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Abstract In the network design game with n players, every player chooses a path in
an edge-weighted graph to connect her pair of terminals, sharing costs of the edges
on her path with all other players fairly. It has been shown that the price of stability
of any network design game is at most Hn , the n-th harmonic number. This bound is
tight for directed graphs.
For undirected graphs, it has only recently been shown that the price of stability is

at most Hn

(
1 − 1

�(n4)

)
, while the worst-case known example has price of stability

around 2.25. We improve the upper bound considerably by showing that the price of
stability is at most Hn/2 + ε for any ε starting from some suitable n ≥ n(ε).
We also study qualitymeasures of different solution concepts for themulticast network
design game on a ring topology. We recall from the literature a lower bound of 4

3 and
prove a matching upper bound for the price of stability. Therefore, we answer an open
question posed by Fanelli et al. (Theor Comput Sci 562:90–100, 2015). We prove an
upper bound of 2 for the ratio of the costs of a potential optimizer and of an optimum,
provide a construction of a lower bound, and give a computer-assisted argument that it
reaches 2 for any precision. We then turn our attention to players arriving one by one
and playing myopically their best response. We provide matching lower and upper
bounds of 2 for the myopic sequential price of anarchy (achieved for a worst-case
order of the arrival of the players). We then initiate the study of myopic sequential
price of stability and for the multicast game on the ring we construct a lower bound
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1114 A. Mamageishvili et al.

of 4
3 , and provide an upper bound of

26
19 . To the end, we conjecture and argue that the

right answer is 4
3 .

Keywords Network design game · Nash equilibrium · Price of stability · Ring
topology · Potential-optimum price of stability/anarchy

1 Introduction

Network design game was introduced by Anshelevich et al. (2004) together with the
notion of price of stability (PoS), as a formal model to study and quantify the strategic
behavior of non-cooperative agents in designing communication networks. Network
design game with n players is given by an edge-weighted graph G (where n does not
stand for the number of vertices), and by a collection of n terminal (source-target)
pairs {si , ti }, i = 1, . . . , n. In this game, every player i connects its terminals si and
ti by an si–ti path Pi , and pays for each edge e on the path a fair share of its cost (i.e.,
all players using the edge pay the same amount totalling to the cost of the edge). A
Nash equilibrium of the game is an outcome (P1, . . . , Pn) in which no player i can
pay less by changing Pi to a different path P ′

i .
Nash equilibria of the network design game can be quite different from an optimal

outcome that could be created by a central authority. To quantify the difference in
quality of equilibria and optima, one compares the total cost of a Nash equilibrium to
the cost of an optimum (with respect to the total cost). Taking the worst-case approach,
one arrives at the price of anarchy, which is the ratio of the maximum cost of any Nash
equilibrium to the cost of an optimum. The price of anarchy of network design games
can be as high as n (but not higher) (Anshelevich et al. 2004). Taking the slightly less
pessimistic approach leads to the notion of the price of stability, which is the ratio of
the smallest cost of any Nash equilibrium to the cost of an optimum. The motivation
behind this is that often a central authority exists, but cannot force the players into
actions they do not like. Instead, a central authority can suggest to the players actions
that correspond to a best Nash equilibria. Then, no player wants to deviate from the
action suggested to her, and the overall cost of the outcome can be lowered (when
compared to the worst case Nash equilibria).

Network design games belong to the broader class of congestion games, introduced
in Rosenthal (1973), for which a function (called a potential function) �(P1, . . . , Pn)
exists, with the property that�(P1 . . . , Pi , . . . , Pn)−�(P1, . . . , P ′

i , . . . , Pn) exactly
reflects the changes of the cost of any player i switching from Pi to P ′

i . This property
implies that a collection of paths (P1, . . . , Pn) minimizing � necessarily needs to be
a Nash equilibrium. Up to an additive constant, every congestion game has a unique
potential function of a concrete form, which can be used to show that the price of
stability of any network design game is at most Hn := ∑n

i=1
1
i , the n-th harmonic

number, and this is tight for directed graphs (i.e., there is a network design game for
which the price of stability is arbitrarily close to Hn) (Anshelevich et al. 2004).

For undirected graphs, the situation is dramatically different, obtaining tight bounds
on the price of stability for undirected graphs turned out to be much more difficult.
The worst case known example is an involved construction of a game by Bilò et al.
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Improved bounds on equilibria solutions in the network design game 1115

(2013) achieving in the limit the price of stability of around 2.25. While the general
upper bound of Hn applies also for undirected graphs, it has not been known for a
long time whether it can be any lower, until the recent work of Disser et al. (2015)
who showed that the price of stability of any network design game with n players is at

most Hn ·
(
1 − 1

�(n4)

)
. Improved upper bounds have been obtained for special cases.

For the case where all terminals ti are the same, Jian (2009) showed that the price of

stability is at most O
(

log n
log log n

)
(note that Hn is approximately ln n). If, additionally,

every vertex of the graph is a source of a player, a series of papers by Fiat et al. (2006),
Lee and Ligett (2013), and Bilò et al. (2014) showed that the price of stability is in this
case at most O(log log n), O(log log log n), and O(1), respectively. Note that, in this
special case optimum solution is a minimum spanning tree and different techniques
were developed for this particular structure.

Fanelli et al. (2015) restrict the graphs to be rings, and prove that the price of
stability is at most 3/2.

Further special cases concern the number of players. Interestingly, tight bounds on
price of stability are known only for n = 2 (we do not consider the case n = 1 as a
game) (Anshelevich et al. 2004; Christodoulou et al. 2009), while for already 3 players
there are no tight bounds; for the most recent results for the case n = 3, see Disser
et al. (2015) and Bilò and Bove (2011).

All obtained upper bounds on the price of stability use the potential function
in one way or another. Our result is not an exception in that aspect. Bound-
ing the price of stability translates effectively into bounding the cost of a best
Nash equilibrium. A common approach is to bound this cost by the cost of the
potential function minimizer (P�

1 , . . . , P�
n ) := argmin(P1,...,Pn) �(P1, . . . , Pn),

which is (as we argued above) also a Nash equilibrium. Using just the inequality
�(P�

1 , . . . , P�
n ) ≤ �(PO

1 , . . . , PO
n ), where (PO

1 , . . . , PO
n ) is an optimal outcome

(minimizing the total cost of having all pairs of terminals connected), one obtains
the original upper bound Hn on the price of stability (Anshelevich et al. 2004). In
Disser et al. (2015) and Christodoulou et al. (2009) authors consider other inequal-
ities obtained from the property that potential optimizer is also a Nash equilibrium
to obtain improved upper bounds. In this paper, we consider n different specifically
chosen strategy profiles (Pi

1 , . . . , P
i
n), i = 1, . . . , n, in which players use only edges

of the optimum (PO
1 , . . . , PO

n ) and of the Nash equilibrium (P�
1 , . . . , P�

n ). This
idea is a generalization of the approach used by Bilò and Bove (2011) to prove an
upper bound of 286/175 ≈ 1.634 for Shapley network design games with 3 players.
Clearly, the potential of each of the considered strategy profile is at least the potential
of (P�

1 , . . . , P�
n ). Summing all these n inequalities and combining it with the original

inequality �(P�
1 , . . . , P�

n ) ≤ �(PO
1 , . . . , PO

n ) gives an asymptotic upper bound of
Hn/2 + ε on the price of stability. Our result thus shows that the price of stability is
strictly lower than Hn by an additive constant (namely, by log 2).

Albeit the idea is simple, the analysis is not. The main difficulty is to overcome
situations where socially optimum solution has an arbitrary structure. This has not
been done before up to our knowledge. The analysis involves carefully chosen strategy
profiles for various possible topologies of the optimum solution. These considerations
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1116 A. Mamageishvili et al.

can be of independent interest in further attempts to improve the bounds on the price
of stability of network design games.

Additionally, equilibria minimizing potential function are regarded as stable
(against noise) by Asadpour and Saberi (2009) and Alós-Ferrer and Netzer (2010),
and accordingly, some authors studied the price of stability restricted to these kind
of equilibria (Kawase and Makino 2013), the so-called potential-optimum price of
stability.

As already mentioned above, one of the main motivations to study best Nash equi-
libria is that they can be regarded as outcomes of the game if a little coordination is
present—an authority that suggests the players the strategies Pi . Then, players have no
incentive to unilaterally deviate from the suggested strategy profile. It is questionable
whether such an authority exists—it would need to be very strong, both computa-
tionally and imperatively. To address this applicability issue of equilibrium concepts,
sequential versions of the game were studied: the players arrive one by one, and upon
arrival, player i chooses myopically the best path Pi as if this was the end of the game
(i.e., no further players would arrive). Chekuri et al. (2006) show that the total cost
achieved by a worst-case permutation of the arriving players is at most O(

√
n log n)

times the optimum cost. Subsequently, Charikar et al. (2008) improved this bound to
O(log2 n) [the original version (Charikar et al. 2008) is erroneous, but the authors
provide corrected arguments upon request]. The worst-case approach to the order in
which the players arrive naturally models the complete lack of coordination. In this
paper, we suggest to study also the best-case order in which players arrive. This is
motivated by the presence of an authority that can control the access to the resources
over time (and thus decide an order of the arriving players). Such an authority is
arguably weaker than the one mentioned above, as it does not impose any decision
upon the players, and it leaves them to decide their strategies freely upon arriving.
Bilò et al. (2010) studied a version of a cost sharing scheme for multicast network
design game, in which each player only knows strategies of some other players, and
pays fair share of edge costs that she uses based only on her information. Sequential
versions described above can be modeled with this cost sharing scheme.

In the second part of the paper, we focus on one specific network topology: the ring.
This is a fundamental topology in networking and communications. It is the edge-
minimal topology that is resistant against a single link fault. From the decentralized
point of view, call control comes close in spirit to network design games, in that the
connecting si–ti paths needs to be chosen to obey given capacities on the links (Adamy
et al. 2007). The study of approximation algorithms is the counterpart to bounding
the prices of anarchy and stability. Rings have also been intensively studied in the
distributed setting, e.g., among plenty of others, in the context of the fundamental
leader election problem (Attiya et al. 1988). In the second part of the paper we restrict
ourselves to the multicast version in which all players share the same target vertex
t = ti , i = 0, . . . , n − 1 and answer the open question asked by Fanelli et al. (2015)
about tight bounds of the price of stability for multicast game on a ring. We study
various solutions concepts and analyze their quality compared to an optimum network
(with respect to the social cost). In most cases, we are able to provide tight bounds.
Furthermore, we also study themyopic sequential price of stability in generalmulticast
network design games, and give a simpler proof of an upper bound of 4 for this class
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Improved bounds on equilibria solutions in the network design game 1117

of games compared to a more general proof in Bilò et al. (2010) (cf. this with the upper
bound of log2 n on the myopic sequential price of anarchy for multicast games).

2 Preliminaries

Shapley network design game is a strategic game of n players played on an edge-
weighted graph G = (V, E) with non-negative edge costs ce, e ∈ E . Each player
i , i = 1, . . . , n, has a source node si and a target node ti . All si–ti paths form
the set Pi of the strategies of player i . A vector P = (P1, . . . , Pn) ∈ P1 × · · · ×
Pn is called a strategy profile. Let E(P) := ⋃n

i=1 Pi be the set of all edges used
in P . The cost of player i in a strategy profile P is costi (P) = ∑

e∈Pi ce/ke(P),
where ke(P) = ∣∣{ j |e ∈ Pj }

∣∣ is the number of players using edge e in P . A strategy
profile N = (N1, . . . , Nn) is a Nash equilibrium if no player i can unilaterally switch
from her strategy Ni to a different strategy N ′

i ∈ Pi and decrease her cost, i.e.,
costi (N ) ≤ costi (N1, . . . , N ′

i , . . . , Nn) for every N ′
i ∈ Pi .

Shapley network design games are exact potential games. That is, there is a so called
potential function� : P1×· · ·×Pn → R such that, for every strategy profile P , every
player i , and every alternative strategy P ′

i , costi (P) − costi (P1, . . . , P ′
i , . . . , Pn) =

�(P) − �(P1, . . . , P ′
i , . . . , Pn). Up to an additive constant, the potential function is

unique (Monderer and Shapley 1996), and is defined as

�(P) =
∑

e∈E(P)

ke(P)∑
i=1

ce/ i =
∑

e∈E(P)

Hke(P) ce.

To simplify the notation (e.g., to avoid writing H	n/2
), we extend Hk also for non-

integer values of k by setting H(k) := ∫ 1
0

1−xk
1−x dx , which is an increasing function,

and which agrees with the (original) k-th harmonic number whenever k is an integer.
The social cost of a strategy profile P is defined as the sum of the player costs:

cost(P) = ∑n
i=1 costi (P) = ∑n

i=1
∑

e∈Pi ce/ke(P) = ∑
e∈E(P) ke(P) ce/ke(P) =∑

e∈E(P) ce. A strategy profile O(G) that minimizes the social cost of a game G is
called a social optimum. Observe that the edge set of a social optimum O(G) induces
a forest (if there is a cycle, we could remove one of its edges without increasing the
social cost). LetN (G) be the set of Nash equilibria of a game G. The price of stability
of a game G is the ratio PoS(G) = minN∈N (G) cost(N )/cost(O(G)).

Let M(G) be the set of Nash equilibria that are also global minimizers of the
potential function � of the game. The potential-optimal price of anarchy of a
game G, introduced by Kawase and Makino (2013), is defined as POPoA(G) =
maxN∈M(G) cost(N )/cost (O(G)). Properties of potential optimizers were earlier
observed and exploited by Asadpour and Saberi (2009) for other games.

Since M(G) ⊂ N (G), it follows that PoS(G) ≤ POPoA(G). Let G(n) be the set
of all Shapley network design games with n players. The price of stability of Shap-
ley network design games is defined as PoS(n) = supG∈G(n) PoS(G). The quantity
POPoA(n) is defined analogously, and we get that PoS(n) ≤ POPoA(n).
In the multicast game all ti ’s are the same and we denote it by t .
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1118 A. Mamageishvili et al.

Fig. 1 Multicast game on rings
t

0

1

n-1

n-2

i

i+1i-1

a0

a1

ai ai+1

an

an−1

left path right path

Observe also that in a multicast game an optimum network forms a Steiner tree on
the terminals si and t . If an underlying graph G is a ring, then there are only 2 possible
strategies for each player.

In the second part of the paper, we focus on the multicast game on rings. We can
assume, without loss of generality, that every node but the target t is a source of exactly
one player. Otherwise, we can modify the topology by the following two operations.
If there are l > 1 players sharing the same node x of the ring as a source vertex, we
make l copies of this vertex, add l − 1 consecutive edges of cost 0 between them to
make a path of length l − 1, replace x in the ring with this path in a natural way,
and associate each vertex with a unique source (copy of x). If there is a node x in
the ring which is not a target nor a source of any player, we delete x from the ring,
and connect its two neighbors by an edge of cost ce + ce′ , where e, e′ are the two
adjacent edges of x . A repetitive application of these two operations preserves the
cost of the optimum and Nash equilibrium strategy profiles, and also preserves the
equilibrium properties of strategy profiles (if the strategies are expressed in the form
“go clockwise/counterclockwise to si”).

We label the sources (players) and the edges connecting them in a counter-clockwise
order as in Fig. 1, where ai denotes the cost of the i-th edge. Player i has exactly 2
strategies, one is to go left, i.e., clockwise, taking edges i, i − 1, . . . 0, or to go right,
i.e., counterclockwise, taking edges i + 1, . . . n. Note that here players (source nodes)
are 0-indexed unlike in the general setting. Observe that the optimum strategy profile
is the one which uses all edges except the most expensive edge. Let o denote the most
expensive edge. Then the (social) cost of an optimum network is

∑
i �=o ai .

The myopic sequential price of anarchy/stability is the worst-case/best-case ratio
of the costs of a strategy profile that can be obtained by ordering the players as in
a permutation π and letting player π(i) choose the best-response pπ(i) in the game
induced by the first i players π(1), π(2), . . . , π(i) and of an optimum profile.
Note on related concepts. The term sequential price of anarchy has been used (Leme
et al. 2012; Angelucci et al. 2015) to express a different, yet still closely related,
concept compared to the notion of the myopic sequential price of anarchy/stability. In
the sequential price of anarchy, players also come one by one, and decide their strategy
upon arrival, but the stability of the outcome is measured in terms of subgame perfect
equilibria. In some sense, the game resembles extensive games. Observe that profiles
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Improved bounds on equilibria solutions in the network design game 1119

p that get compared to optima in the myopic sequential price of anarchy/stability are
in general no Nash equilibria.

3 The ≈ Hn/2 upper bound

The main result of the paper is the new upper bound on the price of stability, as stated
in the following theorem.

Theorem 3.1 PoS(n) ≤ Hn/2+ε, for any ε > 0 given that n ≥ n(ε) for some suitable
n(ε).

Weconsider aNash equilibrium N thatminimizes the potential function�. For each
player i we construct a strategy profile Si as follows. Every player j �= i , whenever
possible (the terminals of players i and j lie in the same connected component of
the optimum O), uses edges of E(O(G)) to reach si , from there it uses the Nash
equilibrium strategy (a path) of player i to reach ti , and from there it again uses edges
of E(O(G)) to reach the player j’s other terminal node. From the definition of N , we
then obtain the inequality �(N ) ≤ �(Si ). We then combine these n inequalities in a
particular way with the inequality �(N ) ≤ �(O(G)), and obtain the claimed upper
bound on the cost of N .

The proof of Theorem 3.1 is structured in the following way. We first prove the
theorem for the special case where an optimum O(G) contains an edge that is used
by every player. We then extend the proof of this special case, first to the case where
E(O(G)) is a tree, but with no edge used by every player, and, second, to the case
where E(O(G)) is a general forest (i.e., not one connected component).

We will use the following notation. For a strategy profile P = (P1, . . . , Pn) and a
setU ⊂ {1, . . . , n}, we denote by PU the set of edges e ∈ E for which { j |e ∈ Pj } = U
and by Pl the set of edges e ∈ E for which |{ j |e ∈ Pj }| = l. That is, PU is the set
of edges used in P by exactly the players U , and Pl = ⋃

U⊂{1,...,n}
|U |=l

PU is the set

of edges used by exactly l many players. Then the edges used by player i in P are⋃
U⊂{1,...,n}

i∈U
PU . We stress that for every player i ∈ U , the edges of PU are part of the

strategy Pi ; this implies that, whenever E(P) induces a forest, the source si and the
target ti are in two different connected components of E(P)\PU . For any set of edges
F ⊂ E , let |F | := ∑

e∈F ce. We then have, for instance, that the cost of player i in P

is given by costi (P) = ∑
U⊂{1,...,n}

i∈U
|PU |
|U | .

From now on, G is an arbitrary Shapley network design game with n players,
N = (N1, . . . , Nn) is a Nash equilibrium minimizing the potential function and
O = (O1, . . . , On) is an arbitrary social optimum so that E(O) has no cycles.

3.1 Case On is not empty

In this section we assume that On is not empty. In this case, E(O) is actually a tree.
Then, E(O)\On is formed by two disconnected trees, which we call O− and O+,
such that each player has the source node in one tree and the target node in the other
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1120 A. Mamageishvili et al.

On

si

tj

sj ti

ui,j vi,jO− O+

Fig. 2 The non dashed lines are the edges of E(O), the dashed line is the Nash strategy Ni . The path Sij
from s j to t j is given by the thicker dashed and non dashed lines

tree (see also Fig. 2). Without loss of generality, assume that all source nodes si are
in O−. Given two players i and j , let ui, j be the first1 edge of Oi ∩ Oj and vi, j be
the last edge of Oi ∩ Oj . Notice that every edge between si and ui, j is used in O by
player i but not by player j . That is, each edge e between si and ui, j satisfies e ∈ Oi

and e /∈ Oj , or equivalently, e ∈ ⋃
U⊂{1,...,n}
i∈U, j /∈U

OU . An analogous statement holds for

each edge e between ti and vi, j .
For every player i , we define a strategy profile Si , where player j = 1, . . . , n uses

the following s j–t j path Sij (see Fig. 2 for an example):

1. From s j to ui, j , it uses edges of O−.
2. From ui, j to si , it uses edges of O−.
3. From si to ti , it uses edges of Ni .
4. From ti to vi, j , it uses edges of O+.
5. From vi, j to t j , it uses edges of O+.
If Sij contains cycles, we skip them to obtain a simple path from s j to t j . This can

be the case if Ni is not disjoint from E(O), so that an edge appears both in step 3 and
in one of the steps 1, 2, 4 or 5. Observe that the path Sij uses exactly the edges of OU

for i ∈ U, j /∈ U (in steps 2 and 4), the edges of OU for i /∈ U, j ∈ U (in steps 1 and
5) and the edges of NU for i ∈ U (in step 3). We now can prove the following lemma.

Lemma 3.2 For every i ∈ {1, . . . , n},

�(N ) ≤ �(Si ) ≤
∑

U⊂{1,...,n}
i∈U

Hn|NU | +
∑

U⊂{1,...,n}
i∈U

Hn−|U ||OU | +
∑

U⊂{1,...,n}
i /∈U

H|U ||OU |.

(1)

Proof The first inequality of (1) holds because, by assumption, N is a global minimum
of the potential function �.

To prove the second inequality, recall that for any strategy profile P we can write
�(P) = ∑

e∈P Hke(P)ce = ∑
U⊂{1,...,n} H|U ||PU |. In our case, every edge e ∈ Si

belongs either to NU , U ⊂ {1, . . . , n}, i ∈ U , or to OU , and we therefore sum only

1 The edges are ordered naturally along the path from si to ti .
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Improved bounds on equilibria solutions in the network design game 1121

over these terms. We now show that, in our sum, the cost ce of every edge e in Si is
accounted for with at least coefficient Hke(Si ).

For the first sum in the right hand side of (1), obviously at most n players can use
an edge of NU , i ∈ U , i.e., ke(Si ) ≤ n. To explain the second and third sums, notice
that if an edge e ∈ OU that is present in Si also belongs to Ni , its cost is already
accounted for in the first sum. So, we just have to look at edges that are only present
in steps 1, 2, 4 and 5 of the definition of Sij .

To explain the second sum, let i ∈ U . Then, as we already noted, in the definition
of Sij , player j uses edges of OU with i ∈ U only if j /∈ U (in steps 2 and 4). Since
there are exactly n − |U | players that satisfy j /∈ U , this explains the second sum.

Finally, to explain the third sum, let i /∈ U . Similarly to the previous argument, in
the definition of Sij , player j uses edges of OU with i /∈ U only if j ∈ U (in steps 1
and 5). Since there are exactly |U | players that satisfy j ∈ U , this explains the third
sum. ��

We now show how to combine Lemma 3.2 with the inequality �(N ) ≤ �(O) to
prove Theorem 3.1, whenever On �= ∅.

Lemma 3.3 Suppose that inequality (1) holds for every i . Then, for x = n−Hn
Hn−1 ,

PoS(G) ≤ n + x

n + x − Hn
Hn+x

2
≤ Hn/2 + ε

holds for any ε > 0, given that n ≥ n(ε) for some suitable n(ε).

Proof We sum (1) for i = 1, . . . , n to obtain

n�(N ) ≤
n∑

i=1

⎛
⎜⎜⎝

∑
U⊂{1,...,n}

i∈U

Hn|NU | +
∑

U⊂{1,...,n}
i∈U

Hn−|U ||OU | +
∑

U⊂{1,...,n}
i /∈U

H|U ||OU |

⎞
⎟⎟⎠

=
∑

U⊂{1,...,n}
|U |Hn|NU | +

∑
U⊂{1,...,n}

|U |Hn−|U ||OU |

+
∑

U⊂{1,...,n}
(n − |U |)H|U ||OU | =

n∑
l=1

lHn|Nl |

+
n∑

l=1

(lHn−l + (n − l)Hl)|Ol |.

Since �(N ) = ∑n
l=1 Hl |Nl |, by putting all terms relating to N on the left hand side

we obtain
n∑

l=1

(nHl − lHn)|Nl | ≤
n∑

l=1

(lHn−l + (n − l)Hl)|Ol |. (2)
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On the other hand, we have �(N ) ≤ �(O), which we can write as

n∑
l=1

Hl |Nl | ≤
n∑

l=1

Hl |Ol |. (3)

If we multiply (3) by x = n−Hn
Hn−1 and sum it with (2) we get

n∑
l=1

((n + x)Hl − lHn)|Nl | ≤
n∑

l=1

(lHn−l + ((n + x) − l)Hl)|Ol |. (4)

Let α(l) = (n + x)Hl − lHn and β(l) = lHn−l + ((n + x) − l)Hl . We will show that
minl∈{1,...,n} α(l) = n + x − Hn and that maxl∈{1,...,n} β(l) ≤ (n + x)Hn+x

2
. This will

allow us to bound the left and right hand side of (4), giving us the desired bound on
the price of stability.

To prove minl∈{1,...,n} α(l) = n + x − Hn , we observe that α(l) first increases and
then decreases and that α(1) = α(n). By the choice of x the values at the two extremes
coincide, the minimum is α(1) = n + x − Hn by inserting 1 in the formula of α(l).

To provemaxl∈{1,...,n} β(l) ≤ (n+x)Hn+x
2
,wefirst show that θ(l) = lHn−l+(n−l)Hl

has maximum nHn/2. Since θ is symmetric around n/2, we just have to show that the
difference θ(l+1)−θ(l) is always positive for l+1 ≤ n/2. This proves that θ reaches
at l = n/2 the maximum value of n

2Hn/2 + n
2Hn/2 = nHn/2. We have that

θ(l + 1) − θ(l) = (l + 1)Hn−(l+1) + (n − (l + 1))Hl+1 − (lHn−l + (n − l)Hl)

= lHn−l + Hn−l − l + 1

n − (l + 1)
+ (n − l)Hl − Hl + n − (l + 1)

l + 1

− lHn−l − (n − l)Hl = n − (l + 1)

l + 1
− l + 1

n − (l + 1)
+ Hn−l − Hl .

The term n−(l+1)
l+1 − l+1

n−(l+1) is positive if n − (l + 1) ≥ l + 1, that is if l + 1 ≤ n/2.
Since H is an increasing function, Hn−l − Hl is positive if l ≤ n/2, in particular if
l + 1 ≤ n/2. This proves our claim that θ(l) = lHn−l + (n − l)Hl has maximum
nHn/2.

Since H is an increasing function, we then have the bound

β(l) = lHn−l + ((n + x) − l)Hl ≤ lH(n+x)−l + ((n + x) − l)Hl ≤ (n + x)Hn+x
2

.

We can now finally prove Lemma 3.3. We know that

(n + x − Hn) cost(N ) = (n + x − Hn)

n∑
l=1

|Nl | ≤
n∑

l=1

((n + x)Hl − lHn)|Nl |,
n∑

l=1

(lHn−l + ((n + x) − l)Hl)|Ol | ≤ (n + x)Hn+x
2

n∑
l=1

|Ol | = (n + x)Hn+x
2
cost(O),
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which together with (4) proves that PoS(G) ≤ cost(N )
cost(O)

≤ n+x
n+x−Hn

Hn+x
2
.

Now observe that for any ε there is an n(ε) so that n+x
n+x−Hn

Hn+x
2

≤ Hn/2 +ε when-

ever n ≥ n(ε) because of the following: n+x
n+x−Hn

Hn+x
2

= Hn+x
2

+ Hn
n+x−Hn

Hn+x
2

=
Hn+x

2
+ O(H2

n /n) ≤ Hn+x
2

+ ε
2 . Then again for large enough n we get

Hn+x
2

≤ Hn
2

+ ( 1
n/2 · (x/2)) = Hn/2 + O(1/Hn) ≤ Hn/2 + ε/2. ��

3.2 Case On is empty

In the previous section we proved Theorem 3.1 if On �= ∅ by constructing for every
pair of players i and j a particular path Sij that uses edges of E(O) to go from s j to
si and from t j to ti .

If E(O) is not connected, then there is a pair of players i, j for which si and s j
are in different connected components of E(O), and we cannot define the path Sij .
Even if E(O) is connected, but On = ∅, there might be a pair of players i and j for
which the path Sij exists, but this path is not optimal. See Fig. 7 for an example: the

path Sij (before cycles are removed to make Sij a simple path) traverses some edges
of E(O) twice, including the edge denoted by e in the figure. The same holds even if
we exchange the labeling of si and ti . Thus, we may need to define a new path T i

j for
some players i and j .

To define the new path T i
j , let us introduce some notation. Given two players i, j

and two nodes xi ∈ {si , ti }, x j ∈ {s j , t j } in the same connected component of E(O),
let O(xi , x j ) be the unique path in E(O) between xi and x j . If si and s j are in the
same connected component of E(O), let (T i

j )
′ (respectively (T i

j )
′′) be the following

s j–t j path:

1′. From s j to si (respectively ti ), it uses edges of O(si , s j ) (respectively O(ti , s j )).
2′. From si (respectively ti ) to ti (respectively si ), it uses edges of Ni .
3′. From ti (respectively si ) to t j , it uses edges of O(ti , t j ) (respectively O(si , t j )).

If (T i
j )

′ or (T i
j )

′′ contain cycles, we skip them to obtain a simple path from s j to t j .

See Fig. 3 for an example of (T i
j )

′ and Fig. 5 for an example of (T i
j )

′′.
Notice that in the previous section, we had Sij = (T i

j )
′ (where steps 1 and 2 are

now step 1′; steps 4 and 5 are now step 3′) and O(si , s j ) ∩ O(ti , t j ) = ∅, since
O(si , s j ) ⊂ O− and O(ti , t j ) ⊂ O+. This ensured that there was no edge that is
traversed both in step 1′ and 3′, which would make Lemma 3.2 not hold. In general,
O(si , s j ) ∩ O(ti , t j ) = ∅ does not have to hold; for example in Fig. 7 we have
e ∈ O(si , s j ) ∩ O(ti , t j ). We call the path (T i

j )
′ (respectively (T i

j )
′′) O-cycle free if

O(si , s j ) ∩ O(ti , t j ) = ∅ (respectively if O(si , t j ) ∩ O(ti , s j ) = ∅). For instance, in
Fig. 7 both (T i

j )
′ and (T i

j )
′′ are not O-cycle free.

We are now ready to define the path T i
j for two players i and j . If si and s j are in the

same connected component of E(O), we set T i
j = (T i

j )
′ (respectively T i

j = (T i
j )

′′) if
(T i

j )
′ (respectively (T i

j )
′′) is O-cycle free. Otherwise, we set T i

j = Oj . Similar to the

previous section, let T i = (T i
1 , . . . , T i

n ). That is, in T i a player j uses the optimal path
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Oj if the paths (T i
j )

′ and (T i
j )

′′ are not defined (meaning that si and s j are in different
connected components of E(O)), or if they are not O-cycle free (meaning that they
use some edges of E(O) twice). Otherwise, player j uses the O-cycle free path.

The following lemma shows that the paths T i satisfy the requirements of Lemma
3.3 if E(O) is connected but On = ∅. A subsequent lemma will then show that the
requirements of Lemma 3.3 are satisfied even if E(O) is not connected.

Lemma 3.4 If E(O) is connected, then for every i ∈ {1, . . . , n}

�(N ) ≤ �(T i ) ≤
∑

U⊂{1,...,n}
i∈U

Hn|NU | +
∑

U⊂{1,...,n}
i∈U

Hoi (U )|OU | +
∑

U⊂{1,...,n}
i /∈U

H|U ||OU |,

(5)
with oi (U ) ≤ n − |U |.
Proof Since the initial part of the proof is exactly the same as the proof of Lemma
3.2, we only prove that the cost ce of every edge e in T i is accounted for with at least
coefficient Hke(T i ) in the right hand side of (5). In particular, we just look at edges that
are only present in steps 1′ and 3′ of the definition of T i

j , since an edge e ∈ OU that
also belongs to Ni has its cost already accounted for in the first sum.

To explain the second and third sum, letU ⊂ {1, . . . , n} and e ∈ OU . We will look
at all the possibilities of where the nodes si , s j , ti and t j can be in the tree E(O) and
see whether e can be traversed in the path T i

j . Denote by e− and e+ the two distinct
connected components of E(O)\{e}. Then, by the definition of OU , each player k ∈ U
has sk ∈ e− and tk ∈ e+, or viceversa. Always by the definition of OU , each player
k /∈ U has either sk, tk ∈ e− or sk, tk ∈ e+.

To explain the third sum of (5), let i /∈ U . For illustration purposes, assume without
loss of generality that si , ti ∈ e−. Then, the only possibilities are that

• j ∈ U . Then e can be traversed, since T i
j has to go from e− to e+ to connect s j

and t j . See Fig. 3 for an illustration in the case T i
j �= Oj and Fig. 4 for the case

T i
j = Oj .

• j /∈ U, s j , t j ∈ e−. Then e cannot be traversed, since all terminal nodes are in e−
and there is no need to traverse e. See Fig. 5 for an illustration in the case T i

j �= Oj

and Fig. 6 for the case T i
j = Oj .

• j /∈ U, s j , t j ∈ e+. Then e cannot be traversed, since both (T i
j )

′ and (T i
j )

′′ traverse
e twice, so we must have T i

j = Oj . See Fig. 7 for an illustration.

As we can see, e can be traversed only if j ∈ U , that is, at most |U | times. This
explains the third sum of (5).

Finally, to explain the second sum of (5), let i ∈ U . The only possibilities are that

• j ∈ U . Then e cannot be traversed, since at least one of (T i
j )

′ or (T i
j )

′′ is a O-cycle
free path that does not traverse e. See Fig. 8 for an illustration.

• j /∈ U and T i
j �= Oj . Then e can be traversed, since s j and t j are in the same

connected component of E(O)\{e}, but si and ti are in different ones. See Fig. 9
for an illustration.
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Fig. 3 i /∈ U, j ∈ U and
T i
j �= O j . Then e can be

traversed in the path T i
j e

si

sj

ti

tj

e+e−

Fig. 4 i /∈ U, j ∈ U and
T i
j = O j . Then e can be

traversed in the path T i
j e

si sj

ti

tj

e+e−

Fig. 5 i /∈ U, j /∈ U ,
s j , t j ∈ e− and T i

j �= O j . Then
e cannot be traversed in the path
T i
j e

sisj

ti

tj

e+e−

Fig. 6 i /∈ U, j /∈ U ,
s j , t j ∈ e− and T i

j = O j . Then
e cannot be traversed in the path
T i
j e

si sj

ti

tj

e+e−

Fig. 7 i /∈ U, j /∈ U ,
s j , t j ∈ e+ and T i

j = O j . Then
e cannot be traversed in the path
T i
j e

si

ti

tj

sj

e+e−
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Fig. 8 i ∈ U, j ∈ U and
T i
j �= O j . Then e cannot be

traversed in the path T i
j

e

si

tj

sj ti

e+e−

Fig. 9 i ∈ U, j /∈ U , and
T i
j �= O j . Then e can be

traversed in the path T i
j e

si

tj

sj ti

e+e−

Fig. 10 i ∈ U, j /∈ U , and
T i
j = O j . Then e cannot be

traversed in the path T i
j e

si

tj

sj ti

e+e−

• j /∈ U and T i
j = Oj . Then e cannot be traversed, since s j and t j are in the same

connected component of E(O)\{e} and we just take the direct path between them,
which does not traverse e. See Fig. 10 for an illustration.

Let oi (U ) be the number of j /∈ U with T i
j �= Oj . Then, as we can see, e is traversed

at most oi (U ) ≤ n − |U | times. This explain the second sum of (5) and finishes the
proof of Lemma 3.4. ��

Theorem 3.1 follows directly if E(O) is connected but On is empty by Lemmas
3.4 and 3.3. The following lemma handles the last case we have left to analyze, which
is when E(O) is not a connected tree. This, together with Lemma 3.3, finishes the
proof of Theorem 3.1.

Lemma 3.5 Let E(O) = C1 � · · · �Cq, with each Cm being a connected component
of E(O). Let Rm be the set of players j with s j , t j ∈ Cm. Then for a player i ∈ Rk

�(N ) ≤ �(T i ) ≤
∑

U⊂{1,...,n}
i∈U

Hn|NU |+
∑
U⊂Rk
i∈U

Hoi (U )|OU |+
∑

U⊂Rm for some m
i /∈U

H|U ||OU |,

(6)
with oi (U ) ≤ |Tk | − |U | ≤ n − |U |.
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Fig. 11 In the worst
equilibrium, all players use the
edge of cost n

n1

t

si

Proof Since the initial part of the proof is exactly the same as the proof of Lemmas
3.2 and 3.4, we only prove that the cost ce of every edge e in T i is accounted for with
at least coefficient Hke(T i ) in the right hand side of (6). In particular, we just look at
edges that are only present in steps 1′ and 3′ of the definition of T i

j , since an edge
e ∈ OU that also belongs to Ni has its cost already accounted for in the first sum.

To explain the second and third sum, let U ⊂ {1, . . . , n} and e ∈ OU . Notice that
if U �⊂ Rm for every m, then OU is the empty set and e does not contribute anything
to �(T i ). We begin by looking at the second sum.

Notice that since i ∈ Rk , the only possibility to have i ∈ U is that U ⊂ Rk . By the
definition of T i the players j ∈ Rm , m �= k use the path Oj , which does not traverse
e. With the exact same reasoning of Lemma 3.4, by looking at all the possibilities of
where si , ti , s j and t j can be inCk , we can see that e can be traversed by player j ∈ Rk

only if j /∈ U and T i �= Oj . If we then define the number of players j ∈ Tk with this
property to be oi (U ) ≤ |Tk | − |U | ≤ n − |U |, the second sum in the right hand side
of (6) is explained.

Finally, for the third sum, we fix i /∈ U and look at the casesU ⊂ Rk andU ⊂ Rm ,
m �= k separately.

Suppose first that U ⊂ Rk . By the definition of T i the players j ∈ Rm , m �= k use
the path Oj , which does not traverse e. With the exact same reasoning of Lemma 3.4,
by looking at all the possibilities of where si , ti , s j and t j can be inCk , we can see that
e can be traversed by player j ∈ Rk only if j ∈ U . That is, by at most |U | players.
This explains the third sum for the case U ⊂ Rk .

We now look at the case U ⊂ Rm , m �= k. By the definition of T i , players j ∈ Rl ,
l �= m do not traverse e, since they only use edges of Cl (if l �= k) or edges of Ck and
of Ni (if l = k). Players j ∈ Rm use the path Oj , and by the definition of OU exactly
|U | players traverse e. This explains the third sum for the caseU ⊂ Rm ,m �= k, which
finishes the proof. ��

4 Price of anarchy/stability for multicast on rings

It is known that the price of anarchy on general graphs is at most n, and that this bound
is tight. The tight example actually is a multicast game on a ring, and the general
analysis of the price of anarchy thus carries over to our multicast game on rings. For
completeness, we show the example in Fig. 11.

Theorem 4.1 (Anshelevich et al. 2004) The price of anarchy for mutlicast games on
rings is at most n. This is tight.
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Fig. 12 Example of a lower
bound 4/3

t

0 1

2/3 2/3

1
3 +

We now turn our attention to the price of stability. The example from Fig. 12, due
toAnshelevich et al. (2004), shows that the price of stability can be as high as 4/3
(observe that the game possesses a unique Nash equilibrium where both players use
the direct edge to get connected to t).We now show that the price of stability cannot get
larger than that for multicast games on rings, and therefore answer the open question
asked byFanelli et al. (2015).

Theorem 4.2 The price of stability in the multicast game on rings is at most 4
3 .

In the proof of the theorem we will use the following lemma.

Lemma 4.3 If a strategy profile P in which an edge i is not used is not Nash equi-
librium, then either player i or player i − 1 can improve her cost by changing her
strategy.

Proof Since the strategy profile P is not a Nash equilibrium, there exists a player k that
can change her strategy and improve the cost. Assume, without loss of generality, that
k < i −1. Since edge i is not used in P , it follows that player k uses the left path to get
to t . The cost of k in P is thus

∑k
l=0

al
i−l , which is, by our assumption, bigger than the

cost of k if she switches to the right path, i.e., bigger than
∑i−1

l=k+1
al

i−l+1 +∑n
l=i

al
l−i+1 .

It follows that player i − 1 also uses the left path in P , and thus her cost is at least the
cost of player k, whereas the alternative cost of i − 1 if she switches to the right path
is at most the alternative cost of player k. Hence, the alternative cost of player i − 1
is smaller than her cost in P , and player i − 1 thus improves her cost as well. ��
Proof of Theorem 4.2 Consider an optimum strategy profile and let o be the edge that
is not used in it. If the optimum is also Nash equilibrium, then price of stability is
1 and the claim follows. Otherwise, the optimum is not a Nash equilibrium and, by
Lemma 4.3, one of the endpoints of the edge o can improve its cost. Assume, without
loss of generality, that player o− 1 can improve. We now consider the following best-
response dynamics: let o − 1 improve; then, edge o − 1 is not used, and in case we
have not reached Nash equilibrium, let player o − 2 improve (the player o − 2 must
be able to improve by Lemma 4.3), and so on, until some player o− k cannot improve
anymore (this happens at the latest for player 0), and we reach a Nash equilibrium.

We will show that the social cost of a Nash equilibrium that is reached by this best
response dynamics is maximized for k = 1, i.e., for the strategy profile reached after
one step of the dynamics. We then show that the cost of such a profile is at most 4/3
times the cost of the optimum, which proves the theorem.

Let us first show the second part. Assume therefore that player o − 1 switches to
improve her cost, and the resulting profile is an equilibrium. In particular, we have
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that player o − 2 does not want to switch. This can be expressed by the following
two inequalities:

∑n
l=o

al
l−o+1 ≤ ∑o−1

l=0
al
o−l , and

∑o−2
l=0

al
o−1−l ≤ ∑n

l=o−1
al

l−o+2 . We
further introduce a normalization of the edge costs so that the edges in the optimumsum
up to 1. Thus, we obtain the normalization equation

∑n
i=0,i �=o ai = 1. Now, taking

the first inequality with weight 5, the second with weight 1, and the normalization
equality with weight 6, we obtain that the cost of the Nash equilibrium where edge
o − 1 is not used has cost

∑n
i=0,i �=o−1 ai at most 4

3 .
We can proceed in the same way for every other value of k = 2, 3, . . . for which the

reached Nash equilibrium does not use edge o− k. For every k, we get for each of the
players o− k − 1, o− k, . . . , o− 1 an inequality stating that the player did not want,
respectively wanted to swap her strategy. For all values of k = 1, 2, 3, 4, 5, 6, 7, we
provide in the appendix the coefficients with which we need to take the inequalities
and to obtain the upper bound of at most 4/3 on the cost of the Nash equilibrium.

If the length of the best-response dynamics is 8 or more, it follows that we do not
need to add further inequalities, and the 7 inequalities obtained for the first 7 deviating
players are enough to show the upper bound of 4/3 on the cost of the reached Nash
equilibrium. ��

5 Potential-optimum price of anarchy for multicast on rings

The potential-optimum price of anarchy/stability has been first studied, in the context
of the network design games, by Kawase and Makino (2013). Besides other results,
they proved that formulticast network design games, the two values collide. Therefore,
in the following, we only study the potential-optimum price of anarchy (POPoA for
short), and we show that it is at most two for rings, and provide an infinite family of
examples with increasing POPoA, which we conjecture converges to two, but leave
the formal analysis as an open problem. We have analyzed one such game from the
family which shows that POPoA can be as large as 1.99992.

Theorem 5.1 POPoA is at most 2 in the multicast game on rings.

Proof Consider an optimal strategy profile O and let o be the edge that is not used in
it. Consider a potential optimum strategy profile P and let p be the edge in it that is
not used by any player. Assume, without loss of generality, that p < o.

By the definition of P , we have, for any strategy profile Q, �(P) ≤ �(Q), and in
particular �(P) ≤ �(O), i.e.,

p−1∑
i=0

ai · Hp−i +
n∑

i=p+1

ai · Hi−p ≤
o−1∑
i=0

ai · Ho−i +
n∑

i=o+1

ai · Hi−o. (7)

We now concentrate on ao and show that ao is at most the cost of the optimum, i.e.,
at most

∑
i �=o ai . This then shows that any strategy profile (and, in particular, P) has

cost at most twice the cost of the optimum.
Isolate in the second sum of the left hand side (LHS for short) of Eq. (7) the

term with ao and put the rest of the sum to the right hand side (RHS). This rest
will dominate the second sum on the RHS, and by neglecting the resulting negative
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number, we get that
∑p−1

i=0 ai ·Hp−i+ao ·Ho−p ≤ ∑o−1
i=0 ai ·Ho−i , or, equivalently, that

ao ≤
∑o−1

i=0 ai ·Ho−i−∑p−1
i=0 ai ·Hp−i

Ho−p
. Consider the coefficients ci for eachai , i = 0, ..., o−1

and rewrite the right hand side of the latter inequality as
∑o−1

i=0 ciai . Then if i < p,

ci = Ho−i−Hp−i
Ho−p

≤ 1, while if i ≥ p then ci = Ho−i
Ho−p

≤ 1. Thus ao ≤ ∑o−1
i=0 ciai ≤

∑o−1
i=0 ai ≤ ∑

i �=o ai , which proves the claim and thus the theorem. ��

We now provide a construction of a game which shows that POPoA is at least
1.99992. We conjecture that the construction can be used to prove an asymptotic
lower bound of 2 on POPoA.

Consider 2l + 1 non-negative variables a0, . . . , a2·l that sum up to 1, where l is
some constant. Suppose n is sufficiently large number, o = n, p = l − 1 and an
is equal to Hn−a

Hn
, for some constant a. Note that since n tends to infinity, ao tends

to 1 and therefore, optimal strategy profile leaves out the edge with number o = n.
We assume that ai = 0 for each n > i > 2l. We construct a linear program for
obtaining the lower bound on the potential optimum price of anarchy. Constraints of
the linear program come from the comparison of the potentials of the strategy profiles
which do not use edge i for i = 0, . . . , i = 2l to the potential of P (the strategy
profile minimizing �) that does not include the p-th edge of cost ap. The variables
of the linear program are ai ’s. Note that after canceling the coefficients of ai ’s on
both sides in the linear program constraints, the coefficient in front of an is a sum of
a constant number of terms converging to 0 for n tending to infinity, so these terms
can be neglected. The sequence of potentials of the strategy profiles which do not use
edge i for n > i > 2l first increases when i increases and then decreases towards n.
For this reason we only need to consider 2l + 1 constraints. The aim is to minimize
ap, because the cost of P is 1 − ap + an , which in limit is equal to 2 − ap, when n
tends to infinity. We solved the resulting linear program and obtained a lower bound
for POPoA converging to 1.99992 for l = 1000 and n tending to infinity. Thus, we
have the following proposition:

Proposition 5.2 There are games that have POPoA 1.99992.

Here we note that one can obtain lower bound solving linear program directly,
without introducing n which tends to infinity, but the speed of increasing lower bound
is too low. For numerical comparison, the lower bound obtained for n = 10,000 is
only 1.73. We leave it as an open problem to analyze the convergence of the POPoA
of the above construction, and conjecture that it converges to two.

Conjecture 5.3 There are games that have POPoA arbitrarily close to 2.

6 Myopic sequential prices of anarchy/stability

In this sectionwe study themyopic sequential price of anarchy and themyopic sequen-
tial price of stability.
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Fig. 13 Lower bound example
for the sequential price of
anarchy

6.1 Sequential price of anarchy in multicast games on rings

Lemma 6.1 The myopic sequential price of anarchy is at most 2 in the multicast
games on rings.

Proof Consider an optimal strategy profile and let o be the edge that is not used.
Consider any permutation (order) π of the players. If any player π(i), i < o, decides
to take a path containing edge o for the first time then it means that ao ≤ ∑i

l=0 al
which is bounded by the cost of the optimum. Therefore, the whole cost of the ring is
bounded by 2 times the cost of the optimum. ��

The presented upper bound is tight, as shows the example in Fig. 13, where
π = {0, 1, 3, 2} results in myopic sequential price of anarchy equal to 2.

6.2 Myopic sequential price of stability in multicast game

In the myopic sequential price of stability we consider the best permutation of players,
with respect to the resulting network cost. In Bilò et al. (2010) authors prove that when
the social knowledge network graph is directed acyclic then the price of anarchy is
bounded by 4 (Theorem 8). If we consider that in the social knowledge graph each
incoming player knows all the previous players then the result can be directly translated
into our setting, but we give a different [simpler than the proof of general result in
Bilò et al. (2010)] proof for our setting:

Theorem 6.2 Themyopic sequential price of stability in multicast games on arbitrary
graphs is at most 4.

Proof Since there is a common target vertex t , any optimum strategy profile forms a
Steiner tree T on terminals si , i = 0, . . . , n − 1 and t . Consider a permutation of the
vertices that corresponds to a depth-first search of the tree T , and make it the identity
permutation (0, 1, . . . n−1). Let the players enter the game in this order, and make the
myopic best responses. Denote by Bi the cost of the edges that player i uses alone in
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her strategy at the moment she enters the game, and let Si be the overall cost of player
i when she enters. Then the cost of the resulting network is

∑n−1
i=0 Bi . Since every

player optimizes her cost when she enters the game, we have the following chain of
inequalities: Si ≤ dT (si , si−1) + Si−1 − 1

2 Bi−1, for i = 1, . . . , n − 1, where dT (u, v)

is the distance between nodes u and v using only the edges of the tree T . Each player i
has the following alternative strategy: first travel to the source (vertex) si−1 using the
edges of T , and then follow the strategy of player i − 1. Note that in this alternative
strategy, player i saves at least half of the cost of the edges that player i − 1 takes
alone when she enters the game. For the first player, we have the following inequality
S0 ≤ dT (s0, t), because when she enters the game, one of the possible strategies is to
take a direct path from s0 to t using only the edges of T . By summing up all inequalities
given above, we get that 1

2

∑n−2
i=0 Bi + Sn−1 ≤ 2 · cost (T ). Note that Sn−1 ≥ 1

2 Bn−1,
which results into the upper bound of 4. ��

This upper bound is tight, as the example (Theorem 5) from Bilò et al. (2010)
shows, ratio in the lower bound example is arbitrarily close to 4.

Proposition 6.3 There is amulticast gamewith themyopic sequential price of anarchy
arbitrarily close to 4.

6.3 Myopic sequential price of stability on rings

In this section we consider the myopic sequential price of stability of the multicast
games on rings. The example from Fig. 12 shows that it can be as high as 4

3 . We prove
the following upper bound.

Theorem 6.4 The myopic sequential price of stability in the multicast games on rings
is at most 26

19 .

Proof Assume that the optimum strategy profile does not include the edge of cost
ao, and without loss of generality

∑o−1
i=0 ai ≥ ∑n

i=o+1 ai . Consider the permutation
π = {n − 1, . . . , o, 0, 1, . . . , o − 1}. First n − o players clearly take the right path,
by our assumption. Consider the remaining players. If there is no player which, upon
arrival, prefers the right path over the left path, then only edges of an optimum strategy
profile are included into the resulting network which means that the myopic sequential
price of stability is 1. If the very first player 0 prefers the right path, then all other
players necessarily prefer the right path as well, and the resulting network consists of
all edges except for that of weight a0. But then a0 is at least as large as ao, resulting
again the myopic sequential price of stability equal to 1. Suppose that there exists i
such that every player l ≤ i prefers to take the left path, and only the player (vertex)
i + 1 prefers to take the right path. This implies the following inequalities:

i∑
k=0

ak
i − k + 1

≤
n∑

k=i+1

ak , and (8)

o∑
k=i+2

ak ≤
i+1∑
k=0

ak
i + 2 − k

, (9)
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where the first inequality (8) indicates that the i-th player prefers the left path, and
the second inequality (9) indicates that the i + 1-th player prefers the right. Our
goal is to investigate the maximum possible cost c of the resulting network, where
c = a0 + · · · + ai + ai+2 + · · · + an . Take the first inequality (8) with weight
2
19 , the second inequality (9) with weight 24

19 , and the normalization equation
a0 + · · · + ao−1 + ao+1 + · · · + an = 1 with weight 26

19 . We obtain that the sum
on the left hand side s satisfies c ≤ s ≤ 26

19 , which gives that c ≤ 26
19 ≈ 1.368. ��

The permutation from the proof of Theorem 6.4 cannot be used to provide a better
bound, as there exists an example of a game,where the permutation results in a network
of cost 2619 times larger than the cost of the optimum. The example consists of 3 players.
Edges on the ringhaveweights 6

19 ,
10
19 ,

3
19 and

10
19 in the counter-clockwise order. Players

who come in the game according to the permutation {0, 1, 2, 3} take all edges except
for the 3-rd edge of weight 3

19 , resulting into a network of cost
26
19 , while the optimum

solution cost is 1. Note that if players come according to the “opposite” permutation
(n − 1, . . . , 0), then the resulting network has the same cost as the optimum network.
We have experimentally checked these two permutations, and for all inputs we tried,
one of the two permutations resulted in a network of cost no more than the 4/3 of the
optimum cost. Actually, we have checked that there is no instance of at most 1000
players where the better of the two permutations fails in that respect.

Conjecture 6.5 The myopic sequential price of stability in the multicast game on
rings is at most 4

3 .

7 Conclusions

We reduced upper bound of the price of stability in the general network design game
by analyzing a general optimum solution structure.

We have analyzed several solution concepts for the multicast network design games
on rings, and demonstrated that they differ in terms of quality. Some of the derived
bounds are not shown to be tight, and we leave it for future work to make them tight.

We have also initiated the study of the myopic sequential price of stability, and
analyzed it for themulticast network design game on a ring. It is certainly an interesting
challenge to provide better bounds on this concept for general (not multicast) network
design games.
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AWeights for inequalities from the Proof of Theorem 4.2

In this appendix we provide the multiplicative weights of the inequalities using a dual
to a linear program that was solved to upper bound the price of stability in themulticast
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game on rings. The first inequality is the normalization inequality, therefore its weight
is the upper bound on the price of stability. The next k inequalities indicate that the first
k ≤ 7 players left of edge e prefer to deviate, i.e., prefer to choose the right path instead
of the left path, and the last inequality indicates that we have a Nash equilibrium, i.e.,
the last player considered in the best-response dynamics prefers to stick with the left
path than to switch to the right path. The objective of the linear program is to minimize
the sum of the edge costs without the edge that is not used by the Nash equilibrium
achieved via the best response dynamics. The coefficients (weights) are as follows:

• k = 1 (0: 4/3; 1: 10/9; 2: 2/9)
• k = 2 (0: 22/17; 1: 252/323; 2: 202/323; 3: 90/323)
• k = 3 (0: 29/23; 1: 2976/4025; 2: 1206/4025; 3: 2256/4025; 4: 1224/4025)
• k = 4 (0: 1.243533565; 1: 0.722076586; 2: 446,160/1,659,763; 3: 0.268809463;

4: 0.528169383; 5: 0.329251827)
• k = 5 (0: 1.229596836; 1: 0.711037768; 2: 0.257115234; 3: 0.201170436; 4:

0.199302216; 5: 0.50797093; 6: 0.348431623)
• k = 6 (0: 1.217310111; 1: 0.702648246; 2: 0.250967669; 3: 0.189905238; 4:

0.168566505; 5: 0.179311025; 6: 0.494134279; 7: 0.362553601)
• k = 7 (0: 1.206536915; 1: 0.69586637; 2: 0.247111078; 3: 0.184286036; 4:

0.157438535; 5: 0.148587957; 6: 0.165607593; 7: 0.484007846; 8: 0.3733
84452)

For k > 7, we take only the first 7 inequalities indicating that the first 7 players
prefer to take the right path than to stick to the left path. This is enough to prove an
upper bound of 1.33081 for the price of stability. In the following, we list the weights
of the inequalities of the dual to our linear program (index k : denotes the weight
of the inequality to player k): (0: 1.330802428; 1: 0.750587484; 2: 0.246845878; 3:
0.168106752; 4: 0.12615003; 5: 0.096800836; 6: 0.072578056; 7: 0.048719834).
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