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Abstract

A traditional assumption in game theory is that players gagoe to one
another—if a player changes strategies, then this changedtegies does
not affect the choice of other players’ strategies. In matuations this is an
unrealistic assumption. We develop a framework for reampabout games
where the players may leanslucentto one another; in particular, a player
may believe that if she were to change strategies, then liee ptayer would
also change strategies. Translucent players may achign#icantly more
efficient outcomes than opaque ones.

Our main result is a characterization of strategies comsistith appro-
priate analogues of common belief of rationalitfommon Counterfactual
Belief of Rationality (CCBRholds if (1) everyone is rational, (2) everyone
counterfactually believes that everyone else is ratioimal, @ll players be-
lieve that everyone else would still be rational eveivifere to switch strate-
gies), (3) everyone counterfactually believes that eveeyelse is rational,
and counterfactually believes that everyone else is ratjamd so on. CCBR
characterizes the set of strategies surviving iterate@vehofminimax dom-
inatedstrategies, where a strategyor player: is minimax dominated by’
if the worst-case payoff for usingo’ is better than the best possible payoff
usingo.
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1 Introduction

Two large firms 1 and 2 need to decide whethecaoperate (Cr sue (S)the
other firm. Suing the other firm always has a small positiveare\wbut being
sued induces a high penalpy more preciselyu(C,C) = (0,0);u(C,S) =
(=p,r);u(S,C) = (r,—p),u(S,S) = (r — p,r — p). In other words, we are
considering an instance of the Prisoner’s Dilemma.

But there is a catch. Before acting, each firms needs to digbesr decision
with its board. Although these discussions are held behiosked doors, there is
always the possibility of the decision being “leaked”; aasequence, the other
company may change its course of action. Furthermore, lutipanies are aware
of this fact. In other words, the players dranslucentto one another.

In such a scenario, it may well be rational for both compatoe®operate. For
instance, consider the following situation.

e Firm i believes that its action is leaked to filln- ¢ with probability e.

e Firm ¢ believes that if the other firrd — ¢ finds out thati is defecting, then
2 — ¢ will also defect.

e Finally, pe > r (i.e., the penalty for being sued is significantly highemtha
the reward of suing the other company).

Neither firm defects, since defection is noticed by the oftar with probability
€, which (according to their beliefs) leads to a harsh punifmThus, the possi-
bility of the players’ actions being leaked to the other plagllows the players to
significantly improve social welfare in equilibrium. (Thésiggests that it may be
mutually beneficial for two countries to spy on each other!)

Even if the Prisoner’s dilemma is not played by corporatiouisby individuals,
each player may believe that if he chooses to defect, hist*guwier defecting may
be visible to the other player. (Indeed, facial and bodilgssuch as increased
pupil size are often associated with deception; see e km#is and Friesen 1959].)
Thus, again, the players may choose to cooperate out oftfetif they defect, the
other player may detect it and act on it.

Our goal is to capture this type of reasoning formally. WeetakBayesian
approach: Each player has a (subjective) probability idigion (describing the
player’s beliefs) over the states of the world. Traditibyyah playeri is said to
be rational in a state if the strategyo; that: plays atw is a best response to
the strategy profile:_; of the other players induced hiis beliefs inwﬂ that is,

'Formally, we assume thathas a distribution on states, and at each state, a puregstyarafile
is played; the distribution on states clearly induces aibistion on strategy profiles for the players
other thari, which we denote:_;.



wi(oi, u—i) > wui(ol, u—;) for all alternative strategies; for i. In our setting,
things are more subtle. Playémay believe that if she were to switch strategies
from o; to o}, then players other tharmight also switch strategies. We capture this
using counterfactualdLewis 1973;[ Stalnaker 196@].Associated with each state
of the worldw, each playet, and f (w, i, o) where playet playsc;,. Note that ifi
changes strategies, then this change in strategies mag staain reaction, leading
to further changes. We can think $fw, i, o)) as the steady-state outcome of this
process: the state that would result Bwitched strategies t@,. Let Flwio)) be
the distribution on strategy profiles ofi (the players other thai) induced byi's
beliefs atv about the steady-state outcome of this process. We sayithaitional

at a statev wherei playso; and has beliefg; if u;(0y, —i) > wi(07, fif(ui07))

for every alternative strategy, for i. Note that we have required the closest-state
function to be deterministic, returning a unique statédheathan a distribution over
states. While this may seem incompatible with the motigpicenario, it does not
seem so implausible in our context that, by taking a rich ghotepresentation
of states, we can assume that a state contains enough iti@mnadout players
to resolve uncertainty about what strategies they wouldifusee player were to
switch strategies.

We are interested in considering analogues to rationalizaim a setting with
translucent players, and providing epistemic charactgoms of them. To do that,
we need some definitions. We say that a playesunterfactually believeg atw
if i believesy holds even ifi were to switch strategie€Common Counterfactual
Belief of Rationality (CCBRRolds if (1) everyone is rational, (2) everyone coun-
terfactually believes that everyone else is rational,(a#.players: believe that
everyone else would still be still rational everi iere to switch strategies), (3) ev-
eryone counterfactually believes that everyone elseimat and counterfactually
believes that everyone else is rational, and so on.

Our main result is a characterization of strategies carsistith CCBR. Roughly

2A different, more direct, approach for capturing our oraimotivating example would be to
consider and analyze an extensive-form var@hof the original normal-form gamé@ that explicitly
models the “leakage” of players’ actions@ allows the player to react to these leakage signals by
choosing a new action 6, which again may be leaked and the players may react to, and.so
Doing this is subtle. We would need to model how players radfo receiving leaked information,
and to believing that there was a change in plan even if infition wasn't leaked. To make matters
worse, it's not clear what it would mean that a player is “inttimg” to perform an action if players
can revise what they do as the result of a leak. Does it meam thlayer will doa if no information
is leaked to him? What if no information is leaked, but he éeds that the other side is planning
to change their plans in any case? In addition, modeling #maegin this way would require a
distribution over leakage signals to be exogenously giasmért of the description of the garGé).
Moreover, player strategies would have to be infinite olsjesince there is no bound on the sequence
of leaks and responses to leaks. In contrast, using coantedls, we can directly reason about the
original (finite) games.



speaking, these results can be summarized as follows:

o Ifthe closest-state function respects “unilateral desret’™—when: switches
strategies, the strategies and beliefs of players othet; teemain the same—
then CCBR characterizes the set of rationalizable stredegi

o If the closest-state function can be arbitrary, CCBR charaes the set of
strategies that survive iterated removalnehimax dominatedtrategies: a
strategyo; is minimax dominated fog if there exists a strategy; for i
such thatmin,, w;(o7, p’;) > max,_, ui(0y, p—;); that is,u; (o, u’;) >
ui(0i, —;) No matter what the strategy profiles; andy’_; are.

We also consider analogues of Nash equilibrium in our ggttimd show that in-
dividually rational strategy profiles that survive itettemoval of minimax dom-
inated strategies characterize such equilibria.
Note that in our approach, each playdras abelief about how the other play-
ers’ strategies would changei ifvere to change strategies, but we do not reqgitioe
explicitly specify how he would respond to other people chiag strategies. The
latter approach, of having each player specify how she refpto her opponents’
actions, goes back to von Neumann and Morgenstern [von Newenrad Morgenstern 1947,
pp. 105-106]:

Indeed, the rules of the ganheprescribe that each player must make
his choice (his personal move) in ignorance of the outcomthef
choice of his adversary. It is nevertheless conceivabledha of the
players, say 2, ” finds out”; i.e., has somehow acquired theviA
edge as to what his adversary’s strategy is. The basis ferkhowl-
edge does not concern us; it may (but need not) be experiemte f
previous plays.

Von Neumann and Morgenstern’s analysis corresponds simgle round of re-
moval of minimax dominated strategies. This approach wekdu explored and
formalized by by Howard[[1971] in the 1960s. In Howard’s aggmh, players
pick a “meta-strategy” that takes as input the strategy béoplayers. It led to
complex formalisms involving infinite hierarchies of metimategies: at the lowest
level, each player specifies a strategy in the original gaahksvel k, each player
specifies a “response rule” (i.e., a meta-strategy) to gpkeyrers’ (k — 1)-level
response rules. Such hierarchical structures have noepraseful when dealing
with applications. Since we do not require players to spe@fction rules, we
avoid the complexities of this approach.

Program equilibria[Tennenholz 2004] anconditional commitmen{&alai, Kalai, Lehrer, and Samet 20;
provide a different approach to avoiding infinite hieraeshi Roughly speaking,
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each player simply specifies grogramIL;; playeri's action is determined by
running:'s program on input the (description of) the programs of thepplay-
ers; that is,i’ action is given byll;(II_;). Tennenholtz[[2004] and Kalai et al.
[2010] show that every (correlated) individually ratiomaitcome can be sustained
in a program equilibrium. Their model, however, assumeslayer's programs
(which should be interpreted as their “plan of action”) acenemonly known to
all players. We dispense with this assumption. It is alsochedir how to define
common belief of rationality in their model; the study of gram equilibria and
conditional commitments has considered only analoguesashiquilibrium.

Perhaps most closely related to our model is a paper by SROGE] that
studies a generalization of Nash equilibrium caltetbendency equilibriavhere
players’ conjectures are described as “conditional pritiieb”. for each action
ay of player 1, player 1 may have a different belief about théacof player 2.
Independently of our work, Salcedo [2013], defines a notiboomjectural ratio-
nalizability that replaces beliefs (over actions) by conjectures desgtras condi-
tional probabilities, as in [Spohn 2003]. Salcedo also @sfia notion of minimax
domination (which he callabsolute domination and characterizes conjectural
rationalizability in terms of strategies surviving itezdtdeletion of minimax dom-
inated strategies.

Counterfactuals have been explored in a game-theoretingetee, for exam-
ple, [Aumann 1995; Halpern 1999; Samet 1996; StalnakerZ@@®branoc 2004].
However, all these papers considered only structures wieithe closest state
wherei changes strategies, all other players’ strategies rerhaisame; thus, these
approaches are not applicable in our context.

2 Counterfactual Structures

Given a gamd’, let ©;(T") denote playei’s pure strategies il (we occasionally
omit the parentheticdl if it is clear from context or irrelevant).

To reason about the gante we consider a class of Kripke structures corre-
sponding td". For simplicity, we here focus on finite structuresfidite probabil-
ity structure M appropriate forl" is a tuple(Q2,s, PR, ..., PR,), whereQ is a
finite set of states; associates with each statec () a pure strategy profilg(w) in
the gamd”; and, for each player, PR, is aprobability assignmenthat associates
with each states € Q2 a probability distributioriPR;(w) on €2, such that

1. PRi(w)([si(w)]ar) = 1, where for each strategy, for playeri, [o;]» =
{w : si(w) = 0;}, wheres;(w) denotes playei’s strategy in the strategy
profile s(w);



2. PR;(w)([PR;(w),i]ar) = 1, where for each probability measureand
playeri, [7,i]a = {w : PRi(w) = 7}.

These assumptions say that playassigns probability 1 to his actual strategy and
beliefs.

To deal with counterfactuals, we augment probability gtrres with a “closest-
state” functionf that associates with each statgplayeri, and strategy, a state
f(w,i,0;) where playei playso’; if o’ is already played i, then the closest state
tow whereo’ is played isv itself. Formally, dinite counterfactual structuré/ ap-
propriate forT is a tuple(Q), s, f,PR1,...,PR,), where(Q,s, PR1,...,PR,)
is a probability structure appropriate fbrand f is a “closest-state” function. We
require that iff (w, i, 0}) = w’, then

1. s,(w) =0;

2. if o, =s;(w), thenw’ = w.

Given a probability assignmef®R; for player:, we definei’s counterfactual
belief at statev (“what i believes would happen if he switcheddpatw) as

PR; o (w)(w') = > PR, (w)(w").

{w"”e: f(w" i,ol)=w'}

Note that the conditions above imply that each play&nows what strategy he
would play if he were to switch; that i®R? , (w)([o]a) = 1.

Let Supp(m) denote the support of the prbbability measuréNote thatSupp (PR, (w)) =
{f(',i,0}) : W' € Supp(PR;(w)}. Moreover, it is almost immediate from the 1

definition that ifPR; (w) = PR;(w'), thenPR; ,(w) = PR ,,(w') for all strate-
gieso] for player:. But it doesnotin general follow that knows his counterfac-
tual beliefs atv, that is, it may not be the case that for all strategiefor players,
PR; , (w)([PR;,,(w),i]a) = 1. Suppose that we think of a state as represent-
ing each pIayer's»Z( anteview of the game. The fact that playg(w) = o; should
then be interpreted ag fntendsto play o; at statew.” With this view, suppose
thatw is a state where; (w) is a conservative strategy, whité is a rather reckless
strategy. It seems reasonable to expectibatubjective beliefs regarding the like-
lihood of various outcomes may depend in part on whether ledsconservative

or reckless frame of mind. We can think BIR{ , (w)(w’) as the probability that

i ascribes, at state, to w’ being the outcome af switching to strategy’; thus,

PR; . (w)(w') represents's evaluation of the likelihood ab’ when he is in a con-
servative frame of mind. This may not be the evaluation theges in states in the
SUPPOIPR{ (w); atall these statesjs in a “reckless” frame of mind. Moreover,
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there may not be a unique reckless frame of mind, soithty not have the same
beliefs at all the states in the supportRRS ,, (w).

M is astrongly appropriate counterfactual structuigit is an appropriate
counterfactual structure and, at every statevery player knows his counterfac-
tual beliefs. As the example above suggests, strong apatepess is a nontrivial
requirement. As we shall see, however, our characterizatisults hold in both
appropriate and strongly appropriate counterfactuattiras.

Note that even in strongly appropriate counterfactuallycitires, we may not
havePR;(f(w.i,0})) = PR{ . (w). We do havePR;(f(w,i,0})) = PR} . (w)
in strongly appropriate counterfactual structureg (b, ¢, o) is in the suppE)rt of
PR, (w) (which will certainly be the case ib is in the support ofPR;(w)).
To see why we may not want to ha®R;(f(w,i,07)) = PR, (w) in general,
even in strongly appropriate counterfactual structuressider the example above
again. Suppose that, in state althoughi does not realize it, he has been given a
drug that affects how he evaluates the state. He thus as@ibbability 0 taw. In
f(w,4,0!) he has also been given the drug, and the drug in particulectafhow
he evaluates outcomes. Thus, beliefs in the statef (w, 4, o}) are quite different
from his beliefs in all states in the supportBR{ , (w).

2.1 Logics for Counterfactual Games

Let £(I") be the language where we start withie and the primitive proposition
RAT; andplay;(o;) for o; € ¥;(I"), and close off under the modal operatd@ts
(player: believes) andB; (player: counterfactually believes) far = 1,...,n,
C B (common belief), and’ B* (common counterfactual belief), conjunction, and
negation. We think ofB; as saying thati‘believesy holds with probability 1”
and B} ¢ as saying f believes thatp holds with probability 1, even if were to
switch strategies”.

Let £° be defined exactly like £ except that we exclude the “countsuial”
modal operators3* andC B*. We first define semantics for’tusing probability
structures (without counterfactuals). We define the notiba formulay being
true at a states in a probability structurél/ (written (M, w) | ) in the standard
way, by induction on the structure @f as follows:

. = true (SO true is vacuously true).

(M, w)

(M, w) E play,(0;) iff o; = s;j(w).

o (M,w) = —piff (M,w) [~ .

(M) £ o Ao/ (M) = pand(M,w) = ¢
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o (M,w) | Bipiff PR;(w)([¢]ar) =1, where[p]a = {w: (M,w) E ¢}.

e (M,w) E RAT; iff s;(w) is a best response given playé&r beliefs regard-
ing the strategies of other players inducedit ;.

e Let EBy (“everyone believes”) be an abbreviation oB1p A ... A B,y;
and defineEB*¢ for all k inductively, by takingEB'¢ to be EBy and
EB*lptobe EB(EB*p).

o (M,w) = CByiff (M,w) = EB*pforallk > 1.

Semantics for £ in counterfactual structures is defined in an identical veaggept
that we redefind? AT; to take into account the fact that playi&r beliefs about the
strategies of playersi may change if changes strategies.

e (M,w) = RAT,; iff for every strategy| for players,

S PRiw) @ us(silw),smiw) = 37 PRE () (W)ui(oh, s_i(w)).

w'eN w'eN
The condition above is equivalent to requiring that

Y PRiw)(wui(si(w),s—i(w')) = Y PRi(w)(W)ui(of s—i(f (&', i, 07)))-

w'eN w’'eN

Note that, in general, this condition is different from reg thats;(w) is a best
response given playéis beliefs regarding the strategies of other players induce
To give the semantics for £ in counterfactual structuresnaw also need to

define the semantics @& andC B*:

» (M,w) = B} yiff for all strategiess; € ("), PR{ ., (w)([¢lar) = 1.
o (M,w) = CB*giff (M,w) = (EB*)Fpforallk > 1.

Itis easy to see that, likB;, B} depends only oils beliefs; as we observed above,
if PRi(w) = PR;(w'), thenPR; ,(w) = PR; (') for all o}, so (M, w) |=
Bryiff (M,w') = Bjo. Itimmediately follows thaB;y = B; B} is valid (i.e.,
true at all states in all structures).

The following abbreviations will be useful in the sequel. tLRAT be an
abbreviation forRAT, A ... A RAT,,, and letplay(&) be an abbreviation for

playy(o1) A ... A play,,(on).



2.2 Common Counterfactual Belief of Rationality

We are interested in analyzing strategies being playedsisstvhere (1) everyone
is rational, (2) everyone counterfactually believes thatrgone else is rational
(i.e., for every playet, i believes that everyone else would still be rational evén if
were to switch strategies), (3) everyone counterfactumdlieves that everyone else
is rational, and counterfactually believes that everydee & rational, and so on.
For each playef, define the formulas*RATi’f (playeri is stronglyk-level rational)
inductively, by takingSRAT to betrue andSRATZ."“rl to be an abbreviation of

RAT; A Bf (NjziSRATY).

Let SRAT" be an abbreviation of_, SRATY.
DefineC'C B R (common counterfactual belief of rationality) as follows:

o (M,w) = COBRIff (M,w) = SRAT*pforall k > 1.

Note that it is critical in the definition OSRATik that we require only that player
1 counterfactually believes that everyone else (i.e., tlagygyk other thar) are
rational, and believe that everyone else is rational, arwhs®layer has no reason
to believe that his own strategy would be rational if he werswitch strategies;
indeed,B7 RAT'; can hold only ifeverystrategy for playet is rational with respect
to s beliefs. This is why we do not defirl@C BR asCB*RATH

We also consider the consequence of just common belief iohedity in our
setting. DefineWRATi’f (player i is weakly k-level rational) just asSRATﬁ,
except thatB; is replaced byB;. An easy induction ot shows thatl’ RATFk+1
implies W RAT* and thati RAT* implies B;(W RAT*)A 1t follows that we
could have equivalently definddf RAT ! as

RAT; A B;i(N}_,W RATY).

Thus, W RAT**1 is equivalent toRAT A EB(W RAT*). As a consequence we
have the following:

Proposition 2.1: (M,w) = CB(RAT) iff (M,w) = WRAT* forall k > 0.

%Interestingly, Samef [1996] essentially considers anaana ofC B* RAT. This works in his
setting since he is considering only events in the past,veite in the future.

“We can also show th&tRAT**! implies SRAT*, but it is not the case th&RAT} implies
B} SRATF, sinceRAT does not implyB; RAT.



3 Characterizing Common Counterfactual Belief of Ra-
tionality

To put our result into context, we first restate the charaagons of rationaliz-
ability given by Tan and Werlang [1988] and Brandenburgeat Bekel [1987] in
our language. We first recall Pearcé’s [1984] definition tibrealizability.

Definition 3.1: A strategyo; for playeri is rationalizableif, for each playerj,
there is a seg; C ¥;(I") and, for each strategy; € Z;, a probability measure
pior 0nY_;(T") whose support is a subset 8f ; such that

e 0, € Z;;and
e for strategyo—;- € Zj, strategya;. is a best response to (the beliefs) .
J

A strategy profiles is rationalizable if every strategy; in the profile is rationaliz-
able.l

Theorem 3.2: [Brandenburger and Dekel 1987; Tan and Werlang 1988 ra-
tionalizable in a gamd’ iff there exists a finite probability structurg/ that is
appropriate forl" and a statev such that( M, w) = play(&5) A CB(RAT).

We now consider counterfactual structures. We here pravictEndition on the
closest-state function under which common (counterfdctuelief of rationality
characterizes rationalizable strategies.

3.1 Counterfactual Structures Respecting Unilateral De\ations

Let M = (Q, f,PR1,...,PR,) be afinite counterfactual structure that is appro-
priate forI'. M respects unilateral deviation§ for every statev € €, playerz,
and strategy’, for playeri, s_;(f(w,i,0')) = s_;j(w) andPR_;(f(w,i,0")) =
PR_;(w); that is, in the closest state éowhere player switches strategies, ev-
erybody else’s strategy and beliefs remain same.

Recall that £ is defined exactly like £ except that we exclude the “counter-
factual” modal operator$3* and C'B*. The following theorem shows that for
formulas in £, counterfactual structures respecting unilateral deratbehave
just as (standard) probability structures.

Theorem 3.3: For everyp € t°, there exists a finite probability structurk/
appropriate forI" and a statew such that(M,w) = ¢ iff there exists a finite
counterfactual structure\/’ (strongly) appropriate fol® that respects unilateral
deviations, and a state’ such that(M’, ') = .
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Proof: For the “if” direction, letM’ = (2, f,PR1,..., PR,) be a finite coun-
terfactual structure that is counterfactually approprifatr I' (but not necessarily
strongly counterfactually appropriate) and respectsatemal deviations. Define
M = (Q,PR4,...,PR,). Clearly M is a finite probability structure appropriate
for I'; it follows by a straightforward induction on the lengththat (M’ w) = ¢
iff (M,w) = .

For the “only-if” direction, letM = (Q, PR, ..., PR,) be a finite probabil-
ity structure, and let € Q2 be a state such thah/,w) = ¢. We assume without
loss of generality that for each strategy profitethere exists some staie, € Q
such thas(wg) = ¢’ and for each playef, PR;(wz)(wz) = 1. (If such a state
does not exist, we can always add it.)

We define a finite counterfactual structut® = (¢, ', PR},...,PR)) as
follows:

o U ={(7w):& eDD),u Q)
o §'(¢,u) =7
f((@ ') i,07) = (0], 0L;),0")
PR, is defined as follows.
= PRi(s(w),w)(s(w"),w") = PRi(w)(w")
—If & #s(w'), PRi(¢",w') (¢, ws) = 1.

It follows by construction thad/’ is strongly appropriate fdr and respects unilat-
eral deviations. Furthermore, it follows by an easy indaurcton the length of the
formula ' that for every state) € Q, (M, w) | ¢ iff (M, (s(w),w)) E ¢'. 1

We can now use Theoreln 8.3 together with the standard ckawation of
common belief of rationality (Theorem 3.2) to charactebo¢h common belief of
rationality and common counterfactual belief of ratiotyali

Theorem 3.4: The following are equivalent:
(a) 7 is rationalizable inl";

(b) there exists a finite counterfactual structuréthat is appropriate fol" and
respects unilateral deviations, and a stateuch that M/, w) = play(&)A>,
W RAT} for all k > 0;

(c) there exists a finite counterfactual structuvé that is strongly appropriate
for I and respects unilateral deviations and a statesuch that(M,w) =
play(5) Ny WRATY for all k > 0;
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(d) there exists a finite counterfactual structuvéthat is appropriate fol” and
respects unilateral deviations and a statsuch tha{ M, w) = play(G)A>,
SRATF for all k > 0;

(e) there exists a finite counterfactual structuvg that is strongly appropriate
for I and respects unilateral deviations and a statesuch that(M,w) =
play (&) A, SRATF for all k > 0.

Proof: The equivalence of (a), (b), and (c) is immediate from Thed82, Theo-
rem[3.3, and Propositidn 2.1. We now prove the equivalendb)aind (d). Con-
sider an counterfactual structuké that is appropriate far and respects unilateral
deviations. The result follows immediately once we show tbaall statesv and
alli > 0, (M,w) = WRATF iff (M,w) = SRATF. An easy induction on
k shows thatSRATF = W RATF is valid in all counterfactual structures, not
just ones that respect unilateral deviations. We prove tinwarse in structures
that respect unilateral deviations by induction fon The base case holds triv-
ially. For the induction step, suppose thiat, w) = W RATF; that is,(M,w) |
RAT; N Bi(/\#iWRAZ}?“‘l). Thus, for allw’ € Supp(PR;(w)), we have that
(M,w") E /\#iWRATf‘l. Thus, by the induction hypothesi$)M,w') =
/\#iSRATf‘l. Since, as we have observed, the truth of a formula of the form
By at a statev” depends only on’s beliefs atw” and the truth ofRAT; de-
pends only ory’s strategy and beliefs at”, it easily follows that, ifj has the same
beliefs and plays the same strategyatandws, then (M, w) = SRAT! " iff

(M,wy) = SRATF™. Since(M, ') |= A2 SRATS ™" andM respect unilateral
deviations, for all strategies, it follows that(M, f(w',4,07)) |= AjSRAT) .
Thus, (M,w) = RAT; A Bf(Aj£SRATF™"), as desired. The argument that
(c) is equivalent to (e) is identical; we just need to consiteongly appropriate
counterfactual structures rather than just appropriatmtesfactual structured.

Remark 3.5 Note that, in the proofs of Theorems3.3 3.4, a weakeritond
on the counterfactual structure would suffice, namely, W&testrict to counter-
factual structures where, for every statec Q, player:, and strategy, for player

1, the projection ofPR;d (w) onto strategies and beliefs of players is equal to
the projection ofPRi(w)Lonto strategies and beliefs of players. That is, every
player's counterfactual beliefs regarding other playsigategies and beliefs are
the same as the player’s actual beliefs.
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3.2 lterated Minimax Domination

We now characterize common counterfactual belief of rafipnwithout putting
any restrictions on the counterfactual structures (othem them being appropriate,
or strongly appropriate). Our characterization is basedleas that come from the
characterization of rationalizability. It is well knownahrationalizability can be
characterized in terms of an iterated deletion procedutesravat each stage, a
strategyo for playeri is deleted if there are no beliefs thatould have about
the undeleted strategies for the players other thdrat would makes rational
[Pearce 1984]. Thus, there is a deletion procedure thatnwapplied repeatedly,
results in only the rationalizable strategies, that is, dtrategies that are played
in states where there is common belief of rationality, bdefyg undeleted. We
now show that there is an analogous way of characterizingrommcounterfactual
belief of rationality.

The key to our characterization is the notiomeihimax dominatedtrategies.

Definition 3.6: Strategyo; for playeri in gamelI' is minimax dominated with
respect tax’ ; C ¥_,(I) iff there exists a strategy; € X;(I") such that

. /
Tjrggli u;(oj, T—i) > Lr?eagii wi(og, 7—;).

In other words, playef’s strategyo is minimax dominated with respect ¥ ;
iff there exists a strategy’ such that the worst-case payoff for playérhe usess’
is strictly better than his best-case payoff if he usegiven that the other players
are restricted to using a strategy3if ;.

In the standard setting, if a strategyfor player: is dominated by’ then we
would expect that a rational player will never playst becauses; is a strictly
better choice. As is well known, i; is dominated by, then there are no beliefs
that: could have regarding the strategies used by the other glagsmording to
whichg; is a best response [Pearce 1984]. This is no longer the case setting.
For example, in the standard setting, cooperation is daeunby defection in
Prisoner’s Dilemma. But in our setting, suppose that pldybelieves that if he
cooperates, then the other player will cooperate, while ifléfects, then the other
player will defect. Then cooperation is not dominated byedgén.

So when can we guarantee that playing a strategy is irrdtioraur setting?
This is the case only if the strategy is minimax dominated:; is minimax domi-
nated by, there are no counterfactual beliefs thabuld have that would justify
playing o;. Conversely, ifo; is not minimax dominated by any strategy, then there
are beliefs and counterfactual beliefs thabuld have that would justify playing
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o;. Specifically,i; could believe that the players i are playing the strategy pro-
file that givesi the best possible utility when he plays and that if he switches to
another strategy’, the other players will play the strategy profile that giveke
worst possible utility given that he is playing.

Note that we consider only domination by pure strategiess #asy to con-
struct examples of strategies that are not minimax domihiayeany pure strategy,
but are minimax dominated by a mixed strategy. Our charzet#&n works only if
we restrict to domination by pure strategies. The chariaetiéon, just as with the
characterization of rationalizability, involves iterdtdeletion, but now we do not
delete dominated strategies in the standard sense, buhexrdominated strate-
gies.

Definition 3.7: DefineNSD’ (I') inductively: letNSDY(I') = X; and letNSD (I
consist of the strategies MSD* (") not minimax dominated with respectdsD* (I").
Strategyo survivesk rounds of iterated deletion of minimax dominated strategie
for playeri if o € NSD¥(I"). Strategyo for playeri survives iterated deletion of
minimax dominated strategies if it survivesounds of iterated deletion of strongly
dominated for alk, that is, ifo € NSD°(I") = Ny NSD¥(I'). i

In the deletion procedure above, at each step we rerathvstrategies that
are minimax dominated; that is we perform a “maximal”’ deletat each step.
As we now show, the set of strategies that survives iteragdetidn is actually
independent of the deletion order.

Let SO,...,S™ be sets of strategy profilesS = (S°,5',...,5™) is ater-
minating deletion sequender T if, for j = 0,...,m — 1, S/t c S7 (note
that we useC to mean proper subset) and all playéqrssf”rl contains all strate-
gies for player not minimax dominated with respectﬂii (but may also conta