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Abstract

A pure Hotelling game is a competition between a finite number of players who select
simultaneously a location in order to attract as many consumers as possible. In this
paper, we study the case of a general distribution of consumers on a network generated
by a metric graph. Because players do not compete on price, the continuum of consumers
shop at the closest player’s location. Under regularity hypothesis on the distribution we
prove the existence of an e-equilibrium in pure strategies and we construct it, provided
that the number of players is larger than a lower bound.
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1 Introduction

1.1 General and pure Hotelling games

The seminal paper of Hotelling [1929] introduced a model of spatial competition that we
now refer to as Hotelling games. It considers the competition between two retailers along a
segment where consumers are assumed to be uniformly distributed. In the unique equilib-
rium both players set their shop in the middle of the segment. A large literature generalized
the model and two different classes appeared: the general Hotelling game, where players
can decide of their location and also of a selling price. In this framework, a cost function
is introduced to model the cost of moving for the consumers. The existing results mostly
concern very simple sets of possible locations, as described in the following review of the
literature. On the opposite, another part of the literature studies further the case of pure
Hotelling game, where the price is not under control of the players. This model applies
particularly to the sell of products whose price is fixed, such as newspapers sellers or brand
products retailers.
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The current paper belongs to the second literature, where the assumption of fixed prices
makes possible the analysis of the interaction between a larger number of players on more
evolved networks for players and consumers. Even though the study of the segment is useful
to understand better the dynamics of the interactions, it appears that the network plays an
important role in the problem. The network we study in this paper is the one introduced
in Palvolgyi [2011] and Fournier and Scarsini [2014] and can model a city, where consumers
are distributed along different streets that eventually intersect each other. We use a metric
graph and suppose that consumers are distributed along the edges, i.e. at convex combina-
tions between two linked vertices. Players can choose a location anywhere in this network
and consumers buy a fixed quantity of goods at the closest store. The payoff of the players
is the amount of consumers that shop at their store.

Pure Hotelling games often assume that consumers are uniformly distributed along the
network. This hypothesis simplifies the analysis but is restrictive: such a model does not
take into account the irregularities inherent to a city, such as higher density in city centers.
This consideration can not be handled by simple modifications on the network (using dilata-
tion or contraction arguments for example): players care about the distance with respect
to the distribution of consumers but consumers are going to the closest player’s location
regardless of the distribution of the other consumers.

In this paper, we consider a general distribution of consumers and only assume that
this distribution is absolutely continuous with respect to the Lebesgue measure, that can
easily be defined on the metric graph. We prove though counterexamples that no general
results hold on the existence of exact Nash equilibrium, neither on the existence of approx-
imate Nash equilibrium for an arbitrary number of players. Our main result is that if the
distribution of consumers has a positive, bounded and smooth density with respect to the
Lebesgue measure, then for any ¢ > 0 there exists an e-equilibrium in pure strategies in
the pure Hotelling game, provided that the number of players is larger than a lower bound.
We give a constructive proof and an explicit bound N(e) on the number of players. The
e-equilibrium is both additive and multiplicative.

A brief survey of the literature on pure Hotelling games is made in subsection 1.2. We
give a formal description of the problem in 2. We state the main result in section 3. In
section 4 we provide the announced counterexamples. The section 5 is devoted to the proofs.

1.2 Literature

We now discuss the closely related articles, that have in common with the current paper
either to be concerned with the class of pure Hotelling games (where only the choice of lo-
cation is under the control of the players), or to study the case of non-uniform distribution
of consumers, or to consider interactions on networks similar to the one considered in the
current paper.

Let first discuss the case of papers concerned with pure Hotelling games. Peters et al.



[2015] consider a uniform distribution of consumers on the unit interval. Consumers take
into account their travel distances to their closest player’s location, but also their expected
queuing times, which depend on the number of consumers choosing the same firm. They
provide existence of a refined equilibrium in several particular cases where the number
of players is small and even. Nunez and Scarsini [2014] and Nunez and Scarsini [2015]
consider a pure Hotelling game with a finite set of predefined possible locations for the
sellers. In a mimeo, Palvolgyi [2011] considers pure Hotelling games on the same network
that the current paper, but with uniform distribution of consumers. He states that there
always exists a pure Nash equilibrium when the number of players is large enough and
provides a constructive proof in some particular cases. He also studies some equilibrium
structural properties. Fournier and Scarsini [2014] give a general proof for the existence
of a pure Nash equilibrium with a large number of players and a uniform distribution of
consumers. They also measure the efficiency of the equilibrium. Similarities and differences
between Pélvolgyi [2011], Fournier and Scarsini [2014] and the current paper methods for
constructing an equilibrium with the adequate properties will be discussed in subsection 5.2.

We now discuss papers concerned with non uniform distribution of consumers in Hotelling
games. Eaton and Lipsey [1975] study, among a lot of different models, the case of a general
distribution of consumers on the unit interval, in the slightly different setting where two
players cannot choose the same location. They show that Hotelling’s original results only
hold under strong hypotheses. Lederer and Hurter Jr [1986] consider a model where con-
sumers are non uniformly distributed on the plane, and study the interactions between two
different firms. Neven [1986] analyzes the general location-then-price Hotelling game with
two players on the unit interval. He considers increasing densities of consumers towards
the center and shows that for some distribution, the two firms locate at opposite ends of
the market. Anderson et al. [1997] also examines a duopoly in a general Hotelling game,
with log-concave density of consumers. He proves that there exists a unique equilibrium in
pure strategies if the density is not ”too asymmetric” and not ”too concave”. Montes-Rojas
[2015] considers a two stages location-then-price game on the unit interval with non-uniform
distribution of consumers. Under strong conditions on the distribution, he studies a refine-
ment of Nash equilibrium and provides an algorithm to analyze some comparative statics.

We now discuss the papers concerned with Hotelling games on a network similar to the
one considered in the current paper. Pélvolgyi [2011] and Fournier and Scarsini [2014] are
already mentioned above. Heijnen and Soetevent [2014] consider such a network and study
the general location-then-price Hotelling game with 2 players. Some papers consider the
graph structure, but suppose that players can locate only on the vertices of the graph, such
as Mavronicolas et al. [2008] or Feldmann et al. [2009).



2 The game 57 (n,G, f)

In this section we give a formal description of the model. J#(n,G, f) is the game where
n > 2 players' select simultaneously a location in a set G, and where the consumers are
distributed on G according to the density function f with respect to the Lebesgue measure.
The network G is defined in subsection 2.1, and the normal form of the game, including
payoffs, is given in subsection 2.2.

2.1 The network G

The network GG on which consumers are distributed is also the set of possible actions for the
players. To define formally G, we need a triplet (V, E, \) where V' is a finite set of vertices, E
is a finite set of edges and A is a vector of length on E. For simplicity we suppose the graph
(V,E) to be connected. If the edge e € E links the vertices u and v we denote it (u,v). In
our network, players and consumers are not only located in the vertices of the graph but also
along the edges. A point along the edge (u,v) is defined as a convex combination of u and v.
The network G is then defined as the set G := {(u,v,t)|u,v € V,(u,v) € E,t € [0,1]}, and
a point in G is called a possible location. If a possible location y is chosen by at least one
player for a given actions’ profile, it is then referred to as a location (or chosen location) of
this profile. We give an arbitrary orientation to every edge to avoid the confusion between
(u,v,t) and (v,u,1 — t) that both refer to the same location.

We now endow the set G with a metric d that represents the distance that consumers
have to travel to go from one point to another in the network. For a given vector of length
A= (Ae)ecr, Ae > 0 is referred to as the length of the edge e. From A, we derive a distance
d on G as follows: if 21 and z2 are 2 points in the same edge e, they can be written as
x1 = (u,v,t1) and z9 = (u,v,ts) for some t1,ts € [0,1]. The distance between z; and z is
d(w1,72) = Au) X [t2 — t1]. If z and y are not in the same edge, we consider P(x,y) the
set of paths between x and y as the set of all sequences (x1,...,x,) with finite n such that
x1 = x, ¥, = y and such that for all ¢ € {1,...,n — 1}, x; and x;4; belong to the same
edge. The distance d(x,y) is then defined as:

d(z,y) = o ,xlffeP(x,y Zd Tiy Tit1)

Given a profile of actions (z1,...,z,) € G" for the players, we can compute how the

consumers split: they shop to the closest player’s location (ties are discussed in subsection
2.2).

The distribution of consumers plays its role in the players’ payoffs. We first introduce
the useful notion of interval [z, z2] C (u,v): let 21 := (u,v,t1), T2 := (u, v,t2) and suppose
without loss of generality that ¢; < t2. Then [z, 23] is defined as the set of {(u,v,t)} for

n the case where n = 1 player, every location attracts all the consumers and is therefore a pure
equilibrium.



t € [t1,t2].2 The terminology interval comes from the straightforward isometric identifica-
tion between [z1, z2] and the real interval [t1 A, ta\e] when the edge e is fixed. If there is no
possible confusion on e, we sometimes use the abuse of notation [t1 A, t2Ac] to denote the
interval [z1, za).

The Lebesgue measure on G is denoted .Z and can easily be defined as a natural ex-
tention of the Lebesgue measure on a real interval. A subset of G can indeed be identified
with a finite union of subsets of intervals. The uniform distribution is the case where G is
endowed with the measure .£. In our model, it corresponds to the case where f =1, i.e.
f(z) =1 for every x € G. This situation is studied in Palvolgyi [2011] and Fournier and
Scarsini [2014]. In this paper, we extend the model to a general non-atomic distribution p
with density function f : G — RT with respect to .#. For a subset &/ C G, the quantity of
consumers located in & is:

L f(2)dZ ()

For simplicity, we sometimes use the arbitrary orientation to identify the restriction of f
on an edge e with a real function f. : [0, \¢] = R*. When three chosen locations w1, z2, T3
belong to the same edge e, and if the orientation is such that 0 < z1 < z9 < 3 < A¢, we
say that the location z1 (resp. x3) is the left (resp. right) neighbor of x5 if there is no other
chosen location between x1 and zo (resp. between x9 and x3).

Finally remark that we can remove any vertex v with degree 2 and consider the new
edge (u,w), instead of (u,v) and (v, w). In this case we set A\(y) = Auw) T Aww). From
now on, we can assume without loss of generality that all vertices have a degree different
from 2.

2.2 The normal form of the game .7 (n,G, f)

A (n,G, f) is the Hotelling game on G with n players and with a distribution f of con-
sumers. Its normal form is given by a finite set of players {1,...,n}, the action set G which
is the same for every player, and the payoff function p := (p;);cq1,...n) that depends on the
chosen profile of actions. We first give an intuitive definition of the payoffs, and equation
(2) gives a formal definition.

The payoff of a player is the quantity of consumers that are going to his shop. A location
x; € G attracts all the consumers who are closer to x; than to any other location, plus a
share of the consumers who are as close to z; as to some other locations (all these locations
get an equal part of the consumers). The total quantity of consumers that shop in z; splits
equally between the different players in x;.

The payoff function has to consider that a location can have different ties with different
other locations. More precisely, for a subset A of an actions’ profile {z1,...,x,}, D4 is

*Respectively, we define [x1, 2], |x1,22], and |z1, 22| as the set of {(u,v,t)} for t € [t1,t2], |t1,t2], or
Jt1, t2[.



the set of point in G that are at the same distance from all locations x; € A and that are
strictly closer to them than to any other location. Formally, for A C {z1,...,z,}:

Dy={yeG:dy,x;) =d(y,z;) for all z;,z; € A

1
and d(y,z;) < d(y,z,) for all x; € A,xy & A}. M)

The domain of attraction of a location z; € G refers to the points in G that are (weakly)
closer to them than to other locations, i.e. U Dy.

All locations in A get an equal part of pu(D4). Moreover, all players in a same location
get the same payoff. Formally, the payoff of the player i when the profile of strategy
x = (z1,...,2,) is played is:

() — 1 p(Da)
pi(@) Card({j € {1,...,n} 1 z; = 2;}) Ac{leA,xn} Card(A)’ @)

where p(Dy) = fDA f(z)dZ(z). From now on, we use the notation dz instead of d.Z(z).

This payoff function has a symmetry property: the payoff of a player does not depend
on the identities of the other players. Therefore, the fact that a profile « is or not an
equilibrium does not depend on the identities of the players. We sometimes use the term
configuration to talk about a profile of actions.

3 Existence of e-equilibrium in J7(n, G, f)

In this section, we state our main result on the existence of e-equilibrium in J#(n,G, f) in
pure strategies.

Definition 1. A profile of actions x = (x1,...,xy,) is a multiplicative e-equilibrium of
H(n,G, f) in pure strategies if and only if for alli € {1,...,n} and for all y € G we have:

pi(xla ey Li—1,Yy i1y e - - axn) S (1 + E)pl($)
x is an additive e-equilibrium of J€(n,G, f) in pure strategies if and only if for all

i€{l,...,n} and all y € G, we have:

Pi(Z1, s T 1, Yy Tig 1, -5 Tp) — Di(x) <€

We now define two conditions on the density function f.

(C1): The function f is K-Lipschitz with respect to the distance d on S.



(C2): The function f is positively upper and lower bounded: there exist m, M €]0, co[ such
that forally e G, 0 <m < f(y) < M

Theorem 2. Ezistence of e-equilibrium.

Let G be the network generated by any connected graph (V,E) and X be any vector of
lengths. Suppose that f satisfies (C1) and (C2). For all € > 0 there exists an integer N (e)
such that when the number of players n is larger than N (€), there exists a multiplicative
e-equilibrium in pure strategies in H(n,G, f).

We give a constructive proof where N(e) can be taken equal to

S5L(M 4+ +8-) /(12 + 6)K 1 3LK(12 + ¢
5Card(E) + ate <( 5 ) + — 3 ) + 2( )
m — —12+€ eEm min Ae Em

where L := fS f(x)dx is the total quantity of consumers in the network, and min A\, denotes
the minimal length among the set E of edges.

Remark 3. We can weaken condition (C1) to the following condition: The restriction of
f on (0,)Xe), the interior of any edge e, is K -Lipschitz. With such a condition, the function
f can be discontinuous in the vertices.

Remark 4. There exists also a lower bound N'(€) on the number of players that guarantees
the existence of an additive e-equilibrium in pure strategies in H(n,G, f). Because the
payoff of any player is always bounded by L, this existence is just a corollary of Theorem 2.
Nevertheless, such a result is somehow trivial: when the number of players is large, their
payoffs are small because they share the fized quantity L, and any profile of actions turns
to be an additive equilibrium.

Proof. The proof of theorem 2 is detailed in section 5. We give here a sketch of the proof.

The first step is detailed in subsection 5.1: we approximate the density function f by a
step function g(e;), where €1 is a parameter playing a role in the length of the steps. We
prove that because f is K-Lipschitz, the step function g(e;) is such that ||f — g(e1)||, < €
when €7 is small enough.

The second step is detailed in subsection 5.2: we give a constructive proof that if (C2)
holds, there exists an (exact) equilibrium in pure strategies in the game J#(n, S, g(e1)),
where consumers are distributed according to the density function g(e;), and where the
number of players n is larger than a lower-bound N (e1). This lower bound increases when
€1 goes to zero.

We conclude in subsection 5.3 by showing that if €; is small enough, the equilibrium
constructed in the previous step is a multiplicative e-equilibrium in the game 5 (n, S, f),
where the distribution of the consumers is given by the function f. We obtain therefore
a lower bound N(€) on the number of players n that guarantees the existence of a pure
multiplicative e-equilibrium in J#(n, S, f). O

*In particular that N(e) ~ 1 when e — 0



4 A few counterexamples

In this section we provide counterexamples to naive extensions of the state-of-the-art re-
sults. The counterexample also illustrate how the analysis of game J#(n, S, f) with a general
distribution of consumers f is fundamentally different from the analysis of the game with
uniform distribution of consumers . (n,S,1), where 1 stands for the constant function
x € G — 1. They also highlight the necessity to consider games with a large enough num-
ber of players.

Proposition 5 shows that on the simple network composed of only one edge of length 1,
identified with [0, 1], it is possible to have existence of exact equilibrium in . (n,[0,1],1)
but non existence in #(n, [0, 1], f) even when f is arbitrary close to 1. More precisely, it
is proved in Eaton and Lipsey [1975] that for any n > 4 there exists an equilibrium in pure
strategies in the game .#°(n, [0, 1], 1). In the case of non uniform distribution of consumers,
it is claimed that in the slightly different framework where two players can not chose the
same location, there exist some density distributions f such that the game . (n, |0, 1], f)
doesn’t admit any equilibrium in pure strategies for n > 3. We give here a more precise
result and provide an extensive proof that also covers the case where several players are
allowed to play in the same location. Proposition 5 is also a counterexample to a possible
generalization of the existence of exact equilibrium for a large number of player, as proved
in Fournier and Scarsini [2014] for uniform distribution.

Proposition 5. For any € > 0, there exists a density function f such that || f— 1||ecc < € and
such that 7 (n,[0,1], f) doesn’t admit any Nash equilibrium in pure strategies for n > 3.

Proof. Fix an ¢ > 0 and let f : [0,1] — R* defined by f(z) := 1 + ex. It is clear that

|If — 1]l < €. Suppose now that € = (x1,...,2,) is an equilibrium. Without loss of
generality we assume that z1 < -+ < z,.

We first claim that all players are coupled, i.e. that z1 = zo < a3 =24 < -+ < Tp_1 =
xp A

Suppose that m > 3 players share the same location xy = xx41 = -+ = Tprm—1 With

m > 3 players. xp_1 (resp. Tiipm,) is its left (resp. right) neighbor (if it has one). We denote
Th—1k = % and Tiym—1 k+m = W In the case where x; does not have a
left (resp. right) neighbor we set xj_1 5 = 0 (reSp Zi4m—1k+m = 0).

D,, , the domain of attraction of x, is equal to the union of the two intervals [xy_1 1, 2]

and [Tg4m—1, Th+m—1,k+m) (see the red and green intervals in figure 1 below).

| | | | |
[ I [ I | g

LTk—1 TE—1,k Lk = Tk4m—1 Lk4+m—1,k4+m Tk4+m

Figure 1: Domain of attraction of xy

The payoff of player k is then equal to:

4This results implies in particular that there is no equilibrium with an odd number of players.



1
pr(T1, .. xn) = — (1 + ex)dz

M Sz _1, 5,260k Thtm—1,k4m)]

Because m > 3, we have either:

/ (1+ ex)dz > p(z1,...,25)
[Tk—1,k%k]

or:
/ (14 ex)dz > pr(x1,...,xn)
[Tk Tkt m—1,k4m]

But player k£ could get a payoff arbitrary close to f[$k (1+ ex)dz by playing xy — 0 for

—1,k:7xkt]

a ¢ small enough, or arbitrary close to f[ (1 + ex)dz by playing xj + ¢ for a §

xkyxkﬁ»mfl,k«km]
small enough. It proves that at equilibrium, it is not possible that 3 or more players share

a location.

Suppose now that there exists a location zj € [0, 1] with a single player k. This player
has a left neighbor x;_1 (resp. a right neighbor xj 1), otherwise he would have a profitable
deviation playing zj + d (resp. zx — ¢) for a small enough 0. His payoff is equal to a right
trapezoid’s area (see figure 2 below):

Tk 1 + $k—1,k>
2

et ) = (Thpr1 — Th-1,k) (1 +e

1+ exp kit
1+ €ETk—1,k

| | 1 | |
Tk—1 Tp—1,k T Tk k+1 Tk+1

Figure 2: Domain of attraction and payoff of player k in x

For a small enough 6 > 0, we have that:

T k+1 + Th—1,k
PE(T1, - T 1, TR0, Tpg 1, - -+, Tn) = (Th o1 —Th—1,k) (1 + e

The last inequality is in contradiction with (x1,...,z,) being an equilibrium. We there-
fore proved that if (x1,...,2,) is an equilibrium, then all players are coupled.

We now suppose that all players are coupled ©1 = x3, T3 = X4, ...,, Tp—1 = Zn,
and will find a contradiction. We denote Ay := [ f(z)dz, Ay := [*° f(z)dz,. ..,

Agpq = [P0 f(z)dw, Agy = [PR24 f(a)dz, ..., Ap = fa:ln f(z)dz. We now prove

T2k—2,2k—1 T2k

+ e6> > pr(z, ...



Ao = Az and that it implies a contradiction.

We have pi(x) = pa(x) = %. If Ay > Ay (resp. Ay > Aj) then player 1 could
deviate to x1 — ¢ (resp. x1 + 0) and get a payoff arbitrary close to Ay (resp. Ag) > w.
The equilibrium condition gives Ay = Ay = pi(x). But A; < Aj is forbidden, otherwise
player 1 could deviate to x3 —d and have a payoff arbitrary close to A3. A similar argument
forbids A3 < A;. We therefore have A; = Ay = A3. But Ay = As is not possible because
these two quantities are defined as integral of a strictly increasing function on two intervals
of the same length. Therefore there is no equilibrium in the game J#(n,[0,1], f) with

f(x) =1+ ex and with n > 2. O

In the next example, we focus on the case of 4 players in the unit interval where it
is known that there exist a unique (up to permutations of the players) Nash equilibrium
when the consumers are uniformly distributed. This equilibrium is such that two players
choose i and two players choose %. We prove that with a very large class of distribution of
consumers, pure Nash equilibrium may not exist. It illustrates that the previous example
does not rely on the choice of a particular density function. Proposition 6 is also a good
illustration of the following: if (z1,...,x,) is an exact equilibrium in the uniform case, then
the profile (y1,...,yn) where yi is the zi-quantile of f, is not in general an equilibrium in
the case where consumers are distributed according to the density f. The reason is that
consumers, as opposed to players, do not care about the density f, they just shop at the
closest location with respect to the distance d.

Proposition 6. Consider 5 (4,[0,1], f) the Hotelling game with 4 players on the unit

interval [0,1] and with a density function f. We denote q1, q2 and q3 the quartiles of the
. . . . 1

distribution f, i.e. [I' f(x)dr = qq12 f(z)dz = qq23 f(z)dz = qu f(z)dx = L. The only

possible equilibrium is the configuration where two players select q1 and two players select

; g T ' o qitg
q3, but this configuration is an equilibrium if and only if g = TS

Proof. Denote x1,xs, 3,4 the locations chosen by the players, and suppose without loss
of generality, that 1 < zo < 3 < x4. First, if (z1,22,23,24) is an equilibrium then
x1 = w9 and x3 = x4, otherwise player 1 (resp. 4) would have a profitable deviation by

1o %) Moreover, if (z1,x2,x3,24) is an equilibrium, the quantities

playing “5#2 (resp.
x1+x
A= [ f(x)dz, B := fml? * f(z)dz, C = [:}iay f(z)dx and D := fmlg f(z)dx have to be

2
equal. Indeed the payoffs of players 1 and 2 are AJFTB, and the payoff of players 3 and 4 are

C+TD_ Any player can have a payoff arbitrary close to A, B, C' or D by playing, respectively
T1 — €, x1 + €, x3 — € or x3 + € with € small enough. This consideration leads to the fact
that A = B = C = D, and therefore 1 = 29 = ¢1, xl;” = ¢ and x3 = 14 = ¢g3. It is then
necessary that qo = QHZ"B and in this case, the profile 1 = x9 = ¢1 and z3 = 4 = ¢3 is
clearly an equilibrium. O

In the next example, we show that when the number of players is small, there may not
exist any e-equilibrium for arbitrary small e.

Proposition 7. For any € < ﬁ, there is no e-equilibrium (additive or multiplicative) in

H(3,[0,1], f).
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Proof. We prove it for additive e-equilibrium first, and prove that it implies the non exis-
tence of multiplicative e-equilibrium.

We can admit without loss of generality that fo x)dr = 1. Suppose first that
1 < 19 < I3. Usmg the notation x; ;11 = x1+§'“, we have that f;:fQ f(z)dz < ﬁ and

Jor? fla)de < 4,

improve his payoff by more than
and:

"t [ fwdes [ p@des [ p@ar=1- [ pawae— [ )
0 1 23 3 12 2

We conclude that at least one of these four terms is larger than 1—34. Player 2 can have a
payoff arbitrary close to any of these quantity by playing respectively 1 — 9, x1 + 9 ,o3 — 90
or x3 + 0 with a small enough 4. It leads to a contradiction because % —z= ﬁ > €.

otherwise player 1 (resp. 3) would deviate to xa — d (resp. x2 + J) and

14, for arbitrary small §. It follows that ps(x1,x2,x3) < %

Y

6
7

—

Suppose now that x1 = z9 = x3, then p; = po = p3 = %, but player 1 can get a payoff

at least arbitrary close to % by playing either 1 — 6 or 1 + J for a small enough §. We
have a contradiction because % — % = % > 1—14 > €.

Suppose ﬁnally that 1 = x9 < x3. The same argument used in the first case gives that
[2° f(z)de < §4. Ttis also necessary that [ f(z)dz < fm’?’ f )dx+ - otherwise player 1

1

would deviate to x1+06 for a small enough . Therefore f f(@)de =1— [** f(x)ds > L.

It results that either fgf’g flx)dx > 1—}3 or f flx)dx > 5213 Player 1 can have a payoff ar-

bitrary close to these quantities by playlng x3 — 6 or x3 + & for small enough 6. But

323
pi(x1,x9,23) = M < 134, so he can improve his payoff by 5% — 1—321 8 > 14 >e. In

any case, there is no additive ﬁ—ethbrlum

We can also prove that there is no multiplicative e-equilibrium. Suppose that there
exists one . If x4, is a profile of location obtained after a possible unilateral deviation
from x, we have for any k € {1,2,3} that pg(z4er) < (1 + €)pi(x). Because the payoff of
any player is bounded by 1 we have:

Pr(Tdev) — Pr(x) < epr(x) <€

We have a contradiction because x can not be an additive e-equilibrium. U

5 Proof of theorem 2

In the current section we give a proof for Theorem 2. As announced the sketch of the proof
in section 3, the extensive proof is divided in 3 steps detailed in subsections 5.1, 5.2 and
5.3.
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5.1 The approximation of the density by step functions

In this subsection, we construct a step function g(e;) for a fixed parameter €;, and we prove
that g(e1) is a good approximation of f when ¢; is small.

Definition 8. For a fized ¢; > 0, the step function g(e1) : G — R™ is defined edge by edge

as follows. On an edge e € E, the number of step is equal to I, := P‘;ff—‘ , and all steps are

semi open intervals’® of the same length:

Ae
l =
(1) =+ 3)
2€1
It is clear that ﬁ = I. € N. The function g(e1) is constant on a step, and its common

value is equal to ‘the value of f at the middle point of the step. More precisely, if we denote
ge(€1) and fe is the restrictions of g(e1) and f on the edge e and if we use the natural
identification between an edge e and the real interval [0, \.],%we have that:

First step: (i =0) Va € [0,4e(e1)), ge() = fe(ge(;l))
ith step: Va € fife(er), (i + Dle(er)), ge(z) = fo((i + $)le(e1))
gast step: (i=1.—1) Vo e [Ae —Le(e1), Ae)s ge(x) = fe(Ae — @)

The next lemma shows that g(e;) is a good approximation of f when €; is small enough.
Lemma 9. ||f — g(€1)[|oc < €1

Proof. Let = € G. Let e,i such that x € e and = € [ilc(€1), (i + 1)le(e1)[. Using the
definition of g(e;) and the fact that f is K-Lipschitz, we have:

7(@) = 9@ <Ufel) = Lol itelen)] + el + 3)ite(e)) — ge(a)

1
<Kle = (i+ 3)le(e1)] +0

A
e <

K|
2[5

O

The payoff function in the game 5 (n, S, f) is defined in equation (2). In subsection
5.2 we study the game J#(n, S, g(e1)) where the consumers are distributed according to the
density g(e1). The payoff function in this game is denote 7 and is now formally defined.

SHowever, because we only consider consumers’ distributions absolutely continuous with respect to the
Lebesgue measure, the definition of g on a singleton is not relevant.
5We use also the arbitrary orientation on the edges. The choice of this orientation does not play any role.
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Definition 10. We define the payoff function 7 := (w1, ...,7,) in the game H(n, S, g(€1)).
For a given profile of action x, we have that:

() = 1 (Da)
mi(@) Card({j € {1,...,n} :x; = 2;}) Z Card(A)’ )

Ac{z1,....xn}|zi€A

where D 4 is defined in equation (1) and where i(Dy) = fD x)dZ(x).

5.2 The equilibrium with the step function density g(e;)

In this subsection, we provide a method to construct an (exact) equilibrium in the game
with density function g(e;) and with a large enough number of players.

In subsection 5.2.1 we describe a profile of location (6, €;) for some fixed real numbers
0 > 0 and €¢; > 0. Lemma 11 below is useful to compute the number h(6,¢;) of players in
such a configuration. In subsection 5.2.2, we prove that x(6,¢;) is an exact equilibrium in
the game 72 (h(60,¢€1),5,g(e1)). Before describing the profile (6, e;) we emphasize on its
differences with existing constructions.

The method used to construct the auxiliary equilibrium in 5.2.1 is inspired by the ones
used in Palvolgyi [2011] and Fournier and Scarsini [2014]. Nevertheless, the main difference
is that we provide here a construction that depends on the steps of the function g(e;), as
opposed to the mentioned constructions that describe edge-dependent models. The current
construction depends on two parameters 6 and €1, and the lengths of the intervals between
players depend on the value of the function g(e1). Note that in the papers mentioned above,
it is not trivial to add ”fake” vertices of degree 2 and to consider the steps of g as artificial
edges between such vertices. The existing constructions depends strongly on the number
of vertices, and vertices of degree 2 are not taken into account: in particular it is not a
necessary condition that for a large number of players, at least one player chose to play in
a vertex with degree 2, as opposed to vertices with degree at least 3.

5.2.1 Description of the profile x(0,¢;)

We now describe the profile (6, €1) for fixed 