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Abstract

A traditional assumption in game theory is that players are opaque to one
another—if a player changes strategies, then this change instrategies does
not affect the choice of other players’ strategies. In many situations this is an
unrealistic assumption. We develop a framework for reasoning about games
where the players may betranslucentto one another; in particular, a player
may believe that if she were to change strategies, then the other player would
also change strategies. Translucent players may achieve significantly more
efficient outcomes than opaque ones.

Our main result is a characterization of strategies consistent with appro-
priate analogues of common belief of rationality.Common Counterfactual
Belief of Rationality (CCBR)holds if (1) everyone is rational, (2) everyone
counterfactually believes that everyone else is rational (i.e., all playersi be-
lieve that everyone else would still be rational even ifi were to switch strate-
gies), (3) everyone counterfactually believes that everyone else is rational,
and counterfactually believes that everyone else is rational, and so on. CCBR
characterizes the set of strategies surviving iterated removal ofminimax dom-
inatedstrategies, where a strategyσ for playeri is minimax dominated byσ′

if the worst-case payoff fori usingσ′ is better than the best possible payoff
usingσ.
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1 Introduction

Two large firms 1 and 2 need to decide whether tocooperate (C)or sue (S)the
other firm. Suing the other firm always has a small positive reward, but being
sued induces a high penaltyp; more precisely,u(C,C) = (0, 0);u(C,S) =
(−p, r);u(S,C) = (r,−p), u(S, S) = (r − p, r − p). In other words, we are
considering an instance of the Prisoner’s Dilemma.

But there is a catch. Before acting, each firms needs to discuss their decision
with its board. Although these discussions are held behind closed doors, there is
always the possibility of the decision being “leaked”; as a consequence, the other
company may change its course of action. Furthermore, both companies are aware
of this fact. In other words, the players aretranslucentto one another.

In such a scenario, it may well be rational for both companiesto cooperate. For
instance, consider the following situation.

• Firm i believes that its action is leaked to firm2− i with probability ǫ.

• Firm i believes that if the other firm2 − i finds out thati is defecting, then
2− i will also defect.

• Finally, pǫ > r (i.e., the penalty for being sued is significantly higher than
the reward of suing the other company).

Neither firm defects, since defection is noticed by the otherfirm with probability
ǫ, which (according to their beliefs) leads to a harsh punishment. Thus, the possi-
bility of the players’ actions being leaked to the other player allows the players to
significantly improve social welfare in equilibrium. (Thissuggests that it may be
mutually beneficial for two countries to spy on each other!)

Even if the Prisoner’s dilemma is not played by corporationsbut by individuals,
each player may believe that if he chooses to defect, his “guilt” over defecting may
be visible to the other player. (Indeed, facial and bodily cues such as increased
pupil size are often associated with deception; see e.g., [Ekman and Friesen 1969].)
Thus, again, the players may choose to cooperate out of fear that if they defect, the
other player may detect it and act on it.

Our goal is to capture this type of reasoning formally. We take a Bayesian
approach: Each player has a (subjective) probability distribution (describing the
player’s beliefs) over the states of the world. Traditionally, a playeri is said to
be rational in a stateω if the strategyσi that i plays atω is a best response to
the strategy profileµ−i of the other players induced byi’s beliefs inω;1 that is,

1Formally, we assume thati has a distribution on states, and at each state, a pure strategy profile
is played; the distribution on states clearly induces a distribution on strategy profiles for the players
other thani, which we denoteµ−i.
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ui(σi, µ−i) ≥ ui(σ
′
i, µ−i) for all alternative strategiesσ′

i for i. In our setting,
things are more subtle. Playeri may believe that if she were to switch strategies
fromσi toσ′

i, then players other thani might also switch strategies. We capture this
usingcounterfactuals[Lewis 1973; Stalnaker 1968].2 Associated with each state
of the worldω, each playeri, andf(ω, i, σ′

i) where playeri playsσ′
i. Note that ifi

changes strategies, then this change in strategies may start a chain reaction, leading
to further changes. We can think off(ω, i, σ′

i) as the steady-state outcome of this
process: the state that would result ifi switched strategies toσ′

i. Let µf(ω,i,σ′

i
) be

the distribution on strategy profiles of−i (the players other thani) induced byi’s
beliefs atω about the steady-state outcome of this process. We say thati is rational
at a stateω wherei playsσi and has beliefsµi if ui(σi, µ−i) ≥ ui(σ

′
i, µf(ω,i,σ′

i)
)

for every alternative strategyσ′
i for i. Note that we have required the closest-state

function to be deterministic, returning a unique state, rather than a distribution over
states. While this may seem incompatible with the motivating scenario, it does not
seem so implausible in our context that, by taking a rich enough representation
of states, we can assume that a state contains enough information about players
to resolve uncertainty about what strategies they would useif one player were to
switch strategies.

We are interested in considering analogues to rationalizability in a setting with
translucent players, and providing epistemic characterizations of them. To do that,
we need some definitions. We say that a playeri counterfactually believesϕ atω
if i believesϕ holds even ifi were to switch strategies.Common Counterfactual
Belief of Rationality (CCBR)holds if (1) everyone is rational, (2) everyone coun-
terfactually believes that everyone else is rational (i.e., all playersi believe that
everyone else would still be still rational even ifi were to switch strategies), (3) ev-
eryone counterfactually believes that everyone else is rational, and counterfactually
believes that everyone else is rational, and so on.

Our main result is a characterization of strategies consistent with CCBR. Roughly

2A different, more direct, approach for capturing our original motivating example would be to
consider and analyze an extensive-form variantG′ of the original normal-form gameG that explicitly
models the “leakage” of players’ actions inG, allows the player to react to these leakage signals by
choosing a new action inG, which again may be leaked and the players may react to, and soon.
Doing this is subtle. We would need to model how players respond to receiving leaked information,
and to believing that there was a change in plan even if information wasn’t leaked. To make matters
worse, it’s not clear what it would mean that a player is “intending” to perform an actiona if players
can revise what they do as the result of a leak. Does it mean that a player will doa if no information
is leaked to him? What if no information is leaked, but he believes that the other side is planning
to change their plans in any case? In addition, modeling the game in this way would require a
distribution over leakage signals to be exogenously given (as part of the description of the gameG′).
Moreover, player strategies would have to be infinite objects, since there is no bound on the sequence
of leaks and responses to leaks. In contrast, using counterfactuals, we can directly reason about the
original (finite) gameG.
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speaking, these results can be summarized as follows:

• If the closest-state function respects “unilateral deviations”—wheni switches
strategies, the strategies and beliefs of players other than i remain the same—
then CCBR characterizes the set of rationalizable strategies.

• If the closest-state function can be arbitrary, CCBR characterizes the set of
strategies that survive iterated removal ofminimax dominatedstrategies: a
strategyσi is minimax dominated fori if there exists a strategyσ′

i for i
such thatminµ′

−i
ui(σ

′
i, µ

′
−i) > maxµ−i

ui(σi, µ−i); that is,ui(σ′
i, µ

′
−i) >

ui(σi, µ−i) no matter what the strategy profilesµ−i andµ′
−i are.

We also consider analogues of Nash equilibrium in our setting, and show that in-
dividually rational strategy profiles that survive iterated removal of minimax dom-
inated strategies characterize such equilibria.

Note that in our approach, each playeri has abelief about how the other play-
ers’ strategies would change ifi were to change strategies, but we do not requirei to
explicitly specify how he would respond to other people changing strategies. The
latter approach, of having each player specify how she responds to her opponents’
actions, goes back to von Neumann and Morgenstern [von Neumann and Morgenstern 1947,
pp. 105–106]:

Indeed, the rules of the gameΓ prescribe that each player must make
his choice (his personal move) in ignorance of the outcome ofthe
choice of his adversary. It is nevertheless conceivable that one of the
players, say 2, ” finds out”; i.e., has somehow acquired the knowl-
edge as to what his adversary’s strategy is. The basis for this knowl-
edge does not concern us; it may (but need not) be experience from
previous plays.

Von Neumann and Morgenstern’s analysis corresponds to asingle round of re-
moval of minimax dominated strategies. This approach was further explored and
formalized by by Howard [1971] in the 1960s. In Howard’s approach, players
pick a “meta-strategy” that takes as input the strategy of other players. It led to
complex formalisms involving infinite hierarchies of meta-strategies: at the lowest
level, each player specifies a strategy in the original game;at levelk, each player
specifies a “response rule” (i.e., a meta-strategy) to otherplayers’ (k − 1)-level
response rules. Such hierarchical structures have not proven useful when dealing
with applications. Since we do not require players to specify reaction rules, we
avoid the complexities of this approach.

Program equilibria[Tennenholz 2004] andconditional commitments[Kalai, Kalai, Lehrer, and Samet 2010]
provide a different approach to avoiding infinite hierarchies. Roughly speaking,
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each playeri simply specifies aprogramΠi; player i’s action is determined by
running i’s program on input the (description of) the programs of the other play-
ers; that is,i′ action is given byΠi(Π−i). Tennenholtz [2004] and Kalai et al.
[2010] show that every (correlated) individually rationaloutcome can be sustained
in a program equilibrium. Their model, however, assumes that player’s programs
(which should be interpreted as their “plan of action”) are commonly known to
all players. We dispense with this assumption. It is also notclear how to define
common belief of rationality in their model; the study of program equilibria and
conditional commitments has considered only analogues of Nash equilibrium.

Perhaps most closely related to our model is a paper by Spohn [2003] that
studies a generalization of Nash equilibrium calleddependency equilibria, where
players’ conjectures are described as “conditional probabilities”: for each action
a1 of player 1, player 1 may have a different belief about the action of player 2.
Independently of our work, Salcedo [2013], defines a notion of conjectural ratio-
nalizability that replaces beliefs (over actions) by conjectures described as condi-
tional probabilities, as in [Spohn 2003]. Salcedo also defines a notion of minimax
domination (which he callsabsolute domination), and characterizes conjectural
rationalizability in terms of strategies surviving iterated deletion of minimax dom-
inated strategies.

Counterfactuals have been explored in a game-theoretic setting; see, for exam-
ple, [Aumann 1995; Halpern 1999; Samet 1996; Stalnaker 1996; Zambrano 2004].
However, all these papers considered only structures where, in the closest state
wherei changes strategies, all other players’ strategies remain the same; thus, these
approaches are not applicable in our context.

2 Counterfactual Structures

Given a gameΓ, let Σi(Γ) denote playeri’s pure strategies inΓ (we occasionally
omit the parentheticalΓ if it is clear from context or irrelevant).

To reason about the gameΓ, we consider a class of Kripke structures corre-
sponding toΓ. For simplicity, we here focus on finite structures. Afinite probabil-
ity structureM appropriate forΓ is a tuple(Ω, s,PR1, . . . ,PRn), whereΩ is a
finite set of states;s associates with each stateω ∈ Ω a pure strategy profiles(ω) in
the gameΓ; and, for each playeri, PRi is aprobability assignmentthat associates
with each stateω ∈ Ω a probability distributionPRi(ω) onΩ, such that

1. PRi(ω)([[si(ω)]]M ) = 1, where for each strategyσi for playeri, [[σi]]M =
{ω : si(ω) = σi}, wheresi(ω) denotes playeri’s strategy in the strategy
profile s(ω);
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2. PRi(ω)([[PRi(ω), i]]M ) = 1, where for each probability measureπ and
playeri, [[π, i]]M = {ω : PRi(ω) = π}.

These assumptions say that playeri assigns probability 1 to his actual strategy and
beliefs.

To deal with counterfactuals, we augment probability structures with a “closest-
state” functionf that associates with each stateω, playeri, and strategyσ′

i, a state
f(ω, i, σi) where playeri playsσ′; if σ′ is already played inω, then the closest state
toω whereσ′ is played isω itself. Formally, afinite counterfactual structureM ap-
propriate forΓ is a tuple(Ω, s, f,PR1, . . . ,PRn), where(Ω, s,PR1, . . . ,PRn)
is a probability structure appropriate forΓ andf is a “closest-state” function. We
require that iff(ω, i, σ′

i) = ω′, then

1. si(ω
′) = σ′;

2. if σ′
i = si(ω), thenω′ = ω.

Given a probability assignmentPRi for playeri, we definei’s counterfactual
belief at stateω (“what i believes would happen if he switched toσ′

i atω) as

PRc
i,σ′

i
(ω)(ω′) =

∑

{ω′′∈Ω:f(ω′′,i,σ′

i)=ω′}

PRi(ω)(ω
′′).

Note that the conditions above imply that each playeri knows what strategy he
would play if he were to switch; that is,PRc

i,σ′

i
(ω)([[σ′

i]]M ) = 1.

LetSupp(π) denote the support of the probability measureπ. Note thatSupp(PRc
i,σ′

i
(ω)) =

{f(ω′, i, σ′
i) : ω′ ∈ Supp(PRi(ω)}. Moreover, it is almost immediate from the

definition that ifPRi(ω) = PRi(ω
′), thenPRc

i,σ′

i
(ω) = PRc

i,σ′

i
(ω′) for all strate-

giesσ′
i for playeri. But it doesnot in general follow thati knows his counterfac-

tual beliefs atω, that is, it may not be the case that for all strategiesσ′
i for playeri,

PRc
i,σ′

i
(ω)([[PRc

i,σ′

i
(ω), i]]M ) = 1. Suppose that we think of a state as represent-

ing each player’sex anteview of the game. The fact that playersi(ω) = σi should
then be interpreted as “i intendsto play σi at stateω.” With this view, suppose
thatω is a state wheresi(ω) is a conservative strategy, whileσ′

i is a rather reckless
strategy. It seems reasonable to expect thati’s subjective beliefs regarding the like-
lihood of various outcomes may depend in part on whether he isin a conservative
or reckless frame of mind. We can think ofPRc

i,σ′

i
(ω)(ω′) as the probability that

i ascribes, at stateω, to ω′ being the outcome ofi switching to strategyσ′
i; thus,

PRc
i,σ′

i
(ω)(ω′) representsi’s evaluation of the likelihood ofω′ when he is in a con-

servative frame of mind. This may not be the evaluation thati uses in states in the
supportPRc

i,σ′

i
(ω); at all these states,i is in a “reckless” frame of mind. Moreover,
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there may not be a unique reckless frame of mind, so thati may not have the same
beliefs at all the states in the support ofPRc

i,σ′

i
(ω).

M is a strongly appropriate counterfactual structureif it is an appropriate
counterfactual structure and, at every stateω, every playeri knows his counterfac-
tual beliefs. As the example above suggests, strong appropriateness is a nontrivial
requirement. As we shall see, however, our characterization results hold in both
appropriate and strongly appropriate counterfactual structures.

Note that even in strongly appropriate counterfactually structures, we may not
havePRi(f(ω, i, σ

′
i)) = PRc

i,σ′

i
(ω). We do havePRi(f(ω, i, σ

′
i)) = PRc

i,σ′

i
(ω)

in strongly appropriate counterfactual structures iff(ω, i, σ′
i) is in the support of

PRc
i,σ′

i
(ω) (which will certainly be the case ifω is in the support ofPRi(ω)).

To see why we may not want to havePRi(f(ω, i, σ
′
i)) = PRc

i,σ′

i
(ω) in general,

even in strongly appropriate counterfactual structures, consider the example above
again. Suppose that, in stateω, althoughi does not realize it, he has been given a
drug that affects how he evaluates the state. He thus ascribes probability 0 toω. In
f(ω, i, σ′

i) he has also been given the drug, and the drug in particular affects how
he evaluates outcomes. Thus,i’s beliefs in the statef(ω, i, σ′

i) are quite different
from his beliefs in all states in the support ofPRc

i,σ′

i
(ω).

2.1 Logics for Counterfactual Games

Let Ł(Γ) be the language where we start withtrue and the primitive proposition
RAT i andplay i(σi) for σi ∈ Σi(Γ), and close off under the modal operatorsBi

(player i believes) andB∗
i (player i counterfactually believes) fori = 1, . . . , n,

CB (common belief), andCB∗ (common counterfactual belief), conjunction, and
negation. We think ofBiϕ as saying that “i believesϕ holds with probability 1”
andB∗

i ϕ as saying “i believes thatϕ holds with probability 1, even ifi were to
switch strategies”.

Let Ł0 be defined exactly like Ł except that we exclude the “counterfactual”
modal operatorsB∗ andCB∗. We first define semantics for Ł0 using probability
structures (without counterfactuals). We define the notionof a formulaϕ being
true at a stateω in a probability structureM (written (M,w) |= ϕ) in the standard
way, by induction on the structure ofϕ, as follows:

• (M,ω) |= true (sotrue is vacuously true).

• (M,ω) |= play i(σi) iff σi = si(ω).

• (M,ω) |= ¬ϕ iff (M,ω) 6|= ϕ.

• (M,ω) |= ϕ ∧ ϕ′ iff (M,ω) |= ϕ and(M,ω) |= ϕ′.
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• (M,ω) |= Biϕ iff PRi(ω)([[ϕ]]M ) = 1, where[[ϕ]]M = {ω : (M,ω) |= ϕ}.

• (M,ω) |= RAT i iff si(ω) is a best response given playeri’s beliefs regard-
ing the strategies of other players induced byPRi.

• Let EBϕ (“everyone believesϕ”) be an abbreviation ofB1ϕ ∧ . . . ∧ Bnϕ;
and defineEBkϕ for all k inductively, by takingEB1ϕ to beEBϕ and
EBk+1ϕ to beEB(EBkϕ).

• (M,ω) |= CBϕ iff (M,ω) |= EBkϕ for all k ≥ 1.

Semantics for Ł0 in counterfactual structures is defined in an identical way,except
that we redefineRAT i to take into account the fact that playeri’s beliefs about the
strategies of players−i may change ifi changes strategies.

• (M,ω) |= RAT i iff for every strategyσ′
i for playeri,

∑

ω′∈Ω

PRi(ω)(ω
′)ui(si(ω), s−i(ω

′)) ≥
∑

ω′∈Ω

PRc
i,σ′

i
(ω)(ω′)ui(σ

′
i, s−i(ω

′)).

The condition above is equivalent to requiring that

∑

ω′∈Ω

PRi(ω)(ω
′)ui(si(ω), s−i(ω

′)) ≥
∑

ω′∈Ω

PRi(ω)(ω
′)ui(σ

′
i, s−i(f(ω

′, i, σ′
i))).

Note that, in general, this condition is different from requiring thatsi(ω) is a best
response given playeri’s beliefs regarding the strategies of other players induced
by PRi.

To give the semantics for Ł in counterfactual structures, wenow also need to
define the semantics ofB∗

i andCB∗:

• (M,ω) |= B∗
i ϕ iff for all strategiesσ′

i ∈ Σi(Γ), PRc
i,σ′

i
(ω)([[ϕ]]M ) = 1.

• (M,ω) |= CB∗ϕ iff (M,ω) |= (EB∗)kϕ for all k ≥ 1.

It is easy to see that, likeBi, B∗
i depends only oni’s beliefs; as we observed above,

if PRi(ω) = PRi(ω
′), thenPRc

i,σ′

i
(ω) = PRc

i,σ′

i
(ω′) for all σ′

i, so (M,ω) |=

B∗
i ϕ iff (M,ω′) |= B∗

i ϕ. It immediately follows thatB∗
i ϕ ⇒ BiB

∗
i ϕ is valid (i.e.,

true at all states in all structures).
The following abbreviations will be useful in the sequel. Let RAT be an

abbreviation forRAT 1 ∧ . . . ∧ RATn, and letplay(~σ) be an abbreviation for
play1(σ1) ∧ . . . ∧ playn(σn).
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2.2 Common Counterfactual Belief of Rationality

We are interested in analyzing strategies being played at states where (1) everyone
is rational, (2) everyone counterfactually believes that everyone else is rational
(i.e., for every playeri, i believes that everyone else would still be rational even ifi
were to switch strategies), (3) everyone counterfactuallybelieves that everyone else
is rational, and counterfactually believes that everyone else is rational, and so on.
For each playeri, define the formulasSRAT k

i (playeri is stronglyk-level rational)
inductively, by takingSRAT 0

i to betrue andSRAT k+1
i to be an abbreviation of

RAT i ∧B∗
i (∧j 6=iSRAT k

j ).

Let SRAT k be an abbreviation of∧n
j=1SRAT k

j .
DefineCCBR (common counterfactual belief of rationality) as follows:

• (M,ω) |= CCBR iff (M,ω) |= SRAT kϕ for all k ≥ 1.

Note that it is critical in the definition ofSRAT k
i that we require only that player

i counterfactually believes that everyone else (i.e., the players other thani) are
rational, and believe that everyone else is rational, and soon. Playeri has no reason
to believe that his own strategy would be rational if he were to switch strategies;
indeed,B∗

i RAT i can hold only ifeverystrategy for playeri is rational with respect
to i’s beliefs. This is why we do not defineCCBR asCB∗RAT .3

We also consider the consequence of just common belief of rationality in our
setting. DefineWRAT k

i (player i is weakly k-level rational) just asSRAT k
i ,

except thatB∗
i is replaced byBi. An easy induction onk shows thatWRAT k+1

implies WRAT k and thatWRAT k implies Bi(WRAT k).4 It follows that we
could have equivalently definedWRAT k+1

i as

RAT i ∧Bi(∧
n
j=1WRAT k

j ).

Thus,WRAT k+1 is equivalent toRAT ∧ EB(WRAT k). As a consequence we
have the following:

Proposition 2.1: (M,ω) |= CB(RAT ) iff (M,ω) |= WRAT k for all k ≥ 0.

3Interestingly, Samet [1996] essentially considers an analogue ofCB∗
RAT . This works in his

setting since he is considering only events in the past, not events in the future.
4We can also show thatSRAT k+1 impliesSRAT k, but it is not the case thatSRAT k

i implies
B∗

i SRAT k
i , sinceRAT does not implyB∗

i RAT .
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3 Characterizing Common Counterfactual Belief of Ra-
tionality

To put our result into context, we first restate the characterizations of rationaliz-
ability given by Tan and Werlang [1988] and Brandenburger and Dekel [1987] in
our language. We first recall Pearce’s [1984] definition of rationalizability.

Definition 3.1: A strategyσi for player i is rationalizable if, for each playerj,
there is a setZj ⊆ Σj(Γ) and, for each strategyσ′

j ∈ Zj , a probability measure
µσ′

j
onΣ−j(Γ) whose support is a subset ofZ−j such that

• σi ∈ Zi; and

• for strategyσ′
j ∈ Zj, strategyσ′

j is a best response to (the beliefs)µσ′

j
.

A strategy profile~σ is rationalizable if every strategyσi in the profile is rationaliz-
able.

Theorem 3.2: [Brandenburger and Dekel 1987; Tan and Werlang 1988]~σ is ra-
tionalizable in a gameΓ iff there exists a finite probability structureM that is
appropriate forΓ and a stateω such that(M,ω) |= play(~σ) ∧ CB(RAT ).

We now consider counterfactual structures. We here providea condition on the
closest-state function under which common (counterfactual) belief of rationality
characterizes rationalizable strategies.

3.1 Counterfactual Structures Respecting Unilateral Deviations

Let M = (Ω, f,PR1, . . . ,PRn) be a finite counterfactual structure that is appro-
priate forΓ. M respects unilateral deviationsif, for every stateω ∈ Ω, playeri,
and strategyσ′

i for playeri, s−i(f(ω, i, σ
′)) = s−i(ω) andPR−i(f(ω, i, σ

′)) =
PR−i(ω); that is, in the closest state toω where playeri switches strategies, ev-
erybody else’s strategy and beliefs remain same.

Recall that Ł0 is defined exactly like Ł except that we exclude the “counter-
factual” modal operatorsB∗ andCB∗. The following theorem shows that for
formulas in Ł0, counterfactual structures respecting unilateral deviations behave
just as (standard) probability structures.

Theorem 3.3: For everyϕ ∈ Ł0, there exists a finite probability structureM
appropriate forΓ and a stateω such that(M,ω) |= ϕ iff there exists a finite
counterfactual structureM ′ (strongly) appropriate forΓ that respects unilateral
deviations, and a stateω′ such that(M ′, ω′) |= ϕ.

10



Proof: For the “if” direction, letM ′ = (Ω, f,PR1, . . . ,PRn) be a finite coun-
terfactual structure that is counterfactually appropriate for Γ (but not necessarily
strongly counterfactually appropriate) and respects unilateral deviations. Define
M = (Ω,PR1, . . . ,PRn). ClearlyM is a finite probability structure appropriate
for Γ; it follows by a straightforward induction on the length ofϕ that(M ′, ω) |= ϕ
iff (M,ω) |= ϕ.

For the “only-if” direction, letM = (Ω,PR1, . . . ,PRn) be a finite probabil-
ity structure, and letω ∈ Ω be a state such that(M,ω) |= ϕ. We assume without
loss of generality that for each strategy profile~σ′ there exists some stateω~σ′ ∈ Ω
such thats(ω~σ′) = ~σ′ and for each playeri, PRi(ω~σ′)(ω~σ′) = 1. (If such a state
does not exist, we can always add it.)

We define a finite counterfactual structureM ′ = (Ω′, f ′,PR′
1, . . . ,PR′

n) as
follows:

• Ω′ = {(~σ′, ω′) : ~σ′ ∈ Σ(Γ), ω′ ∈ Ω};

• s
′(~σ′, ω′) = ~σ′;

• f((~σ′, ω′), i, σ′′
i ) = ((σ′′

i , σ
′
−i), ω

′)

• PR′
i is defined as follows.

– PR′
i(s(ω

′), ω′)(s(ω′′), ω′′) = PRi(ω
′)(ω′′)

– If ~σ′ 6= s(ω′), PR′
i(~σ

′, ω′)(~σ′, ω~σ′) = 1.

It follows by construction thatM ′ is strongly appropriate forΓ and respects unilat-
eral deviations. Furthermore, it follows by an easy induction on the length of the
formulaϕ′ that for every stateω ∈ Ω, (M,ω) |= ϕ′ iff (M ′, (s(ω), ω)) |= ϕ′.

We can now use Theorem 3.3 together with the standard characterization of
common belief of rationality (Theorem 3.2) to characterizeboth common belief of
rationality and common counterfactual belief of rationality.

Theorem 3.4:The following are equivalent:

(a) ~σ is rationalizable inΓ;

(b) there exists a finite counterfactual structureM that is appropriate forΓ and
respects unilateral deviations, and a stateω such that(M,ω) |= play(~σ)∧n

i=1

WRAT k
i for all k ≥ 0;

(c) there exists a finite counterfactual structureM that is strongly appropriate
for Γ and respects unilateral deviations and a stateω such that(M,ω) |=
play(~σ) ∧n

i=1 WRAT k
i for all k ≥ 0;
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(d) there exists a finite counterfactual structureM that is appropriate forΓ and
respects unilateral deviations and a stateω such that(M,ω) |= play(~σ)∧n

i=1

SRAT k
i for all k ≥ 0;

(e) there exists a finite counterfactual structureM that is strongly appropriate
for Γ and respects unilateral deviations and a stateω such that(M,ω) |=
play(~σ) ∧n

i=1 SRAT k
i for all k ≥ 0.

Proof: The equivalence of (a), (b), and (c) is immediate from Theorem 3.2, Theo-
rem 3.3, and Proposition 2.1. We now prove the equivalence of(b) and (d). Con-
sider an counterfactual structureM that is appropriate forΓ and respects unilateral
deviations. The result follows immediately once we show that for all statesω and
all i ≥ 0, (M,ω) |= WRAT k

i iff (M,ω) |= SRAT k
i . An easy induction on

k shows thatSRAT k
i ⇒ WRAT k

i is valid in all counterfactual structures, not
just ones that respect unilateral deviations. We prove the converse in structures
that respect unilateral deviations by induction onk. The base case holds triv-
ially. For the induction step, suppose that(M,ω) |= WRAT k

i ; that is,(M,ω) |=
RAT i ∧ Bi(∧j 6=iWRAT k−1

j ). Thus, for allω′ ∈ Supp(PRi(ω)), we have that

(M,ω′) |= ∧j 6=iWRAT k−1
j . Thus, by the induction hypothesis,(M,ω′) |=

∧j 6=iSRAT k−1
j . Since, as we have observed, the truth of a formula of the form

B∗
jϕ at a stateω′′ depends only onj’s beliefs atω′′ and the truth ofRAT j de-

pends only onj’s strategy and beliefs atω′′, it easily follows that, ifj has the same
beliefs and plays the same strategy atω1 andω2, then(M,ω1) |= SRAT k−1

j iff

(M,ω2) |= SRAT k−1
j . Since(M,ω′) |= ∧j 6=iSRAT k−1

j andM respect unilateral

deviations, for all strategiesσ′
i, it follows that(M,f(ω′, i, σ′

i)) |= ∧j 6=iSRAT k−1
j .

Thus, (M,ω) |= RAT i ∧ B∗
i (∧j 6=iSRAT k−1

j ), as desired. The argument that
(c) is equivalent to (e) is identical; we just need to consider strongly appropriate
counterfactual structures rather than just appropriate counterfactual structures.

Remark 3.5: Note that, in the proofs of Theorems 3.3 and 3.4, a weaker condition
on the counterfactual structure would suffice, namely, thatwe restrict to counter-
factual structures where, for every stateω ∈ Ω, playeri, and strategyσ′

i for player
i, the projection ofPRc

i,σ′

i
(ω) onto strategies and beliefs of players−i is equal to

the projection ofPRi(ω) onto strategies and beliefs of players−i. That is, every
player’s counterfactual beliefs regarding other players’strategies and beliefs are
the same as the player’s actual beliefs.
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3.2 Iterated Minimax Domination

We now characterize common counterfactual belief of rationality without putting
any restrictions on the counterfactual structures (other than them being appropriate,
or strongly appropriate). Our characterization is based onideas that come from the
characterization of rationalizability. It is well known that rationalizability can be
characterized in terms of an iterated deletion procedure, where at each stage, a
strategyσ for player i is deleted if there are no beliefs thati could have about
the undeleted strategies for the players other thani that would makeσ rational
[Pearce 1984]. Thus, there is a deletion procedure that, when applied repeatedly,
results in only the rationalizable strategies, that is, thestrategies that are played
in states where there is common belief of rationality, beingleft undeleted. We
now show that there is an analogous way of characterizing common counterfactual
belief of rationality.

The key to our characterization is the notion ofminimax dominatedstrategies.

Definition 3.6: Strategyσi for player i in gameΓ is minimax dominated with
respect toΣ′

−i ⊆ Σ−i(Γ) iff there exists a strategyσ′
i ∈ Σi(Γ) such that

min
τ−i∈Σ′

−i

ui(σ
′
i, τ−i) > max

τ−i∈Σ′

−i

ui(σi, τ−i).

In other words, playeri’s strategyσ is minimax dominated with respect toΣ′
−i

iff there exists a strategyσ′ such that the worst-case payoff for playeri if he usesσ′

is strictly better than his best-case payoff if he usesσ, given that the other players
are restricted to using a strategy inΣ′

−i.
In the standard setting, if a strategyσi for playeri is dominated byσ′

i then we
would expect that a rational player will never playerσi, becauseσ′

i is a strictly
better choice. As is well known, ifσi is dominated byσ′

i, then there are no beliefs
that i could have regarding the strategies used by the other players according to
whichσi is a best response [Pearce 1984]. This is no longer the case inour setting.
For example, in the standard setting, cooperation is dominated by defection in
Prisoner’s Dilemma. But in our setting, suppose that player1 believes that if he
cooperates, then the other player will cooperate, while if he defects, then the other
player will defect. Then cooperation is not dominated by defection.

So when can we guarantee that playing a strategy is irrational in our setting?
This is the case only if the strategy is minimax dominated. Ifσi is minimax domi-
nated byσ′

i, there are no counterfactual beliefs thati could have that would justify
playingσi. Conversely, ifσi is not minimax dominated by any strategy, then there
are beliefs and counterfactual beliefs thati could have that would justify playing
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σi. Specifically,i could believe that the players in−i are playing the strategy pro-
file that givesi the best possible utility when he playsσi, and that if he switches to
another strategyσ′

i, the other players will play the strategy profile that givesi the
worst possible utility given that he is playingσ′

i.
Note that we consider only domination by pure strategies. Itis easy to con-

struct examples of strategies that are not minimax dominated by any pure strategy,
but are minimax dominated by a mixed strategy. Our characterization works only if
we restrict to domination by pure strategies. The characterization, just as with the
characterization of rationalizability, involves iterated deletion, but now we do not
delete dominated strategies in the standard sense, but minimax dominated strate-
gies.

Definition 3.7: DefineNSDk
j (Γ) inductively: letNSD0

j(Γ) = Σj and letNSDk+1
j (Γ)

consist of the strategies inNSDk
j (Γ) not minimax dominated with respect toNSDk

−j(Γ).
Strategyσ survivesk rounds of iterated deletion of minimax dominated strategies
for player i if σ ∈ NSDk

i (Γ). Strategyσ for playeri survives iterated deletion of
minimax dominated strategies if it survivesk rounds of iterated deletion of strongly
dominated for allk, that is, ifσ ∈ NSD∞

i (Γ) = ∩kNSD
k
i (Γ).

In the deletion procedure above, at each step we removeall strategies that
are minimax dominated; that is we perform a “maximal” deletion at each step.
As we now show, the set of strategies that survives iterated deletion is actually
independent of the deletion order.

Let S0, . . . , Sm be sets of strategy profiles.~S = (S0, S1, . . . , Sm) is a ter-
minating deletion sequencefor Γ if, for j = 0, . . . ,m − 1, Sj+1 ⊂ Sj (note
that we use⊂ to mean proper subset) and all playersi, Sj+1

i contains all strate-
gies for playeri not minimax dominated with respect toSj

−i (but may also contain
some strategies that are minimax dominated), andSm

i does not contain any strate-
gies that are minimax dominated with respect toSm

−i. A setT of strategy profiles
hasambiguousterminating sets if there exist two terminating deletion sequences
~S = (T, S1, . . . , Sm), ~S′ = (T, S′

1, . . . , S
′
m′) such thatSm 6= S′

m′ ; otherwise, we
say thatT has aunique terminating set.

Proposition 3.8: No (finite) set of strategy profiles has ambiguous terminating sets.

Proof: Let T be a set of strategy profiles of least cardinality that has ambiguous
terminating deletion sequences~S = (T, S1, . . . , Sm) and ~S′ = (T, S′

1, . . . , S
′
m′),

whereSm 6= S′
m′ . Let T ′ be the set of strategies that are not minimax dominated

with respect toT . ClearlyT ′ 6= ∅ and, by definition,T ′ ⊆ S1 ∩ S′
1. SinceT ′,

S1, andS′
1 all have cardinality less than that ofT , they must all have unique ter-

minating sets; moreover, the terminating sets must be the same. For consider a
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terminating deletion sequence starting atT ′. We can get a terminating deletion se-
quence starting atS1 by just appending this sequence toS1 (or taking this sequence
itself, if S1 = T ′). We can similarly get a terminating deletion sequence starting
atS′

1. Since all these terminating deletion sequences have the same final element,
this must be the unique terminating set. But(S1, . . . , Sm) and(S′

1, . . . , S
′
m′) are

terminating deletion sequences withSm 6= S′
m′ , a contradiction.

Corollary 3.9: The set of strategies that survives iterated deletion of minimax dom-
inated strategies is independent of the deletion order.

Remark 3.10: Note that in the definition ofNSDk
i (Γ), we remove all strategies

that are dominated by some strategy inΣi(Γ), not just those dominated by some
strategy inNSDk−1

i (Γ). Nevertheless, the definition would be equivalent even if
we had considered only dominating strategies inNSDk−1

i (Γ). For suppose not. Let
k be the smallest integer such that there exists some strategyσi ∈ NSDk−1

i (Γ) that
is minimax dominated by a strategyσ′

i /∈ NSDk−1
i (Γ), but there is no strategy in

NSDk−1
i (Γ) that dominatesσi. That is,σ′

i was deleted in some previous iteration.
Then there exists a sequence of strategiesσ0

i , . . . , σ
q
i and indicesk0 < k1 < . . . <

kq = k − 1 such thatσ0
i = σ′

i, σ
j
i ∈ NSD

kj
i (Γ), and for all0 ≤ j < q, σj

i is

minimax dominated byσj+1
i with respect toNSD

kj−1
i (Γ). SinceNSDk−2(Γ) ⊆

NSDj(Γ) for j ≤ k− 2, an easy induction onj shows thatσq
i minimax dominates

σq−j with respect toNSDk−2 for all 0 < j ≤ q. In particular,σq minimax
dominatesσ0

i = σ′ with respect toNSDk−2.

The following example shows that iteration has bite: there exist a 2-player
game where each player hask actions andk − 1 rounds of iterations are needed.

Example 3.11: Consider a two-player game, where both players announce a value
between 1 andk. Both players receive in utility the smallest of the values an-
nounced; additionally, the player who announces the largervalue get a reward of
p = 0.5.5 That is,u(x, y) = (y + p, y) if x > y, (x, x+ p) if y > x, and(x, x) if
x = y. In the first step of the deletion process, 1 is deleted for both players; playing
1 can yield a max utility of1, whereas the minimum utility of any other action is
1.5. Once 1 is deleted, 2 is deleted for both players: 2 can yield amax utility of
2, and the min utility of any other action (once 1 is deleted) is 2.5. Continuing this
process, we see that only(k, k) survives.

5This game can be viewed a a reverse variant of the Traveler’s dilemma [Basu 1994], where the
player who announces the smaller value gets the reward.
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3.3 Characterizing Iterated Minimax Domination

We now show that strategies surviving iterated removal of minimax dominated
strategies characterize the set of strategies consistent with common counterfactual
belief of rationality in (strongly) appropriate counterfactual structures. As a first
step, we define a “minimax” analogue of rationalizability.

Definition 3.12: A strategy profile~σ in gameΓ is minimax rationalizableif, for
each playeri, there is a setZi ⊆ Σi(Γ) such that

• σi ∈ Zi;

• for every strategyσ′
i ∈ Zi and strategyσ′′

i ∈ Σi(Γ),

max
τ−i∈Z−i

ui(σ
′
i, τ−i) ≥ min

τ−i∈Z−i

ui(σ
′′
i , τ−i).

Theorem 3.13:The following are equivalent:

(a) ~σ ∈ NSD∞(Γ);

(b) ~σ is minimax rationalizable inΓ;

(c) there exists a finite counterfactual structureM that is strongly appropriate
for Γ and a stateω such that(M,ω) |= play(~σ)∧n

i=1SRAT k
i for all k ≥ 0;

(d) for all playersi, there exists a finite counterfactual structureM that is ap-
propriate forΓ and a stateω such that(M,ω) |= play i(σi) ∧ SRAT k

i for
all k ≥ 0.

Proof: We prove that (a) implies (b) implies (c) implies (d) implies(a). We first in-
troduce some helpful notation. Recall thatargmaxx f(x) = {y : for all z, f(z) ≤
f(y)}; argminx f(x) is defined similarly. For us,x ranges over pure strategies or
pure strategy profiles, and we will typically be interested in considering some ele-
ment of the set, rather than the whole set. Which element we take does not matter.
We thus assume that there is some order on the set of pure strategies and strategy
profiles, and take theargmax∗x f(x) to be the maximum element ofargmaxx f(x)
with respect to this order;argmin∗x f(x) is defined similarly.
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(a) ⇒ (b): Let K be an integer such thatNSDK(Γ) = NSDK+1(Γ); such aK
must exist since the game is finite. It also easily follows that for each playerj,
NSDK

j (Γ) is non-empty: in iterationk + 1, noNSDk
j -maximin strategy, that is,

no strategy inargmaxσ′

j∈NSD
k
j (Γ)

minτ−j∈NSD
k
j (Γ)

uj(σ
′
j , τ−j), is deleted, since

no maximin strategy is minimax dominated by a strategy inNSDk
j (Γ) (recall that

by Remark 3.10, it suffices to consider domination by strategies in NSDk
j (Γ)).

Let Z ′
j = NSDK

j (Γ). It immediately follows that the setsZ ′
1, . . . ,Z

′
n satisfy the

conditions of Definition 3.12.

(b) ⇒ (c): Suppose that~σ is minimax rationalizable. LetZ1, . . . ,Zn be the sets
guaranteed to exist by Definition 3.12. LetW i = {(~σ, i) | ~σ ∈ Z−i × Σi}, and
let W0 = {(~σ, 0) | ~σ ∈ Z1 × . . . × Zn}. Think of W0 as states where everyone
is (higher-level) rational, and ofW i as “counterfactual” states where playeri has
changed strategies. In states inW0, each playerj assigns probability 1 to the other
players choosing actions thatmaximizej’s utility (given his action). On the other
hand, in states inW i, wherei 6= 0, player i assigns probability 1 to the other
players choosing actions thatminimizei’s utility, whereas all other playerj 6= i
still assign probability 1 to other players choosing actions that maximizej’s utility.

Define a structureM = (Ω, f, s,PR1, . . . ,PRn), where

• Ω = ∪i∈{0,1,...,n}W
i;

• s(~σ′, i) = ~σ′;

• PRj(~σ
′, i)(~σ′′, i′) =







1 if i = j = i′, σ′
i = σ′′

i , andσ′′
−i = argmin∗τ−i∈Z−i

uj(σ
′
i, τ−i),

1 if i 6= j, i′ = 0, andσ′
j = σ′′

j , andσ′′
−j = argmax∗τ−j∈Z−j

uj(σ
′
j , τ−j),

0 otherwise;

• f((~σ′, i), j, σ′′
j ) =

{

(~σ′, i) if σ′
j = σ′′

j ,
((σ′′

j , τ
′
−j), j) otherwise, whereτ ′−j = argmin∗τ−j∈Z−j

uj(σ
′
j, τ−j).

It follows by inspection thatM is strongly appropriate forΓ. We now prove by
induction onk that, for allk ≥ 1 all i ∈ {0, 1, . . . , n}, and all statesω ∈ W i,
(M,ω) |= ∧j 6=iSRAT k

j .
For the base case(k = 1), sinceSRAT 1

j is logically equivalent toRAT j,
we must show that ifω ∈ W i, then(M,ω) |= ∧j 6=iRAT j . Suppose thatω =
(~σ′, i) ∈ W i. If i 6= j, then atω, playerj places probability 1 on the true state
beingω′ = (~σ′′, 0), whereσ′′

j = σ′
j andσ′′

−j = argmax∗τ−j∈Z−j
uj(σ

′
j, τ−j).

Playerj must be rational, since if there exists some strategyτ ′j such thatuj(~σ′′) <
∑

ω′∈Ω PRc
j,τ ′j

(ω)(ω′)uj(τ
′
j , s−j(ω

′)), then the definition ofPRj guarantees that
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uj(~σ
′′) < uj(τ

′
j , ~τ

′′
−j), whereτ ′′j = argmin∗τ−j∈Z−j

uj(σ
′
j , τ−j). If this inequality

held, thenτ ′j would minimax dominateσ′
j , contradicting the assumption thatσ′

j ∈
Zj . For the induction step, suppose that the result holds fork; we show that it
holds fork + 1. Suppose thatω ∈ W i andj 6= i. By construction, the support of
PRj(ω) is a subset ofW0; by the induction hypothesis, it follows that(M,ω) |=
Bj(∧

n
j′=1SRAT k

j′). Moreover, by construction, it follows that for all playersj and
all strategiesσ′

j 6= si(ω), the support ofPRc
j,σ′

j
(ω) is a subset ofWj . By the

induction hypothesis, it follows that for allj 6= i, (M,ω) |= B∗
j (∧j′ 6=jSRAT k

j′).
Finally, it follows from the induction hypothesis that for all j 6= i, (M,ω) |=
SRAT k

j . SinceSRAT k
j impliesRAT j, it follows that for all j 6= i, (M,ω) |=

RAT j ∧B∗
j (∧j′ 6=jSRAT k

j′), which proves the induction step.

(c) ⇒ (d): The implication is trivial.

(d) ⇒ (a): We prove an even stronger statement: For allk ≥ 0, if there exists
a finite counterfactual structureMk that is appropriate forΓ and a stateω such
that (Mk, ω) |= play i(σi) ∧ SRAT k

i , thenσi ∈ NSDk
i (Γ).

6 We proceed by
induction onk. The result clearly holds ifk = 0. Suppose that the result holds
for k − 1 for k ≥ 1; we show that it holds fork. LetMk = (Ω, f, s,P1, . . . ,Pn)
be a finite counterfactual structure that is appropriate forΓ and a stateω such that
(Mk, ω′) |= play i(σi)∧SRAT k

i . ReplacingSRAT k
i by its definition, we get that

(Mk, ω′) |= play i(σi) ∧ RAT i ∧B∗
i (∧j 6=iSRAT k−1

j ).

By definition ofB∗
i , it follows that for all strategiesσ′

i for playeri and allω′′ such
thatPRc

i,σ′

i
(ω′)(ω′′) > 0,

(Mk, ω′′) |= ∧j 6=iSRAT k−1
j ,

so by the induction hypothesis, it follows that for allω′′ such thatPRc
i,σ′

i
(ω′)(ω′′) >

0, we haves−i(ω
′′) ∈ NSDk−1

−i (Γ). Since(Mk, ω′) |= play i(σi) ∧ RAT i, it fol-

lows thatσi cannot be minimax dominated with respect toNSDk−1
−i (Γ). Since, for

all j′ > 1, NSDj′

−i(Γ) ⊆ NSD
j′−1
−i (Γ), it follows that, for allk′ < k, σi is not

minimax dominated with respect toNSDk′

−i(Γ). Thus,σi ∈ NSDk
i (Γ).

6The converse also holds; we omit the details.
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4 Characterizing Analogues of Nash Equilibrium

In this section, we consider analogues of Nash equilibrium in our setting. This
allows us to relate our approach to the work of Tennenholtz [2004] and Kalai et
al. [2010]. In the standard setting, if a strategy profile~σ is a Nash equilibrium,
then there exists a state where~σ is played, common belief of rationality holds, and
additionally, the strategy profile is (commonly) known to the players. To study ana-
logues of Nash equilibrium, we thus investigate the effect of adding assumptions
about knowledge of the players’ strategies.

We consider several ways of formalizing this. The weakest approach is to
simply require that the actual strategies used by the players is known.

• (M,ω) |= KS iff, for all playersi,

PRi(ω)([[s−i(ω)]]M ) = 1.

KS does not require that playeri knows how players−i will respond toi switching
strategies. A stronger condition would be to require not only that every playeri
knows the strategies of the other players, but also how they respond toi switching
strategies.

• (M,ω) |= KR iff, for all playersi and strategiesσ′
i for i,

PRc
i,σ′

i
(ω)([[s−i(f(ω, i, σ

′
i))]]M ) = 1.

Clearly,KR impliesKS (by simply consideringσ′
i = si(ω)). An even stronger

condition is to require that the players know the true state of the world.

• (M,ω) |= KW iff, for all playersi,

PRi(ω)(ω) = 1.

Note that if all players know the true state of the world, thenthey also counterfac-
tually know the true state of the world: for every playeri and every strategyσ′

i for
playeri,

PRc
i,σ′

i
(ω)(f(ω, i, σ′

i)) = 1.

It follows that KW implies KR and thus alsoKS. Additionally, note thatKW
impliesEB(KW), soKW also impliesCB(KW).

We now characterizeCCBR in structures satisfying the conditions above. We
say that a strategy profile~σ is individually rational (IR) if for every playeri in the
gameΓ,

ui(~σ) ≥ max
σ′

i∈Σi(Γ)
min

τ−i∈Σ−i(Γ)
ui(σ

′, τ−i).
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Although every IR strategy profile is contained inNSD1(Γ), it is not necessar-
ily contained inNSD2(Γ). That is, IR strategies may not survive two rounds of
deletion of minimax dominated strategies. To see this, consider the gameΓ in
Example 3.11. Both players’ maximin payoff is1.5, so every strategy profile in
NSD1(Γ) = {(x, y) | 2 ≤ x, y ≤ k} is IR, butNSD2(Γ) does not contain(2, 2).

As the following simple example shows, not every strategy profile that survives
deletion iterated deletion of minimax dominated strategies is IR.

Example 4.1: Consider the game with payoffs given in the table below.

c d

a (100, 0) (100, 0)
b (150, 0) (50, 0)

All strategy profiles survive iterated deletion of minimax dominated strategies, but
(b, d) is not individually rational since playinga always guarantees the row player
utility 100.

Let IR(Γ) denote the set of IR strategy profiles inΓ, and letIR(Z1 × . . . ×
Zn,Γ) = IR(Γ′) whereΓ′ is the subgame ofΓ obtained by restricting playeri’s
strategy set toZi. That is, IR(Z1 × . . . × Zn,Γ) is the set of strategies~σ ∈
Z1 × . . .×Zn such that for every playeri,

ui(~σ) ≥ max
σ′

i∈Zi

min
τ−i∈Z−i

ui(σ
′, τ−i).

A stronger way of capturing individual rationality of subgames is to require that the
condition above hold even if the max is taken over everyσ′

i ∈ Σ(Γ) (as opposed to
only σ′

i ∈ Zi). More precisely, letIR′(Z1 × . . . × Zn,Γ) be the set of strategies
~σ ∈ Z1 × . . .×Zn such that, for all playersi,

ui(~σ) ≥ max
σ′

i∈Σi(Γ)
min

τ−i∈Z−i

ui(σ
′, τ−i).

Our characterization ofCCBR in the presence of (common) knowledge of
strategies follows.

Theorem 4.2:The following are equivalent:

(a) ~σ ∈ IR(NSD∞(Γ),Γ);

(b) ~σ ∈ IR′(NSD∞(Γ),Γ);
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(c) ~σ is minimax rationalizable and~σ ∈ IR′(Z1×. . .×Zn,Γ), whereZ1, . . . ,Zn

are the sets of strategies guaranteed to exists by the definition of minimax ra-
tionalizability;

(d) there exists a finite counterfactual structureM that is strongly appropriate
for Γ and a stateω such that(M,ω) |= KW ∧ play(~σ) ∧n

i=1 SRAT k
i for

everyk ≥ 0;

(e) there exists a finite counterfactual structureM that is appropriate forΓ and
a stateω such that(M,ω) |= KS ∧ play(~σ) ∧n

i=1 SRAT k
i for everyk ≥ 0.

Proof: Again, we prove that (a) implies (b) implies (c) implies (d) implies (e)
implies (a).

(a) ⇒ (b): We show that if~σ ∈ IR(NSDk(Γ),Γ) then~σ ∈ IR′(NSDk(Γ),Γ).
The implication then follows from the fact that since the game is finite there exists
someK such thatNSDK(Γ) = NSD∞(Γ).

Assume by way of contradiction that~σ ∈ IR(NSDk(Γ),Γ) but~σ /∈ IR′(NSDk(Γ),Γ);
that is, there exists a playeri and a strategyσ′

i /∈ NSDk
i (Γ) such that

min
τ−i∈NSD

k
−i(Γ)

ui(σ
′
i, τ−i) > ui(~σ).

By the argument in Remark 3.10, there exists a strategyσ′′
i ∈ NSDk

i (Γ) such that
ui(σ

′′
i , τ

′′
−i) > ui(σ

′
i, τ

′
−i) for all τ ′′−i, τ

′
−i ∈ NSDk

−i(Γ). It follows that

min
τ−i∈NSD

k
−i(Γ)

ui(σ
′′
i , τ−i) > ui(~σ).

Thus,~σ /∈ IR(NSDk(Γ),Γ).

(b) ⇒ (c): The implication follows in exactly the same way as in the proof that
(a) implies (b) in Theorem 3.13.

(c) ⇒ (d): Suppose that~σ is minimax rationalizable. LetZ1, . . . ,Zn be the sets
guaranteed to exist by Definition 3.12, and suppose that~σ ∈ IR′(Z1×Zn,Γ). De-
fine the setsW i as in the proof of Theorem 3.13. Define the structureM just as in
the proof of Theorem 3.13, except that for all playersi, letPRi((~σ, 0))((~σ

′, i′)) =
1 in case~σ′ = ~σ andi′ = 0. Clearly(M, (~σ, 0)) |= KW. It follows using the same
arguments as in the proof of Theorem 3.13 thatM is strongly appropriate and that
(M, (~σ, 0) |= play(~σ) ∧n

i=1 SRAT k
i for everyk ≥ 0; we just need to rely on the

(strong) IR property of~σ to prove the base case of the induction.
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(d) ⇒ (e): The implication is trivial.

(e) ⇒ (a): Recall that since the game is finite, there exists a constantK such
thatNSDK−1(Γ) = NSDK(Γ) = NSD∞(Γ). We show that if there exists a
finite counterfactual structureM that is appropriate forΓ and a stateω such that
(M,ω) |= KS ∧ play(~σ) ∧n

i=1 SRATK
i , then~σ ∈ IR(NSDK(Γ),Γ).

Consider some stateω such that(M,ω) |= KS ∧ play(~σ) ∧n
i=1 SRATK

i . By
Theorem 3.13, it follows that~σ ∈ NSDK(Γ). For each playeri, it additionally
follows that(M,ω) |= play(~σ) ∧EB(play(~σ)) ∧RAT i ∧B∗

i (∧j 6=iSRATK−1
j ).

By Theorem 3.13, it follows that for every strategyσ′
i for i, the support of the pro-

jection ofPRc
i,σ′

i
(ω) onto strategies for players−i is a subset ofNSDK−1

−i (Γ) =

NSDK
−i(Γ). Thus, we have that for everyσ′

i, there existsτ−i ∈ NSDK
−i(Γ) such

that ui(~σ) ≥ ui(σ
′
i, τ−i), which means that~σ is IR in the subgame induced by

restricting the strategy set toNSDK(Γ).

It is worth comparing Theorem 4.2 to the results of Tennenholtz [2004] and
Kalai et al. [2010] on program equilibria/equilibria with conditional commitments.
Recall that these papers focus on 2-player games. In Tennenholtz’s model, each
player i deterministically picks a programΠi; player i’s action isΠi(Π−i). In
the two-player case, a program equilibrium is a pair of programs(Π1,Π2) such
that no player can improve its utility by unilaterally changing its program. In this
model any IR strategy profile(a1, a2) can be sustained in a program equilibrium:
each player uses the programΠ, whereΠ(Π′) outputsai if Π′ = Π, and other-
wise “punishes” the other player using his minmax strategy.(Tennenholtz extends
this result to show that any mixed IR strategy profile can be sustained in a pro-
gram equilibrium, by considering randomizing programs; Kalai et al. show that all
correlated IR strategy profiles can be sustained, by allowing the players to pick a
distribution over programs.) In contrast, in our model, a smaller set of strategy
profiles can be sustained. This difference can be explained as follows. In the pro-
gram equilibrium model a player may “punish” the other player using an arbitrary
action (e.g., using minimax punishment) although this may be detrimental for him.
Common counterfactual belief of rationality disallows such punishments. More
precisely, it allows a playeri to punish other players only by using a strategy that is
rational for playeri. On the other hand, as we now show, if we require only com-
mon belief (as opposed to counterfactual belief) in rationality, then any IR strategy
can be sustained in an equilibrium in our model.

Theorem 4.3:The following are equivalent:

(a) ~σ ∈ IR(Γ);
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(b) there exists a finite counterfactual structureM that is strongly appropriate
for Γ and a stateω such that(M,ω) |= KW ∧ play(~σ) ∧CB(RAT );

(c) there exists a finite counterfactual structureM that is appropriate forΓ and
a stateω such that(M,ω) |= KS ∧ play(~σ) ∧ CB(RAT ).

Proof: Again, we prove that (a) implies (b) implies (c) implies (a).

(a) ⇒ (b): Define a structureM = (Ω, f, s,PR1, . . . ,PRn), where

• Ω = Σ(Γ);

• s(~σ′) = ~σ′;

• PRj(~σ
′)(~σ′) = 1.

• f(~σ′, i, σ′′
j ) =

{

~σ′ if σ′
j = σ′′

j ,
(σ′′

j , τ
′
−j) otherwise, whereτ ′−j = argmin∗τ−j∈Σ−j(Γ)

uj(σ
′
j , τ−j).

It follows thatM is strongly appropriate forΓ and that(M,~σ) |= KW. Moreover,
(M,~σ) |= RAT since~σ is individually rational; furthermore, since each player
considers only the state~σ possible at~σ, it follows that(M,~σ) |= CB(RAT ).

(b) ⇒ (c): The implication is trivial.

(c)⇒ (a): Suppose thatM = (Ω, f, s,PR1, . . . ,PRn) is a finite counterfactual
structure appropriate forΓ, and(M,ω) |= KW∧play(~σ)∧CB(RAT ). It follows
that for each playeri, (M,ω) |= play(~σ)∧EB(play(~σ))∧RAT i. Thus, we have
that for all strategiesσ′

i, there existsτ−i ∈ Σ−i(Γ) such thatui(~σ) ≥ ui(σ
′
i, τ−i),

which means that~σ is IR.

5 Discussion

We have introduced a game-theoretic framework for analyzing scenarios where
a player may believe that if he were to switch strategies, this intention to switch
may be detected by the other players, resulting in them also switching strategies.
Our formal model allows players’ counterfactual beliefs (i.e., their beliefs about
the state of the world in the event that they switch strategies) to be arbitrary—they
may be completely different from the players’ actual beliefs.
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We may also consider a more restricted model where we requirethat a player
i’s counterfactual beliefs regarding other players’ strategies and beliefs isǫ-close to
playeri’s actual beliefs in total variation distance7—that is, for every stateω ∈ Ω,
player i, and strategyσ′

i for playeri, the projection ofPRc
i,σ′

i
(ω) onto strategies

and beliefs of players−i is ǫ-close to the projection ofPRi(ω) onto strategies and
beliefs of players−i.

We refer to counterfactual structures satisfying this property asǫ-counterfactual
stuctures. Roughly speaking,ǫ-counterfactual structures restrict to scenarios where
players are not “too” transparent to one another; this captures the situation when
a player assigns only some “small” probability to its switchin action being no-
ticed by the other players.0-counterfactual structures behave just as counterfactual
structures that respect unilateral deviations: common counterfactual belief of ra-
tionality in 0-counterfactual structures characterizes rationalizable strategies (see
Remark 3.5). The general counterfactual structures investigated in this paper are
1-counterfactual structures (that is, we do not impose any conditions on players’
counterfactual beliefs). We remark that although our characterization results rely
on the fact that we consider1-counterfactual structures, the motivating example in
the introduction (the translucent prisoner’s dilemma game) shows that even consid-
ering ǫ-counterfactual structures with a smallǫ can result in there being strategies
consistent with common counterfactual belief of rationality that are not rational-
izable. We leave an exploration of common counterfactual belief of rationality in
ǫ-counterfactual structures for future work.
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