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Abstract Logit-response dynamics (Alós-Ferrer and Netzer in Games Econ Behav
68(2):413–427, 2010) are a rich and natural class of noisy best-response dynamics. In
this work we revise the price of anarchy and the price of stability by considering the
quality of long-run equilibria in these dynamics. Our results show that prior studies
on simpler dynamics of this type can strongly depend on a sequential schedule of
the players’ moves. In particular, a small noise by itself is not enough to improve the
quality of equilibria as soon as other very natural schedules are used.

Keywords Logit-response dynamics · Stochastic stability · Equilibrium selection ·
Distributed dynamics · Potential games

1 Introduction

Complex and distributed systems are often modeled by means of game dynamics in
which agents (players) act spontaneously, and typically attempt to maximize their own
benefit. Thesedynamics canbe regarded as distributed algorithms that are implemented
by the players and have applications in Economics (e.g., markets), Physics (e.g., Ising
model and spin systems), Biology (e.g., evolution of life), and in Computer Science
(e.g., distributed protocols for routing and resource allocations by competing entities).
As a result of such selfish behavior the system will reach some equilibrium that may
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840 P. Penna

or may not be optimal. The price of anarchy (PoA) (Koutsoupias and Papadim-
itriou 2009) and the price of stability (PoS) (Anshelevich et al. 2008) have been
introduced to quantify the efficiency loss caused by the players selfish behavior. Intu-
itively, the price of anarchy compares the worst possible equilibrium to the optimum
(the centrally designed outcome). Similarly, the price of stability compares the best
possible equilibrium with the optimum (to capture the loss caused by the inherent
instability of optimal outcomes). The PoA and the PoS measure the performance of
“decentralized and anarchic” distributed systems in which we simply let the players
decide by themselves how to play, until they reach some equilibrium.

These two concepts seem naturally related to the question of explaining how the
players can choose between different equilibria. A remarkable observation made in
game theory is that noise allows the players to select good equilibria via a simple and
natural dynamics.Also, results on thePoA and PoS for certain problems are sometimes
based on equilibria that are “unnatural” because it is difficult for the players to reach
or to remain in such equilibria. This leads naturally to reconsider the bounds on the
PoA and PoS by restricting attention to “reasonable” equilibria.

In this work we follow this approach by considering the equilibria that arise in
certain naturalnoisy best-responsedynamics. In these dynamics, players keep updating
their strategies and, at lownoise regime, they tend to select strategies that deliver higher
payoffs (see Sect. 1.3 for the formal model). The equilibria that are selected in the
long-run are the so-called stochastically stable states. That is, the states that in the
stationary distribution have positive probability as the noise vanishes.1 One of the
most popular and studied of such dynamics is the following one:

Logit dynamics (Blume 1993). At each time step one randomly chosen player
updates her strategy according to a noisy best-response rule.

On the one hand, for potential games, the long-run outcomes can be simply charac-
terized as the Nash equilibria minimizing the potential of the game Blume (1998). On
the other hand these dynamics seem to require a particular schedule of the players’
moves (who is allowed to update at each step and who stays put). The authors in Alós-
Ferrer and Netzer (2010) analyze the generalization in which there is no “sequential
schedule” of the players’ moves:

Independent learning logit-response dynamics (Alós-Ferrer and Netzer 2010).
At each time step a subset of randomly chosen players update their strate-
gies according to a noisy best response-rule (the same rule of logit dynamics).
Every subset has some positive probability of being selected (e.g., when every
player independently decides to revise his/her strategy with some probability
p ∈ (0, 1)).

While the characterization of Blume (1998) in terms of potential minimizers is no
longer true, Alós-Ferrer and Netzer (2010) characterize long-run outcomes as the
states minimizing a stochastic potential. This means that the set of equilibria selected

1 In this work we consider pure Nash equilibria, that is, states in which each player chooses one strategy
and unilateral deviations are not beneficial. In general games, stochastically stable states are not necessarily
Nash equilibria, even for the class of potential games (which is the main focus of this work).
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by the two dynamics is different (Alós-Ferrer and Netzer 2010). It is therefore natural
to ask to what extent the schedule of the players’ moves (the revision process, in the
game theory terminology) can affect the quality of the selected equilibria in these
dynamics. The logit-response dynamics has been proven to maintain many of the nice
properties of logit dynamics, including the selection of good equilibria in coordination
games, or convergence to Nash equilibria under certain conditions (Alós-Ferrer and
Netzer 2010; Marden and Shamma 2012; Coucheney et al. 2014; Alós-Ferrer and
Netzer 2017).

1.1 Our contribution

This work presents a refined version of the quality of equilibria in games (PoA and
PoS) based on ‘decentralized’ dynamics with noise, that is, the logit-response with
independent learning described above. This approach has two advantages:

1. It suggests an intuitive definition of ‘reasonable’ equilibria (robust to smallmistakes
and easy to reach without specific schedules of players’ moves) to quantify the
efficiency loss.

2. It allows to understand the role of temporal coordination of the players’ moves in
such dynamics (prior studies considered the quality of equilibria in logit dynamics
with a sequential schedule, i.e., players move one at a time).

Specifically, we propose to study a natural concept of independent-logit PoA (and
PoS) which compares the worst (respectively, best) long-run outcomes of independent
learning logit-response dynamicswith the optimum. That is, the classical PoA (respec-
tively, PoS) restricted to the set of stochastically stable states (Alós-Ferrer and Netzer
2010). The analogous notions for logit dynamics, say the logit PoA and logit PoS,
have been already studied in the literature under different names.2 A direct comparison
between these notions is informative of the importance of the schedule of the moves.

We study two classes of problems that have different features: load balancing games
which provide a simple model of congestion, and broadcast network design games in
which players share the cost of the used resources. Intuitively, in the first case players
dislike to choose the same resources (because this creates congestion and players
experience some delay), while in the second case they like to do the opposite (because
the more players use a resource the less each of them pays for it).

We first consider load balancing games whose analysis for logit dynamics has
been done by Asadpour and Saberi (2009) and Mamageishvili and Penna (2016). We
obtain the tight bounds shown in Table 1 which illustrate of how different the two
dynamics can perform. In particular, though logit dynamics improve the worst-case
Nash equilibria, compared to the “generic” Nash equilibria, the opposite happens for
independent-learning dynamics. This tells us that the improvement of the quality of the
equilibria is due to the combination of the players’ response rule and of the possibility

2 Asadpour and Saberi (2009) call the PoA restricted to potential minimizers Inefficiency Ratio of
Stable Equilibria (IRSE), while Kawase andMakino (2013) use the terms Potential Optimal Price
of Anarchy (POPoA) andof Stability (POPoS). In thisworkweprefer to use the termslogitPoA and
logit PoS to emphasize the comparison between logit and independent-learning logit-response dynamics.
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842 P. Penna

Table 1 Bounds for load balancing games: the rightmost column contains our contributions, andm denotes
the number of machines

Noise with synchronization Deterministic Noise without synchronization

Worst equilibrium

logit PoA (*) PoA (**) independent-logit PoA

≥ 7/6 ≤ 4/3 2
(
1 − 1

m+1

)
m

Best equilibrium

logit PoS (*) PoS independent-logit PoS

≥ 7/6 ≤ 4/3 1 2
(
1 − 1

m+1

)

The bounds on PoS are folklore, while (*) are implicit in the studies on the IRSE (Asadpour and Saberi 2009;
Mamageishvili and Penna 2016); The values shown are the current best known bounds (Mamageishvili and
Penna 2016). The PoA bound (**) is due to the analysis of a classical algorithm (Finn and Horowitz 1979)

of synchronizing their moves. Thus, the bounds based on potential minimizers are in
general not “robust” in the sense that they depend critically on this assumption. Also,
contrary to logit dynamics, the stochastically stable states are not necessarily Nash
equilibria (in fact they are far from Nash equilibria in terms of cost). Finally, best-case
equilibria in independent-learning dynamics can have a cost larger than in logit, and
as bad as the worst possible Nash equilibria (these dynamics select only bad equilibria
in some instances).

We then consider broadcast network design games studied in Kawase and Makino
(2013) andMamageishvili andMihalák (2015) for potential minimizers (logit dynam-
ics), and show that in this case synchronization is not essential to obtain optimal
configurations. First, for the case of parallel links between a common source and a
commondestination (links represent resources of different costs) playerswill select the
optimum if there is a unique shortest link (Theorem 3.2). Note that in these instances
the price of anarchy is rather high (PoA = n), while our result says that the restric-
tion to stochastically stable states is instead optimal (independent-logit PoA = 1).
Finally, we show that the result does not extend to different sources since in some
instances independent-logit PoA > logit PoA (Theorem 3.1). Also in this case
stochastically stable states are not Nash equilibria.

1.2 Further related work

The impact of the schedule of the players’ moves on the quality of the equilibria has
been studied earlier. The approach by Marden and Shamma (2012) is closely related
to the one here, and it consists of deriving sufficient conditions for which the stochasti-
cally stable states of logit-response dynamics are the same as those of logit dynamics
(potential minimizers). The impact of simultaneous moves on (deterministic) best-
response dynamics is studied by Fanelli et al. (2012). The performance of various
concurrent dynamics in which all players are active at each time step is studied in e.g.
Fotakis et al. (2010), Ackermann et al. (2016), Kleinberg et al. (2009) and Auletta
et al. (2015).
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Several works refine the PoA and the PoS by restricting to certain type of equilibria.
The price of stochastic anarchy by Chung et al. (2008) and Chung and Pyrga (2009)
is similar to ours in the sense that it considers stochastically stable states though for a
(concurrent) imitation dynamics. Asadpour and Saberi (2009) were the first to restrict
to potential minimizers (the long-run equilibria of logit dynamics) and their analysis
on atomic congestion games and load balancing games shows that prior bounds on the
PoA for these games can be too pessimistic. The work Kawase and Makino (2013)
extends this approach to thePoS and shows similar results for broadcast networkdesign
games (where logit PoS = logit PoA up to a constant factor). The restriction to the
ring topology is considered inMamageishvili andMihalák (2015) (together with other
variants of PoS and PoA). The authors in Auletta et al. (2013) suggest to consider
the expected social cost in logit dynamics and therefore the stationary distribution
as the equilibrium concept. A new natural dynamics converging to Nash equilibria
with optimal social welfare in general games has been proposed in Pradelski and
Young (2012). The robustness of the PoA and PoS bounds has been investigated by
Christodoulou et al. (2011) and Roughgarden (2009) who considered approximate and
correlated equilibria, respectively.

Stochastic stability is the tool to show that in the coordination game players select
the risk dominant strategy (see Alós-Ferrer and Netzer 2010 for discussion and ref-
erences). Recent works have pointed out that in general revision processes (including
independent-learning) logit-response dynamics do not converge to Nash equilibria in
potential games (Coucheney et al. 2014; Alós-Ferrer and Netzer 2017 discuss this
issue explicitly).

1.3 Preliminary definitions

This section introduces the necessary tools fromAlós-Ferrer and Netzer (2010), while
the next subsection presents the revised PoA and PoS notions. Let ui (si , s−i ) denote
the utility of player i when she chooses strategy si and the other players’ strategies
are s−i (the latter is a vector of strategies). The combination of all these strategies
is a state s = (si , s−i ). In logit-response dynamics, whenever a player is given the
opportunity to revise her strategy, she will revise her current strategy with a strategy
si chosen according to the logit choice function

pi (si , s−i ) = eβui (si ,s−i )

∑
s′i∈Si e

βui (s′i ,s−i )
(1)

where s−i is the current strategy profile (the strategies chosen by the others) and β is a
parameter representing the inverse level of noise in the players’ decision (0 < β < ∞),
and Si is the set of strategies of player i . The dynamics is defined as follows:

• Select a subset J of players according to a probability distribution q defined on the
subsets of players.

• Every selected player i ∈ J chooses a new strategy si with probability given by
the logit choice function (1).

Note that the dynamics depends on the revision process q , and different revision
processes yields different (logit-response) dynamics:
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844 P. Penna

• Logit dynamics (Blume 1993, 1998) correspond to asynchronous learning in
which only one player at the time is allowed to revise (i.e, q(J ) > 0 if and
only if J = {i} for some i).

• In logit-response dynamics with independent learning every subset of players has
non-zero revising probability (i.e. q(J ) > 0 for every subset J ).

A state s is stochastically stable if it has positive probability in the limit invariant
distribution as the noise goes to zero,

lim
β→∞ μβ(s) > 0,

where μβ is the stationary distribution of the dynamics with parameter β.3

An edge (s, s′) is feasible if Rs,s′ := {J | q(J ) > 0 and sk = s′
k∀k /∈ J } is non-

empty (note that Rs,s′ consists of the subsets of players potentially leading from s to
s′). For any such feasible transition, its waste is defined as

Ws,s′ := min
J∈Rs,s′

W (J )

s,s′ , where

W (J )

s,s′ :=
∑
j∈J

(
max
s′′j ∈S j

u j

(
s′′
j , s− j

)
− u j

(
s′
j , s− j

))
.

The waste of a directed tree (or of path) T is simply the sum of the waste of its edges:

W (T ) :=
∑

(s,s′)∈T
Ws,s′ .

The stochastic potential of a state s is

W (s) := min
T∈T (s)

W (T )

where T (s) is the set of all directed trees T in which every state s′′ has a unique path
to s. That is, T is a tree directed towards s with each edge being feasible.

Theorem 1.1 (Alós-Ferrer and Netzer 2010) Consider the logit-response dynamics
(with any revision process). A state is stochastically stable if and only if it minimizes
W (s) among all states.

It has been observed recently that, even for potential games,4 stochastically stable
states are not necessarily Nash equilibria (Coucheney et al. 2014; Alós-Ferrer and
Netzer 2017).

3 It is well known that the dynamics described above define an ergodic Markov chain over the possible
strategy profiles for every 0 < β < ∞. That is, the stationary distribution μβ exists for all β.
4 In this work we deal only with weighted potential games, that is, games that admit a vector w and a
potential function φ such that ui (s) − ui (s

′) = (φ(s′) − φ(s))wi for all i and for all s and s
′ that differ in

exactly player i’s strategy.
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In our proofs we shall find it convenient to reason about the existence of zero-waste
paths between two states. Note that a zero-waste transition (s, s′) corresponds to a
multiple best-response: Since W (J )

s,s′ = 0 all players in J simultaneously best-respond
to the strategies in s and the resulting profile is s′ (for J = {i}we have a best-response).

1.3.1 Revised price of anarchy and stability

We want to quantify the efficiency loss that occurs when we relax logit dynamics
to independent learning revision processes. Note that the set of stochastically stable
states does not depend on the particular revision process q satisfying the definition of
independent learning (the stochastic potential depends only on the feasible transitions
which do not change if q and q ′ are both independent learning revision processes).
Given an instance I (a game) of interests, and a corresponding global cost function
cost mapping states into a nonnegative real, we define the following

independent-logit PoA(I ) = maxs∈ST ABLE cost (s, I )

mins cost (s, I )

where ST ABLE denotes the stochastically stable states for the logit-response dynam-
ics with independent learning. By replacing ‘max’ with ‘min’ we obtain the notion
of independent-logit PoS. The original PoA and PoS are defined by replacing
ST ABLE with the set of all possible Nash equilibria. The restriction to logit dynam-
ics, logit-PoA and logit-PoS, have ST ABLE equal to the states minimizing the
potential of the game. We generally consider classes of games and extend both def-
initions by taking the supremum over all instances: For a class of games C the
independent-logit PoA is defined as supI∈C independent-logit PoA(I ); Simi-
larly, the independent-logit PoS is defined as supI∈C independent-logit PoS(I ).

Remark 1.2 Note that also in the price of stability (independent-logit PoS) we
consider the worst possible scenario in the class of games (i.e., take the supremum).
This is in linewith the definitions ofPoS (Anshelevich et al. 2008) andPOPoS (Kawase
and Makino 2013) in the literature. In particular, whenever independent-logit PoS
is small, we can be sure that every game in this class has a near optimal stochastically
stable equilibrium.Conversely, if independent-logitPoS is large, then this condition
cannot be guaranteed for every game in the class under consideration: There is at least
one such game where even the best stochastically stable equilibrium has high cost
compared to the optimum.

The following easy result (whose elementary proof is given in Appendix A.1) is
useful for games in which convergence to Nash equilibria is not guaranteed (like those
considered here).

Theorem 1.3 For any game, the set of stochastically stable states in independent
learning logit-response dynamics must contain at least one Nash equilibrium. There-
fore

independent-logit PoS ≤ PoA.
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846 P. Penna

2 Load balancing games

We consider the load balancing problem which is defined as follows. There are m
identical machines and n jobs, each job having its own weight. Each job is controlled
by a player who can choose one machine (strategy). The strategies determine an
allocation and the load for each machine (sum of the weights of jobs allocated to the
machine). Naturally, each player aims at having her job on a machine with minimal
load (so the payoff is defined as the negative of the load of the chosen machine). The
cost of an allocation is the so-called makespan, that is, the maximum load over all
machines.

2.1 Independent logit POA

In this section we show that the PoA in independent learning dynamics can be much
worse than all prior bounds. In particular, it is higher than the classical PoA which
considers any Nash equilibria. This means that there are some stochastically stable
states which are not Nash equilibria for this potential game.

Theorem 2.1 For load balancing games,

independent-logit PoA = m.

Proof Since the upper bound is trivial, we shall prove only the lower bound. Consider
the instance withm machines and n = lm−1 identical jobs (say of size 1), for a large
positive integer l. The optimum has cost l and it is given by any allocation in which
one machine has l − 1 jobs, and all other machines have l jobs.

We claim that every state is stochastically stable, including those in which all jobs
go to the same machine (and whose cost is thus lm − 1). To prove our claim, we
observe that in every state s there is at least one machinemhigh with at least l jobs and
another machine mlow with at most l − 1 jobs. This implies that we can construct a
zero-waste path from any state s to every other state s′ as follows:

1. First all jobs in machine mhigh move to machine mlow;
2. Now that machine mhigh is empty, all jobs move there;
3. Then from there all jobs move to the machine they occupy in s′ (some do not move

because they are already in the correct machine).

Note that each move is a best-response made simultaneously by a subset J of players
(because players move to a machine with strictly lower load). Therefore each of the
three transitions has zero waste. Since the stochastically stable state with all jobs in
the same machine costs lm − 1, and the optimum is l, we have shown that

independent-logit PoA ≥ m − 1/ l

for all l. The theorem thus follows by taking l large enough. 	
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2.2 Independent logit POS

In this section we show a tight bound on the independent-logit PoS.
The strategy to prove that a certain state is not stochastically stable is to prove that it

is “easy” to leave this state. That is, there exists a tree of small waste which is directed
from this state to all other states. The next lemma says that such a tree can be obtained
by finding a small-waste path leading to a state in which one machine has zero load.

Lemma 2.2 Let s be an allocation in which one machine has zero load. Then there
exists a zero-waste path from s to every other state.

The proof of this lemma is exactly the same argument used in the proof of Theo-
rem 2.1 above (Items 2–3). Next, we introduce some additional notation that will ease
the proofs below.

Compact notation for states and jobs allocations Given a set of jobs weights, we par-
tition these weights among the machines, without distinguishing among the machines
and among players having identical weights. This results in a class of states having
the same cost. For instance, for jobs of size {2, 1, 1, 1} the partition

[2], [1, 1], [1]

denotes a class of allocations in which one machine gets a job of size 2, does not
matter which of the three machines, another machine gets two out of the three jobs
of size 1, and the remaining machine gets the remaining job of size 1. An explicit
representation would be in terms of which player goes to which machine: for players
{p1, p2, p3, p4} = {2, 1, 1, 1} the states

[p1], [p2, p3], [p4], [p1], [p2, p4], [p3],
[p1], [p3, p4], [p1], . . . [p4], [p2, p3], [p1]

correspond to the partition [2], [1, 1], [1]. Finally, we call a job of size s an s-job. 	


Theorem 2.3 For load balancing games,

independent-logit PoS = 2

(
1 − 1

m + 1

)
.

Proof The upper bound follows from the known upper bound on PoA (see Table 1)
and the fact that independent-logit PoS ≤ PoA (Theorem 1.3).

We next prove a matching lower bound, that is,

independent-logit PoS ≥ 2

(
1 − 1

m + 1

)
. (2)
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848 P. Penna

Consider instances with m machines and jobs

⎧
⎨
⎩� − δ,� − δ,�, . . . ,�︸ ︷︷ ︸

m−2

, δ, . . . , δ︸ ︷︷ ︸
lm

⎫
⎬
⎭

where l is a (sufficiently large) positive integer and

� = m

m + 1
, and δ = �

lm
.

First, optimal allocations have cost 1 and can be obtained (only) by allocating one
large job (size � or � − δ) in each machine as follows:

⎡
⎣� − δ, δ, . . . , δ︸ ︷︷ ︸

l

⎤
⎦ ,

⎡
⎣� − δ, δ, . . . , δ︸ ︷︷ ︸

l

⎤
⎦ ,

⎡
⎣�, δ, . . . , δ︸ ︷︷ ︸

l

⎤
⎦ , . . . ,

⎡
⎣�, δ, . . . , δ︸ ︷︷ ︸

l

⎤
⎦ .

(3)

(Note that � + lδ = 1 and the cost is indeed 1.)
Second, there are Nash equilibria of cost 2(� − δ) which are of the form

[� − δ,� − δ] , [δ, . . . , δ] , [�] , . . . , [�] . (4)

We shall prove that only allocations of cost 2(� − δ) are stochastically stable, thus
implying

independent-logit PoS ≥ 2(� − δ) = 2

(
1 − 1

m + 1
− δ

)
.

The lower bound (2) thus follows by taking δ arbitrarily small, i.e., l arbitrarily large.

Claim 2.4 Every allocation with one large job per machine has a zero-waste path to
every other state.

Proof of Claim In any allocation that allocates one large job permachine, there exists a
machinewith load atmost�−δ+lδ = 1−δ. The following sequence of best-response
moves leads to another allocation with one machine having zero load:
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⎡
⎣� − δ, δ, . . . , δ︸ ︷︷ ︸

l

⎤
⎦ ,

⎡
⎣� − δ, δ, . . . , δ︸ ︷︷ ︸

l

⎤
⎦ ,

⎡
⎣�, δ, . . . , δ︸ ︷︷ ︸

l

⎤
⎦ , . . . ,

⎡
⎣�, δ, . . . , δ︸ ︷︷ ︸

l

⎤
⎦

→
⎡
⎣� − δ, δ, . . . , δ︸ ︷︷ ︸

l

⎤
⎦ ,

⎡
⎢⎣� − δ, δ, . . . , δ︸ ︷︷ ︸

l(m−1)

⎤
⎥⎦ , [�] , . . . , [�]

→ [� − δ] , [� − δ] , [�] , . . . ,

⎡
⎣�, δ, . . . , δ︸ ︷︷ ︸

lm

⎤
⎦

→
⎡
⎣� − δ,�, δ, . . . , δ︸ ︷︷ ︸

lm

⎤
⎦ , [� − δ] , [�] , . . . ,

[
empty

]

The claim then follows by Lemma 2.2. 	

Claim 2.5 Every Nash equilibrium of cost 2(� − δ) requires a minimal waste of δ to
leave, and there exists a path of waste δ from such an equilibrium to every other state.

Proof of Claim Every Nash equilibrium of cost 2(� − δ) must allocate two
(� − δ)-jobs to the same machine and thus it must be of the form:

[� − δ,� − δ] , [δ, . . . , δ] , [�] , . . . , [�] .

Since the machine containing all δ-jobs has load �, every move of one (or more)
job(s) requires a waste of δ or larger. To get a path of waste δ, consider the following
transitions:

[� − δ,� − δ] , [δ, . . . , δ] , [�] , . . . , [�]
(waste=δ)→ [� − δ] , [� − δ, δ, . . . , δ] , [�] , . . . , [�]
(waste=0)→ [� − δ,� − δ, δ, . . . , δ] ,

[
empty

]
, [�] , . . . , [�]

and apply Lemma 2.2 to obtain the rest of the path. 	

To complete the proof, let APX denote the approximate allocations of the form (4).

We use the two claims above to prove that for every s /∈ APX

W (s) ≥ |APX|δ (5)

while for every sapx ∈ APX

W (sapx ) ≤ (|APX| − 1)δ. (6)

Inequality (5) follows from the fact that every state in APX requires a waste of δ to
leave, thus any tree towards s must have waste at least |APX|δ. For (6), we argue
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t

s1 s2

22

1
s0

s1 s2 s3

Fig. 1 On the left, an instance of broadcast network design game for which a non-Nash equilibrium is also
stochastically stable. On the right, the possible states for this instance (think arrows represent zero-waste
transitions)

as follows. First we build a partial tree from the |APX| − 1 states in APX to sapx .
Second, we observe that every non-Nash equilibrium has a zero-waste path to some
Nash equilibrium. Third, we show that set of all Nash equilibria is the union of APX
and OPT, where OPT are the allocations of cost 1 (details in Appendix A.2). Then,
by Claim 2.4, the paths from OPT to sapx have zero waste. 	


3 Broadcast network design games

In this section we consider broadcast network design games studied in Kawase and
Makino (2013) and Mamageishvili and Mihalák (2015). In these games, we are given
a network in which edges have costs, and a set of players located in some of the nodes.
The players aim at connecting to a common terminal node t and their strategy is to
choose which route to use. The cost of each edge is then shared equally among all
players using that edge: if ne players select a route containing edge e then each of
them pays a share ce/ne of the cost ce of the edge. The cost for a player is the sum of
the shares of the edges contained in the chosen route, and the social cost is the sum of
the costs of the used edges.

Figure 1 shows an example from Kawase and Makino (2013) in which s1 and s2
denote the two players (their locations). We use this instance to show that also in these
games synchronization is important for the quality of equilibria.

Theorem 3.1 There exists an instance I of a broadcast network design game for
which PoA(I ) = 4/3 but

independent-logit PoA(I ) = 5/3.

In particular, some non-Nash equilibrium is stochastically stable.

Proof Consider the instance in Fig. 1. Each player has two strategies and therefore
there are only four possible states shown in Fig. 1. Note that the Nash equilibria are
s1, s2 and s3, and s1 and s3 can be obtained from s2 by a move of a single player
whose cost remains 2 in both cases (thus the move is a best-response). Therefore,
transitions (s2, s1) and (s2, s3) are zero-waste transitions. Moreover, starting from s2,
if both playersmovewe obtain state s0 and again a zero-waste transition (s2, s0) (being
each move a best-response). Finally, transitions from s0 to any Nash equilibrium are
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zero-waste because the player(s) changing strategy actually improve. Since all tran-
sitions are zero-waste, we have W (s) = 0 for all four states and therefore s0 is
stochastically stable. Since the cost of s0 is 5 and the optimum is 3, the theorem
follows. 	


We next consider broadcast network design games over parallel links: All players
are located on the same node s and the graph consists ofm parallel links (representing
resources of different costs) connecting to the common target t . Let �1 ≤ �2 ≤ · · · ≤
�m be the costs of the links, and let Nk denote the state in which all players choose the
kth link in the order above (in particular N1 is optimal and also a Nash equilibrium).
The following result provides sufficient conditions for which the dynamics will select
only the optimum.

Theorem 3.2 For network broadcast games over parallel links, if there is a unique
shortest link (�1 < �2) or all links have the same cost then

independent-logit PoA = 1.

The proof uses the following radius–coradius argument from Alós-Ferrer and Net-
zer (2010). The basin of attraction of a state s is the set B(s) of all states s′ such that
there is a zero-waste path from s′ to s. The radius R(s) is the minimum number r such
that there is a path of waste r from s to some s′ /∈ B(s). The coradius CR(s) is the
minimum number cr such that, for every s′′ /∈ B(s), there is a path of waste at most
cr from s′′ to s.

Lemma 3.3 (Alós-Ferrer and Netzer 2010) If R(s) > CR(s), then the set of stochas-
tically stable states are exactly those in L(s), where L(s) is the set of s′ ∈ B(s) for
which s ∈ B(s′).

We next apply this result to our problem.

Lemma 3.4 R(N1)−CR(N1) ≥ (�2−�1)H(n),where H(n) = 1+1/2+· · ·+1/n
is the harmonic function.

Proof Let b1 be the smallest positive integer such that if link 1 is chosen by at least
b1 players, then moving to link 1 is a best-response for all other players. That is

�1

b1 + 1
≤ �2

n − b1
.

Claim 3.5 R(N1) ≥
(
�2 − �1

n

)
+

(
�2
2 − �1

n−1

)
+ · · · +

(
�2

n−b1
− �1

b1−1

)
.

Proof of Claim By definition of b1, in order to reach a state not in B(N1) we have to
move n − b1 + 1 players from link 1. The minimal waste path for achieving this is
to move these players one by one and all to link 2. Note that the kth move has waste
�2
k − �1

n−k+2 and the last move (k = n − b1 + 1) has zero waste by definition of b1:

indeed �1
b1

> �2
n−b1+1 . 	
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Claim 3.6 CR(N1) ≤
(
�1 − �2

n

)
+

(
�1
2 − �2

n−1

)
+ · · · +

(
�1
b1

− �2
n−b1+1

)
.

Proof of Claim By definition of b1, starting from any state, it is enough to move at
most b1 players into link 1 to obtain a state is in B(N1). We move players one by
one. Suppose first that initially �1 contains no players. Then the kth move has waste
�1
k − � jk

n jk
, where � jk �= �1 is the link of the kth player wemove, and n jk is the number of

players currently in that link. Since � jk ≥ �2 and n jk ≤ n−k+1 (link 1 contains k−1
before this move is done), the waste of each move is upper bounded by �1

k − �2
n−k+1

and a total of b1 moves is enough. This gives the upper bound in the claim. Finally,
if �1 already contained some players in the initial state, then an even smaller waste is
sufficient (it suffice to consider the first n1 moves above as already done, where n1 is
the initial number of players in �1). 	


By combining the two claims above and rearranging terms, we get R(N1) −
CR(N1) ≥ �2 + �2

2 + · · · + �2
n − (�1 + �1

2 + · · · + �1
n ), which proves the lemma. 	


Proof of Theorem 3.2 If all links have the same cost (�1 = �m) then every state Nk is
optimal. Since these states are also strict Nash equilibrium, the convergence result in
Alós-Ferrer and Netzer (2017) says that the stochastically stable states are contained
in these strict Nash equilibria (formally, the game is weakly acyclic since every other
state is not a Nash equilibrium).

Now consider the case in which there is only one optimal link (�1 < �2), then we
have R(N1) > CR(N1) by Lemma 3.4. Moreover L(N1) = {N1} since this is a strict
Nash equilibrium. We can thus apply Lemma 3.3. 	


4 Conclusion and open questions

In this work we have studied a refinement of the PoA and PoS based on the long-run
equilibria in a general noisy best-response dynamics (a generalization of logit dynam-
ics). The analysis is based on the characterization by Alós-Ferrer and Netzer (2010)
and it provides new insights on the importance of the order in which players revise
their strategies. On the one hand, restricting the analysis only to potential minimizers
may not be significant for other natural dynamics of the same type. On the other hand,
a comparison between the two dynamics is useful to understand the importance of
synchronous moves.

We remark that, in load balancing games, the bounds for independent learning
logit-response dynamics are in a sense the worst possible. First, m is an upper bound
to any configuration, and therefore independent-logit PoA ≤ m. Second, in every
game we have independent-logit PoS ≤ PoA (see Theorem 1.3). In load balancing
games both inequalities are tight.

A natural alternative would be to consider the expected cost at stationary distri-
bution (Auletta et al. 2013). Here the main technical difficulty lies in obtaining the
stationary distribution (see e.g. Auletta et al. 2015 for such an issue). The advantage
of stochastic stability is that it avoids an explicit computation of the stationary dis-
tribution. However, the resulting bounds can be considered too pessimistic in some
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cases. For instance, when each player is selected for revising her strategy with prob-
ability p sufficiently small, the dynamics should be close to the logit dynamics.
Marden and Shamma (2012) suggest to reduce to potential minimizers, that is, to
show that stochastically stable states are potential minimizers also for logit-response
dynamics with more general revision processes. We note that this approach requires
additional hypothesis on the game (or on the players behavior). In particular, one
should assume that players have a unique best response to have convergence to Nash
equilibria (Coucheney et al. 2014; Alós-Ferrer and Netzer 2017). In this case, one
gets independent-logit PoA ≤ PoA, and in some cases the results of Marden and
Shamma (2012) say that independent-logit PoA ≤ logit PoA.

The study of other problems considered in Asadpour and Saberi (2009), Kawase
and Makino (2013) and Mamageishvili and Mihalák (2015) is an interesting direction
for future research. Some of these bounds on potential minimizers are already quite
sophisticated, and stochastic stability in independent learning may require non-trivial
analysis. Estimating independent-logit PoA and PoS is still open even for ring
networks (Mamageishvili and Mihalák 2015).

Acknowledgements I am grateful to Francesco Pasquale for comments on an earlier version of this work,
and to Carlos Alós-Ferrer for bringing Coucheney et al. (2014) and Alós-Ferrer and Netzer (2017) to my
attention.

Appendix A: Postponed proofs and additional details

A.1 Proof of Theorem 1.3

Observe that for any state s̄ which is not a Nash equilibrium there exists a sequence
of best-response moves that reaches some Nash equilibrium s. That is, there exists a
zero-waste path from any non-Nash s̄ to some Nash s.

This implies that W (s̄) ≥ W (s) because any waste tree directed to s̄ can be trans-
formed into a tree of no larger waste directed into s (by adding the path mentioned
above and removing other transitions). This shows that the waste W (s̄) cannot be
smaller than the waste of all Nash equilibria.

A.2 Postponed details for the proof of Theorem 2.3

We need to prove that the set of all Nash equilibria is just the union of OPT and APX,
that is, the allocations of the form (3) and (4), respectively.

We first show that any allocation with a machine containing a �-job and another
large job (size � or � − δ) cannot be a Nash equilibrium. To be a Nash equilibrium,
the load of every other machine should be at least �. This will not be possible given
the remaining jobs: If we have a machine with a �-job and � − δ-job, then the jobs
that are left for the other m − 1 machines are
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⎧
⎨
⎩� − δ,�, . . . , �︸ ︷︷ ︸

m−3

, δ, . . . , δ︸ ︷︷ ︸
lm

⎫
⎬
⎭

where the δ-jobs sum up to�. Thus the total loadwe can distribute is (m−1)�−δ, and
some machine will have load less than �. The same holds if we start with a machine
having two �-jobs.

Finally, we show that every allocation with one large job per machine has a zero-
waste path to some allocation in OPT. Indeed, allocations with one large job per
machine are of the form

⎡
⎢⎣� − δ, δ, . . . , δ︸ ︷︷ ︸

k1

⎤
⎥⎦ ,

⎡
⎢⎣� − δ, δ, . . . , δ︸ ︷︷ ︸

k2

⎤
⎥⎦ ,

⎡
⎢⎣�, δ, . . . , δ︸ ︷︷ ︸

k3

⎤
⎥⎦ , . . . ,

⎡
⎢⎣�, δ, . . . , δ︸ ︷︷ ︸

km

⎤
⎥⎦ .

(7)

To obtain an allocation in OPT it is enough to move the δ-jobs from higher load
machines to lower load machines (or to machines with the same load), until we obtain
k1 = · · · = km = l, that is (3).
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