sn is a
normal P-position if and only if n 6= 2.

Commutative rings provide another very interesting class of algebraic structures
to play with. Starting with a commutative ring R, a move consists of picking some
0 6= a ∈ R and replacing R by the quotient ring R/〈a〉, where 〈a〉 denotes the ideal
generated by a. The ending condition is satisfied precisely for Noetherian commutative
rings. Since every non-trivial commutative ring R has a move to the trivial ring by
taking a := 1, it is reasonable to play this game under the misère play rule. This game
has been popularized by Will Sawin (http://mathoverflow.net/questions/93276),
although it may have been mathematical folklore much earlier. Using the duality
between commutative rings and affine schemes [GW10], it can be seen as a geometric
game. We will analyze it in Section 5. The main results are the following:

Proposition 1.5. Let R be a Noetherian commutative ring which is a misère P-
position. Then R cannot be written as a product of two non-trivial rings. In other
words, R does not contain any non-trivial idempotent elements.

Theorem 1.6. Let R be a principal ideal domain, which is not a field.

• If p ∈ R is a prime element, then R/〈p〉 is a misère P-position. Hence, R is a
misère N -position.

• The ring R[X ]/〈X2〉 is a misère P-position. Hence, R[X ] is a misère N -position.

This implies for example that the polynomial ring K[X, Y ] is a misère N -position,
where K is a field. If K is algebraically closed, we will provide alternative proofs for
this fact by showing that K[X, Y ]/〈Y 2 − X3 − 1〉, the coordinate ring of an elliptic
curve, and K[X, Y ]/〈Y 2−X3〉, the coordinate ring of a cuspidal cubic curve, are both
misère P-positions. We will also compute the nimbers of some commutative rings in
Section 5.4.

The games introduced in this paper might be called algebraic games in contrast
to the well-studied topological games [T87]. By the very nature of these games, we
frequently use backward induction. For example, in the game of commutative rings
we have to go all the way down to smaller and smaller zero-dimensional rings in order
to solve the game for more interesting rings such as K[X, Y ]. Algebraic games can be
fun, but they also require a deeper understanding of how algebraic structures are built
up from smaller ones. Moreover, the nimber of an algebraic structure is an interesting
new ordinal invariant whose computation may be connected with their classification.

Several interesting questions about algebraic games are yet to be answered, for
example how to compute the nimbers of arbitrary finitely generated abelian groups,
if there is any geometric description of those affine varieties whose coordinate rings
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are misère P-positions in the game of commutative rings, and how to determine the
nimbers of polynomial rings.

Acknowledgements For various discussions and suggestions on the game of rings
I would like to thank Will Sawin and Kevin Buzzard. Special thanks goes to Diego
Montero who corrected some errors in a preliminary version and simplified the proof
of Proposition 3.3. I would like to thank Jyrki Lahtonen for suggesting the formula
in Theorem 1.3. Finally I would like to thank most sincerely Bernhard von Stengel
and the anonymous referees for their numerous useful and valuable suggestions for
improvement.

2 The game in general

2.1 Basics of combinatorial game theory

In this subsection we briefly recall some basic notions of combinatorial game theory.
For details we refer to textbooks such as [ANW07, BCG01, C00, S13].

We only consider two-person impartial combinatorial games. This means that
Player I (who starts) and Player II alternate in making moves, and each player has
the same set of options (possible moves) for a given position in the game. No chance
moves are involved, the game is purely combinatorial. Every game has a set of ter-
minal positions. We require the ending condition, which asserts that the game has to
end after some finite number of moves. However, we allow infinitely many positions.
Formally, a game may be defined just as a well-founded set, the options being the
elements of this set, which are games themselves.

The first player who cannot move loses under the normal play rule. He wins under
the misère play rule. Thus, under the normal play rule one wants to be the last player
to move, whereas under the misère play rule one actually wants to prevent this. Often
misère games are more complicated than normal ones.

We call a position in the game an N -position if the next player to move has a
winning strategy. If the previous player has a winning strategy, we call it a P-position.
This definition applies to both play rules. We also use N and P as adjectives. One
of the first basic observations in combinatorial game theory is the following: Under
both play rules, every position is either an N -position or a P-position. In fact, we
can declare a position to be N or P recursively as follows:

1. Every terminal position is a normal P-position (resp. misère N -position).

2. A non-terminal position is normal (resp. misère) N , when some option from it is
a normal (resp. misère) P-position.

3. A position is normal (resp. misère) P, when every option is a normal (resp. misère)
N -position.

Intuitively, 1. declares the play rule, 2. asserts the existence of a winning move for
N -positions, and 3. denies it for P-positions. The ending condition easily implies:

Proposition 2.1. Under either play rule, the sets of P- and N -positions are char-
acterized by the three properties above.
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Example 2.2. Consider the game Nim with just two piles: We have two piles of
counters. A move reduces the number of counters in exactly one of the piles. Under
the normal play rule, (x, y) is a P-position if and only if x = y, i.e. (x, y) is a “square”.
In fact, 1. the terminal position (0, 0) is a square, 2. every non-square can be moved
to some square, and 3. squares cannot move to squares. Under the misère play rule,
the P-positions are almost the same: (0, 0) and (1, 1) are misère N , and (1, 0) and
(0, 1) are misère P, but the rest is as before. We have mentioned this example since
the game of abelian groups will be similar, although much more complicated.

Remark 2.3. If α is any ordinal number, then ∗α denotes the Nim game with one
pile of size α. By definition its options are the Nim games ∗β with β < α. The
Sprague-Grundy Theorem states that every combinatorial game G under the normal
play rule is equivalent to a Nim game ∗α(G) for some unique ordinal number α(G),
called the nimber of G. This is an ordinal number which may be defined recursively
by

α(G) = mex{α(H) : H is an option of G}.

Here, mex(S) denotes the smallest ordinal number not contained in S. For example,
one has mex({1, 3}) = 0, mex({0, 2}) = 1 and mex({0, 1, 2, . . .}) = ω. Observe that
α(G) = 0 holds if and only if G is a normal P-position. Otherwise, we have α(G) > 0.
The nimber of G carries much more information than just the knowledge about which
player wins. It is important to know this nimber when G is played in a sum of games.

2.2 The game of algebraic structures

Now let us introduce the game of algebraic structures. Before we define it in full
generality, we will define it in the special cases of abelian groups, groups and rings.

Definition 2.4. Let A be an abelian group. The positions in the game of A are
abelian groups again. The initial position is A itself, the terminal positions are the
trivial groups. A move from an abelian group B consists of picking some 0 6= b ∈ B
and replacing B by the quotient abelian group B/〈b〉, where 〈b〉 denotes the cyclic
subgroup generated by b. Thus, the options of B are the quotient groups B/C, where
C is a non-trivial cyclic subgroup of B.

Definition 2.5. Let G be a group. The positions in the game of G are groups again.
The initial position is G itself, the terminal positions are the trivial groups. A move
from a group H consists of picking some 0 6= h ∈ H and replacing H by the quotient
group H/〈〈h〉〉, where 〈〈h〉〉 denotes the normal subgroup generated by h. In other
words, 〈〈h〉〉 is the subgroup generated by the conjugates {xhx−1 : x ∈ H}.

Definition 2.6. Let R be a ring; by definition rings are unital. The positions in the
game of R are rings again. The initial position is R itself, the terminal position are the
trivial rings. A move from a ring S consists of picking some 0 6= s ∈ S and replacing
S by the quotient ring S/〈s〉, where 〈s〉 denotes the ideal generated by s.

Let us explain these games in more detail. Starting with an abelian group A,
Player I picks some 0 6= a ∈ A and gives A/〈a〉 to Player II. The latter has to choose
some element b ∈ A/〈a〉 and gives A/〈a〉/〈b〉 to Player I. If b ∈ A denotes a preimage
of b ∈ A/〈a〉, then the group A/〈a〉/〈b〉 is isomorphic to A/〈a, b〉, so that we might as
well continue with this group. In fact, it is a general observation that two isomorphic
abelian groups have equivalent games. The condition b 6= 0 means b /∈ 〈a〉. The next
move is given by some element c /∈ 〈a, b〉 which produces the abelian group A/〈a, b, c〉.
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In general, after the ith move we have an abelian group of the form A/〈a1, . . . , ai〉, and
for each j ≤ i the element aj is not contained in 〈a1, . . . , aj−1〉. Under the normal play
rule, the next player loses when there is no element 6= 0 anymore, i.e. A = 〈a1, . . . , ai〉.
Under the misère play rule, he would win.

Instead of this iterative description, observe that the game of A is just defined
recursively by the property that its options are the games of the quotients A/〈a〉,
where 0 6= a ∈ A. This recursive description will turn out to be quite useful.

As a trivial example, we note thatZ is an N -position in the game of abelian groups,
in fact under both play rules. Under the normal play rule, Player I chooses the element
a := 1 and returns the trivial group Z/1 to Player II, who loses immediately. Under
the misère play rule, Player I may choose any prime number, for instance a := 7,
because the quotient group Z/7 can only be moved to the trivial group by Player II.

Let us verify that the ending condition is satisfied precisely for the Noetherian
abelian groups; recall that a group is called Noetherian if there is no infinite strictly
increasing chain of subgroups of A [AM69, Chapter 6]. Using the iterative description
of the game of A, it is clear that an infinite sequence of moves produces such an infinite
strictly increasing chain of subgroups of A. Conversely, if A0 ( A1 ( A2 ( · · · is such
a chain of subgroups of A, then we may choose elements ai ∈ Ai \ Ai−1 for i ≥ 1,
and these constitute an infinite sequence of moves in the game of A. But an abelian
group A is Noetherian if and only if A is finitely generated; this follows since Z is a
Noetherian ring [AM69, Proposition 6.5]. Thus, we have proven:

Proposition 2.7. The game of an abelian group A satisfies the ending condition if
and only if A is finitely generated.

Similar remarks apply to the games of groups and rings: The moves in the game of
a group Gmay be described by elements a1, a2, . . . in G such that aj is not contained in
the normal subgroup 〈〈a1, . . . , aj−1〉〉 generated by the previous elements. The ending
condition is satisfied precisely when there is no infinite strictly increasing chain of nor-
mal subgroups of G; this property may hold even if the group is not finitely generated.
Similarly, the moves in the game of a ring R may be described by elements a1, a2, . . .
in R such that aj is not contained in the ideal 〈a1, . . . , aj−1〉 generated by the previous
elements. The ending condition is satisfied precisely when R is Noetherian, i.e. when
there is no infinite strictly increasing chain of ideals of R. Notice that every non-trivial
ring R has a move to the zero ring R/〈1〉 = 0. In other words, all non-trivial rings are
normal N -positions. It is more challenging to determine the misère N -positions.

In order to study and prove some of the properties of the games of groups, abelian
groups and rings at once, and even further examples of algebraic structures not covered
in this paper, it makes sense to unify these games with the help of universal algebra
[BS81] as follows:

Definition 2.8. Given some algebraic structure A of some signature [BS81, II, §1],
i.e. a set equipped with various functions with various arities as prescribed by the
signature, a move in the game of A consists of choosing two elements a 6= b in A and
replacing A by the quotient structure A/(a ∼ b) of the same signature. This is defined
to be A/∼, where ∼ is the congruence relation on A generated by (a, b) [BS81, II, §5].
The game ends as soon as A has at most one element left.

This specializes to the games mentioned before, since congruence relations on
groups (resp. rings) correspond to normal subgroups (resp. ideals), and because a = b
holds in a group (resp. ring) if and only if ab−1 = 1 (resp. a− b = 0) is satisfied.

If R is a ring, then R-modules [AM69, Chapter II] provide another type of alge-
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braic structures, which coincide with R-vector spaces when R is a field. The game
of R-modules is very similar to the game of abelian groups, except that we quotient
out cyclic submodules. The ending condition is satisfied precisely for Noetherian R-
modules, which coincide with finitely generated R-modules when R is a Noetherian
ring [AM69, Proposition 6.5].

In the general case of an algebraic structure A, a sequence of moves consists of
elements (a1, b1), (a2, b2), . . . , (an, bn) in A× A such that

1. ai 6= bi
2. ai ∼ bi cannot be derived from a1 ∼ b1, . . . , ai−1 ∼ bi−1

More formally, 2. means that ai 6= bi holds in A/(a1 ∼ b1, . . . , ai−1 ∼ bi−1). Even more
formally, let Ri be the congruence relation generated by (a1, b1), . . . , (ai, bi). Then we
have proper inclusions

∆(A) ( R1 ( R2 ( · · · ( Rn ⊆ A×A,

starting with the diagonal ∆(A) := {(a, a) : a ∈ A} of A. As before, one verifies:

Proposition 2.9. The game of an algebraic structure A satisfies the ending condition
if and only if A does not contain an infinite strictly increasing chain of congruence
relations.

However, notice that the outcome of the game does not only depend on the partial
order of congruence relations, because we cannot characterize principal ones in the
language of partial orders. At least the following is true and easy to prove:

Proposition 2.10. If A,B are isomorphic algebraic structures of the same signature,
the corresponding games have the same outcome. In other words, A is a P-position
(resp. an N -position) if and only if B is.

We will use this result all the time. The following example illustrates that the game
is easy to understand when some dimension or size classifies the whole structure:

Example 2.11. Let us play with a vector space V over a fixed field. The ending
condition holds if and only if V is finite-dimensional. The game only depends on the
dimension of V . Every move reduces it by one. The terminal vector spaces are those
of dimension zero. By induction it follows that V is a normal P-position if and only
if its dimension is even. Otherwise it is a normal N -position. The misère positions
are vice versa.

Recall that an abelian group A is called elementary abelian if there is some prime
p with pA = 0. This is equivalent to the condition that A is a vector space over Fp. It
follows that the finite abelian group (Z/p)n is a normal P-position if and only if n,
its dimension over Fp, is even. This is the first piece of evidence for the main theorem
about the game outcome of an arbitrary finitely generated abelian group in Section 3.

2.3 Selective compound games

In combinatorial game theory it is very useful to decompose games into sums of smaller
games. The sum G+H of two games G,H is defined recursively by the property that
the options of G+H are G′ +H and G+H ′, where G′ is an option of G and H ′ is an
option of H . It is well-known that G+H is a P-position if and only if G and H are
equivalent, i.e. G,H have the same nimber.
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Therefore, it is tempting to study the game of an algebraic structure A by writing
A as a product or sum of smaller structures. However, we have already mentioned in
the introduction that the game of a direct sum A⊕B of two abelian groups A,B is not
the sum of the games of A and B. This is because we can choose an element a ∈ A and
an element b ∈ B simultaneously, one or both of them being non-zero, and then make
the move (A⊕B)/〈(a, b)〉. Another issue is that this group is usually not isomorphic
to A/〈a〉 ⊕ B/〈b〉. For example, (Z⊕ Z)/〈(2, 2)〉 is isomorphic to the infinite abelian
group Z/2 ⊕ Z, which is far from being isomorphic to Z/2 ⊕ Z/2. However, in some
situations, (A⊕B)/〈(a, b)〉 is isomorphic to A/〈a〉 ⊕B/〈b〉, as we shall see below. In
that case, an option in the game of A⊕B is one of the games A′⊕B, A⊕B′ or A′⊕B′,
where A′ (resp. B′) is an option of A (resp. B). This leads us to the following notion
of a selective compound of two or more games, which is due to Smith [S66, Sections 7
and 8].

Definition 2.12. If G1, . . . , Gn are finitely many games, we can play a new game
G1∨· · ·∨Gn, called the selective compound of G1, . . . , Gn. A position in G1∨· · ·∨Gn

is a tuple of positions in the games G1, . . . , Gn. A move consists of picking a non-
empty subset of G1, . . . , Gn and making a move in each of the chosen games. If Gi is
already over, i.e. happens to be a terminal position, then of course we continue with
G1 ∨ · · · ∨ Ĝi ∨ · · · ∨Gn, with Gi being removed.

We can also describe G1 ∨ · · · ∨ Gn recursively: The options of G1 ∨ · · · ∨ Gn are
G′

1 ∨ · · · ∨G′
n, where G′

i is either equal to Gi or an option of Gi, the latter happening
for at least one i. Thus, the difference to the sum G1+ · · ·+Gn is that we are allowed
to move in more than just one of the games.

Proposition 2.13. The selective compound G1 ∨ · · · ∨Gn is a normal P-position if
and only if every Gi is a normal P-position.

Proof. It is clear that G1∨· · ·∨Gn is terminal if and only if every Gi is terminal. Now,
if every Gi is a normal P-position, then the options of G1∨· · ·∨Gn are G′

1∨· · ·∨G′
n,

where either G′
i = Gi is a normal P-position or G′

i is an option of Gi, which is
therefore a normal N -position. The latter happens for at least one i, so that some G′

i

is a normal N -position. If, on the other hand, G1 ∨ · · · ∨Gn has a non-empty set of
indices i for which Gi are normal N -positions, for these indices we may choose options
G′

i of Gi which are normal P-positions. For the other indices, we let G′
i := Gi. Thus,

each G′
i is a normal P-position, and G′

1 ∨ · · · ∨G′
n is an option of G1 ∨ · · · ∨Gn.

Proposition 2.14. The selective compound G1 ∨ · · · ∨ Gn is a misère P-position if
and only if either

• all games except one, say Gi, are over (i.e. terminal), and Gi is a misère P-
position,

• at least two of the games are not over yet, and each Gi is a normal P-position.

Proof. Let us call G1 ∨ · · · ∨ Gn a P ′-position if it satisfies the condition in the
proposition, i.e. every Gi is normal P when at least two are not finished yet, or only
one Gi is still playing and misère P. We have to prove that P ′ satisfies the defining
properties of P in Proposition 2.1.

First of all, the terminal positions are not P ′. Next, every non-terminal position
which is not P

′ has some (winning) move to a position which is P
′: If all games

except for Gi are finished, then we continue to play only with Gi, which is misère
N and therefore has some move to a misère P-position, which is therefore P ′ (or
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terminal). If at least two games are not finished yet, then some of the games is normal
N . Now move in every one of these normal N games to some normal P-position
and leave the normal P games untouched. Then we obtain the game G′

1 ∨ · · · ∨ G′
n

where each G′
i is normal P. If at least two G′

i are not finished yet, this is P ′ and
we are done. Otherwise, every Gi which is normal N can be ended in one move and
the other ones are already finished. Now we choose the following winning move: Pick
some Gj which is normal N . If it is misère P, end all the other Gi and keep Gj . If
it is misère N , choose some option G′

j of Gj which is misère P, and combine this
move with ending all other Gi. In each case, we arrive at a single active game which
is misère P and therefore P

′.
Finally, we have to prove that a P ′-position cannot move to a P ′-position. This

is clear when only one game is active. When at least two games are active, then every
active Gi is normal P and therefore cannot be ended in one move, but rather can
only be moved to some normal N -position G′

i. Thus, every option of the selective
compound still has at least two active games, one of them being normal N . Therefore,
this option is not P ′.

Example 2.15. The selective compound ∗n ∨ ∗m of two Nim piles of sizes n and m
is a normal P-position if and only if n = m = 0. It is a misère P-position if and only
if (n,m) 6= (0, 0).

Example 2.16. Consider the selective compound of the game of a finite-dimensional
K-vector space (Example 2.11) with the game of a finite-dimensional L-vector space,
where K,L are two fields. Thus, the options of Kn ∨ Lm are Kn−1 ∨ Lm (if n ≥ 1),
Kn∨Lm−1 (if m ≥ 1) and Kn−1∨Lm−1 (if n,m ≥ 1). This is equivalent to the number-
theoretic game on the latticeN×N, where the options of (n,m) are (n−1, m), (n,m−1)
and (n − 1, m − 1). According to Proposition 2.13, (n,m) is a normal P-position if
and only if both n and m are even. According to Proposition 2.14, (n,m) is a misère
P-position if and only if one of the following three cases occurs:

• n = 0 and m is odd
• m = 0 and n is odd
• n ≥ 2 and m ≥ 2 are even

n\m 0 1 2 3 4 5

0 N P N P N P

1 P N N N N N

2 N N P N P N

3 P N N N N N

4 N N P N P N

5 P N N N N N

This selective compound is equivalent to the game of finitely generated K×L-modules.
Putting K = Fp and L = Fq for two distinct prime numbers p, q, these modules have
underlying abelian groups of the form (Z/p)n ⊕ (Z/q)m, where n,m ≥ 0. Thus, we
have determined which of these abelian groups are normal (resp. misère) P-positions.
This is the second piece of evidence for the main theorem about the game outcome of
an arbitrary finitely generated abelian group in Section 3.

Now let us put the initial plan into action.

Proposition 2.17. Consider some fixed signature of algebraic structures. Assume
that for all algebraic structures A1, . . . , An and all a, b ∈ A := A1 × · · · × An the
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canonical homomorphism

A/(a ∼ b) → A1/(a1 ∼ b1)× · · · × An/(an ∼ bn)

is an isomorphism. Then for all algebraic structures A1, . . . , An the game of the product
A1 × · · · × An is equivalent to the selective compound of the games of A1, . . . , An.

More generally, let us assume that T1, . . . , Tn are classes of algebraic structures
which are stable under quotients and contain the terminal structures with one element.
Assume that for all Ai ∈ Ti and a, b ∈ A := A1×· · ·×An the canonical homomorphism

A/(a ∼ b) → A1/(a1 ∼ b1)× · · · × An/(an ∼ bn)

is an isomorphism. Then for all algebraic structures Ai ∈ Ti the game of A is the
selective compound game of the games of A1, . . . , An.

Proof. This follows from the definitions. The requirement a 6= b in the definition of a
move means that ai 6= bi for at least one i, i.e. that we move in at least one factor.

Corollary 2.18. In the situation of Proposition 2.17, the product A = A1 × · · · ×An

is

• normal P if and only if every Ai is normal P

• misère P if and only if all factors except one, say Ai, are terminal, and Ai is
misère P, or at least two factors are non-terminal, and every Ai is normal P.

Proof. This follows from Propositions 2.13, 2.14 and 2.17.

We will apply this result to abelian groups in Section 3. For the moment, we record
an application to commutative rings.

Example 2.19. Let R1, . . . , Rn be commutative rings and let R denote their product.
Then for every a ∈ R the induced homomorphism

R/〈a〉 → R1/〈a1〉 × · · · ×Rn/〈an〉

is an isomorphism. This is because 〈a〉 also contains eia = aiei, where ei denotes the
idempotent element (0, . . . , 1, . . . , 0) with 1 in the ith entry. The zero ring is the only
one which is normal P. Therefore, Corollary 2.18 tells us that R = R1 × · · · × Rn is
a misère P-position if and only if Rj = 0 for all j except for one index i, and Ri

∼= R
is a misère P-position.

Corollary 2.20. Let R be a commutative ring which is a misère P-position. Then
R cannot be written as a product of two non-trivial rings. In other words, R does not
contain any non-trivial idempotent elements.

Remark 2.21. Commutative rings with the property in Corollary 2.20 also called
connected because their prime spectrum Spec(R) is a connected topological space
[AM69, Chapter 1, Exercise 22]. We may also state the result positively as follows: If
R = R1 ×R2 is a product of two non-trivial commutative rings, then R is misère N .
However, the proof in Proposition 2.14 does only produce a winning move if the game
outcome of R1 (or R2) was already known: If R1 is misère N , then there is some
0 6= x ∈ R1 such that R1/〈x〉 is misère P. Then R/〈(x, 1)〉 ∼= R1/〈x〉 is misère P. If
R1 is misère P, then R/〈(0, 1)〉 ∼= R1 is misère P.

10



3 The game of abelian groups

In this section we analyze the game of abelian groups. We have already seen that
the ending condition is satisfied precisely for finitely generated abelian groups. Their
structure is well-known [L02, Chapter I, §8].

Theorem 3.1 (Structure theorem). Let A be a finitely generated abelian group.

1. If A is finite, then there are unique natural numbers s ≥ 0 and n1, . . . , ns > 1
satisfying ni | ni+1 for 1 ≤ i < s such that A ∼= Z/n1 ⊕ · · · ⊕Z/ns. Here, s is the
smallest natural number such that A can be generated by s elements.

2. If A is finite, then A =
⊕

p prime
Ap, where Ap :=

⋃
n≥0 ker(p

n : A → A) is the
p-Sylow subgroup of A.

3. In the general case, the torsion subgroup At :=
⋃

n>0 ker(n : A → A) is finite and
there is a unique natural number r ≥ 0, the rank of A, such that A ∼= At ⊕ Z

r.

There is also a version of the structure theorem with prime powers, but this means
that we have much more factors in the direct products, and hence the winning moves
will be longer to write down. This is why we have decided to use divisor sequences.
The structure theorem or rather a refinement of it will enable us find a beautiful
characterization of the P-positions. Our analysis also works for finitely generated
R-modules, where R is a principal ideal domain, because the structure theorem also
holds for them [L02, Chapter III, §7]. For simplicity of exposition, we will restrict to
the case R = Z here.

3.1 Finite abelian groups

Proposition 3.2. If A,B are finite abelian groups of coprime orders, then the game
of A× B is the selective compound of the games of A and B. In particular, if A is a
finite abelian group, then the game of A is the selective compound of the games of the
p-Sylow subgroups Ap.

Proof. It is enough to verify the conditions of Proposition 2.18, i.e. that for every pair
A,B as in the claim the canonical homomorphism

(A× B)/〈(a, b)〉 → A/〈a〉 × B/〈b〉

is an isomorphism for all a ∈ A and b ∈ B. This is equivalent to 〈(a, b)〉 = 〈a〉 × 〈b〉.
Since ⊆ is obvious, it suffices to check that the order of (a, b) is the product of the
orders of a and b. In general, the order of (a, b) is the least common multiple of the
orders of a and b. Since they are coprime, the result follows.

Thus, we may restrict to abelian p-groups. However, some aspects of the game are
better formulated without this restriction. So let us stay with arbitrary finite abelian
groups for the moment. The first step is to characterize all options of the game. This
characterization will show that the game of finite abelian groups is actually a purely
number-theoretic game. The proof is laborious, but the rest will be rather formal. In
the following, we will make the common abuse of notation to denote the image of an
integer m ∈ Z in a quotient group Z/n also by m. It will become handy to describe
abelian groups by generators and relations [L02, Chapter I, §12].
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Proposition 3.3. Let A be a finite abelian group, say A ∼= Z/n1 ⊕ · · · ⊕ Z/ns with
ni | ni+1 and ni ≥ 1. Then a finite abelian group B is isomorphic to A/〈x〉 for
some element x ∈ A if and only if there is a sequence of natural numbers m1, . . . , ms

satisfying
m1 | n1 | m2 | n2 | · · · | ms | ns

and
B ∼= Z/m1 ⊕ · · · ⊕ Z/ms.

If m1, . . . , ms is such a sequence, then we may choose

x = m1 ⊕m1 ·
m2

n1
⊕ · · · ⊕m1 ·

m2

n1
· · · · ·

ms

ns−1
.

We note that the following proof is more or less equivalent to the structure theorem
for finite abelian groups.

Proof. Let us first verify the easy direction. For x defined as above, we want to show
A/〈x〉 ∼= Z/m1 ⊕ · · · ⊕ Z/ms. Let us make an induction on s, the cases s = 0 and
s = 1 being trivial. The quotient A/〈x〉 is given by (commuting) generators e1, . . . , es
and relations niei = 0 for 1 ≤ i ≤ s as well as the relation

m1e1 +m1 ·
m2

n1
e2 + · · · = 0.

This can also be written as m1e
′
1 = 0, where

e′1 = e1 +
m2

n1
e2 +

m2

n1
·
m3

n2
+ · · · .

We find a new presentation with the generator e1 replaced by e′1, and the relation
n1e1 = 0 replaced by

n1e
′
1 = m2e2 +m2 ·

m3

n2
+ · · · .

The left hand side vanishes because of m1e
′
1 = 0 and m1 | n1. Hence, the relation

does not contain e′1 anymore and we can split off 〈e′1 : m1e
′
1 = 0〉 ∼= Z/m1, the rest

being isomorphic to Z/m2⊕· · ·⊕Z/ms by the induction hypothesis. Thus, we obtain
Z/m1 ⊕ Z/m2 ⊕ · · · ⊕Z/ms.

Now for the other direction, we assume that x ∈ A is an arbitrary element. We
claim that there are natural numbers m1 | n1 | m2 | n2 | · · · such that A/〈x〉 is
isomorphic to Z/m1⊕· · ·⊕Z/ms. This will be done by induction on s. By Proposition
3.2 we may assume that everything is a power of a prime p. Technically, this is not
an important ingredient for the proof, but it simplifies the complicated relation | to
the simple relation ≤. Write ni = pki with ki ≥ 0. Then we claim that there are
natural numbers mi ≥ 0 such that m1 ≤ k1 ≤ m2 ≤ k2 ≤ m3 ≤ · · · such that A/〈x〉 is
isomorphic to Z/pm1⊕· · ·⊕Z/pms . Now consider xi ∈ Z/pki and lift it to some natural
number, also denoted by xi. We may write xi = priui for some unique 0 ≤ ri ≤ ki
and ui with p ∤ ui. Since multiplication with ui induces an automorphism of Z/pki, we
may even assume that xi = pri .

Next, we give a recursive description of the quotient

Ak,r := (Z/pk1 ⊕ · · · ⊕ Z/pks)/〈(pr1, . . . , prs)〉.

This can also be written as the abelian group defined by generators e1, . . . , es, relations
pkiei = 0 for 1 ≤ i ≤ s, as well as the relation

pr1e1 + · · ·+ prses = 0.

12



Choose 1 ≤ l ≤ s in such a way that rl becomes minimal. If we replace el by the new
generator

e′l :=
∑

i

pri−rlei = el +
∑

i 6=l

pri−rlei,

the above relation becomes prle′l = 0. In terms of e′l, the relation pklel = 0 becomes

pkle′l =
∑

i 6=l

pkl+ri−rlei.

The left hand side vanishes because of prle′l = 0 and rl ≤ kl. Thus, we can split off
〈e′l〉

∼= Z/prl. Also, since pkiei = 0, we could equally well replace the coefficient of ei
in the sum above by pr

′

i, where

r′i := min(kl + ri − rl, ki).

For i < l we have r′i = ki, so that we may split off 〈ei〉 ∼= Z/pki. Thus, if we define
k′
i = ki for i > l, we obtain the recursive expression

Ak,r
∼= Z/prl ⊕ Z/pk1 ⊕ · · · ⊕Z/pkl−1 ⊕Ak′,r′.

Let us add to the induction hypothesis that rl is the smallest exponent in the decom-
position, i.e. rl = m1. Applying the induction hypothesis to Ak′,r′ we get numbers
ml+1 ≤ kl+1 ≤ ml+2 ≤ · · · ≤ ks such that Ak′,r′

∼= Z/pml+1 ⊕ · · · ⊕ Z/pms . Besides,
ml+1 is the minimum of the r′i, which is ≥ kl. Now let us define m1 = rl and mi = ki−1

for 1 < i ≤ l. Then Ak,r
∼= Z/pm1 ⊕ · · · ⊕ Z/pms and we have

m1 ≤ k1 = m2 ≤ k2 = m3 ≤ · · · ≤ kl−1 = ml ≤ kl ≤ ml+1 ≤ kl+1 ≤ · · · ≤ ks,

as required.

Proposition 3.4. The game of finite abelian groups is equivalent to the following
number-theoretic game: The positions are divisor sequences n1 | · · · | ns of natural
numbers ≥ 1, where we identify 1 | 1 | · · · | n1 | · · · | ns with n1 | · · · | ns. There is a
move from n1 | · · · | ns to m1 | · · · | ms if and only if m1 | n1 | m2 | n2 | · · · | ms | ns

and for at least one 1 ≤ i ≤ s we have mi < ni. The only terminal position is the
empty sequence.

Proof. This follows from Proposition 3.3. In fact, n1 | · · · | ns corresponds to the
group Z/n1 ⊕ · · · ⊕Z/ns.

Remark 3.5. We conjecture that the game of finitely generated abelian groups is
equivalent to the number-theoretic game of divisor sequences n1 | · · · | ns of natural
numbers ≥ 0, where the zeroes at the end correspond to direct summands of the
form Z/0 = Z of the abelian group. Several results in the next sections support this
conjecture. It would follow from an appropriate generalization of Proposition 3.3.

Now we can easily determine the P-positions:

Proposition 3.6. In the number-theoretic game described in Proposition 3.4, the di-
visor sequence n1 | · · · | ns is a normal P-position if and only if it is a square in the
following sense: Either s is even and n1 = n2, n3 = n4, . . . , ns−1 = ns, or s is odd
and n1 = 1, n2 = n3, . . . , ns−1 = ns.
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Proof. Clearly the terminal position, which is P, is a square with s = 0. We have to
prove that every non-square moves to some square, and that a square cannot move to
another square.

Assume that a square n1 | · · · | ns moves to some square m1 | · · · | ms. We
may assume that s is even; otherwise add 1 on the left. For even i ≥ 2 we have
ni = ni−1 | mi | ni, thus mi = ni. Since both sequences are squares, this already
implies mi = ni for all i. This is a contradiction.

Assume that n1 | · · · | ns is not a square. If s is even, define mi := mi+1 := ni for
all odd i. Then we have m1 = n1 = m2 | n2 | m3 = n3 = m4 | · · · , and m is a square.
In particular, m 6= n. Hence, m is a winning move. The case that s is odd can be
reduced to this case by adding 1 on the left. The winning move is here m1 := 1 and
mi := mi+1 := ni for all even i > 1.

Now we can prove the main theorems about the game of finite abelian groups.

Theorem 3.7. Let A be a finite abelian group.

1. A is a normal P-position if and only if A is a square, i.e. A ∼= B2 for some finite
abelian group B.

2. If A = Z/n1 ⊕ · · · ⊕ Z/ns with ni | ni+1 is not a square, then a winning move is

x = 0⊕ n1 ⊕
n1 · n3

n2
⊕

n1 · n3

n2
⊕ · · · ⊕

n1 · n3 · · · · · ns−1

n2 · · · · · ns−2
⊕

n1 · n3 · · · · · ns−1

n2 · · · · · ns−2

if s is even, and

x = 1⊕
n2

n1
⊕

n2

n1
⊕

n2 · n4

n1 · n3
⊕ · · · ⊕

n2 · n4 · · · · · ns−1

n1 · n3 · · · · · ns−2
⊕

n2 · n4 · · · · · ns−1

n1 · n3 · · · · · ns−2

if s is odd. In that case, we have

A/〈x〉 ∼=

{
(Z/n1 ⊕Z/n3 ⊕ · · · ⊕ Z/ns−1)

2 if s is even,
(Z/n2 ⊕Z/n4 ⊕ · · · ⊕ Z/ns−1)

2 if s is odd.

Proof. 1. follows from Propositions 3.4 and 3.6, and 2. follows from an inspection of
the proofs of Propositions 3.6 and 3.3.

Example 3.8. For example, Z/4 ⊕ Z/8 ⊕ Z/40 is a normal N -position. Player I
quotients out 1 ⊕ 2 ⊕ 2, since 8/4 = 2. The quotient is isomorphic to the square
Z/8⊕Z/8. Player II has many choices, but he loses in any case. Let us demonstrate
this for the element 4 ⊕ 0. Then Player I gets Z/4 ⊕ Z/8 and of course he quotients
out 0 ⊕ 4, because this gives Z/4 ⊕ Z/4 for Player II. If he wants to postpone his
inevitable defeat, he could try 2⊕ 2 with quotient ∼= Z/2⊕Z/4. The next moves are
Z/2⊕ Z/2 by Player I, Z/2 by Player II and finally 0 by Player I, who wins.

Theorem 3.9. Let A be a finite abelian group. Then A is a misère P-position if and
only if A is

• either elementary abelian of odd dimension,

• or a square, without being elementary abelian.

Thus, the only difference to the normal P-positions are the elementary abelian
groups (Z/p)s, which become misère P if and only if s is odd.
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Proof. According to Proposition 3.2 and Corollary 2.18, it suffices to treat the case
that A is a finite abelian p-group, say A = Z/pk1 ⊕ · · · ⊕ Z/pks with k1 ≤ · · · ≤ ks.

We say that A is P ′ if it is either elementary abelian of odd dimension, or it is
a square, without being elementary abelian. We have to show the three properties
characterizing misère P-positions (Proposition 2.1). The terminal positions are ele-
mentary abelian of dimension 0, thus not P ′. Next, we have to show that if A 6= 0 is
not P ′, then some option of A is P ′. If A is elementary abelian, then its dimension is
even 6= 0, and in fact every move reduces the dimension by one, so that we end up with
something which is P ′. If A is not elementary abelian, then it is not a square. By
Theorem 3.7, there is some 0 6= x ∈ A such that A/〈x〉 is a square, namely isomorphic
to (Z/pk1 ⊕ · · · ⊕ Z/pks−1)2 if s is even, and otherwise to (Z/pk2 ⊕ · · · ⊕ Z/pks−1)2.
If these are not elementary abelian, they are P ′ we are done. Now we assume that
they are elementary abelian, i.e. ks−1 = 1. Thus, A = (Z/p)s−1 ⊕ Z/pks. We have
ks > 1. If s is even, the winning move is now 0 ⊕ · · · ⊕ 0 ⊕ 1, since the quotient is
(Z/p)s−1, which is elementary abelian of odd dimension and therefore P ′. If s is odd,
the winning move is 0⊕ · · · ⊕ 0⊕ p, since the quotient is (Z/p)s, therefore also P ′.

Finally, we have to show that if A is P ′, then for every 0 6= x ∈ A the abelian
group A′ = A/〈x〉 is not contained in P

′. This is clear if A is elementary abelian.
Otherwise, A is a square, s is even, and A′ cannot be a square by Theorem 3.7.
For a contradiction, we assume that A′ is P. Then A′ is elementary abelian of odd
dimension. Since pA′ = 0, we have pA ⊆ 〈x〉. Thus, pA is cyclic. On the other hand,
it contains p(Z/pks−1 ⊕ Z/pks) ∼= (Z/pks−1)2, which is only cyclic when ks = 1. But
this implies ki = 1 for all i, i.e. A is elementary abelian. This contradiction finishes
the proof.

Example 3.10. For example, Z/2⊕Z/6⊕Z/6 is a misère N -position. We may also
represent this group as (Z/2)3 ⊕ (Z/3)2. Here are two possible sequences of moves:

(Z/2)3 ⊕ (Z/3)2
I
 (Z/2)2 ⊕ (Z/3)2

II
 Z/2⊕ (Z/3)2

I
 Z/3

II
 0,

(Z/2)3 ⊕ (Z/3)2
I
 (Z/2)3 ⊕Z/3

II
 (Z/2)3 ⊕ Z/3

I
 (Z/2)3

II
 (Z/2)2

I
 Z/2

II
 0.

3.2 Finitely generated abelian groups

The classification of P-positions may be generalized from finite abelian groups to
finitely generated abelian groups as follows.

Theorem 3.11. Let A be a finitely generated abelian group. Then A is a normal P-
position if and only if A is a square, i.e. A ∼= B2 for some finitely generated abelian
group B.

Proof. In the finite case, we may use Theorem 3.7. In the general case, we may write
A ∼= At ⊕ Z

r, where At is the finite torsion subgroup of A and r ≥ 0 is the rank of
A. It is easy to see that A is a square if and only if At is a square and r is even. As
before, it is enough to prove that every non-square moves to some square and that
every square cannot move to another square.

Assume that A is not a square. If r is even, then At is not a square and by the
finite case there is some 0 6= x ∈ At such that At/〈x〉 is a square. But then

A/〈(x⊕ 0)〉 ∼= At/〈x〉 ⊕ Z
r

is a square. If r is odd, it is enough to consider the case r = 1 by ignoring the
direct summand Z

r−1 which is already a square. If At is generated by s elements, say
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At
∼= Z/n1 ⊕ · · · ⊕Z/ns, let ns+1 := 0 and apply the winning strategy of Theorem 3.7

to A ∼= Z/n1 ⊕ · · · ⊕ Z/ns ⊕ Z/ns+1. This works since we never divided through the
last number ns+1; in fact we didn’t use it at all. Thus, if s is even, there is a move
from A to the square (Z/n2 ⊕Z/n4 ⊕ · · · ⊕Z/ns)

2. If s is odd, there is a move to the
square (Z/n1 ⊕Z/n3 ⊕ · · · ⊕ Z/ns)

2.
Now we assume that A is a square of rank r and there is some move to a square

B. In other words, there is some cyclic subgroup C 6= 0 of A such that A/C ∼= B.
When C is finite, we have C ⊆ At and therefore B ∼= Z

r ⊕At/C. Since B is a square,
it follows that At/C is a square, which is impossible by the finite case since also At is
a square. Now we assume that C is infinite. Then B is of rank r − 1, which is odd, a
contradiction.

Theorem 3.12. Let A be a finitely generated abelian group. Then A is a misère
P-position if and only if A is

• either finite elementary abelian of odd dimension,

• or a square, but not finite elementary abelian

In particular, if A is infinite and a square, then A is misère P.

Proof. Let P ′ be the class of groups described in the theorem. Clearly 0 /∈ P ′.
Again we have to verify that A ∈ P ′ cannot move to some B ∈ P ′, and that every
0 6= A /∈ P ′ moves to some B ∈ P ′. If A is finite, both follow from Theorem 3.9.
Now we assume that A is infinite.

If A ∈ P ′, then A is a square, and for every move B := A/〈x〉 it follows from
Theorem 3.11 that B is not a square. If B ∈ P ′, it would follow that B is finite,
in fact elementary abelian of odd dimension and therefore of rank 0. It follows that
1 ≤ rank(A) = rank(〈x〉) ≤ 1, thus rank(A) = 1. But this contradicts A being a
square. Thus, B /∈ P ′.

If 0 6= A /∈ P ′, then A is not a square, and by Theorem 3.11 there is some
0 6= x ∈ A such that B := A/〈x〉 is a square. If B ∈ P ′, we would be done.
Otherwise, B is finite and elementary abelian of even dimension. It follows once again
rank(A) = 1 and we may write A = Z/n1 ⊕ · · · ⊕Z/ns ⊕Z for some n1 | · · · | ns with
ni > 1. The proof of Theorem 3.11 shows that we can choose x in such a way that
B ∼= (Z/ns⊕Z/ns−2⊕· · · )2. Since B is elementary abelian, it follows that ns is some
prime number p. But then we even have n1 = · · · = ns = p, i.e. A = (Z/p)s⊕Z. Now,
if s is odd, we quotient out 0⊕s ⊕ 1 to obtain (Z/p)s, which is P ′. If s is even, we
quotient out 0⊕s⊕p to obtain (Z/p)s+1, which is again P ′. This finishes the proof.

Remark 3.13. The same analysis works for the game of R-modules, where R is
a principal ideal domain, because the structure theorem also holds for them [L02,
Chapter III, §7]. Namely, a finitely generated R-module M is normal P if and only
if it is a square. If R is not a field, then M is misère P if and only if it is either a
vector space over some R/p of odd dimension (where p ∈ R is some prime element),
or it is a square, but not a vector space over any R/p.

Example 3.14. Theorem 3.11 predicts that the abelian group Z ⊕ Z is a normal
P-position. Let us verify this directly and thereby make the game more explicit.
Pick any non-trivial element (n,m) ∈ Z⊕Z. By Bézout’s theorem, there are integers
p, q ∈ Z such that pn+ qm = gcd(n,m). Then, the 2× 2-matrix

(
q n

gcd(n,m)

−p m
gcd(n,m)

)
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is invertible with inverse (
m

gcd(n,m)
− n

gcd(n,m)

p q

)
.

Hence, the transformation

x′ = qx− py, y′ = n
gcd(n,m)

x+ m
gcd(n,m)

y

yields an isomorphism

(Z⊕ Z)/〈(n,m)〉 = 〈x, y : nx+my = 0〉 ∼= 〈x′, y′ : gcd(n,m) · y′ = 0〉
∼= Z/ gcd(n,m)⊕ Z.

From this group, the winning move is to quotient out (0, gcd(n,m)), because this
results in the square (Z/ gcd(n,m))2, which is a P-position by the finite case. For
example, a possible sequence of moves is the following:

Z⊕Z
I
 (Z⊕Z)/〈(2, 4)〉 ∼= Z/2⊕Z

II
 Z/2⊕ Z/2

I
 Z/2

II
 0.

3.3 Computation of some nimbers

If A is a finitely generated abelian group, then the game of A is determined by the
nimber α(A) (see Remark 2.3). This ordinal number is defined recursively by

α(A) = mex{α(A/〈a〉) : 0 6= a ∈ A}.

We have α(A) = 0 if and only if A is a P-position (under the normal play rule), i.e. A
is a square (Theorem 3.11). The nimber carries much more information than just the
knowledge about which player wins. Accordingly it is more difficult to compute. An
induction shows that the nimber of a finitely generated abelian group A is a countable
ordinal number, which is finite if A is finite.

First, we will compute the nimbers of cyclic groups. If 0 6= n ∈ Z, let us write
Ω(n) for the number of prime divisors of n counted with multiplicity.

Lemma 3.15. For 0 6= n ∈ Z we have α(Z/n) = Ω(n).

Proof. By induction on n, we have that α(Z/n) is the mex of the numbers Ω(m),
where m is a proper divisor of n. In that case we have Ω(m) < Ω(n). Moreover, every
natural number < Ω(n) has this form.

Corollary 3.16. We have α(Z) = ω.

Proof. We have α(Z/2n) = n for all n ∈ N (Lemma 3.15). If 0 6= n ∈ Z, then
α(Z/n) < ω since Z/n is finite; alternatively, we may use Lemma 3.15 again. Hence,
α(Z) = mex(ω) = ω.

Our next goal is to compute the nimbers of 2-generated abelian p-groups, where p
is a fixed prime number. Every such group is isomorphic to Z/pn⊕Z/pm for uniquely
determined natural numbers n ≤ m. We abbreviate α(Z/pn ⊕Z/pm) by α(n,m). By
Proposition 3.3 the options of the group Z/pn⊕Z/pm are those groups Z/pn

′

⊕Z/pm
′

for which n′ ≤ n ≤ m′ ≤ m and (n,m) 6= (n′, m′) hold. It follows that

α(n,m) = mex{α(n′, m′) : n′ ≤ n ≤ m′ ≤ m, (n,m) 6= (n′, m′)}.

This enables us to compute some values recursively, see Figure 1.
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n\m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 3 4 5 6 7 8 9 10 11 12 13 14 15

2 0 1 6 7 8 9 10 11 12 13 14 15 16

3 0 2 8 9 10 11 12 13 14 15 16 17

4 0 1 3 11 12 13 14 15 16 17 18

5 0 2 4 13 14 15 16 17 18 19

6 0 1 5 15 16 17 18 19 20

7 0 2 3 6 18 19 20 21

8 0 1 4 7 20 21 22

9 0 2 5 8 22 23

10 0 1 3 9 24

11 0 2 4 6

Figure 1: The values of α(n,m) for 0 ≤ n ≤ 11 and n ≤ m ≤ 14

For example, α(4, 8) = 12 because the block with corners 4, 8, 0, ? contains all
numbers 0, 1, . . . , 11. For another example, α(6, 8) = 5 because the block with corners
6, 8, 0, ? contains the numbers 0, 1, 2, 3, 4 and 6, 7, . . . , 13. The values in Figure 1
indicate the following pattern:

• For fixed n, we have α(n,m) = n+m for large m.
• For fixed k, the diagonal (α(n, n+ k))n≥0 eventually becomes periodic (printed in
boldface) with period length k + 1.

• More precisely, the period is given by ∆k,∆k + 1, . . .∆k + k = ∆k+1 − 1, where
∆k = 1

2
k(k + 1) = 1 + 2 + · · ·+ k is the triangular number.

• This period starts when n > ∆k.

Let us verify this pattern. We denote by (a mod k+1) the unique natural number
0 ≤ r ≤ k such that a ≡ r mod k + 1.

Theorem 3.17. For natural numbers n ≤ m with k := m − n, the nimber of the
abelian group Z/pn ⊕ Z/pm equals

α(n,m) =

{
n +m if n ≤ ∆k,

∆k + (n−∆k − 1 mod k + 1) if n > ∆k.

Proof. We assume that the claim is true for all n′ ≤ n ≤ m′ ≤ m with (n′, m′) 6= (n,m)
and prove it for (n,m). The reader may find it helpful to visualize the proof using
Figure 1.

Case A. We assume n ≤ ∆k. We claim that {α(n′, m′) : . . . } is the set of natural
numbers < n +m, so that its mex is α(n,m) = n+m.

1. Step. We prove that every number < n + m arises as α(n′, m′). In fact, for
n′ < n we have α(n′, m) = n′ + m (since n′ ≤ n ≤ ∆m−n ≤ ∆m−n′). Hence, the
numbers m, 1 + m, . . . , (n − 1) + m occur. For n ≤ m′ < m we have α(0, m′) = m′

(because of 0 ≤ ∆m′). Hence, the numbers n, . . . , m− 1 occur. Finally, let 0 ≤ ℓ < n.
Choose k′ < k such that ∆k′ ≤ ℓ < ∆k′+1. Write n − (ℓ + 1) = q(k′ + 1) + r with
q ≥ 0 and 0 ≤ r ≤ k′. Let n′ := n − r and m′ := n′ + k′. Clearly, n′ ≤ n and
n′ = q(k′ + 1) + (ℓ + 1) ≡ ℓ + 1 mod k′ + 1. We have n ≤ m′ since this is equivalent
to r ≤ k′. We have m′ < m since this is equivalent to k′ < k + r. Finally, notice that
n′ > ℓ ≥ ∆k′. Therefore, we arrive at

α(n′, m′) = ∆k′ + (n′ −∆k′ − 1 mod k′ + 1) = ∆k′ + (ℓ−∆k′ mod k′ + 1) = ℓ.
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2. Step. We prove that α(n′, m′) < n+m for each option (n′, m′). Let k′ = m′−n′.
If n′ ≤ ∆k′ , we have α(n′, m′) = n′ + m′ ≤ n′ + m ≤ n + m, with no equality since
otherwise (n′, m′) = (n,m). Hence, α(n′, m′) < n +m. Now let us assume n′ > ∆k′.
Then α(n′, m′) ∈ [∆k′ ,∆k′ + k′], so that

α(n′, m′) ≤ ∆k′ + k′ < n′ + k′ = m′ ≤ m ≤ n+m.

Case B. We assume n > ∆k. Let us write n−∆k − 1 = q(k + 1) + r with q ≥ 0
and 0 ≤ r ≤ k. We want to prove α(n,m) = ∆k + r. For this, we have to prove
that {α(n′, m′) : . . . } contains all numbers < ∆k + r, but not ∆k + r. Notice that, in
contrast to Case A, numbers > ∆k + r do occur in that set.

1. Step. We prove that every number ℓ < ∆k + r arises as α(n′, m′). First, let us
assume ∆k ≤ ℓ < ∆k + r, i.e. we are in the same diagonal. Write ℓ = ∆k + r′ with
0 ≤ r′ < r. Let δ = r − r′. Let n′ = n − δ and m′ = m − δ. Clearly we have n′ < n
and m′ < m with m′ − n′ = m− n = k. We also have n ≤ m′ since this is equivalent
to δ ≤ k, which follows from δ ≤ r ≤ k. Finally, we have n > ∆k + r ≥ ∆k + δ, hence
n′ > ∆k. It follows

α(n′, m′) = ∆k + (n′ −∆k − 1 mod k + 1) = ∆k + (r − δ mod k + 1) = ∆k + r′ = ℓ.

Now let us assume ℓ < ∆k and choose 0 ≤ k′ < k such that ∆k′ ≤ ℓ < ∆k′+1. There
is a unique integer n′ such that n − k′ ≤ n′ ≤ n and n′ ≡ ℓ + 1 mod k′ + 1. We have
n′ ≥ n − k′ > 0 because of k′ < k ≤ ∆k < n. Define m′ = n′ + k′. Then n′ ≤ n and
n ≤ n′ + k′ = m′ hold by construction. We also have m′ < m because of n′ ≤ n and
k′ < k. The inequality n′ > ∆k′ follows from

n′ ≥ n− k′ > ∆k − k′ ≥ ∆k′+1 − k′ = ∆k′ + 1.

We conclude

α(n′, m′) = ∆k′ + (n′ −∆k′ − 1 mod k′ + 1) = ∆k′ + (ℓ−∆k′ mod k′ + 1) = ℓ.

2. Step. We prove that ∆k + r does not arise as α(n′, m′). In fact, if n′ ≤ ∆k′

(with k′ := m′ − n′), then α(n′, m′) = n′ +m′ ≥ m′ ≥ n > ∆k + r. Else, if n′ > ∆k′

and α(n′, m′) = ∆k + r, then α(n′, m′) ∈ [∆k′ ,∆k′+1[ implies k′ = k. It also implies

n′ −∆k − 1 ≡ r ≡ n−∆k − 1 mod k + 1,

hence n′ ≡ n mod k + 1. Since n′ ≤ n ≤ m′ = n′ + k, this implies n = n′ and then
m = m′, a contradiction.

Remark 3.18. The next step would be to compute the nimber of 3-generated abelian
p-groups Z/pn1 ⊕ Z/pn2 ⊕ Z/pn3 (with n1 ≤ n2 ≤ n3). Let k := n3 − n2. Numerical
experiments have suggested the following formula for the nimber:





n1 + n2 + n3 if n2 ≤ ∆k+n1
,

n1 + n2 − 1 if ∆k+n1
< n2 ≤ ∆k+n1+1,

∆k+n1
+ ((n2 −∆k+n1

− 1) mod (k + n1 + 1)) if n2 > ∆k+n1+1.

For n2 > ∆k+n1+1 the formula seems to be fine, but for n2 ≤ ∆k+n1+1 there are (for
fixed n1 only a few) exceptions.
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Remark 3.19. Assume that we had found a formula for the nimber of an arbitrary
finite abelian p-group. According to Proposition 3.2 the game of an arbitrary finite
abelian group is the selective compound of games of finite abelian p-groups. However,
this does not directly allow us to compute the nimber of an arbitrary finite abelian
group. This is because the nimber of a selective compound game does not have to only
depend on the nimbers of the individual games. For example, let G = H = ∗1 be two
Nim-piles of size 1. Then α(G) = α(H) = 1. The options of G ∨ H are ∗0, G,H , so
that α(G ∨H) = 2. If we replace H by the game H ′ which has an additional option
∗2, then we still have α(H ′) = 1, but one computes, in this order, α(G ∨ ∗1) = 2,
α(G∨∗2) = 3 and α(G∨H ′) = 4. Notice that, however, H ′ does not arise as the game
of a finite abelian group. For the sake of completeness, let us mention that for natural
numbers n,m one has α(∗n ∨ ∗m) = n+m, and that in case of infinite ordinals n,m
we have to replace n+m by the Hessenberg sum n#m [H06].

However, there is a method which reduces the game of an arbitrary finite abelian
group to the game of a finite abelian p-group. By Proposition 3.4 we only have to look
at the game of divisor sequences.

Proposition 3.20. Let p be any prime number. Then the game of any divisor se-
quence n1 | · · · | ns, where ni ≥ 1, is equivalent to the game of the divisor sequence
pΩ(n1) | · · · | pΩ(ns), i.e. the nimbers coincide.

Proof. We prove this via induction. The nimber of n1 | · · · | ns is the mex of the
nimbers of divisor sequences m1 | · · · | ms with m 6= n and m1 | n1 | m2 | · · · | ns. We
define n0 := 1, so that this condition reads ni−1 | mi | ni for i = 1, . . . , s. By induction
hypothesis, the nimber of m1 | · · · | ms equals the nimber of pΩ(m1) | · · · | pΩ(ms). Since
ni−1 | ni for i = 1, . . . , s, we have Ω(ni−1) ≤ Ω(ni). If d ≥ 1 is such that ni | d | ni+1,
then Ω(ni−1) ≤ Ω(d) ≤ Ω(ni). Conversely, for every Ω(ni−1) ≤ k ≤ Ω(ni) there is
some d ≥ 1 satisfying ni | d | ni+1 and Ω(d) = k; a similar argument has been given
in Lemma 3.15. This shows that the set of the divisor sequences pΩ(m1) | · · · | pΩ(ms)

with ni−1 | mi | ni coincides with the set of the divisor sequences pk1 | · · · | pks with
Ω(ni−1) ≤ ki ≤ Ω(ni), i.e. p

Ω(ni−1) | pki | pΩ(ni). The mex of their nimbers is the nimber
of the divisor sequence pΩ(n1) | · · · | pΩ(ns).

Corollary 3.21. Let n1 | · · · | ns be a divisor sequence with ni ≥ 1. Let p be any
prime number. Then the nimber of the abelian group Z/n1 ⊕ · · · ⊕ Z/ns equals the
nimber of the abelian p-group Z/pΩ(n1) ⊕ · · · ⊕Z/pΩ(ns).

Proof. This follows from Propositions 3.20 and 3.4.

Proposition 3.22. For all natural numbers n ≥ 1 we have α(Z/n⊕ Z) = ω + Ω(n).

Proof. We will prove this via induction on n. Let us assume that the claim is true
for all positive natural numbers < n. The options of Z/n ⊕ Z are on the one hand
Z/m⊕Z withm | n andm < n, which have nimbers ω+Ω(m) by induction hypothesis,
and on the other hand the finite abelian groups (Z/n⊕Z)/〈(z, u)〉 with z ∈ Z/n and
0 6= u ∈ Z, which have nimbers < ω. We have to show that the latter nimbers actually
cover all natural numbers. This will be already true for z = 0 and u = mpk for k ≥ 0,
m | n and some prime number p which is coprime to n. In that case, the abelian
group is isomorphic to Z/n ⊕ Z/u ∼= Z/m ⊕ Z/npk. By Corollary 3.21 its nimber
equals that of Z/pΩ(m)⊕Z/pΩ(n)+k, which has been computed in Theorem 3.17. Since
Ω(m) ≤ Ω(n) and k ≥ 0 can be chosen arbitrarily, it is readily checked that all natural
numbers appear.
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Remark 3.23. We already know that Z⊕Z is P and therefore has nimber 0. Propo-
sition 3.22 in conjunction with Example 3.14 gives a more precise result, namely that
the nimbers of the options of Z⊕Z are the ordinal numbers in the interval [ω, ω + ω[.
Theorem 3.17, Corollary 3.21 and Proposition 3.22 give a complete calculation of the
nimbers of 2-generated abelian groups.

Remark 3.24. There is a general upper bound of the nimbers: If A ∼= At ⊕ Z
r is

any finitely generated abelian group of rank r, then α(A) ≤ ω · r + ℓ(At), where ℓ
denotes the length of a finite Z-module [AM69, Chapter 6]. The length is an additive
function satisfying ℓ(Z/n) = Ω(n). The inequality can be proven by an induction
which is similar to the case analysis in the proof of Theorem 3.11. In particular, we
have α(A) < ω2.

4 The game of groups

4.1 Some examples of groups

In this section we will consider the game of (non-abelian) groups under the normal
play rule. In every move, a group G is replaced by the quotient group G/〈〈a〉〉 for some
1 6= a ∈ G. If some option in this game happens to be abelian, then we continue with
the game of abelian groups which has already been discussed in Section 3. However,
in the non-abelian case, the normal subgroup 〈〈a〉〉 generated by a tends to be quite
large compared to the cyclic subgroup 〈a〉. This will be responsible for a variety of
N -positions in the game of groups. In fact, there are many non-trivial groups which
can be normally generated by a single element [B91], which are therefore N .

Example 4.1. Every knot group is normally generated by a single element. For
example, the Wirtinger presentation of the trefoil knot is

G = 〈a, b, c : a−1ca = b, c−1bc = a, b−1ab = c〉,

and we see G = 〈〈a〉〉.

Example 4.2. If n ≥ 2, then the symmetric group Sn is normally generated by (1 2).
For n ≥ 3 the alternating group An is normally generated by (1 2 3). Hence, Sn and
An are N .

Example 4.3. If n ≥ 3, then the dihedral group

Dn = 〈r, s : rn = s2 = (rs)2 = 1〉

is N : If n is even, then Dn/〈〈r
2〉〉 ∼= (Z/2)2 is a square of an abelian group and hence

P. If n is odd, then Dn/〈〈s〉〉 is trivial and hence P. We note that the product
Dn × Z/2 is also N because the quotient by (r, 0) is isomorphic to (Z/2)2, which is
P.

Example 4.4. The dicyclic group Dicn of order 4n is defined by the presentation

Dicn = 〈a, x : a2n = 1, an = x2, axa = x〉.

For n = 2 this is the Quaternion group Q = {±1,±i,±j,±k}. If n ≥ 2, then
Dicn is N : If n is odd, then Dicn /〈〈x〉〉 is trivial and hence P. If n is even, then
Dicn /〈〈a〉〉 ∼= (Z/2)2, which is P. We note that the product Dicn×Z/2 is also N

because the quotient by (a, 0) is isomorphic to (Z/2)2.

21



Example 4.5. Let p, q be two distinct primes and let G be a group of order pq. Then
G is N : If G is abelian, then G is isomorphic to Z/p × Z/q, which is N . If G is
not abelian, then it is well-known that G = 〈x, y : xq = yp = 1, yxy−1 = xr〉 holds
for some r ∈ (Z/q)× of order p. In particular, q and r − 1 are coprime. But then
G/〈〈y〉〉 = 〈x : xq = xr−1 = 1〉 is trivial.

4.2 Groups of small order

All non-abelian groups we have encountered so far are N . We will now use the
classification of groups of small order to find the smallest examples of non-abelian
groups which are P. There are various online resources for this classification such
as http://groupprops.subwiki.org/wiki/Category:Groups_of_a_particular_order. For the
general theory and development of this classification, we refer to [HBE02].

Proposition 4.6. Every non-abelian group of order ≤ 15 is N .

Proof. We have already dealt with groups of order pq for primes p, q in Example 4.5,
and groups of prime order are cyclic. This only leaves the orders 8 and 12. There are
2 non-abelian groups of order 8, namely the dihedral group D4 and the quaternion
group Q, which are N by Examples 4.3 and 4.4. There are 3 non-abelian groups of
order 12, namely A4, D6 and Dic3, which are also N by Examples 4.2, 4.3 and 4.4.

Next, there are 14 groups of order 16 [W05] (up to isomorphism, of course). We de-
note them via their IDs in GAP’s SmallGroup library (http://www.gap-system.org).
Thus, Gn is encoded by SmallGroup(16,n). Since G1, G2, G5, G10, G14 are abelian, we
only need to consider the other 9 non-abelian groups. In the following list, G ⋊ϕ N
denotes the semidirect product associated to a homomorphism ϕ : G → Aut(N).

• G3 = 〈a, b, c : a4 = b2 = c2 = 1, ab = ba, bc = cb, cac−1 = ab〉
= (Z/4× Z/2)⋊ϕ Z/2 with ϕ(c) = (a 7→ ab, b 7→ b).

• G4 = 〈a, b : a4 = b4 = 1, ab = ba3〉 = Z/4⋊3 Z/4
• G6 = 〈a, b : a8 = b2 = 1, ab = ba5〉 = Z/8⋊5 Z/2
• G7 = D8

• G8 = 〈a, b : a8 = b2 = 1, ab = ba3〉 = Z/8⋊3 Z/2
• G9 = Dic4
• G11 = D4 × Z/2
• G12 = Dic2×Z/2
• G13 = 〈a, x, y : a4 = x2 = 1, a2 = y2, xax = a−1, ay = ya, xy = yx〉

We already know that G7, G9, G11, G12 are N by Examples 4.3 and 4.4. Observe
that G6/〈〈a

2〉〉 = 〈a, b : a2 = b2 = 1, ab = ba〉 ∼= (Z/2)2. The same argument shows
G8/〈〈a

2〉〉 ∼= (Z/2)2. We also see G13/〈〈a〉〉 = 〈x, y : x2 = y2 = 1, xy = yx〉 ∼= (Z/2)2.
Thus, G6, G8, G13 are N . However, G3, G4 turn out to be P. This can be verified
by computing all quotients by hand. Alternatively, we may use the following simple
GAP-program. It has a small group G as an input and returns the set of structure
descriptions of all quotients G/〈〈g〉〉 for 1 6= g ∈ G.

Quotients := function(G)

local s,g,Q; s := [];

for g in Elements(G){[2..Order(G)]} do

Q := FactorGroup(G,NormalClosure(G,Subgroup(G,[g])));

AddSet(s,StructureDescription(Q)); od;

return s;

end;
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With this program we may compute the quotients of G3 and G4:

gap> Quotients(SmallGroup(16,3));

[ "C2", "C4", "C4 x C2", "D8" ]

gap> Quotients(SmallGroup(16,4));

[ "C2", "C4", "C4 x C2", "D8", "Q8" ]

In our notation, these quotients are Z/2, Z/4, Z/2 × Z/4, D4 and Q, which have
already been verified to be N . Thus, G3 and G4 are P. We have proven the following:

Proposition 4.7. Among the 9 non-abelian groups of order 16, there are exactly 2
which are P, namely G3 = (Z/4× Z/2)⋊ϕ Z/2 and G4 = Z/4⋊3 Z/4.

Remark 4.8. In the same way we may proceed with other small group orders. Using
GAP, we have verified that among the 6065 groups of order ≤ 200 only 105 groups are
P, of which 86 groups are non-abelian, namely:

• 2 groups of order 16 with IDs 3, 4 already mentioned,
• 1 group of order 36 with ID 13,
• 68 groups of order 64 with IDs 3, . . . , 16,56,193, . . . , 245,
• 2 groups of order 81 with IDs 3, 4,
• 1 group of order 100 with ID 15,
• 2 groups of order 128 with IDs 175, 476,
• 9 groups of order 144 with IDs 92, 93, 94, 95, 100, 102, 103, 194, 196,
• 1 group of order 196 with ID 11.

4.3 The game of subgroups

The game of groups from the previous subsection has disproportionally many N -
positions because the normal closure of an element is rather large. Therefore, we
propose and briefly sketch a different, more balanced game:

We start with a group G. A position in the game of subgroups is a subgroup
U ⊆ G. The initial position is the trivial subgroup, and the terminal position is
the whole group. A move picks some g ∈ G \ U and replaces U by the subgroup
〈U, g〉. Thus, a sequence of moves is given by elements g1, g2, . . . of G such that gi+1

is not contained in the subgroup 〈g1, . . . , gi〉 generated by the previous elements. The
ending condition is satisfied if and only if G is Noetherian, i.e. every subgroup of G is
finitely generated. For example, this happens when G is finite. Let us restrict to the
normal play rule. When is G a P-position? By this we actually mean that the trivial
subgroup is a P-position in the game of subgroups of G.

Remark that this resembles the game proposed in [AH87], whose positions are the
subsets of G. Our game is also related to the game of algebraic structures in the special
case of G-sets, starting with the G-set G. In fact, for a subgroup U ⊆ G, a move from
the G-set G/U picks some g ∈ G \ U and replaces G/U by the G-set G/〈U, g〉. The
only difference between the two games is the following: Two G-sets G/U , G/V are
isomorphic if and only if U, V are conjugate, not necessarily equal.

Observe that when G is abelian, we get the game of the abelian group G and we
may use Theorem 3.7 to predict the game outcome. When G is Hamiltonian (i.e. every
subgroup is normal), we have the game of the group G. But for arbitrary G, these
games differ dramatically, because many more P-positions arise.

For example, D3 = S3, D5 and A4 are P. However, D4 and D6 are N . Let
us verify this for S3: If Player I starts with some 2-cycle (resp. 3-cycle), then Player
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II responds with any 3-cycle (resp. 2-cycle). Since a 2-cycle and a 3-cycle already
generate S3, Player II wins. The quaternion group Q is N as before because it is
Hamiltonian.

The subgroup structure of dihedral groups is quite easy and may be used to find
the game outcome:

Proposition 4.9. Let n ≥ 1. In the game of subgroups, the dihedral group Dn is P

if and only if n is a prime number.

Proof. Clearly, D1
∼= Z/2 is N and D2

∼= (Z/2)2 is P. Now let us assume n ≥ 3.
If r denotes the rotation and s denotes the reflection, the subgroups of Dn are the
following:

• Ud := 〈rd〉 for d | n
• Ud,i := 〈rd, ris〉 for d | n and 0 ≤ i < n

Now let us suppose first that n is a prime number. Then Player I can only make the
moves U1 = 〈r〉 or Un,i = 〈ris〉. In the first case, Player II answers with s; in the
second case he answers with r. In each case, Player II arrives at 〈r, s〉 = Dn and wins.

Now let n be not a prime number. Choose some prime factor p | n. The winning
move for Player I is Up = 〈rp〉: This is a normal subgroup, so that Player II continues
with the game of subgroups of Dn/Up

∼= Dp, which we already know is P.

Proposition 4.10. Let n ≥ 1. In the game of subgroups, the symmetric group Sn is
P if and only if n 6= 2.

Proof. We already know this for n ≤ 3. For n > 4 it is known that Sn is 3
2
-generated

[B70, IZ95], i.e. that for every 1 6= g ∈ Sn there is some h ∈ Sn with Sn = 〈g, h〉. It
is then automatic that h /∈ 〈g〉. In other words, for every move by Player I there is a
winning move for Player II, showing that Sn is P. Although S4 is not

3
2
-generated, it

is P as well: Every element of S4 is conjugated to one of the elements (1 2), (1 2 3),
(1 2 3 4), (1 2)(3 4), so that we may assume that Player I chooses one of them. In the
first three cases, Player II can immediately win by producing a generating set, namely
by choosing (1 2 3 4) in the first case, (1 4) in the second case, and (1 2) in the third
case. In the last case, Player II responds with (1 3)(2 4). This produces a normal
subgroup isomorphic to Z/2 ⊕ Z/2, whose quotient group is isomorphic to S3. Since
S3 is P, it follows that Player II makes the last move.

5 The game of commutative rings

5.1 Some examples of commutative rings

In this section we will study the game of commutative rings; therefore we will require
some basics of commutative ring theory [AM69]. The game starts with some commu-
tative ring R, and a move consists of choosing some element a ∈ R\{0} and replacing
R by R/〈a〉, where 〈a〉 denotes the principal ideal generated by a. We have already
observed that the ending condition holds precisely for Noetherian commutative rings
and that all non-trivial rings are normal N -positions, which is why we will concen-
trate on the misère play rule. The examples in this section are mainly motivated by
the modest goal to decide whether polynomial rings are N or P.
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Remark 5.1. We have already seen in Corollary 2.19 that if R is a P-position in the
game of commutative rings, then R cannot be written as a product of two non-trivial
rings.

Remark 5.2. The duality between commutative rings and affine schemes [GW10]
shows that the game of commutative rings is equivalent to a game of affine schemes:
The options of a Noetherian affine scheme are the closed subschemes which are cut out
by some single non-zero global section. The game ends with the empty scheme. This
viewpoint is quite useful to get some geometric intuition for the game, and we will use
it a couple of times. Corollary 2.19 says that every P-position is a connected affine
scheme. Since the dimension of a closed subscheme is less or equal, typically less than
the dimension of the whole scheme, in order to solve the game for higher-dimensional
schemes one first has to look at schemes of low dimensions such as 0 and 1. This is
what we will do next.

Example 5.3. The zero ring 0 is N . Fields are P, because 0 is the only option.

Example 5.4. Let R be a Noetherian commutative ring. If R has a principal maximal
ideal 6= 0, then R is N . The winning move is to quotient out the maximal ideal, which
yields a field.

This applies in particular to principal ideal rings (not necessarily domains) which
are no fields, such as Z, the polynomial ring K[X ] over a field K, and quotients thereof
such as Z/4.

It also shows, for example, that K[X, Y ]/〈XY 〉 and K[X, Y ]/〈XY − 1〉 are N .
The winning move is to quotient out X − 1 in each case. In the corresponding game
of affine schemes, this means that we intersect the union of the coordinate axes resp.
the standard hyperbola with the line X = 1, which results in a single simple point in
each case, which is therefore P. The following picture illustrates this.

Example 5.5. If p is a prime, then up to isomorphism there are four rings with
p2 elements (remember that rings are unital by definition), which are automatically
commutative, namely Fp2 , Z/p

2, Fp × Fp and Fp[X ]/〈X2〉 [F93]. By the previous
results, they are all N except of course for the field Fp2.

Let us continue with 1-dimensional examples. Recall from [AM69, Chapter 9]
that a Dedekind domain is an integrally closed Noetherian integral domain of Krull
dimension 1.

Proposition 5.6. Let R be a Dedekind domain. If R has some principal maximal
ideal, then R is N . Otherwise, R is P.

Proof. The first part has already been observed in Example 5.4. Now let us assume
that R has no principal maximal ideal. If 0 6= a ∈ R, then R/〈a〉 is N : We may
assume that a is not a unit. Then there is some maximal ideal I ⊆ R containing a. By
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[FT91, Section I.1, Corollary 2 to Theorem 4] there is some b ∈ I such that I = 〈a, b〉.
Since I is not principal, we have b /∈ 〈a〉. Hence, R/〈a, b〉 = R/I is a field which is an
option of R/〈a〉.

From this result and the basic theory of elliptic curves [K92] we can derive the first
2-dimensional example:

Proposition 5.7. Let K be an algebraically closed field. If f = 0 is any affine
Weierstrass equation in K[X, Y ], then K[X, Y ]/〈f〉 is P. Hence, K[X, Y ] is N .

Proof. Let E be the elliptic curve over K corresponding to f and let ∞ ∈ E be the
point at infinity. Let R = K[X, Y ]/〈f〉, so that E \ {∞} = Spec(R). Since E is a
smooth curve, R is a Noetherian, 1-dimensional integral domain whose localizations
at maximal ideals are discrete valuation domains. Hence, R is a Dedekind domain.
Moreover, it has no principal maximal ideal; this is a consequence of the Riemann-Roch
Theorem. Hence, R is P by Proposition 5.6.

Example 5.8. Explicit examples of affine Weierstrass equations include Y 2 = X3+1
if char(K) 6= 3 and Y 2 = X3 − X if char(K) 6= 2. Here is an example of a game
starting with K[X, Y ]. Player I wins.

K[X, Y ]
I
 K[X, Y ]/〈Y 2 −X3 − 1〉

II
 K[X, Y ]/〈Y 2 −X3 − 1, 3XY − 1〉

∼= K[X ]/〈X5 +X2 − 1
9
〉 ∼= K5 I

 K5/〈(1, 1, 1, 1, 0)〉 ∼= K
II
 0.

Geometrically, this game looks as follows. Obviously we did not draw the two non-real
points of intersection.

Actually, K[X, Y ] is N for every field K. We will give a much more elementary
proof which does not use any algebraic geometry later in Corollary 5.18.

5.2 Zero-dimensional rings

After having considered smooth curves, the next step is to consider an example
of a non-smooth curve such as the cuspidal cubic curve whose coordinate ring is
K[X, Y ]/〈Y 2−X3〉. We will show that it is P, giving another reason why K[X, Y ] is
N . However, we will need some results on zero-dimensional rings first, which appear
as intersections of the cuspidal curve with other curves through the origin.

Lemma 5.9. Let V be a finite-dimensional vector space over some field K. Then the
ring K ⊕ V with unit 1 ⊕ 0 and multiplication V · V = 0 is N if and only if dim(V )
is odd. Otherwise it is P.
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Proof. For V = 0 this is true. We make an induction on dim(V ). If dim(V ) is odd,
choose some 0 6= v ∈ V . The ideal generated by 0⊕ v equals 0⊕Kv, and the quotient
is K⊕V/Kv, which is P by the induction hypothesis. Now let us assume that dim(V )
is even and 0 6= a⊕ v ∈ K ⊕ V is some element. If a 6= 0, then a⊕ v is invertible with
(a⊕ v)−1 = a−1 ⊕−a−2v, so that the quotient is zero, which is N . Otherwise, a = 0
and the quotient is K ⊕ V/Kv, which is N by induction hypothesis.

Corollary 5.10. If K is a field, then K[X, Y ]/〈X2, XY, Y 2〉 is P.

Proof. This is the special case of Lemma 5.9 with dim(V ) = 2.

Lemma 5.11. Let K be a field and n ≥ 0 be any natural number. Then the ring
K[X, Y ]/〈Y 2 −X3, Xn+1, XnY 〉 is P.

Proof. Let us call this ring Bn. Then B0 = K and B1 = K[X, Y ]/〈Y 2, X2, XY 〉 are
P by Example 5.3 and Corollary 5.10. Now let n ≥ 2 and let us assume that the
claim holds for all natural numbers < n. Observe that 1, . . . , Xn, Y,XY, . . . , Xn−1Y
is a K-basis of Bn. Choose some non-zero element b ∈ B, we want to show that
Q := Bn/〈b〉 is N . Let us write

b = r0 + r1X + · · ·+ rnX
n + s1Y + · · ·+ snX

n−1Y

with elements ri, sj ∈ K which are not all zero. If r0 6= 0, then b is a unit and we are
done. Let r0 = 0. Choose some minimal 1 ≤ d ≤ n with ri = si = 0 for all 1 ≤ i < d.
Thus, we have

b = rdX
d + · · ·+ rnX

n + sdX
d−1Y + · · ·+ snX

n−1Y,

and one of rd, sd is non-zero. Consider the case d = n, so that b = rnX
n+snX

n−1Y . If
rn = 0, we have Q = K[X, Y ]/〈Y 2−X3, Xn+1, Xn−1Y 〉 and therefore Q/〈Xn〉 ∼= Bn−1,
which is P by the induction hypothesis. This proves that Q is N . If rn 6= 0, then
Xn−1Y 6= 0 holds in Q and we have Q/〈Xn−1Y 〉 ∼= Bn−1, which is P by the induction
hypothesis.

So let us assume d < n. In Bn we compute:

Xn−d−1b = rdX
n−1 + rd+1X

n + sdX
n−2Y + sd+1X

n−1Y

Xn−db = rdX
n + sdX

n−1Y

Xn−d−1Y b = rdX
n−1Y

Now we compute in the quotient Q, where b = 0. When rd 6= 0 in K, the third
equation shows Xn−1Y = 0 in Q, which in turn gives Xn = 0 by the second equation.
But then b lifts to an element b′ ∈ Bn−1 and we obtain Q ∼= Bn−1/〈b

′〉, which is N by
the induction hypothesis. When rd = 0, we have sd 6= 0, so that the second equation
gives Xn−1Y = 0, and the first equation reads as rd+1X

n + sdX
n−2Y = 0. We see

Xn−1 6= 0 in Q and Q/〈Xn−1〉 ∼= Bn−2, which is P by the induction hypothesis, so
that Q is N .

Corollary 5.12. Let K be a field and n ≥ 0. Then K[X, Y ]/〈Y 2 − X3, XnY 〉 and
K[X, Y ]/〈Y 2 −X3, Xn+1〉 are N . For example, K[X, Y ]/〈X3, Y 2〉 is N .

Proposition 5.13. Let K be an algebraically closed field. Then K[X, Y ]/〈Y 2 −X3〉
is P.
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Proof. Let R := K[X, Y ]/〈Y 2 − X3〉 and consider some 0 6= f ∈ R, represented by
some polynomial f ∈ K[X, Y ] \ 〈Y 2 −X3〉 of Y -degree ≤ 2. Our goal is to show that
R/〈f〉 is N . We assume first that f /∈ 〈X, Y 〉 and write

f = a0 + a1X + a2X
2 + · · ·+ b0Y + b1XY + b2X

2Y + · · ·

with a0 6= 0. We claim that X is invertible in R/〈f〉. This is clear if b0 = 0. Otherwise,
let g be the same polynomial as f , but with a0 replaced by −a0. In R/〈f〉 we have
0 = fg and in that product the Y has disappeared, but the constant term is still 6= 0.
Thus, we may repeat the argument.

Since X is invertible in R/〈f〉, there is an isomorphism R/〈f〉 ∼= (RX)/〈f〉, where
RX denotes the localization at the element X . The normalization map π : R → K[T ]
defined by X 7→ T 2 and Y 7→ T 3 becomes an isomorphism when localized at X , so
that R/〈f〉 ∼= K[T ]T/〈π(f)〉 = K[T ]/〈π(f)〉 and π(f) is some polynomial of degree
≥ 2. Now apply Example 5.4 to conclude that R/〈f〉 is N .

Now let us assume f ∈ 〈X, Y 〉. The intersection V (f) ∩ V (Y 2 − X3) ⊆ A
2
K is

zero-dimensional. Thus, R/〈f〉 is a direct product of local Artinian rings. In order to
show that it is N , we may even assume that it is local by Corollary 2.19. This means
that there is a unique α ∈ K such that π(f)(α) = f(α2, α3) = 0. Since f(0, 0) = 0
it follows π(f) = aT d for some d ≥ 2 and some a ∈ K×, which means f = aXnY or
f = aXn+1 for some n ≥ 0. Now the claim follows from Corollary 5.12.

Remark 5.14. With the same method of the proof of Lemma 5.11 one can prove that
for every n ≥ 1 the ringK[X, Y ]/〈Xn, XY, Y n〉 is P. In particular, K[X, Y ]/〈Xn, Y n〉
and K[X, Y ]/〈Xn, XY, Y m〉 are N for n,m ≥ 2 and n 6= m. This is yet another
instance of the theme that “squares” are P.

5.3 Polynomial rings

In this subsection we will find the game outcome of K[X, Y ], where K is any field. It
is useful to generalize this to R[X ], where R is any principal ideal domain which is not
a field. As in the previous subsection, we will have to study some zero-dimensional
rings first.

Proposition 5.15. Let R be a principal ideal domain and p ∈ R be a prime ele-
ment. Then, for every n ≥ 1, the ring R/pn[X ]/〈X2, pn−1X〉 is P. In particular,
R/pn[X ]/〈X2〉 and R[X ]/〈X2, pn−1X〉 are N .

Proof. Since R/pn ∼= R〈p〉/p
n, where R〈p〉 denotes the localization at the prime ideal

〈p〉, we may assume that p is the only prime element of R up to units. We make an
induction on n. For n = 1 the ring R/pn[X ]/〈X2, pn−1X〉 is the field R/p, which is
P. Now let us assume that n ≥ 2 and that the claim has been proven for all positive
natural numbers < n. Let u ∈ R/pn[X ]/〈X2, pn−1X〉 be an arbitrary non-zero element,
say u = a+ bX with a, b ∈ R. We have to show that Q := R/pn[X ]/〈X2, pn−1X, u〉 is
N . This is trivial when u is a unit, so let us assume the opposite, i.e. that a is not a
unit.

If b = 0, then u is associated to pd for some 1 ≤ d < n, and Q = R/pd[X ]/〈X2〉
is N because pd−1X 6= 0 in Q and Q/〈pd−1X〉 is P by the induction hypothesis.
So let us assume b 6= 0. If a = 0, then u is associated to pkX for some unique
0 ≤ k < n − 1, and Q = R/pn[X ]/〈X2, pkX〉 is N , since 0 6= pk+1 in Q and by the
induction hypothesis Q/pk+1 ∼= R/pk+1[X ]/〈X2, pkX〉 is P. So let us assume a 6= 0.
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Let d := vp(a) and k := vp(b), where vp denotes the multiplicity of p. Then we may
assume 1 ≤ d < n and 0 ≤ k < n− 1.

Assume that a divides b, i.e. d ≤ k. In Q we compute 0 = (a + bX)X = aX ,
hence bX = 0. Therefore, the relation u = 0 simplifies to a = 0. It follows that
Q = R/pd[X ]/〈X2〉, which is again N by induction hypothesis. Now let us assume
d > k. In Q we have pn−k−1bX = 0 and therefore 0 = pn−k−1u = pn−k−1a. Hence, we
have 0 = pn−k+d−1, but no smaller power of p vanishes in Q. In particular pk+1 6= 0,
because 2(k + 1) < n + d implies k + 1 < n− k + d − 1. Therefore we are allowed to
move to Q/〈pk+1〉 ∼= R/pk+1[X ]/〈X2, pkX〉, which is P by the induction hypothesis.
Hence, Q is N .

Proposition 5.16. Let R be a principal ideal domain, which is not a field. Then
R[X ]/〈X2〉 is P. Hence, R[X ] is N .

Proof. Let u ∈ R[X ]/〈X2〉 be some non-zero element, say u = a+bX for a, b ∈ R. We
have to show that Q := R[X ]/〈X2, u〉 is N . This is trivial when u is a unit, so let us
assume the opposite, i.e. that a is not a unit. If b = 0, then Q = R/a[X ]/〈X2〉. If a is
a prime power up to a unit, Q is N because of Proposition 5.15. If not, the Chinese
Remainder Theorem implies that Q is a non-trivial product of non-trivial rings and
therefore also N by Corollary 2.20. So let us assume b 6= 0. If a = 0, then we choose
some prime p and we write b = pnc for some p ∤ c and n ≥ 0. Then c is invertible
modulo pn+1. It follows Q/〈pn+1〉 = R/pn+1[X ]/〈X2, pnX〉, which is P according to
Proposition 5.15. Hence, Q is N .

Now let us assume a, b 6= 0. If there is some prime p with vp(a) > vp(b) =: n, then
a similar argument as above shows that Q/〈pn+1〉 = R/pn+1[X ]/〈X2, pnX〉 is P, so
that Q is N . Now let us assume vp(a) ≤ vp(b) for all primes p, i.e. that a divides b. In
Q we compute 0 = (a+ bX)X = aX , hence 0 = bX , and the relation u = 0 simplifies
to a = 0. Hence, Q ∼= R/a[X ]/〈X2〉 is N by what we have already seen before.

Example 5.17. Here is an example for the game of commutative rings starting with
Z[X ]. The first player wins. He chooses the moves resulting from the proofs above.

Z[X ]
I
 Z[X ]/〈X2〉

II
 Z[X ]/〈X2, 36〉

I
 Z[X ]/〈X2, 36, 18X − 8〉

∼= Z/4[X ]/〈X2, 2X〉
II
 Z/4[X ]/〈X2, 2X,X + 2〉 ∼= Z/4

I
 Z/2

II
 0

Corollary 5.18. Let K be a field. Then the polynomial ring K[X, Y ] is N .

Proof. This follows from Proposition 5.16 applied to R = K[Y ].

We conjecture that also K[X, Y, Z], in fact all polynomial rings K[X1, . . . , Xn] for
n ≥ 1 are N , because it seems very unlikely that K[X, Y, Z]/〈f〉 is N for all non-zero
polynomials f . But the computational effort to check this even for a single candidate
f seems to be huge, because there will be far more “layers” of backward induction than
in the proofs for K[X, Y ]/〈Y 2 −X3〉 and K[X, Y ]/〈X2〉. Geometrically, this amounts
to the complexity of intersections of surfaces as compared to curves.

5.4 Computation of some nimbers

Considered separately the game outcome of a Noetherian commutative ring R might
be regarded as of minor importance. The proofs of these statements in the previous
subsections are more interesting, since they indicate how R is built up from smaller
quotients. The real point of interest is the nimber of R, because it is a much finer
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ordinal invariant and it gives a complete description of the game. Also, it is necessary
to know the nimber of a game, not just its outcome, when it is part of a sum of games.
According to the general definition of the nimber of a combinatorial game (Remark
2.3), the nimber α(R) of a Noetherian commutative ring R is recursively defined by

α(R) = mex{α(R/〈a〉) : 0 6= a ∈ R}.

Unfortunately, the computation of nimbers is much more complicated as we have
already seen for abelian groups in Section 3.3, because it requires the computation of
all options and their nimbers. In contrast, in order to show that some Noetherian
commutative ring is N we just have to find one option which is P. This explains
why the results in this subsection are restricted to rather elementary examples. We
do not know the nimber of K[X, Y ], but we conjecture that it is quite large. We also
conjecture that every ordinal number arises as the nimber of a Noetherian commutative
ring.

Example 5.19. We have α(0) = 0. If R is a field, then α(R) = 1. Since the trivial
ring 0 is the only normal P-position, we have α(R) > 0 for all R 6= 0.

Remark 5.20. One can show by induction that R is a misère P-position if and only
if α(R) = 1. This is a general feature of games for which every non-terminal position
has a move to a terminal position.

Example 5.21. If R is a principal ideal domain and 0 6= r ∈ R, then we have
α(R/〈r〉) =

∑
p|r vp(r) =: Ω(r), where p runs through all prime elements of R up to

units and vp(r) denotes the multiplicity of p in r. The proof is analogous to Lemma
3.15. In particular, α(R/pn) = n holds for all n ≥ 0.

Example 5.22. From the previous example one may deduce that α(R) = ω where R
is a principal ideal domain which is not a field. For example, we have α(Z) = ω.

Example 5.23. The game of a product of commutative rings R1 × · · · × Rn is the
selective compound of the games of the commutative rings R1, . . . , Rn (Example 2.19).
This makes it rather easy in specific examples to determine the nimber of a product.
For example, if R, S are two principal ideal domains and 0 6= r ∈ R, 0 6= s ∈ S, then
an induction shows that α(R/〈r〉 × S/〈s〉) = Ω(r) + Ω(s). From this and another
induction we obtain α(R × S/〈s〉) = ω + Ω(s) at least if R is not a field. If also
S is not a field, we may further deduce α(R × S) = ω + ω. For example, we have
α(Z× Z) = ω + ω.

However, it is not always true that α(R × S) = α(R) + α(S). In fact, in general
there is no formula which computes α(R × S) from α(R) and α(S). Consider the
following example: Let K be a field and R := K[X, Y ]/〈X2, XY, Y 2〉. Then we have
α(R) = α(K) = 1 (Corollary 5.10), but one can verify α(K×K) = 2 and α(R×K) = 4.
Actually this example coincides with the one in Remark 3.19.
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